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The critical behaviour of a semi-infinite n-vector model with a surface term (c/2)SdS(a z 
is studied in 4 - e  dimensions near the special transition. It is shown that all critical 
surface exponents derive from bulk exponents and t/ll, the anomalous dimension of the 
order parameter at the surface. The surface exponents and the crossover exponent �9 for 
the variable c are calculated to second order in a 
It is found that �9 does not satisfy the relation ~ =  1 - v  predicted by Bray and Moore. 
The order-parameter profile m(z)=<q~> is calculated to first order in e. In contrast to 
mean-field theory, m(z) is not flat nor does it satisfy a Neumann boundary condition. 
General aspects of the field-theoretic renormalization program for systems with surfaces 
are discussed with particular attention paid to the explanation of the unfamiliar new 
features caused by the presence of surfaces. 

I. Introduction 

In a previous paper [1] - hereafter referred to as I - 
we have described a field-theoretic approach to criti- 
cal behaviour near free surfaces. This approach is in 
many respects similar to the usual field-theoretic 
treatment of bulk critical behaviour [2, 3] and al- 
lows one in particular to derive scaling laws for 
surface exponents in a standard fashion [1, 4]. 
Apart from obvious computational difficulties, how- 
ever, the breakdown of translational invariance gives 
rise to a number of specific problems and novel 
features. Some, but not all of these, were already 
manifest in I. It became clear that the usual bulk 
renormalization functions (for order-parameter, tem- 
perature, and coupling-constant renormalization) do 
not in general suffice to render all interesting cor- 
relation functions finite. Thus an additional surface 
counterterm was needed to renormalize correlation 
functions involving normal derivatives of the order 
parameter. 
A second unfamiliar phenomenon encountered in I 
was the appearance of primitively divergent one- 
particle reducible Feynman graphs. This entails that 

* A brief account of some of the results presented here was 
given in [4] 

the conventional skeleton expansion [5], in which 
skeletons are given by classes of primitively diver- 
gent one-particle irreducible (vertex) graphs, be- 
comes inadequate [6]. The consequences showed up 
in a relatively harmless fashion in I because we 
restricted attention to the asymptotic behaviour at 
the ordinary transition. They become much more 
pronounced in the analysis of the special (or surface- 
bulk) transition [4, 7, 8] which is the subject of the 
present paper. 
As in I our analysis is based on the semi-infinite n- 
vector model defined by the free-energy functional 

.4) 

in which ~b is an n-component order-parameter field 
(~ba(x), a =  1,. . . ,  n). The volume and surface integrals 
~dV, ~dS extend over the d (=4-e ) -d imens iona l  
half-space z > 0 and the plane z = 0, respectively. The 
position vector x will be written as x = (r, z), r denot- 
ing its d - l -d imens iona l  component parallel to the 
surface, h and h 1 are bulk and surface magnetic 
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fields which we assume to be uniform in their space 
coordinates x and r. 
The model (1) has been studied previously by a 
variety of other authors; a fairly complete list of 
references can be found in [7l (see also [1] and [8]). 
More recently it has also been used to investigate 
critical adsorption phenomena [9 11]. 
The present work has two aims. The first is a de- 
tailed RG analysis of the special transition. This 
transition is described by a multicritical point, the 
'special' point, at which both the surface variable c 
and hl are relevant in addition to the bulk variables 
h and z. We will present two-loop calculations from 
which the scaling indices of all four relevant fields 
h, z, h 1, c follow to order e z. In particular, we obtain 
the crossover exponent �9 associated with c, to this 
order, and show that it deviates from the prediction 
�9 = l - v  of Bray and Moore [12]. Previous analyses 
of the special transition based on the e-expansion 
were either limited to first order in e [12, 13] or else 
did not consider deviations from the special point 
[14, 15]. 
Our second aim is to explain some of the unfamiliar 
features of the renormalization program mentioned 
above. To illustrate the appearance of one-particle 
reducible renormalization parts and to elucidate the 
consequences thereof we will discuss the renormal- 
ization of the surface operator q52(r, 0) in some de- 
tail. A further characteristic problem caused by the 
presence of surfaces is the necessity to deal with 
boundary conditions. This was less prominent in I 
because for c =  o% the value c takes at the fixed 
point that describes the ordinary transition, both the 
regularized (finite momentum cut-off A) and the re- 
normalized correlation functions satisfy Dirichlet 
boundary conditions order by order in perturbation 
theory [1, 6]. In the case of the special transition a 
Neumann boundary condition (vanishing normal de- 
rivatives of q~) holds at the level of the tree (or 
mean-field) approximation, but this breaks down al- 
ready at one-loop order [4, 6, 8]: As we shall see, 
the cut-off regularized correlation functions satisfy a 
cut-off-dependent boundary condition. This resuIts 
from the fact that the (~b2)2-interaction produces a 
shift of the critical value c = Csp for the special tran- 
sition (which controls the boundary condition). In 
contrast to mean-field theory, where c~p--0, the spe- 
cial point is associated with a nonvanishing (and 
nonuniversal) value Csp=C~p(g,A ) of c. It is easy to 
see that the renormalized correlation functions do 
also not satisfy Neumann boundary conditions be- 
cause they become singular near the surface. For 
example, the order-parameter profile m(z)=<~b(r, z)) 
behaves as z (~'-p)/~ for z ~ 0  and h=h~=O, where 
v, fl~, and fl are the critical exponent for the bulk 

correlation length, the surface magnetization ml: 
--m(0), and the bulk magnetization me." = re(o o). 
This behaviour of re(z) follows quite generally from 
a short-distance expansion (see I and below) and 
will be explicitly verified by a one-loop calculation 
of re(z). At the special transition m e decreases faster 
with temperature than ml, i.e. fll =f l ]P<f l '  Therefore 
re(z) as well as its z-derivative m'(z) diverge asymp- 
totically for z ~ 0 .  In contrast we have fl,=fi~ra>fi 
at the ordinary transition, implying m(z)~O for 
Z----~ 0. 
In the next section we give some necessary back- 
ground information and discuss the identification of 
the special point. Details of our renormalization 
group approach are described in Section IlL Techni- 
cally, it differs somewhat from the one employed in 
I because - following Symanzik [6] we Fourier 
transform only with respect to parallel momenta (p) 
and work in a pz-representation rather than in mo- 
mentum space. Dimensional regularization is pre- 
ferred in the actual computations, but we frequently 
indicate the modifications that arise when an ultra- 
violet cut-off A for the parallel momentum integ- 
rations is used instead. Results of the e-expansion of 
Feynman graphs and some computational details 
are given in the Appendix. 

II. Mean-Field Properties and the Identification 
of the Multicritical Point 

A. Background 

The special transition is described by a multicritical 
point (denoted SB in Fig. 1 of I) which is defined by 
the critical temperature Te of the bulk and a critical 
value csp [1, 7, 8, 12]. At this point three second- 
order lines meet, namely a line of ordinary, extraor- 
dinary, and surface transitions. The ordinary tran- 
sition, which was treated in I, occurs at T~ for 
c>C~p. When c<csp, the exchange interaction for 
spins at the surface is sufficiently enhanced (as com- 
pared to the bulk) to split off a surface phase. On 
lowering the temperature, a surface transition first 
takes place at a critical temperature T~(c), which is 
then followed by a so-called 'extraordinary' tran- 
sition at T e. Crossover scaling E7, 12] implies that T~ 
varies as 

(T~(c) - Te)/T ~ = const- (c - Csp) 1 / ~  (2) 

for c ~ c~v. Here 4~ is the previously mentioned cross- 
over exponent which we shall calculate below. 
The multicritical point requires by its very definition 
the existence of a surface phase. For models of the 
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Ising or n-vector type with short-range interactions 
one expects a surface-ferromagnetic bulk-paramag- 
netic phase if (and only if) the surface dimension 
d - 1  exceeds the lower critical dimension d.  for bulk 
order. In the Ising case d,  = 1, and it is known from 
rigorous work [7, 16] that no surface phase exists in 
two dimensions. For n > 2  the continous O(n) sym- 
metry leads to d . = 2  [17], so one expects a surface- 
ferromagnetic phase for d>3.  This is corroborated 
by a low-temperature analysis of the semi-infinite, 
classical, isotropic Heisenberg ferromagnet. Using a 
random-phase approximation, Mills and Maradudin 
[18, 19] showed that spin-waves which are localized 
near the surface appear in addition to scattering 
modes. We expect these localized low-energy exci- 
tations to destroy surface ferromagnetism for d < 3 in 
a similar fashion as bulk spin-waves destroy bulk 
long-range order in two dimensions. The case n = 2  
is special; by analogy with the Kosterlitz-Thouless 
transition [20] of the two-dimensional XY-model, a 
surface phase with quasi long-range order should be 
possible for d=  3 E7]. It must also be mentioned that 
the assumption of ideal O(n) symmetry throughout 
the sample is somewhat unrealistic. In general, the 
interaction will be anisotropic near the surface, even 
if the bulk is isotropic [21J. However, a hard-axis 
surface anisotropy should again lead to a surface- 
ferromagnetic phase for d = 3. For simplicity, we will 
nevertheless restrict attention to the isotropic model 
defined in (1). Since within the e-expansion one does 
not see that the special transition ceases to exist for 
d = 3  and n>2,  one must keep in mind that an 
extrapolation to e = 1 makes sense only for n = 1. 

B. Identification of the Multicritical Point 

In mean-field theory [7, 12, 22] Csp=0 and the spe- 
cial transition has (at least) four characteristic prop- 
erties each of which can be used for its identifi- 
cation. Since some of these properties are lost be- 
yond mean-field (MF) theory, and to explain the 
identification of the multicritical point, we will brief- 
ly discuss them. 

i) The M F  magnetization profile is fiat [22], i.e. 
(h=h 1 =0) 

re(z) = m~ ~ = (6 Irl/g) 1/2 (3) 

where m~ ~ is the MF bulk magnetization. 

ii) The MF correlation functions satisfy Neumann 
boundary conditions. This follows directly from the 
fact that the eigenfunctions (G(z; c) (given by (II.5, 7) 

of I) which diagonalize the quadratic part of Y be- 
come [14, 23, 24 l 

Ok(z; c) = 21/2 sgn (k) cos (kz) (4) 

for c=0. By analogy with (II.4) and (II.10) of 1 we 
therefore have (p~(z =0  + ; 0)=0 and 

8. 4 = o (5) 

where a,(=8~) is the normal derivative along the 
inner normal. 
The Neumann boundary condition follows also from 
well-known results for the MF propagator (denoted 
G(2)(x, x') in I) which we write as G~(x, x') for given 
c. Its parallel Fourier transform reads [22] 

ac(p; z, z ' ) :  ~ [ e-~lz-z'l 

with 

~c = (p2 + c)1/2 

] -~ - e - ~ ( ~ + z ' )  ( 6 )  
t c + c  

(7) 

in the disordered phase, and it satisfies the boundary 
condition 

a.G(x,  x ')= cG(x, x') (xeS, x'r (8) 

Here the notation xES (x$S) was introduced to in- 
dicate that x is (x' is not) a surface point. For c = 0, 
(8) turns into a Neumann boundary condition for 
the 'Neumann propagator' GN: = Gc= o. 

iii) The value c = 0 marks the border-line below which 
a bound state appears. As discussed in I, the diagon- 
alization of 32~-/6q53~b involves the eigenfunctions 
qo(z;c) of the operator - 8 2 + z  with the boundary 
condition q)'(0+; c)=ccp(0; c) (see (II.3,4) of I). For 
any c < 0 there exists a bound state [23] 

~Oo(Z; c)=(2[cl) 1/2 exp (-[cl z) (9) 

with eigenvalue 

eo =z  - c  2 (10) 

in addition to scattering states q)k(z; c) which are 
again given by (11.5, 7) of I. 
The appearance of this bound state is consistent 
with the expectation that the critical exponents of 
the surface transition are given by the bulk ex- 
ponents in d - 1  dimensions. To see this, note that, 
in terms of eigenfunctions, Go(P; z, z') becomes 

dk z, de(p; z, z') = ~ ~ -  ~ok( �9 c) (k 2 + p2 + ~)-  1 ~ok(z'; c) 
o 

+~Oo(Z; e)(p2 + z - c 2 )  -1 ~Oo(Z'; c) (11) 
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for c < 0  and z > c  2. Along the surface line r = c  2 
(c<0) only the bound state gives rise to infra-red 
singularities. The scattering modes remain massive. 
This indicates that they are irrelevant degrees of 
freedom for the surface transition. Decomposing q5 
into bound state and scattering contributions 

co dk r z) =~0(r) (p0(z; c)+ .f Ok(r)(Pk(Z; C) (12) 
b 7"C 

we may define an effective surface free energy 

~ { ~ }  = - l n  [([I ~ d{q)k(r)})exp (--~-{qS; h = h  a =0})] 
k 

(13) 

by integrating out the scattering degrees of freedom. 
Since % ' . = r - c  2 is small compared to the mass 
ra/2~ Icl of the scattering states, =,~ can be calculated 
perturbatively by expanding in powers of Icl-1 hold- 
ing % and g~:=gc fixed. To leading order one ob- 
tains 

1 go(~,~)~} (14) 

where 011 is the d- l -d imens ional  parallel com- 
ponent of V=-(cqll,0z). The result confirms the naive 
expectation that fluctuations in the scattering modes 
can be ignored. Since ~ describes a d - l -  
dimensional bulk system with order parameter O(r), 
the above-mentioned well-known result for the criti- 
cal exponents of the surface transition follows. 

iv) The local susceptibility Zl l  and the bulk suscepti- 
bility Ze both diverge. Recalling that [7] 

Z11 = (~ml/~hl)h= h~= 0 (15) 

we also introduce, for later use, the layer susceptibil- 
ities 

Z(z) " = (~m(z)/~h)h= h, = 0 (16) 

zl~=z(~=0) (17) 

and the excess susceptibility 

Z ~ -  dz(ze-Z(z ) )  �9 (18) 
0 

For n=>2 all Z's are tensors; then (16) e.g. must be 
interpreted as ffb(Z)=[cgma(z)/~hb]h=a~= o. Since we 
are mainly interested in the Ising case we will set 
n = l  whenever we consider temperatures below T 6. 
The results for T =  Te will be given for general n, 
however, because the correlation functions (and 
hence the Z's) are O(n) symmetric for vanishing mag- 
netic fields. Thus Z(z), for example, can be regarded 
as the diagonal element of z~b(z)=z(Z)6 "b. 

Among these properties ( iv)  is best suited for the 
identification of the multicritical point. The first two 
are lost beyond the MF approximation, as already 
mentioned in the Introduction. The third is tailored 
for MF theory and less useful because an appropri- 
ate generalization would require that we consider 
the inverse of the two-point correlation function. 
Loosely speaking ( iv)  says that bulk and surface are 
both critical. This should be contrasted with the 
conditions at the surface transition where )~l div- 
erges while Ze is analytic and at the ordinary tran- 
sition where Ze diverges while Zll remains finite 
(though nonanalytic). 
Specifically, the multicritical point can be identified 
as follows. Working in pz-space let us cut off the 
parallel momentum integrations at Ipl=A, We then 
determine the critical value r e=re(g , A) of r as usual 
from 

ZZ t(z~, g, A) =0. (19) 

Then Csp=Csp(g , A) follows from 

z;)  (re, %, g, A)= 0. (20) 

A straightforward calculation (see Eqs.(4.3-7) of 
Ref. 12) gives, to one-loop order, 

n+2 ~+O(a2 ) (21) % =  - A ~ - -  

where 

~= A-= 2 -d ~-d/2 g (22) 

is the dimensionless bare coupling constant. 
In dimensional regularization, where momentum-in- 
dependent terms ocA are thrown away, c~p--0 to all 
orders. This is completely analogous to the result 
z e-= 0 for the shift of the critical temperature. 

III. Renormalization Group Analysis 
of the Special Transition 

A. Surface Singularities and Surface Counterterms 

We begin with a brief exposition of some basic 
features of the RG program for semi-infinite sys- 
tems, following partly Symanzik's reasoning [6]. 
To go beyond MF theory one can set up a per- 
turbation expansion in terms of Go. Alternatively, 
one can expand in powers of c and use GN as free 
propagator. Since Gc is fairly complicated the latter 
is preferable unless one wants to keep the full c- 
dependence of the correlation functions. In either 
case one finds from (6) that the free propagator 
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differs from the corresponding translationally in- 
variant 'bulk'  propagator 

d~(p; z, z') = (2~)- 1 exp ( -  ~:]z - z'l) (23) 

by an image term, i.e. 

Gf~ee = G~ + G~. (24) 

Specifically for Gfr~e = GN, one has 

G~(x, x') = 6e(~t - x') (25) 

where ,s = (r, - z )  is the image point of x = (r, z). 
Let us consider one-particle irreducible (1PI) graphs 
(defined diagrammatically in the usual way). Using 
the decomposition (24) for each propagator line one 
obtains, among others, graphs that involve ex- 
clusively Ge. These 'bulk'  graphs are precisely the 
1PI graphs of the corresponding translafionally in- 
variant theory. Unregularized or for A~oo,  G~ be- 
haves as 

G ~ ( x - x ' ) ~ l x - x ' l  -z+~ (x~x')  (26) 

at short distances. This singular behaviour is known 
to produce ultra-violet (uv) singularities in the per- 
turbation series. Apart from obvious A 2 singularities 
in tadpole graphs (for ~ =0), nonintegrable singulari- 
ties result from products of Gs's. For bulk graphs the 
remedy is well-known [5, 25]: The uv singularities 
can be absorbed by a few counterterms related to 
order-parameter, temperature, and coupling-constant 
renormalization. For the discussion that follows it is 
helpful to recall two facts: a) Counterterms are dis- 
tributions with support only at the vertices of 'con- 
tracted' graphs, i.e. graphs in which the vertices are 
contracted to a point, and therefore can be repre- 
sented by local interactions, b) It is sufficient to 
renormalize 1PI graphs. Once all primitively diver- 
gent 1PI graphs - the skeletons [5] - have been 
renormalized, all other graphs and in particular 
those of correlation functions are automatically fi- 
nite. 
While property a) continues to be true for our semi- 
infinite model (or more generally for similar models 
with surfaces [6]) b) breaks down, as we shall see. 
Note that this break-down is to be expected because 
b) is a consequence of translational invariance (see 
e.g. [25]). 
Next, consider graphs that involve also G~. As is 
obvious from (25), G~ becomes singular when x' ap- 
proaches the image point of x, i.e. when x and x' 
approach one and the same surface point. G~ will 
therefore produce additional uv singularities at the 
surface. To understand the consequences note that 
the approach to renormalization theory associated 

with Bogoliubov and Shirkov [25] is essentially a 
position space procedure. In particular, the argu- 
ments leading to a) do not depend on translational 
invariance. By analogy with a) one thus concludes 
that these surface singularities can be absorbed by (a 
finite number of) local surface counterterms. Power 
counting [1, 4, 6] implies that - apart from the usual 
bulk renormalization functions - two additional re- 
normalization factors Zc, Z 1 for the variable c and 
the order parameter ~blo..=~b(r,z=0) at the surface 
are needed: 

d = #Z c c e + csp (27) 

(~I~ = (Z  4 Z l )  1/2 vl~"Ale --=1-- 71/2 "r (28) 

Here /~ is an arbitrary momentum scale, and we 
have slightly changed the notation for the bare 
quantities d, q5 in order to distinguish them clearly 
from their renormalized counterparts c e, (,b e. To 
simplify the notation we will henceforth drop the 
index 'N '  on c e, ~b e, and the renormalized dimen- 
sionless magnetic fields 

h e =#-l+~/2Z~j2 h (29) 

h~ =/~- 2 +~/2 (Zr Zl) 1/2 ]~1. (30) 

The renormalized action then becomes 

az-e 1 ~/~ = ~ dV  {~ Z~(~7~) 2 -}-�89 Zt t-[-'g d) Z~b if)2 
+ #~ (u/4 !) 2 e ~z'~/2Z~, Z~(q52) 2 - # 1 - ~ / 2 h .  ~} 

+ S d S { � 8 9  . q~}. (31) 

Within the dimensional renormalization scheme 
Z+,t, . are given by (III.18a-c) of I to two-loop order. 
Z 1 should be well distinguished from the Z-factor 
Z t of I. The results given in the appendix yield [4] 

n + 2  (!n+2)(n+5) n + 2  ) 
Z1 = 1 +3~-~ u+  3 e ~--2U2 
+ 0 (u ~) (32) 

�9 n + 2  
Z~=l + ~ - u  

+ ((n+2)(n+5)+nf62-e(1-4~z2)) e-2u2+O(u3)" 

We have deliberately omitted a surface counterterm 
oc~dS4)O,,~ in (31). Such a counterterm is allowed 
by power counting and would in fact be needed to 
renormalize 1PI graphs. This is easy to see by con- 
sidering the tadpole graph in Fig. 1 which is pro- 
portional to GN(X, x) which in turn is proportional to 
z -2+~= . -e  -1 6'(z)+O(~~ according to (B.1, 2) (For 
simplicity we set c = z = 0  and use dimensional re- 
gularization here). 
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Fig. 1. A 1PI graph containing a surface singularity oc3'(z) 

The pole term is absorbed by the above counter- 
term. Hence, if we insist on having renormalized 1PI 
functions which are well defined in the distribution 
sense, then we clearly need this counterterm. 
Ultimately, however, we want to renormalize cor- 
relation functions, and for that purpose this counter- 
term turns out to be completely unnecessary. This 
follows from the observation that the 1PI functions 
are integrated with free propagators G N or G c in 
regularized correlation function graphs. Utilizing the 
boundary condition (8) one recognizes that the ver- 
tex ~b0, q~ attached to G c on either end has the same 
effect as the vertex dq521o. An appropriate choice of 
the counterterm oc~b2[o will therefore guarantee that 
the coefficient of ~b0, q~ can be taken to vanish. Al- 
ternatively, we can argue that q53,~b gives a vanish- 
ing contribution when attached to two GN's whose 
other arguments are off the surface. Consequently, if 
we take the surface interactions cc~b2}~ and ~b[~ at an 
infinitesimal distance from the surface and let this 
distance shrink to zero after the normal derivatives 
have been taken at z=0,  then the counterterm will 
remain completely ineffective. (The previous argu- 
ment based on Gc amounts to letting ~b2[~ approach 
the surface before taking normal derivatives.) Any- 
how, the conclusion is that this counterterm is not 
needed, and we will therefore not discuss it any 
further. 

B. The Appearance of One-Particle Reducible 
Renormalization Parts 

Having constructed the necessary counterterms we 
will now discuss the break-down of property b). The 
reason for this break-down is the appearance of one- 
particle reducible (1PR) renormalization parts 
(primitively divergent 1PR graphs) [-1, 6]. As a first 
example consider the graph in Fig. 2, in which the 
crossed circle indicates a surface point and the left 

I 
Fig. 2. The box contains a one-particle reducible renormalization 
part. The crossed (uncrossed) circle denotes an external point on 
(off) the surface 

external point (uncrossed) is separated by a distance 
z > 0  from the surface. If the right external point 
were also off the surface, then the graph would re- 
quire only bulk subtractions for c = t =  0 and, there- 
fore, would have no pole term at all in dimensional 
regularization. As the right external point becomes a 
surface point, a pole term oc6(z) develops. This is 
absorbed by the counterterm oc (Z~-1/2_ 1) in (31). 
Next, we introduce the notation G (N,M;I~ for the 
connected correlation functions 

M 2 \conn 1 ~b (ak, 0)/ l ~  t#(Xl)/__~ 1 @(rj, O ) I ~  
i=1 "= k=l 

with N external points off the surface, M external 
surface points, and K insertions of 1 2 ~q5 I~ (The defi- 
nition is analogous to (III.15) of I). The graphs of 
G {2'~ are shown in Fig. 3 to two-loop order. Let 
us specifically consider graph (10). In the trans- 
lationally invariant theory it has uv singularities 
coming exclusively from the upper closed loop, and 
it vanishes for t=0.  From (A2) and (A14) of the 
appendix one sees that, in our case, the graph has 
first and second order poles in e. Moreover, the e-1 
pole term of the amputated graph obtained by re- 
moving the external legs involves the distribution 
z+ 1 (For a definition of z21 see Ref. [26]). The 
reason is that this graph contains a divergent sub- 
graph, namely the 1PR graph inside the box of 
Fig. 4. The latter corresponds to the graphs (3) and 
(3) of Fig. 3 which have first-order pole terms and in 
conjunction with graph (2) determine the counter- 
term ocq~21~ to one-loop order. (Note for comparison 
that in the translationally invariant theory (3) and 
(3) do not contribute to the q~2 counterterm.) To 
eliminate the pole terms of graph (10) that come 
from the divergent subgraph we must: (i) contract 

o__O__o o_Ck  o ' O o  0'0 

(1) (2) (3) (.~) 

C '0 ^ 

(4) (4) (5,) ,(5) 

o Loo o-O--Q o-6-o_0 
(6) (6) (71 (7) 

I 

0-8-0 
(8) (9) (10) (11) 

Fig. 3. Graphs of O (2'~ to two-loop order. The dashed lines 
denote insertions of the surface operator �89 
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o o 
Fig. 4. The graph has an  8-2 pole term because it contains the 
primitively divergent one-particle reducible subgraph inside the 
box 

the interior of the box in Fig. 4 to a point, (ii) 
multiply the resulting reduced graph (which is graph 
(2) of Fig. 3) by the pole term of the subgraph, and 
(iii) subtract the result from graph (10). With the 
help of the results given in the appendix one can 
easily check that the pole term ocz+ 1 _ which would 
be impossible to absorb by a local counterterm - then 
vanishes (Similar cancellations must and do occur 
for the other two-loop graphs). 
An obvious consequence of these findings is that 
F (2;~), the 1PI analogue of G (2'0;1), is not multipli- 
catively renormalizable and therefore does not satisfy 
a homogeneous RG equation. 

C. Renormalization Group Equations and Results 

Although the 1PI functions are not multiplicatively 
renormalizable, the relations between the bare and 
renormalized correlation functions C(N,M;n) have a ~bare/N ~ 
familiar form. From (31) one finds 

G(N,  M; K) __ Z - (u  + M)/2 7 - M~ 2 7 K  t,~(N, M; K) (34) 
- -  0 ~ 1 ~ c  ~bare 

which entails the renormalization group (RG) 
equations* 

{#3~ + fix 8u + ~(#~u]o In w) wSw 
14; 

+�89 - K q c  } G~'~t;K) = 0. (35) 

Here the sum runs over w=t ,c ,h ,h  1 and 8#]0. de- 
notes a #-derivative at fixed bare variables g, z, h, h 1. 
flu and t/r are the same as in I./71 and t/c are defined 
by 

t/1,~(u) =#~uIo lnZl,~- 

Using (32, 33) one finds 

(36) 

t/l(u) = n + 2 u + 2 n + 2 u 2 + O ( u 3 ) ,  (37) - ~ -  ~ -  

n + 2  n + 2 , .  2 
tic(u) 3 Uq- l~-(q'g --1)U2 q-O(u3). (38) 

* This holds for all G~ 'M;K) except G~ '~ k = l ,  2, 3, which re- 
quire additional additive renormalizations and hence satisfy inho- 
mogeneous  RG equations 

The remaining RG functions can be written 

#Su]o in t = - (2 + t/t), 

l~Su[ o In c = - (1 + G), 

~Su[ o In h = - 1 + (e + t/o)/2, 

#8,[ 0 lnhl  = - 2 + (8 + G~ + t/l)/2. 

(39a) 

(39b) 

(39c) 

(39d) 

Standard arguments show that the values, the ex- 
ponent functions take at the infra-red stable fixed 
point u*, give the critical exponents. One has 
v=(2+th(u*)) -1, t/=t/~(u*) (as in I), 

t/II = t/+ t/1 (u*), (40) 

and 

= v [1 + t/c(U*)]. 

This gives 

(41) 

n + 2  5 (n + 2) (n - 4) ez + O(e3) ' (42) 
t/ll= - -n+8  e 2(n+ 8) 3 

1 n + 2  n + 2  
�9 = - -  eq 

2 4(n+ 8) 8(n+8) 3 

�9 [8~z 2(n + 8 ) -  (n 2 + 35 n + 156)] ~2 + O(82). (43) 

The result in (42) has been derived independently by 
Reeve E14, 15]. ~b differs from 1 - v  at order ~2, as 
pointed out previously. The estimates t/IL ~ 0.2, 
�9 ~0.68 one obtains from (42, 43) for the three- 
dimensional Ising (n= 1) exponents t/LI, ~b agree rea- 
sonably well with Monte Carlo data of Binder and 
Landau [7]. (For a more detailed comparison see 
E7] and [-8].) 
With the help of the RG equations (35) one can 
derive the familiar scaling laws t/• , ~11 
=v(1-t/ih ), 71=(2-t/• f lx=v(d-2+tll l) /2 etc. in a 
similar fashion as in I. Moreover, one finds that the 
correlation functions take scaling forms at u=u*. 
Skipping derivations we give some representative ex- 
amples. The renormalized magnetization profile can 
be written 

re(z; u*, t, c, h, hi) 

= Itt ~ G(~z  Itl =, c ItI-L h It1-4, hi lt[-A 1) (44) 

with Al=v(d-rll l) /2 and the usual bulk exponents 
fi, A. The profile has been calculated to order e by 
Br6zin and Leibler [11] for h=t=O. We will present 
a one-loop calculation of re(z) for h=h 1 = c = 0 ,  t < 0  
in the next subsection. 
To analyze the behaviour of re(z) near the surface 
we use the short-distance expansion proposed in I. 
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Writing [1, 6, 11] 

(q~(r, z)) ~ C(z)(qS(r, 0)) (45) 

and specializing for simplicity to h = h l = c = O  , one 
obtains 

[/,0,, +/?, ~ , -  (2 + t/,) ta t -  th/2 ] C(z) = 0 (46) 

from the RG equations (35) of the two correlation 
functions in (45). The solution at the fixed point 
becomes 

C(z; u*, t) = (#z) "*/2 D(yzl tr)  (47) 

with 

n + 2  3(n2-4) 
~*- e - -  ~ 2 + O ( e 3 )  (48)  

1 F/-}- 8 (rl + 8) 3 

and since t t * /2=(~ l -~ ) / v ,  the magnetization be- 
haves as 

re(z) ~ const (/~z) (~ -P)/~ Itl ~ (49) 

for I~z~]t[ -~. The result seems to imply that the 
surface magnetization m 1 is infinite (which it is of 
course not). However, it must be kept in mind that 
(49) is only valid in the scaling regime where z is 
large compared to the lattice constant (though small 
on the scale of the correlation length). In the de- 
rivation of (49) we have tacitly assumed that the 
scaling function D(() approaches a constant for 
~-*0. This and (49) will be verified to order e be- 
low. 
Taking into account that )~, Z1 and ;~1~ satisfy the 

G (2'~176 G~ ,1;~ and G~ '2;0) same RG equations as ~ , 
respectively, one also finds the usual scaling ex- 
pressions for these functions, namely 

zo(u*; t, c)= ~ -  3 ltl- '~ X ~(c ltl -~) (50) 

where 

L=~+v (51) 

and similar results for )~11, )~ with 7~ replaced by 71 
and 711. 
Logarithmic corrections in four dimensions can be 
analyzed in the same way as in I. One obtains (for 
c = h = h  1 =0) 

Zo(t  ) ~ # -  3 it [ - 3/2 [in It]l ("- 10)/(2n + 16) 

Z l ( t  ) ~ - 2  [ t [ -  l[ln[tl]3("+2)/(zn+ 16) 

%l l ( t )~  kl- l[t[-1/Z[ln[t[[ 3(n+ 2)/(2n+16) 

ml(t) ~ # 1 -e/21t[1/2 [ln [till/2 

(52) 

(53) 

(54) 

(55) 
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In the derivation of (52) we have used the fact that 
the u ~ term in the perturbation expansion of )~o 
vanishes. The line of surface transitions (i.e. T~(c)) 
follows from the flow equations for c, t, u, and the 
behaviour of)~11 for u=0.  Instead of (2) one has 

- -  Csp ~" - -  const t 1/2 [ln t[ (" + 2)/(2n + 16) (56) 

D. Magnetization Profile for n = 1 

In this final subsection we calculate the renorma- 
lized magnetization profile for c = h = h l = O  to one- 
loop order. For the sake of simplicity we will restrict 
attention to the Ising (n=l )  case. Similar calcu- 
lations have been carried out for h I = oo in [9] and 
for t=0,  h i . 0  , c@0 in [11]. 
The bare magnetization profile rfi(z) satisfies at one- 
loop order the differential equation 

[ - a, z + ~ + (g/6),fi2 + (g/2) Q(z)] rfi = 0 (57) 

with the boundary condition 

~'(0) = % ,~(0) (58) 

Here 

Q(z) =~ d(p; z, z; {r~}) (59) 
p 

in which 

= ~ d e-1 p/(2 ~z) e-1 
P 

while G({rfi}) is a solution of 

[ - 0~ + p2 + r + (g/2) rfi 23 ~(p; z, z'; {vfi}) : 6(z - z') 
(60a) 

with the boundary condition 

3, G({~fi]) = esp~lG({rfi}) (60b) 

In dimensional renormalization (58, 60b) turn again 
into Neumann boundary conditions. 
To solve (57) we make the ansatz 

~(z)=~sx(z) (65) 

with 

rfi 8 = (6 Irl/g) 1/2 [1 + gA + O(g2)] (62) 

and 

S(z) = S(~ + g X(1)(z) + O(g 2) (63) 

n~ is the bare bulk magnetization. From the well- 
known MF solution for the profile [7, 24] one de- 
rives 

Z~~ = 1 + c~p(2tvi)- 1/2 e x p ( -  (2]rl) 1/2 z) + O(c2p) (64) 
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Hence 

lim S(1)(z) = 0 (65) 
z ~ o ~  

The term OCGp in Eq. (64) is needed in the cut-off 
regularized theory to cancel the linear divergence of 
the one-loop term (see below). 
In (60a, 59) we may use the MF result for rh(z). One 
thus finds 

A = - (8 ]~l)-1 S ~; 1 (66) 
P 

Ka = (p2 + 2 Irt)1/2 (67) 

and the equation 

(-O2+21rl)N(l)(z)+[~(4~2) -1 exp( -2K2 z ) = 0  (68) 
P 

which is easily solved. Utilizing the boundary con- 
dition (58) and (21) one arives at 

S(z) = 1 + (g/8) {5 (p2 + 3 Izl/2)- ~ (2 ~:2)- 1 e -  2~= 
P 

-(21zD-1/2 exp(-(21rl)l/2 z) 5 [(pZ + 31zl/2)- l - p -  2]} 
P 

(69) 

The subtraction in the last bracket, which makes the 
p-integral convergent, results from the term OCGp in 
(64). (The A 2 divergence in A is cancelled by the 
mass counterterm ocz~, as usual.) 
We now insert the Z-factors of the dimensionally 
regularized theory. The renormalized magnetization 
profile then follows in a straightforward way, For 
u = u* the result can be written 

re(z) = m e a(~) (70) 

with 

= # z(Itl/2F, (71) 

m~=//1 -t/2(18 o a/e) 1/2 

�9 [1 + (e/6) (1 - C ~ -  in 2) + O(e2)] Itl ~ (72) 

and 

a(~) = 1 + (e/6) [Ko(4 ~) -  3 a(~) + (3 a/2 n/2) e-  2;] 

+ O(e z) (73) 

where o a = 2 -~ n -d/z, 

? d exp( -2~(p2+4) l /2 )  
J(~):=~ P ~ ( / ) 2 ~  , (74) 

C e is Euler's constant, and K o denotes a modified 
Bessel function. 
Since 

Ko(4~) ~ - [Ce+ln(2~)]  ( ~ 0 )  (75) 

the scaling function a(~) behaves as 

o-(~)~ C O ~--,/6+o(~) ( ~ 0 )  (76) 

with 

C O = 1 - (e/12) (2 C~ + 6J(0) + In 4 - 3 ~/z n) + O(e 2) (77) 

at short distances. This agrees with (49) at order e. 

IV. Summary and Conclusions 

Using field-theoretic methods we have studied the 
semi-infinite n-vector model near the special tran- 
sition. We have shown how to renormalize corre- 
lation functions with insertions of the surface oper- 
ators ~bl~ and q521~. From the associated renormaliza- 
tion group equations the surface exponents and their 
scaling laws could be obtained in a standard and 
straightforward fashion. All surface exponents and 
the crossover exponent ~ follow from the Z-factors 
Z 1, Z c for ~1~ and q521~, and the familiar bulk renor- 
realization functions. They were calculated to second 
order in e and it was found that q~ differs from 1 - v  
at order g2. Bray and Moore's [12] conjecture 4~= 1 
- v  is therefore not generally valid�9 
We also derived the logarithmic corrections of the 
susceptibilities Z11, X1, )G, and the surface magneti- 
zation m I in four dimensions, and calculated, for the 
special case of a scalar order parameter (n= 1), the 
magnetization profile m(z,t) for e>0,  h = h l = 0 ,  
d = Gp. It was found that dffz, t), the regularized pro- 
file, satisfies a cut-off dependent boundary condition�9 
The renormalized magnetization which describes the 
asymptotic behaviour in the scaling regime (where z 
is large compared to the lattice constant but small 
on the scale of the correlation length) behaves as 
m(z,t)~lt[&(ktz) (&-~)/~, however. This behaviour is 
expected from scaling and was confirmed via a 
short-distance expansion. 
Although the approach described here, in I, and in 
[6] is very similar to the well-known field-theoretic 
treatment of bulk critical behaviour [2, 3], we have 
seen that the presence of surfaces gives rise to a 
number of novel features which require modifi- 
cations of the standard renormalization theory: The 
scattering off of the surface leads to additional uv sin- 
gularities. Those can be absorbed by local surface 
counterterms. However, not only one-particle irre- 
ducible graphs but also one-particle reducible ones 
contribute to these counterterms. As already pointed 
out by Symanzik [6], this implies a break-down of 
the conventional skeleton expansion into classes of 
primitively divergent 1PI graphs. That is to say, the 
skeleton expansion must be modified in an appro- 
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priate way due to the appearance of one-particle 
reducible renormalization parts. Symanzik has de- 
scribed how this can be done [-6]. The main rule for 
the identification of surface renormalization parts is 
the following: Graphs that are composed of several 
1 PI subgraphs which are one-particle reducibly 
linked and have singularities on the surface will in 
general not become finite by renormalization of their 
divergent subgraphs. In Symanzik's words, the sur- 
face acts as an additional line, and therefore the 
graph itself may require a (final) subtraction�9 We 
have tried to illustrate this here by discussing the 
renormalization of ~bZl~. A consequence of these 
findings is that 1PI functions such as (~b ~b ~b2lj2),ei 
satisfy inhomogeneous rather than homogeneous 
RG equations. For practical purposes it appears 
most convenient to focus on correlation functions 
which still satisfy homogeneous RG equations. 
In summary we conclude that the field-theoretic ap- 
proach to critical phenomena near surfaces is well 
established and as efficient as the analogous meth- 
ods for the treatment of bulk critical behaviour. 

Appendix 

We first summarize our results for the dimensionally 
regularized one and two-loop graphs of G ~t'l;~ and 
G (z'~ for -c=c=0  and then present some technical 
details of our calculations. 

A. Summary of Results for Feynman Graphs 

The graphs for G ~176 and G (2'~ are shown in 
Figs. 5 and 3, respectively. To two-loop order our 
results can be written in the form 

G ( 1 , 1 ;  O ) ( n  7 "  6(p+p') e - / ' z  ab w, ~, P') = 5"b( 2 re) a- 1 p-  1 

�9 1+.= a,(p,z) (A.1) 

G ( 2 , 0 ; 1 ) ( n  . �9 p)=a,b(2rOd-15(px+P2+p) ab k l g l ,  ~ 1  ~ P2, Z2; 

"(PlP2) -le-(ptz'+paz2)[1-}- 2 Iv(P>Z,; P2'Z2) "] (A.2) 
v:~ l .  

o | c O .  
(1) (2) (3) 

(4) (5) 
Fig. 5. Graphs of G {a'~;~ to two-loop order. The crossed circle 
indicates a surface point, the other external point is off the 
surface 

Here i and v=2,3,3, . �9  label the graphs in 
Figs. 5 and 3 such that the terms that involve Ji or 
I v represent the contributions from the graphs i or v. 
We express the J{s and I]s in terms of 
=#-~2-drC-d/2g, Euler's constant CE=0.5772..., 
and the functions 

~4(p,z)=2--CF--2Ei(--2pz)eZPZ--ln(2p) 2 (A.3) 

co 

" ~ dzz+lGu(Pl;Zl,z) GN(p2; Zz,Z)e /'~ (A.4) 
0 

where Ei is the exponential-integral function in the 
notation of Ref. (27) and P = [ - P l - P z l .  The integral 
in (A.4) involves the distribution z+ l= l im(z  -1+~ 

e ~ 0  

1 6(z)] defined in Ref. 26. 
/3 ! 

Our results are: 

on+2 -1 -1 +�88162 0(~)} (A.5) 

J3 =/~2 ( / ' / ~ )2  {1 g-2 q-~/3-1 (-5~r 1)q-0(/3~ (A.6) 

J4.=-~2(~)2{-1/3-2+l~;-l(1--2d)q--O(/3~ (1.7) 

2/7+2 __{/3-2 as=a 3 { -�89176 (A.8) 

on+2 {2e- * + 2 +  C~+2~+0(/3)} (A.9) I 2 = - u  3 

I j+l=Jj(pl ,z l )  , j=2 ,3 ,4 ,5  (A.10) 

~ - ~  - 3  tPl, ~) z "~-1-~-0(/3~ 

la = Jz(Pl, zl) J2(P2, z2) (A.12) 

I9=1]t2 (n-@2)z {3g-z +(7 + 3 CE-k6Jj)/3-14-O(/3~ 

(A.13) 

110 =b~2 ( ~ )  2 {--g-2--(3-}-CE-I-2,.@),S-1-}-o(gO)} 

(1.14) 

.2 F 
(1.15) 

and 

Iv(P1, zl ;  P2, z2) = tv(p2, z2; Pl, z1) (A.I6) 

Using these results in conjunction with the results 
for Z ,  and Z u given in I one easily verifies that 
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G(~ '1;~ and G(d '~ as defined in (34) are renormal- 
ized to two-loop order. 

B. Some Technical Details 

The technical problems that had to be overcome to 
obtain some of the results presented above were 
considerable�9 As a rule of thumb one can say that a 
/-loop calculation for a semi-infinite system is (at 
least) as difficult as a / + l - l o o p  calculation for the 
corresponding translationally invariant system�9 To 
understand this consider any graph of G (2'~ Since 
z arid z' are both positive we can amputate the free 
Neumann propagator at either end. The remaining 
amputated graph then is a distribution in z and z' 
whose e-expansion must be determined. In some ca- 
ses the amputated graphs can be evaluated in closed 
form and one obtains simple power distributions 
z -m+~ ( re= l ,  2, ...) whose e-expansion is well-known 
[26]: 

z _ m + ~ _ ( -  1)"-1 - -  e -1 c~("-l)(z)+z~_m+O(e) (B.1) 
(m - 1) ! 

Here 3(m-~)(z) is the ( m - l )  t~ derivative of the ~- 
function 5(z), and the distribution z~_" is defined in 
[2@ In general, however, we know of no systematic 
way to evaluate the e-expansion of these distri- 
butions other than to apply them to test functions�9 
As compared to the calculation of translationally 
invariant graphs this adds at least one more in- 
tegration (apart from the fact that the amputated 
graphs themselves are more difficult to calculate). 
For illustrative purposes we will sketch the calcu- 
lation of two graphs, namely the graphs (2) of Fig. 5 
and (11) of Fig. 3. The former involves a closed loop, 
giving 

GN(x,x)=~dF ( 1 - 2 )  z-2 +L (B.2) 

Here x=(r,z),  5rl=2-dg -a/z, and we have set g = l .  
Use of (B.1) in (B.2) would readily yield the pole 
term of J2 given in (A.5) upon integration. But since 
we also need the O(e ~ term it is more convenient to 
calculate directly 

o9 

S d z ' ~ ( P ; z , '  ~ - ' ' ' z ) GN(p, z ,  0) Gu(x, x ) 
0 

--~a 4p2 e-P~ l ~---~- + (2p)l-~ 

�9 [e 2p~ r(e - 1, 2p z) + C(e - 1)2~. (B.3) 
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The incomplete F-function has the e-expansion* 

F ( e - l , 2 p z ) = E i ( - 2 p z ) + ( 2 p z )  -~e-zp"+O(e) (B.4) 

From these results (A.5) follows in a straightforward 
way. 
To calculate graph (11) of Fig. 3 we amputate the 
two external Neumann lines and divide by g2 (n + 2)/3. 
For simplicity, we also set P, the momentum 
of the inserted operator [~2]lp,  equal to zero. We are 
then left with the calculation of 

I(P 1 ; z, z') = ~ h(p; z, z') tiN( p i -- P; 0, Z) 
P 

�9 G N ( p l  - - p ;  0,  Z') (B .5 )  

in which 

h(p;z,z ')=~dd-lrexp(-ip.r)G2((r,z) ,(O,z '))  (B.6) 

is the parallel Fourier transform [G2]p of G 2. We 
split G N into its bulk and surface parts: GN=G ~ 
+ Go. Upon insertion into (B.6), h then becomes 

h = he6 + 2h~ + hao 

with hes= [a2]p, h~o = [Ge Go] p 
calculation gives 

(B.7) 

etc. A straightforward 

h~e(p ; z, z')= C ~ B ( 1 - 2 , 1 - 2  ) [,p/Iz- z'l](1-~)/2 

1 l_~(plz-z'[) (g.8) 
2 

h~(p; z, z') = h~e(p; z, - z') (B.9) 

h~o(p; z, z') = C~p (1 -~)/2 
1 

�9 ~ de [-off 1 - 00] -~/2 [,(z + z')2 _ 4 ct z z'] (~ - 1)/4 
0 

�9 g l _  ~ (p['zZ+2(1-2cOzz'+za2] 1/2) (B.10) 
2 

with 

C~ = 2 (~- 7)/2 rc(~- s)/2 (B. 11) 

B and KO_e)/2 denote the beta function [-27] and a 
modified Bessel function, respectively. In the deri- 
vation of (B.11) Feynman's well-known method for 
folding two denominators into one has been used. 

Substitution of (B.7) into (B.5) implies a similar de- 
composition for I(p~; z, z'): 

I=I8e+ 2I~ + I ~. (B.12) 

* Note that z>0 and that all terms on the right-hand side of 
Eq. (B.3) are treated as ordinary functions here. In the distribu- 
tion sense F(e-1, 2p z) has a pole term e-15(2p z) 
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The pole terms of  the distributions Ie:,  leo are inde- 
pendent  of  p, .  We therefore set p l = 0 .  The p-in- 
tegrations can then be carried out and one obtains 

g g : 
Ie6(Pt :O;z , z ' )=D~B(1-~ , l -~) f ( z , z )  (B.13) 

with 

D = 2 e  7cl/2 F ( 1 -  e) F ( 2 -  2e) 

and 

(B.14) 

f ( z , z ' ) -  -2+2~ ~, e - - Z m a x  2*l(2--2e, l--2;2--3~;Zmin/Zmax) 

(B.15) 

Here 2Fa is a hypergeometr ic  function [27] and 
Zmin, Zma x denote  the min imum or max imum value of 
z and z'. Similarly, one finds 

1~(0; z,z')=De(z + 2') -2+ 2~ (B.16) 

and 

I~,(0; z,z')=22-2~D~(z 2 +z'2)  -1+~ Y~(z'/z) (B.17) 

with 

Y~(0) = [1 + 20/(1 + 02)] -1 +~ 5 d~{[c~(1 - ~)3 ~/2 
0 

"(l+w)-Z+2~2Fl( 2-2e'l-g-'22' 3e. 1 - w  ] 2  ' l + w ]  (B. 18) 

where 

w : =  1 - 4 c ~ 0 / ( 1 - 0 )  2 (B.19) 

and O=z'/z. Equat ion  (B.15) has the e-expansion 

f(z, z')=(e -2  + � 8 9  1) 6(z) a(z') 

+ 2 e  -1 z+ 1 (~(z-z')+O(,~ ~ (B.20) 

To obtain this result one first shows that the pole 
terms of  f have the form a I 6(z) 6(z') + a 2 z 71 3(z -  z'). 
The coefficients a 1 and a 2 can then be determined 
by integrating (B.15) over the square O<_z<_A, 
O<_z' <_A. 
The e-expansion of  I ~  is easy and needs no expla- 
nation. It reads 

Ioo(Pl ; z, z') = e -  1 6(z) 3(z') + O(e ~ (B.21) 

leo has a pole term oce-la(z)a(z'). To obtain  its 
strength we integrate over the region N : = { ( z  2 
§ z'2)l/2 ~ Ro; 2 ~= 0, z ' = > 0 } .  

This gives 

S dz dz' 1:o/(2 2-  2~ D~) 

= (2e)-* ~ d 0 Y~= o@)/(1 + 0 2) § O(e ~ 
o 

A lengthy but straightforward calculations gives 

(B.21) 

d 0 Yo0p)/(1 + 0 2) = 5 dx(2x)-I ln(1 + x) = ~  (B.22) 
0 0 

Using (B.14, 21) and (B.22) one arrives at 

Ie~(Pl; z, z') = g-  1(rc2/6) 6(z) 3(z') + O(e ~ (B.23) 

Equat ions (B.12-14, 20, 21) and (B.23) then imply 
the final result 

t(pt ; z, z') = [ 2 e -  2 + e -  1(2 C~ + 5 + nz/3)] 3(z) 6(z') 

+ 4e- t z+ 16(z - z') + O(e ~ (B.24) 

which is consistent with (A.2, 4) and (A.15). 

We greatfully acknowledge discussions with K. Binder, E. Eisen- 
riegler, D. Maison, H. Wagner, and K. Symanzik. 
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