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We report the first measurements of the magnetic-field penetration depth )~ in the heavy 
electron superconductor UBe13, performed using a SQUID magnetometer. We find the 
temperature dependence of 2 (T) -2(0)  to follow a T 2 law at low temperatures, giving 
further evidence of extreme gap anisotropy in this compound. We calculate the temper- 
ature dependence expected for a variety of anisotropic states, including those represent- 
ing certain classes of "exotic" pairing. In general situations, the supercurrent is not 
parallel to the vector potential, and a more complicated field penetration takes the 
place of the normal Meissner effect. We argue that the data are consistent with an 
energy gap with point nodes on the Fermi surface but inconsistent with the large value 
of the Landau parameter F~ expected for a translationally invariant Fermi liquid with 
large effective mass. 

1. Introduction 

Something of a stir has been caused by the recent 
discoveries that, in a number of intermetallic com- 
pounds containing either cerium or uranium, the 
conduction electrons behave as if they had effective 
masses of tens or, in some cases, hundreds of times 
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the free electron mass. This behavior has led to the 
term heavy-electron or heavy-fermion systems. Par- 
ticular attention has been focussed on some of 
these materials, like CeCu2Si2, UBe13 , and UPt3, 
which are also superconducting. Properties in the 
superconducting state like the specific heat, critical 
magnetic fields, ultrasonic attenuation and nuclear 
spin-lattice relaxation time have been measured [1- 
7]. Theoretical interpretations fall into two groups: 
one which leads to S=0 ,  L = 0  Cooper pairs anal- 
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ogous to normal BCS superconductors, and the 
other which leads to the possibility of exotic or 
higher orbital angular momentum pairing with S = 0 
or 1 [2]. 

If one thinks of a two-fluid description of the 
superconducting state, one notices that properties 
like the specific heat, ultrasonic attenuation, and 
spin-lattice relaxation are determined by the normal 
fluid. It seemed to us to be of intrinsic interest, as 
well as complementary to such measurements, to 
look at a property which is essentially determined 
by the superfluid component. One such is the per- 
sistent supercurrent, or equivalently the penetration 
depth 2 of an external magnetic field. A look at the 
London expression for this penetration depth 

= ( m , c  2 ~1/2 
2 r \47rnseZ ] (1.1) 

where m* is the electron effective mass and ns is the 
particle number density of the superconducting elec- 
trons, suggests that a measurement of 2(T) should 
give information about m* and n~(T). Possible de- 
viations of the latter from the predictions of BCS 
theory are particularly interesting in the light of 
other experiments whose non-BCS temperature de- 
pendence has been attributed to large gap anisotro- 
py 1,2-6-1. In addition, one sees from the London 
relation between the current density and the vector 
potential that, if there is a band of light electrons 
which are also superconducting, m*/n~ in (1.1) will be 
replaced by [(n~h/m* ) + (nsJm*)]- 1 (h = heavy and l 
=light), so that a relatively low concentration of 
light electrons would dominate 2 L. The existence of 
such a light band has been proposed by Alekseevskii 
et al. to explain their Hall effect measurements in 
UBeI3 1,8]. The presence of such light electrons, on 
the other hand, would hardly affect the normal fluid 
properties as determined by the other measurements 
mentioned above. Finally, a measurement of 2(T) 
may reveal 1,9] whether Fermi liquid effects are im- 
portant. We defer a discussion of the theoretical 
details to Sects. 3 and 4. 

The plan of the paper is as follows: in Sect. 2 we 
describe the experimental details and results. In 
Sect. 3, we calculate the temperature dependence of 
the London penetration depth for a highly aniso- 
tropic order parameter, and compare experiment 
and theory in Sect. 4. In Sect. 5 we present our 
conclusions and suggestions for further work. 

2. Experimental Method 

We first outline the principle of the method, leaving 
the details for later. The sample is placed in a con- 

stant magnetic field less than Hcl, inside a pick up 
coil. Changes of its magnetic moment due to the 
varying field penetration with temperature are then 
monitored with a SQUID circuit. Note that this 
measurement directly yields the changes in penetra- 
tion depth 2 with temperature, but not its absolute 
value. Now the temperature variation of 2 can in 
general be written as 2(T)=2(O)f(r), with f ( 0 ) = l  
and f(1) = o% so that we can also write 2 ( r ) -  2(Tr, ln ) 
=2(O)1,f(r)-f(Tmin) ]. Therefore, if the measured 
change in the penetration depth 2(T)-2(Train) can be 
fitted to a particular function f(T), the absolute 
value of 2(0) may be obtained. The actual form of 
f (T)  may be calculated for any set of assumptions 
concerning the superconducting state, and in partic- 
ular the gap anisotropy. 

a) Samples 

Four samples, prepared by arc-melting the con- 
stituents, were studied. Some of their characteristics 
are shown in Table 1. It will be noted that the 
densities are lower than the value of 4.41 gm/cm 3 
obtained from the lattice parameter of 10.26 
x 10 -8 cm. This is presumably due to the presence 

of voids which were clearly visible under a low- 
power microscope, and particularly pronounced in 
sample number 3 (roughly 20-70 gm in diameter in 
samples 1, 2 and 4, but 50-200 gm in sample 3.) This 
feature introduces some uncertainty in defining the 
volume of the sample which is penetrated by the 
field, and it may also be partly responsible for the 
flux-jumping and irreversible behavior which we 
shall describe below. However, neither of these will 
affect the basic conclusions we will draw. 

b) Measurements 

The change in magnetic flux in the sample with a 
change in temperature was measured using a 
SQUID magnetometer with a superconducting in- 
ductance bridge first described by Andres et al. 1-10]. 
A schematic of the symmetric bridge is shown in 
Fig. 1. The entire bridge is made from niobium wire 
with niobium connectors, so that it remains super- 
conducting in the temperature range of interest. 
With the tantalum shield held normal by heating, 
currents i and i' are induced in the left and right 
loops of the bridge by passing suitable currents 
through Lp and Lp,. Then the tantalum shield is 
cooled to become superconducting again, thereby 
magnetically isolating the bridge circuit. The mag- 
netic fluxes �9 and ~' linking the left and right loops 
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Table 1. Some characteristics of the samples 

177 

Sample number 1 2 3 4 

size (mm) 1.45 • 1.61 x 3.92 1.43 • 1.53 x 3.79 ~4 x 2.5 x 0.22 6.75 • 1.7 x 1.5 
and shape brick-shaped, same as sample 1 irregularly shaped brick-shaped with 

as-received surface but surfaces polished thin sheet polished faces and 
to mirror-finish rounded edges 

Density g/cm 3 4.22 4.31 3.8 4.3 

Transition temp. (K)" 0.83 0.83 0.77 0.86 

Width of transition (K) b 0.05 0.05 0.09 0.06 

Percentage of Meissner Effect 4 ~o 4 ~o 40 ~o 3.5 
at applied field 0.30e c 

" Taken as the midpoint between 10 ~o and 90 ~o flux entry during the initial transition while warming the sample in an applied field of 
0.30e 

b Taken as the width in temperature between the 10 ~ and 90 ~o points defined in (a) 
c The flux excluded on cooling through T~ in an applied field of 0.30e, as a percentage of perfect flux exclusion 

SQUID Bridge Circuit 

L P [ ~ x ~ '  __~ Cu k T =1.3 K ,Ta -shield (hecttabte) 
(cold pIctte ] ~ S Q U I D  sensor 

I L~UE: I 

~ s N I  capi[tary 
(shield) 

l"=Tmixing 

UBe13 ~n 
Fig. 1. A schematic of the superconducting SQUID bridge circuit 
used for the measurements 

are now, respect ively ~b=(L a + L 2 ) i + L s ( i - i '  ) and 45' 
= (L'~ + L'2)i' + Ls(i' -- i). 

A change A L  z of the induc tance  of the sample  
coil  is p r o d u c e d  by a change  A2 in the pene t r a t ion  
dep th  of  the sample  resul t ing f rom a change  A T  in 
its t empera ture .  The  fluxes 4~ and q~' are, however,  
separa te ly  conserved.  Us ing  the a p p r o x i m a t i o n s  for 
a near ly  symmet r i c  b r idge  L I ~ E 1 ,  Lz~L~2, and  
i ~  i', one can easily see that  the resul t ing change  Ai s 
in the current  t h rough  the S Q U I D  is given by 

Ai  s - L  e A L  2 

i L I + L a + 2 L  s L 2 
(2.1) 

In  our  case the vo lume  V~ of  the sample  is a b o u t  5 ~o 
of the vo lume V 2 inside the sample  coil, and  so one 
has 

A L  2 AV~ 
- (2.2) 

L 2 V 2 ' 

where AV~ is the change  in tha t  po r t i on  of  the vol-  
ume of the sample  which is pene t r a t ed  by  the mag-  
netic  field, i.e. A V ~ = A  .A2, where  A is the  surface a rea  
of  the sample  and  A2 is the change  in the  pene t ra -  
t ion depth.  N o w  the change in ou tpu t  vol tage  AQs 
of the S Q U I D  measur ing  circui t  is p r o p o r t i o n a l  to 
A i s, and  if Qs0 is the change in this ou tpu t  as the 
sample  is w a r m e d  from the lowest  t empera tu re  
(comple te ly  superconduct ing)  to above  T~ (flux fully 
penetrat ing) ,  then 

A Q s - A V ~ - A ' A 2  (2.3) 

Qs0 V~ V, ' 

f rom which the change in 2 resul t ing f rom the 
change  in T can be obta ined .  

The  UBe13 sample,  and  a reference sample  of  
s ingle-crysta l l ine  tin, were m o u n t e d  on a silver hold-  
er with plas t ic  spacers.  The  ho lde r  car r ied  a ca rbon  
resis tance t h e r m o m e t e r  and  a heater ,  and  was at- 
t ached  to the mixing  chamber  of a d i lu t ion  refrige- 
r a to r  via a the rmal  link. The  ho lde r  was pos i t ioned  
so as to locate  the two samples  in the centers  of  the 
coils L2, L' 2. S t ray  magne t ic  fields a long the coil axis 
were reduced  to a value be low 5 m O e  by means  of 
an external  # -meta l  shield. We es t imate  the s t ray 
field in the t ransverse  d i rec t ion  to be less than  
0.01 Oe. The  samples  were cooled  in zero app l ied  
field to the lowest  t empe ra tu r e  of measurement ,  
0.062 K. A cons tan t  measur ing  field with a value  
be tween 0.03 and 0.3 oers ted  was then app l i ed  by  
induc ing  a sui table  pers is tent  currefit  in the second-  
ary circuit  with the  t a n t a l u m  shield held  n o r m a l  by 
hea t ing  it, and  then magne t ica l ly  i so la t ing  the circuit  
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by letting the shield go superconducting. The change 
in flux penetrating the sample was now monitored 
as the temperature was swept, thus giving the 
change in penetration depth 2(T)-2(Tmi,). 

The tin sample served to check the performance 
of the system, without making any significant contri- 
bution to the flux change below 0.9 K when the 
UBe13 sample is superconducting. The SQUID out- 
put representing the change in flux penetration in 
the tin sample as the temperature is swept between 
3.7K and 2 .6K is shown in Fig. 2. The tin data 
showed the following features, all expected and con- 
firming the proper functioning of the system: there 
was a 95 % Meissner effect, i.e. 95 % of the flux was 
expelled upon cooling through T~ in constant ap- 
plied field; the change of flux with change of tem- 
perature in the superconducting state was quite re- 
versible; over a wide temperature range below T~, 
the "empirical" relation 2(T) - )~(Ymin) : 2(0) [femp(T) 

-femp(Tmin)] holds, where  f emp(T)~  [1 - (T/Tc)4)] - 1/2 
as shown in Fig. 3. F rom the slope of this plot we 
find 2(0)=460A. This is consistent with an earlier 
measurement by Tai et al. [see Fig. 2 of Ref. 11]. 

We now turn to the results for UBe13. A typical 
recording of SQUID output vs. temperature is 
shown in Fig. 4. Also shown is the change in out- 
put expected from a change in flux of two quanta, 
2q~0~4 x 10 - 7  gauss-cm~; the great sensitivity of the 
method is apparent. We note the following features 
of the curve: (1) In region A, where the sample is 
being initially warmed from the lowest temperature, 
flux entry proceeds with increasing 2 in smooth seg- 
ments jointed by discrete flux jumps of magnitude 
~o or less. (2) If the sweep is now stopped at some 
t empera tu re ,  and the sample is then cycled between 
this and a lower temperature while holding the ap- 

A m  

1.0 

0.5 

Volts 
Fietd penetration in Sn below Tc 

H = 0.29 Oe 

0 > I I 

3.7 3,0 2.6 
T(K) 

Fig. 2. Output signal of the SQUID for the tin reference sample. 
Note that the T-axis is nonlinear corresponding to the nonlinear 
characteristic in the carbon thermometer used. The arrows in- 
dicate the up and down sweeps in temperature, which are re- 
versible within the experimental uncertainty 
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Fig. 3. The incremental penetration depth 2(T)-A(TmJ in tin, 
evaluated according to (2.3), plotted against the empirical function 
letup(T) for a nonlocal superconductor. The slope of the dashed- 
dotted line corresponds to 2(0) = 460 A 
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H:0.3Oe 

IX. 
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0 3  
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TEMPERATURE (K) 
Fig. 4. Observed SQUID output for the UBet3 sample number 4 
in an applied field of 0.29 Oe. A : initial warmup curve showing 
both regions of reversible (flatter portions) and irreversible flux 
entry (steps and steeper portions). B: reversible curve on sub- 
sequent cooling and warming back up to same temperature. C: 
Meissner curve (cooling from above T~ to below T& see text) 
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plied field constant, the change of flux is reversible 
and without jumps, but an amount of flux ~ r  re- 
mains trapped in the sample as shown in region B. 
(3) If now the applied field is switched off at the 
lower temperature and then the sample is warmed 
up to the higher temperature, this trapped flux is 
ejected from the sample in a way qualitatively simi- 
lar to the way it entered in region A. (4) The few 
really smooth sections in region A are nearly paral- 
lel to the corresponding reversible sections in 
region B. In some samples, however, the smooth sec- 
tions are rather short and are joined by a multitude 
of very small steps. (5)  Finally, if the sample is 
warmed to above T c in a constant applied field so 
that flux entry is complete, and then cooled to the 
lowest temperature, subsequent temperature cyclings 
below T~ produce reversible curves (region C) - 
which we shall call Meissner curves - with slopes 
almost the same as, but slightly lower than, the 
corresponding slopes in region B (Fig. 4). 

Ideally, irreversible flux trapping would not be 
expected in measuring fields some 100 times smaller 
than the lower critical field Hc1. In real materials, 
however, flux trapping always occurs and is due to 
pinning centers, i.e. inhomogeneities where vortices 
get trapped and where they can accumulate. Even in 
low applied fields, in which magnetic vortices would 
no longer be stable thermodynamically, it is then 
possible for type II regions to exist in the neigh- 
borhood of the pinning centers. This is because the 
magnetic flux is locally compressed around these 
centers, such that the local field exceeds He1 and 
makes the type II state locally stable. Another 
source for local-field enhancements exists on the 
sample surface in the form of demagnetizing fields. 
These fields depend on the shape of the sample and 
on the surface roughness. They are largest around 
rough edges, provided the edges are larger in size 
than the penetration depth. Near such edges, again, 
the flux can penetrate in the form of type II regions, 
having the effect of "smoothing out" the sample 
surface. This effect operates mostly on the geometric 
edges of the sample, but also near surface irregula- 
rities such as the voids mentioned above. Since the 
samples were mechanically polished, it is possible 
that the value of Hcl on the surface is even lower 
than that in the bulk, which would enhance this 
kind of surface flux trapping. 

The irreversible observed flux jumps during the 
initial warmup of the sample are consistent with this 
model. Flux vortices can penetrate the sample lo- 
cally, without threading its entire length. This ex- 
plains why some of the jumps are considerably smal- 
ler than what would correspond to a uniform flux 
change of ~b 0 over the whole length of the sample. 

During scanning the Meissner curves, most of the 
flux remains in the sample due to the pinning cen- 
ters inside. The demagnetizing fields are much smal- 
ler and there is less cause for changing the vortex 
density in the surface. This is why the remaining 
observed and reversible flux change in the Meissner 
state is due to the field penetration at the surface 
only. The fact that this change is somewhat smaller 
than that observed in the "reversible" part of the 
initial warmup curves is explained by the difference 
in demagnetization factor in the two cases. Since the 
reversibility of the Meissner curves is near-perfect, 
we believe that they yield the best measurement of 
the variation of the penetration depth with tempera- 
ture, and we therefore use exclusively them for de- 
termining Z(T). 

c) Results 

Figure 5 shows data from a typical Meissner, or 
field-cooled, run using sample 4 (left scale), plotted 
vs. (T/T~) 2. Also shown, for comparison, are the data 
from the tin reference sample (right scale). The most 
striking feature of the UBe13 data is the manifestly 
good fit to a quadratic temperature dependence over 
a large temperature range (0.072< T/Tc<0.6 ). Since 
the absolute scale of the ~. axis is unknown, however, 
we are unable to directly extrapolate the curve to 
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Fig. 5. Incremental penetration depth k(T)-k(T~,) data, taken 
from a typical Meissner curve (see text) for the UB%3 sample 4, 
plotted versus (TIT,:) 2 (left scale). The size of the circles shows the 
measurement uncertainty. Also shown, for comparison, are the 
data from the Sn reference sample (right scale) 
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determine 2(0). This can only be achieved by a fit to 
a specific theoretically motivated choice for the func- 
tion f ( r )  defined above. 

The error bars shown in Fig. 5 (corresponding to 
the size of the symbols) represent the maximum de- 
viations occuring during different runs on the same 
sample under identical conditions. These deviations 
are mainly due to the slow drift of the SQUID 
output caused by temperature changes in the super- 
conducting circuit. 

Other samples showed qualitatively similar re- 
producible behavior. All exhibited the quadratic 
temperature dependence, with slightly varying mea- 
sured slopes which we attribute to errors in measur- 
ing the effective surface area, as discussed above. 

clamping the normal electrons and leading to a 
vanishing normal charge current fn=0. In a steady 
state situation, the supercurrent takes the well- 
known hydrodynamic form 

f~=e~f5 ~, (3.1) 

where h ~ is the superfluid number density tensor and 
~ the superfluid velocity. If the internal orbital order 
parameter degrees of freedom are not pinned, there 
will be additional terms on the right hand side of 
(3.1), which we neglect for the moment for sim- 
plicity. In a charged system b ~ is given by a term 
proportional to the gradient of the overall phase ~0 of 
the order parameter, and a vector potential contri- 
bution: 

3. London Kernel and Penetration Depth 
in Anisotropic Superconductors 

In this section we generalize the usual BCS theory 
for the electromagnetic response of superconductors 
to systems with anisotropic energy gaps A(/~). We 
will always neglect non-local contributions to the 
response kernel since UBet3 is well known to be a 
strongly type II (London) superconductor [7]. 

Order parameter anisotropy may arise as a con- 
sequence of anisotropy in normal state quantities, 
such as the Fermi velocity or the pairing interac- 
tion, or it may be an intrinsic property of an order 
parameter corresponding to a degenerate representa- 
tion of the symmetry group of the system. The sim- 
plest examples of the latter type of anisotropy are 
the well-known anisotropic p-wave states of super- 
fluid 3He. Here we calculate the expected electro- 
magnetic response for (1) p-wave states with uniaxial 
gap anisotropies of the form A(l~)=Aof(~. f), with a 
symmetry axis F, and argue that a large class of 
other anisotropic states, including those consistent 
with the true symmetry of UBe13, will respond simi- 
larly at low temperatures. In addition to the model 
p-wave order parameters, we investigate (2) can- 
didate anisotropic states transforming according to 
the trivial representation of the crystal point group, 
i.e. "s-wave-like gaps", and briefly discuss (3) results 
for gapless superconductors. 

a) Penetration Depth in Anisotropic Systems 

The electromagnetic response in superconductors 
can be conveniently discussed in terms of a hy- 
drodynamic two-fluid model. The crystal lattice 
plays the role of a superleak in neutral superfluids, 

~s h ~ e 
v~o - - -  A,  (3.2) 

~- ~ m  m e  

where m is the mass in the absence of Fermi liquid 
effects. The explicit form of the phase variation is 
determined, once the hydrodynamic result (3.1) is 
known, by simply requiring charge conservation [P.f 
= 0. After Fourier transforming, one finds 

�9 s _ e 2  
Ju = - - -  Ku~Av 

m c  

e 2 , ,^ ~s,.,h~ ) )~s tq" ).t "~) 
mc[n - ~ . ~ . ~  ~u Av. (3.3) 

Thus hydrodynamic theory fully determines the lin- 
ear response function K in the static limit, and al- 
lows us to neglect all massive collective modes of 
the system (for a more detailed discussion, see 
D. Einzel and P. Hirschfeld, to be published). The 
linear response of the current to an external vector 
potential when h ~ is anisotropic is seen to be qualita- 
tively different from that of an isotropic supercon- 
ductor, where the inclusion of the second "back- 
flow" term is unnecessary as long as one considers 
only the transverse part of A. Balian and Werthamer 
[12] neglected the backflow contribution in their 
discussion of triplet superconductivity but obtained 
correct results because they considered only isotro- 
pic p-wave states. Recently Millis [13] has derived 
this term from microscopic theory. 

We now turn to the superfluid density n', whose 
full tensor character is realized in the case of super- 
conductors with anisotropic order parameters. In 
particular, the energy gaps discussed above under 
(/)-(3) have the common property that they canish 
on points, lines, or even larger regions of the Fermi 
surface. As a consequence, the electromagnetic re- 
sponse of the two-fluid system consisting of conden- 
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sate and thermal excitations (Bogoliubov quasipar- 
ticles) is expected to display a temperature depen- 
dence qualitatively different from that of an isotro- 
pic BCS superconductor. This follows simply be- 
cause quasiparticles can exist near the zeros of the 
gap even at extremely low temperatures. The num- 
ber of such quasiparticles at any temperature is re- 
lated to the "paramagnetic" part n ~ of the response 
kernel: 

h2  ( Of )=-nY~(T), (3.4) nQ=n--tn Zkuk~k --~Ekk 

hake 
with E~=-V~e-t-A2(/r ~ 2m /~ the quasiparticle 

spectrum and f =- (exp Er]k T + 1)- 1 the equilibrium 
quasiparticle Fermi function. The superfluid density 
tensor h ~ is then given by the relation h ~ = n I -  n . It 
should be noted that the quantity n ~ is formally 
identical to the familiar normal-fluid density tensor 
only in the case of a translationally invariant system 
[9]. 

The presence of zero-energy excitations is re- 
flected in the fact that at low temperatures the para- 
magnetic response for a state with gap nodes van- 
ishes not exponentially ~(2rcA/kT) 1/a exp(-A/kT)(S,~ 
as for an isotropic BCS superconductor, but with a 
power law ~(kT/A)'L The temperature exponent tc 
depends not only on the dimension of the manifold 
of gap nodes (i.e., points, lines, etc.), but also on the 
rate at which the gap vanishes in the neighborhood 
of the zeros. We emphasize that power-law tem- 
perature dependences will result only if the gap 
vanishes somewhere on the Fermi surface. An aniso- 
tropic gap without nodes will always yield an expo- 
nential low-temperature behavior characterized by 
the minimum value of the gap. 

The London penetration depth is now obtained 
as usual by solving (3.3) subj.ect to the boundary 
conditions /~=f' x A=/~ext, 2 .A=2. f=o  at the sur- 
face of the sample defined by normal vector 2. The 
tensor nuQ depends implicitly on the anisotropic or- 
der parameter A(k) through (3.4), while A itself is a 
minimum of the superconducting free-energy func- 
tional, which in principle contains all order-parame- 
ter orienting effects (except surfaces, which must be 
included as boundary conditions of the variational 
problem). 

For definiteness, we consider first the special case 
of a system with spherical Fermi surface and uni- 
axial order parameter 

A (/~) = A o(T)f(/~. 1), (3.5) 

where /'(~) is a local unit axis of gap symmetry and 

A 0 is the gap maximum. The paramagnetic response 
(3.4) is then characterized by two eigenvalues corre- 
sponding to principal axes parallel and perpendicu- 
lar to/': 

nP u v - -  - -  "~[I ~'p lu I v -}- n ~  [(~ v - -  l x lv], where 

n~l,•189 d~ - ~f . 
0 - -oo  

(3.6) 

For the moment we ignore competing orienting ef- 
fects which may tend to bend f, and consider only 
spatially homogeneous /'-textures. Substituting (3.6) 
into (3.3), and assuming transverse gauge 0"A = 0, we 
find a purely transverse current: 

c f l  ^ ^ 1 ( 6 . v - L . L O } A ~  (3.7) 

where L is the unit vector associated with the pro- 
jection of / ' in to  the x - y  plane, and 21, 2 are the two 
eigenvalues of the penetration depth tensor 

\4rcee ] ' 

tz)+n,~ (3.s) (mc 2 ~ 1 n~(1 - ~  
22=- \47ce2] n~l nSi 

corresponding to the two directions L and 2 x L. The 
result for the field penetration is 

fl(z) = L ( L .  hoxt) exp(- z/21) 
+ 2 • L(2 • exp( -  z/22). (3.9) 

For general [ /~(z) is seen to rotate in the plane 
perpendicular to 2 as it penetrates the sample. If r is  
either parallel or perpendicular to /~ext, however, the 
direction of the field will not change and the pene- 
tration is described by a single eigenvalue 21 or ;~2- 

We further specialize to the polar state A(/~) 
=A0(T ) /~. [ with an equatorial line of nodes, and 
the axial state A((c)=Ao(T ) Ifx~], with two point 
nodes. The latter state is currently believed to repre- 
sent the high-pressure superfluid A-phase of 3He. In 
the 3He-A case the axis /" has the clear physical 
interpretation of a Cooper pair angular momentum, 
but in general this need not be true; we emphasize 
that these two states are simply representatives of 
two different classes of anisotropic gaps, as discussed 
below. 

The polar and axial states are best characterized 
by the above-mentioned low-temperature power-law 
behavior of the paramagnetic response, for which 
the analytic result is: 
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[ ~z(ln2) ( ~ )  

lim n~ '~ :  ]24~ rc~(3) (~0)3 

T~O n 7n4 (kT~ 4 

\Aol 

• / Polar 

• ] Axial 

(3.10) 

It is also instructive to examine the behavior of 
these curves for the entire temperature range. This 
may be done numerically using the gap interpolation 
formula 

Ao(T)=c~kT~tanh~]/a(A~)(~- l )} ,  (3.11) 

where for consistency we insert the weak coupling 
values of a=-~(1, 2), 3~==-A(O)/kT~= 1.76 (2.03, 2.46) 
and the specific heat jump AC/C=1.43 (1.19, 0.78) 

2.0 

X(T) 
X(0) 

Z 1 . 5 -  

.P/ < 
7 C/y/ -o 

1.0 / ~ T " , ~ ~  '~ Axial 'i'l,~ 
I I I I 

0 0.5 1.0 
T/Tc 

Fig. 6. London penetration depth as a function of reduced tem- 
perature TITs, for polar, axial and isotropic pairing as given by 
Eq. (3.12). The temperature dependence of the gap was taken to 
be of the form (3.11) 

for the isotropic (axial [14], polar) state. Since the 
designations II and L refer to /~IA and ~• respec- 
tively, we may equally well examine the behaviour 
of the penetration depths 

[me z ] l / z  ~-1/2 (3.12) 
211,• -= ~ ]  v~ll,• 

F. Gross et al.: Superconducting UBe13 

to which 21 and )~2 reduce for these two /'-textures. 
In Fig. 6 these are shown alongside the expected 
BCS-like penetration depth for an isotropic gap. 

b) Gap Orientation Effects 

It is clear that the predicted penetration depth for a 
given anisotropic state depends strongly on the di- 
rection of the /'-vector, which may be oriented by 
magnetic fields, superflow, surfaces, or crystal elec- 
tric fields. As a first approach to this question, we 
consider the effect of magnetic fields and superflow 
in the absence of other orienting effects. The rele- 
vant contribution to the free energy is 

_1 s s s 1 s (3.13) F-~mv~n, vG + ~huzu~h~, 

where v' is the superfluid velocity and Z s is the spin 
susceptibility. We find the kinetic term to be mini- 
mized if (n~l-n~)(/'-A)2 is minimized, while for Z 
>>k~-1 the spin orientation energy is negligible and 
will not affect this result regardless of the coupling 
between the spin and orbital degrees of freedom. 
From Fig. 6 we see that for the polar (axial) state, 
6n-n~l(T)-n~(r ) is positive (negative) for all tem- 
peratures, and that the magnetic coupling tends to 
align the /'-vector perpendicular (parallel) to the vec- 
tor potential. The corresponding predictions for the 
low-temperature penetration depth 2-2(0) are there- 
fore a T dependence for the polar state and a T 2 
law for the axial state, according to (3.10). 

In (3.13) we have neglected the contributions to 
the free energy which arise from the bending of /" 
away from a uniform spatial distribution. These 
terms stabilize a uniform /'-texture in a bulk neutral 
system, but in a charged system the coupling of the 
magnetic field to the order-parameter phase through 
(3.13) allows for the possibility of a bulk ground 
state corresponding to nonuniform ~ Dawelbeit [15] 
has shown that for a bulk 3He-like axial state the 
Ginzburg-Landau free energy is in fact minimized 
by a helical texture. Deviations from uniformity are, 
however, on the order of a few per cent, and we there- 
fore expect that the main effect of magnetic fields 
and superflow in the bulk is to orient the gap axis as 
described above. 

The orbital terms in the free energy lead to ad- 
ditional terms in the current f =  8F/6f4, as mentioned 
above. For a system with uniaxial anisotropy, these 
are proportional to n s curl /" and the backflow /b• 
term in (3.3) takes on a somewhat more complicated 
form. 

Collisions with the surface will selectively depair 
certain components of a p-wave order parameter 
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A(/~) and thereby orient the gap axis f. Detailed 
knowledge of the surface scattering processes is 
needed to draw definitive quantitative conclusions. 
One expects, however, that the l'-vector in the axial 
state will be bound perpendicular to the surface if 
specular scattering dominates [16]. In this case, sur- 
face and magnetic effects compete with one another 
to orient F. A simple estimate [17] suggests that the 
effective range of the surface orienting effect in fields 
of 1 gauss is of the same order of magnitude as the 
zero-temperature penetration depth; i.e., i" will bend 
significantly on this scale, and the solution to (3.3) 
will inevitably mix n~l and n~. At low temperatures, 
however, the T 2 contribution from n~l will continue 
to dominate the observed 2(T). 

Finally, we note that crystal electric fields, which 
are strong in UBe13 , may also orient the gap, es- 
pecially in the zero-field limit. In a polycrystalline 
sample of the type considered here, this effect may 
give rise to domains in which f is roughly spatially 
homogeneous. Since the three cubic directions are 
equivalent, however, the system will condense into a 
state in which the /'-vectors in the various domains 
will still be roughly aligned with one another. As 
before, the bending of /" will cause deviations from 
the "pure" penetration depths 2 defined in (3.12) and 
depicted in Fig. 6, but at the lowest temperatures the 
axial state should still display a T 2 law, as opposed 
to the T law predicted for the polar state. 

If the gap axis is strongly pinned by crystal 
fields, the penetration depth in a single crystal will 
depend anisotropically on the field direction in the 
plane of the surface. The simplest situation arises if 
one can prepare a sample with r pointing along one 
of the axes of a cubic crystal parallel to the surface 
nearly everywhere. The anisotropy in 2 is then given 

{~s I~S "~1/2 by wll/,~zl , which approaches unity at T = 0  and is 

maximal at 7; (lf3 for polar, 1/~ for axial). Unless 
the experimental geometry is optimally chosen, how- 
ever, this relatively small effect may be masked by 
the demagnetizing field. The anisotropy in the rate 
of increase of 2 with temperature, on the other hand, 
diverges at r = 0  a s  (n~/n~) 1/2, and thus should be 
easily observable i f / l i es  in the plane of the surface. 

it is easy to see that all gaps A(/~) with point nodes 
at/~i which vanish linearly in f - /~ i [  will quite gener- 
ally give rise to a T 2 penetration depth at low T, 
whereas those with lines of nodes vanishing linearly 
will display a T power law. For example, Ohkawa 
and Fukuyama [18] have proposed a model of ex- 
tremely local pairing for the heavy fermion super- 
conductors, with an anisotropic gap which trans- 
forms according to the trivial representation of the 
crystal point group ("s-wave-like"): 

A(k)=Ao(r)~{coskxa+coskya+cosk~a}, (3.14) 

where a is the cubic lattice constant. If the Fermi 
surface anisotropy may be neglected with respect to 
the anisotropy in the pair potential, the manifold of 
zeros of A(/~) on the Fermi sphere depends only on 

the parameter r=-kva. For ( 2 n + l ) ( ] / ~ / 2 ) < r < ( 2 n  

+ 3 ) ( ] f ~ ) ,  the order parameter has lines of nodes 
circling the fourfold symmetry axes of the cube, and 
at low temperatures 2 is therefore found to vary as 
T. At the critical values ~=(2n+1)( l f3~/2  ) these 
lines become points, but because the gap now van- 
ishes as ]/~-/~il 2, the penetration depth continues to 
depend linearly on the temperature. For r<r~, one 
finds an exponential decay, as expected for a gap 
without nodes. 

Similarly, the "s-wave" state proposed by Appel 
and Overhauser [19-1, while anisotropic, does not 
vanish anywhere on the Fermi surface, and therefore 
gives rise to an exponentially decaying penetration 
depth at low temperature. 

d) Fermi-Liquid Effects 

In strongly interacting systems like the heavy-elec- 
tron superconductors, one expects Fermi-liquid cor- 
rections to the above weak-coupling results to be 
important. These are easily implemented [9] by re- 
placing the tensor h ~s introduced above by the renor- 
realized density 

nuv= ~ Y ) ,  n + ? ) ( 3 ~ v - Y ~ ) ,  (3.1s) 

c) General Considerations; s-Wave-Like Gaps 

One may easily generalize many of the above con- 
siderations to other anisotropic order parameters, 
which need not be associated with p-wave pairing. 
As mentioned above, the temperature exponent ~c 
characterizing the low-temperature behavior of 2 
and n p depends on both the set of gap nodes and the 
rate at which the gap vanishes nearby. For example, 

where Yuv is the generalized Yoshida function de- 
fined in (3.4), m* is the specific heat mass, and F~ is 
the l=  1 spin-symmetric Landau parameter. In a Ga- 
lilean-invariant system, m*/m = 1 + F~/3, so one might 
expect F~ to be large in the heavy-electron systems. 
At T = 0 the correction to the penetration depth is 

2=  ~ ]  2b,re. (3.16) 
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Thus if the large effective mass measured by the 
specific heat is due mostly to electron-electron in- 
teractions, effective mass corrections drop out of the 
expression for 2 at T = 0  in a translationally in- 
variant system, and should first appear in the lead- 
ing-order temperature corrections. It is not entirely 
clear, however, to what extent the Galilean-in- 
variance arguments leading to the effective mass re- 
lation should be even approximately valid in a sys- 
tem with localized f-electrons. Valls and Tesanovic 
[20], Pfitzner and W61fle [21], and Bedell and Qua- 
der [-22] have all made use of this relation to discuss 
the origin of the heavy electron mass. On the other 
hand, Varma [-23] and Rice and Ueda [24] argue 
that the effective mass should scale with F~ instead 
of F~. It is clear that a measurement of 2 can be of 
considerable use in understanding the nature of the 
heavy electron ground state. 

e) Influence of Impurities 

It is well known that nonmagnetic impurities in 
triplet superconductors would have strong depairing 
effects similar to those produced by magnetic impu- 
rities in ordinary singlet superconductors [12]. 
Ueda and Rice [25] have recently examined these 
effects in the s-wave scattering approximation for the 
case of anisotropic triplet order parameters. Here we 
follow their approach, a generalization of the usual 
Abrikosov-Gor'kov theory [26]. Evaluation of the 
BCS electromagnetic response function in the Lon- 
don limit leads to a simple expression for the "para- 
magnetic" density tensor: 

nV"~-- - 3  h2 ~ k~,k~(kT) ~, {G(l~,co.)G*(k, co,,) 
n m k , 

+ F ( f:, co ,l F + ( flc, co ,) } , (3.17) 

where F and G are the normal and anomalous 
Gor'kov functions determined by solving Dyson's 
equations self-consistently in the presence of the sin- 
gle impurity self-energy 

Z(CO,) = N/lu 12 ~. G(/c. con) , (3.18) 
k 

where N~ is the impurity density and u the s-wave 
scattering matrix element. The corresponding anom- 
alous self-energy vanishes because of the odd parity 
of the order parameter, and consequently the 
Green's functions are simply those of the pure sys- 
tem evaluated at renormalized frequency &, deter- 
mined by 

1 
(o , = co , + i ~ Z ( co ,) 

I + F g o ,  tan_l(Ao/lh&,l) 

= co +s176 5),log (A~ 

'On ao I 

Axial 

Polar 
(3.19) 

where F-~NN(O)Iul  2 is a measure of the impurity 
scattering strength, co, is a Matsubara frequency, 
and Ao=Ao(T) is the gap maximum. When F=0 ,  
the frequency sum in (3.17) may be evaluated and we 
recover (3.4). At finite impurity concentrations, how- 
ever, 

oO i I ~ ^  ~n ,h~ X2_E 2 
nvP~ =3 2 d {  n k.fG(kT) ( ( ~  ~ 2  ' (3.20) 

and (3.19) must first be solved self-consistently. We 
have evaluated (3.20) for axial and polar states fol- 
lowing the method of Skalski et al. [27], and ob- 
tained analytic expressions for the limiting low-tem- 
perature behavior of the eigenvalues n~ and n~_. Be- 
low we merely state the relevant results; a fuller 
treatment will be given in a subsequent publication 
[-28]. 

1. For an axial superconductor in the presence 
of a small number of impurities, up to a critical 
concentration defined by F/A o = 2/~z, we find that the 
results for a pure system are renormalized in a trivi- 
al way. The paramagnetic density takes the follow- 
ing form at low temperatures: 

n~ 3 ~F 1) (kT~2 1 F -- ( ln2- 2) 

np= 3 F~ (1-~-_41n2 ~ 
Ao\  8 ! 

-}-7 re4 (kT~4 1 Y - 

1 / Axial 
F 2 

T00<  
(3.21) 

The power-law temperature dependences charac- 
terizing the response in the two directions in the 
plane are thus unchanged, with a modified prefactor 
which increases with the impurity scattering rate F. 
As in the usual s-wave case (magnetic impurities), a 
"normal component" to the response is present even 
at zero temperature; the T--0 penetration depth, for 
example, will always increase with the addition of 
impurities. Clearly at the critical value F/Ao=2/~z 
the range of validity of the low-temperature expan- 
sion vanishes. Above this value, zero-energy exci- 
tations from all points on the Fermi surface contrib- 
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ute to the BCS density of states and the system 
enters a "gapless" phase. The temperature depen- 
dence of both eigenvalues of the paramagnetic re- 
sponse then follows a T 2 law similar to the low-T 
behavior expected in an ordinary superconductor in 
the extreme gapless (F/kT~> 1) regime [28]. 

2. In the polar state, on the other hand, the T 
a n d  T 3 power laws given in (3.10) are destroyed 
immediately with the addition of infinitesimal 
quantities of impurities. When the scattering rate 
becomes comparable to the renormalized order pa- 
rameter (F/Ao>0.76),  however, a T 2 behavior is 
once again realized. The fact that the responses of 
both classes of anisotropic states display, when suf- 
ficiently dirty, the same temperature dependences as 
an ordinary superconductor in the extreme gapless 
limit should not be surprising. In all cases the tran- 
sition occurs as the corresponding BCS density of 
states becomes flat and featureless at low energies. 

Finally, we remark that qualitatively similar con- 
clusions should hold for highly anisotropic singlet 
superconductors in the presence of paramagnetic im- 
purities. 

4. Comparison of Theory and Experiment 

It is useful to estimate the zero-temperature penetra- 
tion depth one would expect from BCS theory, ne- 
glecting in the first approximation all corrections due 
to anisotropy in normal state Fermi surface quan- 
tities. A first estimate is obtained from the London 
expression 

FF/*C ~1/2 
~(0)= ~ , (4.1) 

k4rcnse ] 

where m*= 192m e from the specific heat [29], and 
each U atom is assumed to contribute three elec- 
trons to the superfluid particle density n s at T = 0 .  
The result is Z(0)-~4,950 &. 

An alternative expression for 2(0) may be derived 
from the basic results of BCS and Ginzburg-Landau 
theory for a type-II superconductor, as 

2(0) = (4~~ H~ a(0)) 1/2 (4.2) 

where ~b 0 is the flux quantum, He2(0) is the upper 
BCS --  critical field at T = 0, 6so -1 .76  is the ratio of the 

gap at T = 0  to the transition temperature Tc, and 
7T c is the electronic specific heat at the transition. 
This expression gives 2(0)---5,200 ~ with the approx- 
imate experimental values of He/(0)= 105 gauss, T~ 
=0.86 K and 7= 1.37.105 ergs cm -3 K -z. 

We may therefore expect a low-T penetration 
depth of a few thousand angstroms, a factor of ten 
larger than in "ordinary" superconductors such as 
Sn, Pb, Nb, etc. This is consistent with the rough 
estimate of 2,000 • made by MacLaughlin et al. [4] 
on the basis of N M R  data. We have, however, ne- 
glected Landau molecular-field corrections, and from 
the discussion of Sect. 3d it is clear that if the Ga- 
lilean-invariance effective-mass relation holds ap- 
proximately in UBe13, this enhancement will not be 
observed. 

The T a behavor of the penetration depth ob- 
served at low temperatures is inconsistent with the 
predictions of BCS theory for a pure, weak-coupling 
singlet isotropic superconductor. As argued above, 
the temperature dependence can be explained by 
assuming the existence of a gap with linearly vanish- 
ing point nodes located at any point on the Fermi 
surface except exactly perpendicular to the vector 
potential A. If the state is anisotropic the penetra- 
tion depth observed in a real experiment need not 
correspond directly to one of the eigenvalues of the 
superfluid density tensor even for the relatively sim- 
ple model order parameters discussed above. Nev- 
ertheless, at low temperatures we expect a T or a T z 
behavior to dominate, depending on whether the 
state possesses lines or points of nodes, respectively. 
The axial state thus represents a possible fit to the 
experimental data, provided the /'-vector is not fixed 
exactly perpendicular to the sample surface over a 
distance large compared to 2. This will always be 
the case if the magnetic and/or crystal field orienting 
effects are sufficiently strong. 

The presence of impurities can strongly alter the 
expected characteristic low-temperature power laws. 
We make no attempt to estimate the residual impu- 
rity-scattering rate in our samples since there exists 
no quantitative theory of the large low-T intrinsic 
Kondo scattering. In the presence of the relatively 
large errors in determining sample surface areas and 
in the absence of an absolute measurement of )~(0), a 
fit of (3.21) to the data does not provide useful new 
information. On the other hand, the insensitivity of 
the T 2 power law in 2 -2 (0 )  for an anisotropic 
superconductor with point nodes in the presence of 
small amounts of impurities is important qualitative 
support for the hypothesis that pairing of this type is 
responsible for the observed experimental behavior. 

Of course, a dirty superconductor of any of the 
types discussed in Sect. 3e would also display a sim- 
ilar temperature dependence in the electromagnetic 
response. A naive explanation based on the assump- 
tion of gapless (singlet or triplet) superconductivity 
may be ruled out, however, by the observation of a 
T 3 temperature dependence of the specific heat and 
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Fig. 7a-d. Comparison of the 
measured incremental penetration 
depth 2(T)-2(Tml,) (circles), plotted 
vs. (TITs) ~, with theory (full and 
dashed lines). We show polar (a,b) 
and axial (e, d) gap symmetry and 
vary the two parameters F~ (a, e) 
and 2(0) (il, d) as indicated in the 
figures. Also shown along with the 
polar state curves (a) is the result for 
an isotropic gap (dashed line). In 
Fig. 7c, the dashed line corresponds 
to 2(0) = 300 A, F~ = 300. The 
maximum gap is taken from (3.11), 
but with the experimental value 
A C/C,, =2.5 [29] 

a large specific-heat discontinuity in other experi- 
ments on samples with similar T<'s [3, 29]. 

It is similarly of interest to place an upper limit 
on the Landau parameter F~, which also leads to 
deviations from the low-T power laws. To examine 
the effects of large F~ on 2, we have plotted in Fig. 7 
attempts to fit the data with various states, taking 
2(0) and F~ as parameters. We plot the difference of 
the penetration depth from its value at the minimum 
reduced temperature TmiJT <=0.072 as a function of 
T/T<. In Fig. 7a we plot 2 for a polar state, taking 
2(0)=4,600A while varying /+2. Also shown as a 
dashed line is the corresponding result expected for 
an isotropic superconductor without Fermi-liquid ef- 
fects. In Fig. 7b we fix F ] = 0  and vary Z(0). The 
disagreement at low temperatures, where power laws 

in T/A o are expected to dominate, is evident. We 
therefore conclude that our data cannot be ex- 
plained with the hypothesis of anisotropic pairing 
with lines of nodes on the Fermi surface. 

In Fig. 7c and d we show the equivalent results 
for Zii in an axial superconductor. While a best fit to 
the entire range of data is obtained for 2(0) 
=4,200J~, a fit at low temperatures T/T<<0.3 is al- 
ways possible, provided F~<20. Also shown is an 
unsuccessful attempt to fit the data with large F]; 
strict application of the Galilean-invariance effective- 
mass relationship would imply F~_600. We note 
that the value of Z(0) obtained from these fits repre- 
sents at best a rough upper bound to the true value, 
since, as discussed in Sect. 3, /" need not be oriented 
parallel to ,4 throughout the sample. Isotropic BCS, 
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axial (f_l_ri 0 and polar (fN, _l_A) gaps remain incon- 
sistent with the observed T 2 dependence for all 
choices of the parameters. 

5. Conclusions 

Our data on the magnetic penetration depth in 
UBe13 may be explained by the assumption of a gap 
with point nodes on the Fermi surface, provided the 
Landau parameter F~<20. The values of )~(0) ob- 
tained by fitting the expected penetration depth for a 
model p-wave axial order parameter, which lie in the 
range between 4,000 and 8,000 ~, are roughly con- 
sistent both with the estimates made above and the 
indirect N M R  measurement of MacLaughlin et al. 
Clearly an absolute measurement of )~(T) would pro- 
vide additional valuable information about the gap 
anisotropy and the spatial distribution of the gap 
orbital axes, as well as determining F~ more exactly. 
Preparations for such an experiment are in progress. 

It seems extremely unlikely that band-structure 
or electron-phonon effects can so enhance the effec- 
tive mass as to explain the specific heat measured in 
UBel3 [29]. Alternatively, the local nature of the f- 
electrons may so strongly break the translational 
invariance of the heavy electron system that the 
Galilean invariance relation becomes totally invalid. 
The smallness of F~, if substantiated, would then 
lend strong support to those theories which predict 
a scaling of m*/m with F~ based on an unrenorma- 
lized compressibility. 

An interesting possible alternative explanation is 
the assertion of Alekseevkii et al. [8] that a band of 
light (m*~_me) electrons is present. If these carriers 

�9 support the Meissner current one may produce val- 
ues of 2(0)~-5,000A. by assuming a light electron 
density of approximately 0.05 electrons per U atom. 
The presence of a light band would also explain the 
small value of F~ observed, since in this case one 
would expect the quasiparticles to interact weakly. 
On the other hand, it is difficult to understand how 
a highly anisotropic gap could result from a weakly 
interacting band. Theories of heavy electron super- 
conductivity which assume two-band pairing will 
have to provide an explanation for the observed T 2 
temperature dependence of 2-)~(0). 
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Note Added in Proof 

It has recently been shown [30, 311 that, in the unitary scattering 
limit, non-magnetic impurities in anisotropic superconductors 
lead to ~ behavionr in low-T thermodynamic and trans- 
port properties even at very small impurity concentrations. In this 
case one may not be abte to distinguish between states with 
points and lines of nodes on the basis of the observed T 2 de- 
pendences of )~(r)-- ;o(T,,in ). 
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