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A cycle double cover of a graph, G, is a collection of cycles, $, such that every edge of G 
lies in precisely two cycles of $. The Small Cycle Double Cover Conjecture, proposed by J. A. 
Bondy, asserts that every simple bridgeless graph on n vertices has a cycle double cover with at 
most n - 1 cycles, and is a strengthening of the well-known Cycle Double Cover Conjecture. In 
this paper, we prove Bondy's conjecture for 4-connected planar graphs. 

1. In troduc t io n  

A cycle double cover (CDC) of a graph, G, is a collection of cycles $, such that 
every edge of G lies in precisely two cycles of $. An obvious necessary condition 
for a graph to have a CDC i~ that the graph be bridgeless. P. D. Seymour [9] 
conjectures that this condition is also sufficient. 

Conjecture 1 (CDC conjecture). Every bridgeless graph has a cycle double cover. 

Though Seymour is most often credited with making this conjecture, Szekeres 
[10] conjectures that  every cubic bridgeless graph has a CDC, which turns out to 
be an equivalent conjecture. 

Let G be a simple graph on n vertices. A CDC of G consisting of at most n - 1  
cycles is called a small cycle double cover (SCDC) of G. Notice that  if G contains 
a vertex v of degree n - l ,  at least n - 1  cycles are required in a CDC of G, in order 
to doubly cover the edges incident with v. This provides us with some motivation 
for the following strengthening of the CDC Conjecture, due to J. A. Bondy [1]. 

Conjecture 2 (SCDC Conjecture). Every simple bridgeless graph has a small cycle 
double cover. 

We note that this conjecture is clearly false if not restricted to simple graphs, 
since any graph on n vertices, containing a vertex of degree at least n has no SCDC. 

The class of bridgeless planar graphs is one for which the CDC Conjecture is 
easily verified: we simply take the collection of cycles which bound the faces of the 
graph. However, this approach does not always produce an SCDC. If G is a simple 
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2-connected planar graph on n vertices containing more than 2 n - 3  edges, then it 
follows from Euler's formula that  G has at least n faces, and so the collection of 
facial cycles does not constitute an SCDC of G. 

The SCDC Conjecture has been verified for certain classes of simple planar 
graphs. Bondy and Seyffarth (see [1]) have shown that  maximal planar graphs, 
that  is, simple planar graphs in which each face is a triangle, have SCDC's; in fact, 
this result extends to triangulations of arbitrary surfaces." Simple planar graphs 
on n vertices, containing a vertex of degree n -  1 can also be easily shown to have 
SCDC's [7]. 

In this paper, we present a proof of the SCDC Conjecture for simple 4- 
connected planar graphs. There are two main results about planar graphs on which 
our proof relies. The first of these is the fact that  any 4-connected planar graph 
has a Hamilton cycle, a result due to Tutte  [12]. The other fact we require concerns 
the parti t ion of the edge set of an even graph into cycles. 

2. Cyc l e  decomposit ions and H a j 6 s '  C o n j e c t u r e  

Let G be a simple even graph; that  is, a graph in which every vertex has even 
degree. It is well-known that  the edge set of such a graph can be parti t ioned into 
cycles, and we call such a partition a cycle decomposition of G. We denote by 
c(G) the minimum number of cycles required in a cycle decomposition of G. The 
following conjecture about the size of c(G) was made by G. Haj6s (see [6]). 

Conjecture 3 (Haj6s' Conjecture). / f  G is a simple even graph on n vertices, then 
c(G) < [ ( n -  1)/23 . 

The bound in Haj6s' Conjecture is actually Ln/2J rather than L(n-1) /2J ,  but 
Dean [2] has shown that  the two conjectures are equivalent. 

Haj6s' Conjecture has been proved for graphs with maximum degree at most 
four by Granville and Moisiadis [4], and independently by Favaron and Koudier [3]. 

Suppose G is an even graph on n vertices and m edges, and suppose that  the 
underlying simple graph of G contains m I edges. Then Haj6s' Conjecture can be 
reformulated as follows: e(G)< L ( n + m - m ' - 1 ) / 2 J .  To prove this, we first delete 
2-cycles as long as the underlying simple graph is not affected. In the remaining 
graph, every edge has multiplicity at most two. We subdivide one of the edges in 
each pair of parallel edges with a new vertex, and apply Haj6s' Conjecture to the 
resulting simple graph. 

Of particular interest to us is the fact that  Haj6s' conjecture has been verified 
for planar graphs. This result is due to Tao [11]; an alternative proof is given in [8]. 
It plays an important  role in our proof of the SCDC Conjecture for 4-connected 
planar graphs. 

Theorem 1 (Tao). / f  G is a simple planar even graph on n vertices, then c(G) < 
L(n- 1)/23. 
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3. T h e  m a i n  t h e o r e m  

Our proof of the SCDC Conjecture for 4-connected planar graphs makes use of 
the fact that  any such graph contains a Hamilton cycle. Tut te  proves this in [12], 
and in fact proves a stronger result. 

Theorem 2 (Tutte).  Let G be a 4-connected planar graph, and let e and f be two 
edges of G that are incident with a common face. Then G has a Hamilton cycle 
containing both e and f . 

One additional lemma is needed for the proof of the SCDC Conjecture for 
4-connected planar graphs. The proof is straight-forward and is left to the reader. 

Lemma 3. Let G be a bridgeless plane graph (that is, a planar graph together with 
a fixed embedding in the plane) and let 

f : F(G) --* {1,2,3,4} 

be a proper 4-colouring of the set F(G) of/'aces of G. For 2 _~ j _~ 4, let Glj denote 
the subgraph o[ G consisting of the edges incident with a face of colour 1 or a/ 'ace 
of colour j,  but not both. Then G U is an even subgraph of G, and furthermore, 
every edge of G lies in exactly two of G12, G13, G14. 

We are now ready to prove the main result of this paper. 

Theorem 4. Every simple 4-connected planar graph has a small cycle double cover. 

Proof. Let G be a simple 4-connected planar graph on n vertices, and assume that  
it is embedded in the plane. From Theorem 2, we know that  G has a Hamilton 
cycle, H.  

We 4-colour the faces of G by properly 2-colouring the faces in the interior of 
H with colours 1 and 2, and properly 2-colouring the faces in the exterior of H 
with colours 3 and 4. This gives us a proper colouring of the faces of G, and we call 
this colouring the 4-face colouring of G induced by H. We now apply Lemma 3. 

For j - -2 ,3 ,4 ,  it is easy to see that  Glj spans G, and so V(Glj)--n. Since each 
G U is even, its edge set can be partit ioned into cycles, and since each edge of G lies 
in precisely two of G12, G13, G14, the collection of cycles obtained by taking cycle 
decompositions of the Glj 'S constitutes a CDC of G. If q denotes the minimum 
number of cycles in a CDC obtained in this manner, then q = c(G12)+c(G13)+c(G14), 
where we recall that  c(Glj) denotes the minimum number of cycles in a cycle 
decomposition of Glj. 

Clearly, G12 = H,  so we have c(G12) -- 1. Also, by Theorem 1 c(G13) <: 
L (n -  1)/2J and c(G14 ) ~ L(n -  1)/2J. Therefore, 

q < 2 l n ~ _ l ] §  1 ( n - 1  i f n i s e v e n  

- n if n is odd. 

Thus if n is even, we have shown that  G has as SCDC. 
Now suppose that  n is odd, n = 2k § 1. Since G is 4-connected and planar, 

G has minimum degree four or five. Let v be a vertex of minimum degree in G, 
with neighbours v0, Vl, . . . ,  vl in cyclic order, where l - -3  or 1--4 according as G has 
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minimum degree four or five. By Theorem 2, G has a Hamilton cycle, H, containing 
edges vvo and VVl. 

Let G ~ denote the graph obtained from G by duplicating edge vva; clearly, H is 
a Hamilton cycle in G/. We now consider the proper 4-face colouring of G ~ induced 
by H. If v has degree four in G, then, without loss of generality, the faces of G ~ 
incident with v are coloured as shown in Figure 1. If v has degree five in G, then, 
without loss of generality, the faces of G I incident with v are coloured as shown in 
Figure 2. 

H V2 H v3 

v 1 v 3 

Vo v l  v 0 

Fig. 1 Fig. 2 

We consider the even subgraphs G~3 and G~4 of G I. In both cases, v has 
degree four in GI13, and the 2-cycle vv3v is in both G~3 and G~4. Let G~3 denote 
the graph obtained from G~3 by deleting the 2-cycle vv3v. Since G is 4-connected, 
every triangle of G bounds a face. Therefore, in the case where v has degree four 
in G, vov2 is not an edge of G, and hence not an edge of G ~. Similarly, in the 
case where v has degree five in G, v2v4 is not an edge of G, and hence not an edge 
of G I. Thus, in both cases, v has degree two in G" and the neighbours of v are 13, 
non-adjacent in G" 13, so c(G13 ) _< L((n-  1) - 1)/2J = Ln/2J - l = k -  1. 

If m denotes the number of edges in G~4 , then the underlying simple graph of 
G~4 has m -  1 edges. By first subdividing one of the edges in the 2-cycle vv3v and 
then applying Theorem 1 we have c(G~4 ) _< L((n+ 1 ) -  1)/2J = [ n / 2 J -  l = k .  

Let Sl denote a partition of the edge set of G~3 into " c(G13 ) cycles. Then Sl 
is a partition of the edges of G13 - {vv3} into cycles. Let $2 denote a partition of 
the edge set of G~4 into c(G~4 ) cycles. 

If the 2-cycle vv3v is not a member of $2, then $2 gives a rise to a cycle cover, 
S~, of G14, where vv3 is covered twice and all other edges are covered once. Thus 

= S l  U S~ a {g}  is a CDC of G, and {V{ = JSlJ-~-[S~{-F 1 = c(G~3 ) + c(G~4 ) + 1 _< 
( k - 1 ) + k +  l = 2 k = n - 1 .  

If the 2-cycle vv3v is a member of $2, we let S~ denote the collection of cycles 
obtained from $2 by deleting the 2-cycle vv3v. Then S~ is a partition of the edges 
of G 1 4 -  {v,v3} into cycles, and IS~] _< k -  1. We now write H = P1 U P2, where 
PIDP2={v,v3} ,  and let Ci--PiU{vv3},  i=1 ,2 .  Then t~--Sl US~U{C1,C2} is a 
CDC of G, and {V{={Sl{+{S~2{+2=c(G~3)+(c(G~14)-l)+2<_(k-1)+(k-1)+2= 
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2k ---- n-- i. In both cases, i~ is an SCDC of G. This establishes the case when n is 

odd, and completes the proof of the theorem. | 

4. S u m m a r y  a n d  r e l a t e d  r e s u l t s  

When n is even, the proof of Theorem 4 can be extended to simple planar 
hamiltonian graphs in general. If G is a simple planar hamiltonian graph on n 
vertices, where n is odd, then the proof shows that  such a graph has a CDC with 
at most n cycles. 

The proofs of HajSs' Conjecture for even planar graphs and for even graphs 
with maximum degree at most four imply that  these graphs have SCDC's. Jaeger 
[5] has shown that  a 4-edge-connected graph on n vertices is the union of two 
even subgraphs with the property that  each edge lies in precisely two of them. By 
decomposing each of the even subgraphs into cycles, we obtain a CDC. The t ru th  
of Haj6s' Conjecture in general would imply that  a simple 4-edge-connected graph 
on n vertices has a CDC with at most 3 L ( n - 1 ) / 2  j cycles. It follows from the Four 
Colour Theorem, Lemma 3, and the validity of Haj6s' Conjecture for planar graphs 
that every simple planar graph on n vertices has a CDC with at most 3 [ ( n - 1 ) / 2 J  
cycles; moreover, this bound is valid for any 4-face-colourable planar graph. 
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