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STABILITY AND NON-LINEAR APPROXIMATION FOR 

y'(t) = - f(y(t-1)) 

Klaus Doden 

Stability and uniform attraction of the zero solution 

of the equation y'(t) = - f(y(t-1)) and its n-th approx- 

I f(n)(0).(y(t-1))n for n > I is con- imation y'(t) = - ~! 

sldered. 

1~ Definitions and main results 

1,1 The problem 

For n ~ ~ let 

F n := {f:~ >~ i (i) f is n+1 times continuously differ- 

entiable 

(ii) for all ~E{0,1,...,n-1} we have 

= o 

(ili) f(n)(o) , o } . 

For f eF n we consider 

(I) y'Ct) = - f(yCt-1)). 

Stability properties of this equation with n = 1 are 

investigated e.g. by Barnea [1] and Walther [7]. In the 

following we deal with the case n > 1. 

Let 

C := {x:[-1,0] ~IR I x is continuous} 

have the topology of uniform convergence (with the usual 

maxlmum-norm II.II ). Then it is well known (see [2]) that 

for any x ~C there exists a unique solution of (1) 

yx:[-1,~) )~ with yxl[-1,0] = x . 

For any xe C and any positive real number S we de- 

note the ball with center x and radius 6 by 

B(X, ~) := {zeC i llz-xll < 8 }. 
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2 DODEN 

As in [3] we call 0 eC orbitally stable, if V e > 0 

3 3 > 0 VxeB(0, 5) Vta 0 : lYx(t)l <g ; 0 is called 

a uniform attractor, if the region of uniform attraction 

Au(f) := {xGC [ ~> o re> 0 ~T ~ 0 VzeB(x,~) 

Vt  ~ T : l Y z C t ) l  < 6 } 
is a neighborhood of 0; and 0 is called uniformly asymDto- 

tlcally stable, if 0 is orbitally stable and a uniform 

attractor. 

Together with equation (I) we consider its variational 

equation of n-th order 

(2) y'(t) = - ~!fCn)(o)-(y(t-1))n. 

Defining fn : ~ >~ by 

u, ) fn(U) := ~f(n)(0)-un, 

the variational equation of n-th order of (1) has the form 

(2) y'(t)  = - fn(Y(t-1)). 
In the case n = 1 we have the well known facts: 

(A I) 0 is uniformly asymptotically stable for (2) if and 

only if 0 < f'(O) <~ (see [5]). 

CA 2) If 0 is uniformly asymptotically stable for (2), then 

0 is uniformly asymptotically stable for (I); the converse 

is false (see [4]). 

In the followin E we are going to investigate how the 

assertions (A1) and (A2) have to be modified in the case 

n > 1. The analogous problem for ordlnary differential 

equations has been studied e.g. by Lasota and Strauss [6]. 

1,2 Further definitions 

To fonmulate our results we need some notations. To this 

puz~ose let feFn be given with n > 1. 

The mapping M : ~+ )~ is defined by 

s I ~- MC ~, ) := sup { 1 If (n+l)Cu)l I l ul _< }. 
Then M is continuous and monotone increasing. 

Further let ~ : ~§ + , ~ be given by 

, := (  :If(n)(o)i . n'1 . 
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DODEN 3 

Then  ~ i s  c o n t i n u o u s ;  f o r  f i x e d  V t h e  f u n c t i o n  ~(-, ~ ) 

is monotone increasing and for fixed ~ the function 

( ~ ,-) is strictly increasing. In particular the function 

~ --+~(~ , ~) is continuous, strictly increasing, 

( 0 , 0 )  = O, a n d  l i m  ~ ( ~ , ~ )  = o~ . H e n c e  t h e r e  e x i s t s  

exactly o n e  ~ >  0 such that 

Furthermore we need the following mappings: 

:~+ >T~ with ~t >~(~) := ~(~,~) 

:~+ ~ with ~, ~u(~) := ~.(1+ ?(V) ). 

Then ~ and ~u are continuous, strictly increasing, and we 

have ?(0) = ~(0) = O and ~lim ?(~) = lim~__'~O(~) = c~. 

In particular the inverse functions @i and ~I exist and 

have the same properties as stated for ~ and ~. 

Let 

N(f) := { lul I u~, u, o, f(u) = o} 
and 

~:= { min~ {~e, inf N(f)} 

Then ~> O, as ~> 0 and f6F n. 

Let 

Then r ( f )  > 0 

if N(f) ~ 
if N(f) = r 

r(f) := min { ~4(~), ~I(Eo)}. 
for all fgF n. 

1.3 The results 

The following two theorems give a characterization of 

the uniformly asymptotic stability of 0 6C for the equa- 

tion (1): 

THEOREM 1: Let feF n with n > 1. If n is odd and 

f(n)(o) > O, then for the equation (1) 0 is uniformly 

asymptotically stable, where B(O, ~ ) ~Au(f) for all 8 

such that 0 <6< r(f). 

THEOREM 2: Let f mF n with n > 1. If either f(n)(o) < 0 

or n even and f(n)(o) > O, then for the equatio n (1) 0 is 

~gt uniformly asymptotically stab!e. 
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DODEN 

If feFn, so fneFn too, and we can apply these two 

theorems to the equation (2). Thus we get: 

COROLLARY 1: Let feF n with n > 1. Then we have: 

(i) For the equation (2) 0 i_~s uniformly asymptotically 

stable if and only i_~f n is odd and f(n)(o) �9 O. 

(il) Is for the equation (2) 0 uniformly asymptotically 

stable, then B(O, S) C-Au(f n) for all S such that 

0 < ~ < r(fn) , where r(fn) = ~n(~:f(n)(o)) -I/n-1 an d 

@n is the positive solution o.~f qn + q _ 1 = O. 

COROLLARY 2: Let feF n with n �9 1. Then we have: 

0 i_~s uniformly asymDtotlcally stable for (I) if and only 

i_~f 0 i_!s uniformly asymptotically stable for (2). 

The Corollary 1 (1) corresponds to the assertion (A1) 

for n = 1 whereas the Corollary 2 corresponds to the as- 

sertion (A2) for n = 1. This shows that non-linear approx- 

imation leads to simpler conditions as was to be expected. 

2,1 Some fundamental lemmata 

To prove Theorem 1 we first show some lemmata. 

The meaning of the function ~ (defined in 1.2) follows 

from our 

LEMMA 1: Let f6F n wit h n > I. Then we have: 

For all ~ > 0 and for all u~ such that l ul <~ we 

get I f(u) J ~ ~ ( ~, l ul )Ju[, and if furthermore ~ < ~, 

t hen  If(u) l -< ?(~)~. 

Proof: From f~F n we get: for all u e~ there exists a 

v6~ , v between 0 and u, such that 

1 f (n+ l  ) (v) un+ 1 f(U) = 1! f(n)(o)un + ~ 

Hence for [ul <E : [f(u) l < ~( ~,lul)lul. And if further- 

more e<~, then If(u)l < 

Let feF n be given with n > 1. For any real numbers 

F and ~ such that 0 < ~ < p < 6o the set 

{u67~[ ~S lul ~? } is compact, and with the definition 
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DODEN 5 

So we derive min{If(u)l I ~ s lul ~?} > 0. T h e r e f o r e  of 

we can define 

D "= { ( ~ , ? ) e  ~ 2  I 0 < ~ < ? < E.}  

and T: D )]iq by 

?-~ 
( I ~ ' 7 ) '  ) T C ~ , v )  TM min{IfCu)l I ~-< lul-<'~} " 

Then T(~, ~) > 0 for all (~, ~)6D. The function T 

gives a measure for the length of an interval, such that 

the condition ~_< l yxl _< ~ is fulfilled for any solution 

Yx of (I)o More precisely we have: 

LEMMA 2: Let f6F n with n > I, n odd and f(n)(0) > O, 

furthermore let x~C, t o >_ 0 and 0 < S < ~ < ~o, then 

we have: If lYxl < e in (to,t o + T( 8, ~ ) + 1] and 

lYxl >_ ~ in (to,t o + I], then there exists a real number 

tlG[t o + 1,t o + T(8, a) + 1] such that lYxCtl) i <8. 

Proof: Assume that for all tG[t o + 1,t o + T(~, 8) + 1] : 

l Yx(t) I >~ ~ . Using the mean value theorem there exists a 

t2~[t o +1,t o + T( ~ , 6) + I] such that 

Y~c(t2) Yx(to + T ( ~ ,  S )  + 1) - Yx(to + 1) 
= . As n is odd 

T ( ~ , ~ )  

and f(n)(0) > 0 we get uf(u) > 0 for all u such that 

0 < lul <go. If yx > 0 in [to,to + T(~,E)+ 1], then 

in this interval Yx is monotone decreasing and thus 

~-~ =-min{If(u) i  I S_<lul_<~}, - f ( Y x ( t 2  - 1))  = y~:(t 2) > T( ~ ,  8 )  

therefore 

(3) I f (YxCt  2 - 1))1 = f ( Y x ( t 2  - 1))  < min{If(u)ll ~slu l~} .  
The same is obtained, if Yx < 0 in [to,t o + TC~,s) + I]. 

As t 2 - 1 6 [ t o , t  o + T(~,6)] we have from our assumption: 

< l Yx(t 2 - 1)1 ~; s which leads to a contradiction to (3).// 

For the present we concentrate our investigations on two 

types of x~C: first we consider those x, for which Yx 

has no zeros greater than a certain t*; secondly we deal 

with those x, for which Yx has zeros with the property 

that the distance of each two consecutive ones is at least 

I. This motivates the following definitions: 
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6 DODEN 

For  E> 0 and x e C  l e t  

SI(X , e )  := {t* >_. 0 I ( i )  V t  > t *  : Yx( t )  + 0 

( i i )  V t  ~ [ t * , t *  + 1] : lYx( t )  l < ~} 

S2(x, 6) := {t* _~ 0 I (i) Vt e(t*,t* + I] : Yx(t) ~ 0 

(ii) Vte[-1,t* + I] : [Yx(t)l <s 

(ill) ~>t* + 1 : yx(~) = o }. 

As t h e  s e t  o f  a l l  z e r o s  o f  a c o n t i n u o u s  f u n c t i o n  i s  c l o s e d ,  

and taking (i) and (Ill) in the definition of S2(x , ~ ) in- 

to consideration we define for ~> O, xeC and t*eS2(x,~ ) 

~ ( x ,  S , t * )  := m i n { ~ e ~ l  ~ >  t* + I ,  y x ( ~ )  = O} . 

With these sets S l(x, 6) and S2(x , ~) we are going to 

formulate two lemmata which are fundamental for all that 

follows. 

LEMMA 3: Let f~F n wit h n > 1, n odd and f(n)(o) > O. 

Then ~ E~ e(O, Eo) Vx6C V t* ~$I (x, E*) : 

(a) Vt > t* + 1 : Yx(t)y~(t) < 0 and lYx(t) i < E* 

(b) V a e (O,E*) Vt ~ t* + T(~ ,S*) + 2 : lYx(t) i <~. 

This lemma implies that for those x, for which Yx 

has no zeros greater than a certain t*, Yx converges mo- 

notonously to zero, whereas the part (b) gives an estimate 

of the convergence using the function T. 

Proof of Lemma 3: (a) It is easy to show by induction that 

for all k~nW the following holds : in (t* + k,t* + k +1] 

we have yxy~ < 0 and l yxl < ~*. This proves (a). 

(b) From (a) we have l Yx(t) i <~* for all t > t* + 1. 

Now let E ~ (O,s*). If for a certain t la[t*+l,t*+2] : 

lYx(tl) [ <~ , then lYx(t) I < 6 for all t _~ t*+T(~,~*)+2, 

as Yx is monotonic. If on the other hand l Yx(t) I _~ 

for all tm[t*+1,t*+2], then Lemma 2 gives the existence 

of a t I E [t*+2,t*+T(a,~)+2] such that lYx(tl) i < E , and 

thus lYx(t) I < 6 for all t ~ t*+T(~,~*)+2, as Yx is 

m o n o t o n i c . / /  

LEMMA 4: L e t  f ~ F  n w i t h  n > 1, n odd and f ( n ) ( o )  > O. 

Then V ~ r176 Vx~C Vt* ~S2(x, 6 ) : 

(a) Yx has a loca I extremum at ~(x, ~ ,t*)+1 such that 
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DODEN 7 

l y x ( Z ( x ,  ~ , t * ) + l ) l  < ~ (  ~)max{lYx(t)l  I t* s t _< t*+ l } .  
(b) In [-I, ~(x, &,t*)+1] we have lYx I <6 --d in 
( ~(x, e ,t*), ~(x, s ,t*)+1] Yx is monotonic and there are 

no zeros; more exactly, the following is true: if Yx > 0 

(reap. < O) i_~n (t*tt*+1], then Yx < 0 (resp.> O) in 

( zCx, s ,t*), z(x, s and monotone decreasin~ Creep. 

increasin~ ). 

(c) For all ~ e(O, 6) we have: if ~(x, E,t*)>t*+T(~,e)+3 

then lyxl <~ in [t*+T(6, s ~(x, 5,t*)]. 

This lemma describes properties of Yx in a neighborhood 

of a zero ~ . If Yx has several zeros with the property that 

two consecutive ones have at least the distance I, then the 

part (a) supplies: the absolute values of the extrema lying 

between these zeros diminish in each case with the factor 

•( 6 ) < I, and the part (c) again yields an estimate of 

l yxl using the function T. 

Proof of Lemma 4: Let s 6 (0, s x6C and t*eS2(x , &), 

then Yx(t) # 0 for all t e(t*,t*+1]. Here we assume 

Yx > 0 in (t*,t*+1]; the proof for the case Yx < 0 runs 

completely analogous. 

(a) We first show: 

(4) ~ta(t*+1, ~(x, &,t*)] : y~(t) < O. 

As t*~S2(x,s ) we get lyxl <s in (t*,t*+1] and 

y~ < 0 in (t*+1,t*+2]. If %(x, ~ ,t*) < t*+2, nothing re- 

mains to show. Therefore we consider z (x, s ,t*) > t*+2. 

Assume now that there exists a t o ~(t*+2, ~(x, E ,t*)] such 

that y~(to) = O. However then Yx(to-1) = 0 which gives a 

contradiction to the definition of ~(x, E ,t*). This pro- 

ves (4). 
In particular y~(~(x, s < 0 holds and thus ~(x,e,t*) 

is an isolated zero of Yx' and Yx changes its sign there; 

therefore ~(x, e ,t*)+1 is an isolated zero of y~, and 

y~ changes its sign there. So Yx has a local extremum at 

(x ,  ~ ,t*)+l. 

Using (4) we produce for all t~[ ~(x, ~,t*)-l, ~(x, ~,t*)] 

lYx(t) I < ~ < E~ and thus with Lemma I we get: 

lYx(~(x, ~,t*)+1)l _< max{ly~(t)l I ~(x,~,t*)_<t<_~(x,z,t*)+1} 
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8 DODEN 

= max{lf(Yx(t-1))i [ ~(x, e,t*) _< t ~ ~(X, &,t*)+l} 
S ~(ae, e)max{lYx(t-1) l [ ~(x, s 6,t*)+1} 

< ~ ( ~ )max{lYx(t)l  [ t* ~ t _< t*+1 }. 
Thus we have proved (a) and at the same time (b), as is 

easy t o  see. 

(C) Let ~(0, E) and ~=(x, ~,t*) > t*+T( &, 5)+3. 

Assume that Yx(t*+T( 6 , ~ )+2) ~> ~ . Then as 

(x, ~ ,t*) > t*+T(~ , E )+2 and the monotony of Yx in 

(t*+l, z(x, E,t*)] we have 

(5) Yx >~ 8 in [t*+1,t*+T( I , ~ )+2] 

and in particular Yx ~> ~ in [t*+1,t*+2]. From (b) we 

get furthermore [yxl < 6 in (t*+1,t*+T( ~ , E )+2]. And 

therefore Lemma 2 yields: there exists a 

tle[t*+2,t*+T(~ ,s )+2] such that lYx(tl) I <~, contra- 

dicting (5). 

Thus Yx(t*+T( ~ , ~ )+2) < ~ and because of the monotony 

of Yx we get Yx(t) < ~ for all 

t6[t*+T( ~, ~ )+2, ~(x, e,t*)]. And this proves (c).// 

2,2 Proofs of the theorems of I,~ 

After these preliminary lemmata we come to the 

Proof of Theorem 1: It has to be shown: 0 is orbitally 

stable and 0 is a uniform attractor such that 

B(O, 8 )  c Au(f ) f o r  all ~r 

I. 0 is orbitally stable. 

This means: 

V6> 0 ~> 0 Vx6B(O, ~) ~t >_ 0 : lYx(t) i < ~ . 

Let 7" ~+ ) ' ~  be defined by 
~, ) v(~) :-- ~(~)~. 

Then we have 

1.1: V ~ e (0, 8o) V ~ e (O,mln{ "~ I -~ ?(~),~P(~ )}) : 

0<~(~) <~A and 7(~) < ~-~ . 
Proof: From 0 < < we get 0 < ) < and 

~<.~r~(~ ) applies 7(~) = ~(~)c~ = ~ (I+~(~)) -~ 
=~(~)~ . ~ < ~- ~ . 

i 

In particular for ~ < ~( 5 ) : ~ < 6 holds. 

The simple proof of the orbital stability is based on 

the following notation: 
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DODEN 9 

Let s 0 and xeC, then call to~+ %-~ood for x,if 

(i) Vtg[-1,to+1 ] : lYx(t) I < E 

(ii) V t g(to,to+1] : Yx(t) # 0. 

The crucial property of E-good t-points is the following: 

1.2: V g6(0, 6~) Vx~C we have: the set of all E-good 

points for x is either empty or unbounded. 

Proof: Let E ~ (0, ~Q) and x eC. We are going to show: 

If t o is E-good for x, then there exists a t I > to+1 

such that t I is 6-good for x. Obviously this proves our 

assertion. Now let t o be 8-good for x. If there exists 

no zero of Yx in the interval (to+l, oo), then 

toeS1(x , %) and thus, applying Lemma 3 (a), lYx(t)l < E 

for all t > to+l; so all t > to+1 are E-good for x. If 

on the other hand there exists a zero of Yx in (to+1 , oo), 

then t OeS2(x , s Define t I := ~(x, ~,t o ), then 

t I > to+1 and Lemma 4 (b) implies that t I is ~-good 

for x. 

Now we are ready to show: 

1.3: ~/6e(O, %) V~c(O,min{~( �89 

V xeB(0, $) Vt ~> 0 : lYx(t) I <~I" -~. 

Proof: Let s e(0, 8.), ~ g (0,min{~ (~),'~uk s and 

x6B(O, ~ ). Consider the set P := {t >_ 0 I l Yx(t)l > Y(~ )}" 

If P = ~ , then for all t _> 0 we get l Yx(t) I _< y(~) 

< ~ < s (see I.I). Now let P # M , then we can show: 

there exists a to, which is &-good for x. To this purpose 

let t* := inf P, then IYx (t*)l = y( ~ ), and because of 

the continuity of Yx there exists a t o > t* such that 

lYx(to)l > y(~) and for all te[-1,t o] :lYx(t) I <~ . 
This t o is indeed ~-good for x, as can be seen as fol- 

lows: From I.I and Lemma I we derive for all 

t ~(to,to+1] : lyx(t) i -~ < lyx(t)l -lyx(to)i _< 

lYx(t) - Yx(to)l 
< l yx(t) - yx(to)l _< < 

t t o 

maxTly~(s)l I to -< S _< t 0 + 1  } = 

= m a x { I f ( y x ( S - 1 ) ) i  ) t o < s <_ to+1}  < ~ ( ~ ) J  = v ( g )  < 
< s -~ . thus l Yx(t)l < ~ ; and this is also true for 
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10 DODEN 

t = t o.  Hence f o r  a l l  t e [ - 1 , t o + l ]  : l Y x ( t ) l  < ~ , which 
is the property (i) of the definition of an ~-good point 

for x. Furthermore for all t 6 (to,to+l] we have: 

l y x ( t ) l  = l y x ( t )  - y x ( t o  ) + y x ( t o  ) l  > 
> l Y x ( t o ) l  - l Yx ( t )  - y x ( t o ) l  > 7 ( ~ )  - 7( ~ ) = o ,  w h i c h  
means yx(t) ~ 0 for all t6(to,to+l]; and this is the 

property (il) of the definition of an e-good point for x. 

Thus t o is ~-good for x. On account of 1.2 the set of 

all E-good points for x is unbounded, and this applies 

l yx(t)l <E for all t_>O. 
In particular from 1.3 we have: for all s > 0 there 

exists a ~ > 0 such that for all xeB(O, ~) and for all 

t > 0 we have l Yx(t)l < 8, which means that 0 is orbital- 

ly stable. 

II. 0 is a uniform attractor such that B(O, ~ ) c Au(f ) 

for all ~ ~ (O,r(f)). 

First of all we prove: O CAu(f ) . 

To this purpose we choose ~oc(O,r(f)) and consider go 

as fixed. Then we are going to show: 

(6) V~>o 3 T_>O Vx6B(O,~o) Vt_>T : lYx(t)l <T. 
To that end we need some preliminary remarks: 

Let 

~,:= �89 , ~o), 
then 

I X . l :  V x ~ B ( O , $  o) Vt >_ 0 : l Y x ( t ) l  < 6 , .  
Proof: From 8o< r(f) _< ~(~o) we get ~u(~o) < go and 

therefore, using the definition of 8~, ~(~o) < ~, < 6~ and 

thus ~o<~d(~). Because of ~o< r(f) < ~(~) we finally 

< mln{@'(�89 so 1.3  supp l i es  I I . 1 .  

: ~+ ~ ~ be d e f i n e d  b y  

= ( ~ )  := 2 ~ ( ~ ) ,  

have go 

Now let 
Sl 

and let 

% 
7n 

:= (R(~o)) n for nr and 

:= ~(~n) for n~N ~ {0}. 

Then we derive immediately from the definitions: 

II.2: (1) If 0 < ~ < (), then 0 < ~(~ ) < I. 

(li) (~n) and (7n) are converging monotonously to 
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DODEN 11 

zero. 

(iii) Vnr Nu{0} : 27n < ~n+1" 

To prove (6) we have to find for any s a certain T; obvi- 

ously it is sufficient to restrict to the case 0 < 6 < s . 

Let now 6 e (0, ~) be given. Then we define 

~* := in{ ~(~),~( % ), E4}. 

According to 1.3 we have 

(7) Vx6B(O, $*) Vt_> o : l Yx(t)l < ~ . 
Therefore it is sufficient to find a T with the following 

property: in the interval [-I ,T] there exists for any 

x gB(O, ~.) an interval J, having length 1, and such that 

J yxj < ~* in J. To this purpose choose k o 6 IN such that 

(i) ~ko <$* and 

(ii) ( ~( &))ko ,~< $.. 

Such a k o exists as from II.2 (ii) we know that (3n) 

is a null sequence, and because of E~< go_< ~ we get 

~(8~) < ~(~) = ~(~,~) = I (see 1.2). 

Now we define 

T* := T(~*,~4) and 

T := (ko+1)(T*+&). 

Thus for any s e(O, E.) we have found a T > O; and it 

remains to show: 

Vx~B(O,&) Vt > T : lYx(t) [ < s . 

In the following we distinguish two different types of 

x eB(O, ~o): 

X I := {x6B(O,io) I Vng{O,1,..,k o} : lYx(n)l < 7n } 

X 2 := {x6B(O, io) I ~ne{O,1,..,k o} : lYx(n)l > 7n}" 

Obviously X 1~ X 2 = ~ and X lu X 2 = B(O, ~o) hold. 

II.3: ~xgXq V t > T : l Yx(t)l < ~ . 

We prove this assertion in several steps. 

II.3.1: ~m ~ Oqu{O} the following is true: 

If IYx(m)I < 7m and V t6[m-l,m] : lYx(t) I < %, 

then Vte[m,m+l] : lYx(t)l < &+l" 

Proof: Lemma I and II.2 (iii) yield: for all te(m,m+1]: 

l Yx(t)l - 7m < l Yx(t)l - lYx(m) l -< l Yx(t) - Yx (m) l < 
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12 IX)DEN 

Y x ( t )  - Yx(m) I 
t m' ', ~ m a x { l f ( Y x ( S - 1 ) ) l  I m ~ s ~ m+l} < 

< ? ( ~m ) ~m = ?m ~ ~m+l - 7m" Thus for all t 6 (re,m+1 ] : 

l Y x ( t )  t < ~m+l" And f o r  t = m : lYx(m) l ~ 7m < ~m+l '  p r o -  

ring II.3.1. 

II.3.2: Vm~qu {0} we have the following: 

If V J e{O,1,...,m} : lYx(J)l S yj, then for all 

r e [ r e , m + 1 ]  : l Y x ( t )  I < 6m+ 1.  

Proof: This follows immediately from II.3.1 by induction. 

II.3.3: VxeX 1 ~t 2 T : lYx(t) ] < E . 

Proof: For x e X I we have from the definition lYx(n)] S ?n 

for all n e{O,1,...,ko}. Thus using II.3.2 we derive for 

all t6[ko,ko+1] : lYx(t) I < ~ko+l < ~ko < &* and (7) 

implies for all t ~ ko+l : lYx(t)l < 6 . As ko+1 < 

< (ko+l)(T*+4) = T, we have for all t ~ T : l Yx(t) I <S , 

which proves II.3.3 and II.3. 

II.4: V xeX 2 Vt a T : lYx(t)l < ~ . 

Again we divide the proof into several steps. 

Let x ~X 2 be given, then there exists by definition an 

integer n ~{0,1,...,ko} such that lYx(n)l > Tn, where 

we can assume n to be minimal. 

Define x*: [-1,0] )7~ by 

x*(t) := Yx(t+n) for all t ~[-I,0]. 

Then x*~C and we are going to treat x* first. Notice 

that for all t ~ 0 we have yx.(t) = Yx(t+n). The follow- 

ing notion is of importance: 

x a C is called slmDly oscillatln~, if Yx only has simple 

zeros in the interval (0,~) and the distance of two r 

secutive zeros is greater than I. 

The decisive property of x* is the following: 

II.4.1: ~x 6X 2 : x* is simply oscillating. 

Proof: Let N := {t > 0 I Yx(t) = 0 }. If N =~ there is 

nothing to prove. Let now N +~ , then we define: 

t o := O, t I := inf N and for n e~: 
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[Inf N~(tn, ~) if Nn(tn,~) ~ 

tn+1 '-- ~[t n if N~(tn,~) = ~ . 

We realize at once that (t n) is a monotone increasing 

sequence, which has the following property: if for a cer- 

tain n o~Dq : tno+1 = tno , then t n = tno for all n _> n o . 

M o r e o v e r  we c a n  p r o v e :  

(i) V n e~: (tn,tn+1]f~N = 

(li) N = {tnl n eM}. 

Proof of (i): This is easyly proved by induction, if one 

firstly derives tn_ I 6 S2(x* , % ) from II.1 and II.2 

and then using Lemma 4 (b). 

Proof of (ii): As N is closed we have {tnl n e/~/}=_N. To 

show N~_ {tn{ need }, let e~N and let the set B be de- 

fined by B := {tnl nc~4, tn<_~}. Then B % ~ , as ZI6B , 

and B is finite because of (i). Let t m := max B , then by 

definition of B we have t m _< ~ . Assume now t m < c . Then 

the definition of (tn) yields tm+ I _< ~ and according 

to (i) : t m < tln+ I S ~ which contradicts the definition 

of t m. Thus t m =~ and N c_ {tnl n e~}. This proves 

(li). 
From (i) and (ii) we derive that the distance of two conse- 

cutive zeros of Yx is greater than I, moreover for all 

n 6~4 we have y~.(tn) = - f(yx.(tn-1)) ~ 0 as 

0 < l yx,(tn-1) I < E o . Thus all zeros of Yx* are simple. 

This proves I1.4. I. 

A simple consideration shows that for the proof of II.4 

it is not sufficient to know x* to be simply oscillating; 

in addition we need an upper bound of the difference of two 

consecutive zeros. To this purpose we define: 

I 0 if either N = ~ or tl-t o > T*+3 

k(x*) := k if [VJ e{1,...,k}: 0 < tj-tj. I _< T*+3 ] 

and [ INI = k o r  % k + l - t k  > T*+3  ] 

if INI = ~ and Vie ~ : tj-tj_ I _< T*+3. 

So k(x*) has the following meaning: concerning the first 

k(x*) zeros of Yx ' the difference of two consecutive ones 

is not greater than T*+3, and moreover we have: either 
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there is no further zero of Yx or the next zero has from 

the preceding one a distance greater than T*+3. 

In the following we distinguish the two cases k o _< k(x*) 

and k o > k(x*). 

II.4.2: If k o _< k(x*), then for all t _> T : lYx (t) l <g. 

Proof: Let I := {0,1,...,INI-1 } if INI <~ and I :--~ 

if INI _-oo . Because of tjeS2(x*,~1) for all JeI, we 

obtain by induction and Lemma 4 (a): for all J~I: 

lyx.(tj+l+l) I < (~(E~))J+I~. From I _< k o ~ k(x*) < INI, 

we derive I Yx.(tko+1 ) I < ( ~ ( ~ ) )ko ~I < 8". Thus using 

Lemma 4 (b): lyx.(t)l < 6* for all te[tko,tko+l] and 

so (7) yields for all t _> tko+l: lYx.( t)l < g �9 This 

means for all t >_ n+tko+1 : lYx (t) l <~ . However 

n+tko+l < ko+ko(T*+3)+1 < (ko+l)(T*+4) = T and hence for 

all t >_ T : l Yx(t) I < E , which proves II.~.2. 

II.&.3: If O _< k(x*) < ko, then for all t _> T: lYx(t)l<~. 

Proof: First consider the case INI = k(x*). Then we see 

at once tk(x.)aSl(X*, at) and in consequence of Lemma 3 

part (b) we have for all t _> tk(x.)+T( 8", E~)+2 : 

lyx.(t) I < ~*. Thus (7) yields for all t~_tk(x.)+T(g* , aI)+3: 

lyx.(t) I < ~ and therefore for all t~n+tk(x.)+T(~*,~)+3: 

lYx(t)l < ~ . As n+tk(x.)+T(g* , ~)+3 < ko+ko(T*+3)+T*+3 < 

< (ko+l)(T*+&) = T, we have for all t > T: lYx(t) I < s . 

Now consider the case INI > k(x*). Then we have 

tk(x.)+ I - tk(x, ) > T*+3, which gives tk(x,)+l>tk(x.)+T*+3 

and tk(x. ) r , ~). According to Lemma 4 (c) we get 

lyx.(t) I < ~* for all t6[tk(x.)+T*+2,tk(x.)+ I] and in 

particular l yx.(t) i < g* for all t lying in the interval 

[tk(x.)+T*+2,tk(x.)+T*+3]. Again (7) yields for all 

t _> tk(x.)+T*+3 : lyx.(t) I < & , and so as above for all 

t _> T : lYx(t) I <g. This proves II.4.3. 

The assertions II.4.2 and II.4.3 prove II.4, and to- 
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gether with II.3 we have shown (6), which means OeAu(f ). 

Now for any z ~B(O, go) there exists a I > 0 such 

that B(z, ~ ) ~B(0, Io). This obtains B(O, ~)s Au(f) , and 

this holds indeed for all I,c (O,r(f)). This proves If, 

completing the proof of Theorem 1.// 

Proof of Theorem 2: Assume that 0 is uniformly asymptoti- 

cally stable, then especially there exists an % > 0 such 

that for all x eB(O, ~) we have llm Yx(t) = O, where 

obviously ~< Eo may be supposed (t~e definition of Eo see 

1.2). For this ~ there exists a ~ > 0 such that for all 

xeB(O, <) and all t ~ 0 we have lYx(t) I < % ; and here 

we also suppose ~< % . According to the requirements of 

Theorem 2 we consider the following two cases: 

(a) f ( n ) ( o )  < 0 

(b) n is even and f(n)(o) > O. 

Now we define x:[-1,0] )7~ by x(t) := ~ in the case 

(a) and x(t) := - ~ in the case (b) for all te[-1,O]. 

Then x gB(O, ~) and hence, as noticed above: for all 

t ~ 0 we have l Yx(t)l < % and lim y~(t) = O. Now 

~-f(~) > O in case (a) 

y~(O) = -f(yx(-1)) = -f(x(-1)) = [_f6~) < 0 in case (b), 

thus there exists a right hand neighborhood of t = O, 

such that lyxl > ~ holds there. We are going to show: 

L 
For all t > O: lYx(t) I > ~ . 

To this purpose assume that there exists a t I > O such 

L 
that l Yx(tl) I = ~ , where t I may be supposed to be mini- 

mal. Then there exists a ~ g(O,tq) such that y~( ~ ) = O, 

but on the other hand y~(~) = -f(yx(~-l)) ~ O as 

S IYx(~-I)I < % < E, . This proves lyxl > ~ in (0,~), 

leading to a contradiction to lim Yx(t) = O. Thus 0 is 

not uniformly asymptotically stable.// 

Proof of Corollary 1: (i) This is an immediate consequence 

of the Theorems 1 and 2. 
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(ii) The uniformly asymptotic stability of 0 is clear 

from Theorem I. It only remains to show: 

r(fn) = ~n(~!f(n)(o))-l/n-1, 

where ~n is the positive solution of ~n + ~ - 1 = O. 

For abbreviation we set a := l!f(n)(o) and obtain 

fn(U) = 1! f(n)(o)u n = au n, where n is an odd integer and a 

is a positive real number. Hence we derive for all a ET~ § 

M(T) = 0 and thus for all (~, ~)e~+~+: ~(~,?)=a~ n-1. 

The condition ~(~,~) = 1 yields ~ = a -1/n-1. As 

N(f) = ~ , we get %=~ . Moreover for all ~e ~+ we 

have ~(~) = a~ n-1 and ~u(~) = ~(l+avn-1). Set 

r I := ( ) and r 2 := ~(E~) Then r I (2a) -1/n-1 �9 = ~ and 

for all n _> 3 (n ~N) we have ~(rl) = ~(2a) "1/n-1 > 

> a -1/n-1 = ~ = $4 =~(r 2), which gives r I > r 2. Thus we 

obtain r(fn) = min{? (~),~( ~o)} = r 2. If ~n is the po- 

sitive solution of ~n + ~ _ 1 = O, then we get 

~u( ~n a-I/n-l) = a-l/n-l( qn +qn) = a-l/n-1 = ~= Ea, 

which means r 2 ~n a-l/n-1 = , o r  r(fn) = r 2 = 

= ~n(~! f(n)(o))-I/n-1.// 

Proof of Corollary 2: This is an immediate consequence of 

the Theorems 1 and 2 as well as the Corollary 1.// 

7,1 In the Theorem 1 the requirement "n is odd and 

f(n)(o) > O" is equivalent t o  "there exists a neighborhood 

U of O, such that uf(u) > 0 for all ucU~{O}". This is 

an easy result of f ~ F n and Taylor's formula of f. 

3.2 It is easy to see that the equation ~n + e - 1 = 0 

(see Corollary 1) has one and only one positive solution 

~n for each n, and moreover we have �89 ~ @n < ~n+l < I 

for all n ~hV and lim ~n = I. 
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3.3 Barnea stated in [I] the following result: 

For the equation 

x'(t) = b Ix(t-r)i~sign(x(t-r)) 

the zero solution is orbltally stable if ~ > I and b<O. 

~,4 Let q Z O, C q := { ~:[-q,O] )~I ~ continuous), 

and for ~C q : lJ~JJ := sup{i $(s)i i se[-q,O]}. Let 

C~ := { ~ccq j JI~ll < ~}. If x:[t-q,t] >D is continu- 

ous, write x t for the function xt(s) = x(s+t) for all 

se[-q,O], hence x t&C q. Consider 

~(t) = F(t,xt(.)) 

and d e f i n e  f o r  ~ C  q :  M(~)  := sup{O,sup{~(s )  I se [ -q ,O]}} .  
Then Yorke in [8] has obtained the following result: 

Theorem: Let ~ > O and q > O. Let F:[O, ~)xC~ )T~ 
r 

be continuous. Assume for some ~ Z O 

=M(~) ~-F(t, @) ~-=M(-~) for all ~6C~ . 

(i) Assume =q S ~. Then x(t) m 0 is a solution and is 

uniformly stable. 

(il) Assume 0 < =q < ~ and for all sequences t n >~ and 

~ cq converging to a constant nonzero function in C~, n p 
F(tn, ~n ) does not converge to 0. ThenoO is uniformly 

asymptotically stable, and if llXtoll <~ for any t o ~ O, 

then x(t)--, 0 as t ) ~. 

It can be shown that the uniformly asymptotic stability 

of O in Theorem I is a consequence of the Theorem of 

Yorke. However the proof given here is completely elemen- 

tary using geometrical ideas, and it also seems that the 

estimate of the slze of the region of uniform attraction 

- which is important for applications - Is better than 

that of Yorke, as is indicated by the following examples. 

3.5 We consider the equation (I): 

y'(t) = -fCy(t-1)) 

for special function f. The notation r(f) is defined in 

1.2, whereas r*(f) := sup{~}, ~ ranging over all values, 

which are possible according to the Theorem of Yorke with 

q = 1 and F(t,Yx(.)) := -f(y(t-1)). 

Example I: For m e M let gm:~ )~ be defined by 
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u, > gm(U) := u 2m+1, 

then we obtain for the equation (1) with 

m 

3 
4 

5 

10 

100 

r(g m) r*(g m) 

0.68 0.49 

0.75 0.44 

0.80 0.43 

0.82 0.42 

0.84 0.42 

0.90 0.41 

0.98 0.40 

f = gm : 

As can be shown, we have lim r(g m) = 1 and 

~% ~ ( g , ~ )  = 0 . 4  . 

Example 2: For m e~ let gm: ~ ~ 

u, >gm(U) := u 2m+1 - u 2m+2, 

then we obtain for the equation (1) with f = gm : 

be defined by 

m 

1 

2 

3 

4 

5 

lO 

lO0 

r(g m) r*(g m) 

0.53 0.36 

0.66 0.38 

0.72 0.38 

0.76 0.39 

0.79 0.39 

O. 87 O. 39 

O. 98 0.40 

As can be shown, we h a v e  

lim r*(g_) = 0.4 . 

Example 3: For mg~ 

u, ~ gm(U) 

llmr(g.) = I 

let gm: ~ ~ 

,= 

k=2m+l 

Then we obtain for the equation (1) with 

and 

be defined by 

f=gm : 
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m 

3 
4 

5 
lO 

lOO 

r(g m) r*(g m) 

1.06 

1.75 

2.38 

2.98 

3.57 
6.44 

56.81 

DODEN q9 

0.87 

1.25 

1.60 

1.93 

2.26 

3.84 

30.75 

It can be shown that ~lim r(g_)~ = ~m r*(gm) =~ holds. 

Notation: N, ~, ~§ denotes the set of integers, real 

numbers,and non-negative real numbers respectively; for 

any set N INI denotes the cardinal number of N. "//" 

means the end of a proof. 
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