ESTIMATES FROM BELOW FOR LEBESGUE CONSTANTS OF FOURIER SERIES ON COMPACT LIE GROUPS

Bernd Dreseler

In this paper the Lebesgue constants $(L^{\tilde{K}}_{D}(G))_{D\geq 0}$ of Fourier series on compact Lie groups G corresponding to general one-dimensional groupings on the dual object G^ are estimated from below by the associated (abelian) Lebesgue constants $(L^K_R(T))_{R>0}$ on a maximal torus T in G. For spherical groupings this leads to the estimate
L₂(G)≥const.R^{(l-1)/2}, l=dimT≥2.

I. Introduction

Let G be a n-dimensional compact connected Lie group and T be a maximal torus in G. Denote by G^{\wedge} and T^{\wedge} the dual objects of G and T. The formal Fourier series of a function f in the Lebesgue space $L_1(G)$ has the form $f \sim \sum_{\lambda \in C^{\wedge}} d_{\lambda} \chi_{\lambda} * f$ where χ_{λ} is the character and $d_{\lambda} = \chi_{\lambda}$ (e) the dimension of λ . A function $\phi: G^{\wedge} \rightarrow \mathbb{C}$ is said to be a (central) ${\tt L}_{\rm p}$ Fourier multiplier on G if

$$
(1.1) \qquad || \phi ||_{\mathfrak{m}_{p}(G)} = \sup_{O \neq f \in L_{p}} || \phi^{\vee} * f ||_{L_{p}} / || f ||_{L_{p}} < \infty.
$$

Here ϕ^V denotes the inverse Fourier transform of ϕ , i.e.

0025-2611/80/O031/0017/\$01.40

 $\phi^V(q) \sim \sum_{\lambda \in G^{\wedge}} d_{\lambda} \phi(\lambda) \chi_{\lambda}(q)$, geg. In the case suppo finite ϕ^{\vee} is a central trigonometric polynomial on G and we call the number $|| \phi ||_{m}$ (g) = $|| \phi ||_1$ Lebesgue constant for on G. In [4;Lemma 3.2] we proved a general transference result for estimates of Lebesgue constants which allows to get estimates from above of $|| \phi(\cdot+\rho) ||_{m_{\star}(G)}$ (ρ is the half sum of the positive roots of (G,T) ¹ from estimates of the associated Euclidean Lebesgue constants $|| \phi ||_{m_{1}(\overline{T}^{1})}$, $\overline{T} = \mathbb{R}/2\pi\mathbb{Z}$. In the following note we prove for characteristic functions ϕ of certain finite subsets of G^{\wedge} the estimate $|| \phi ||_{m_1(G)} \geq M || \phi ||_{m_1(T)}$, $M > 0$. With this result one can transfer estimates from below of the Euclidean Lebesgue constant $|| \phi ||_{m_{1}(T^{1})}$ to estimates from below of the non Euclidean Lebesgue constant $|| \phi ||_{m_{1}(G)}$.

2. Estimates from below of Lebesgue constants on G

We formulate and prove our main result for semisimple simply connected Lie groups G. By standard techniques it easily extends to arbitrary compact connected Lie groups.

Denote by g and t the Lie algebras of G and T and let q_c and t_c be their complexifications. Let Δ be the set of roots of (g_c, t_c) , P be a system of positive roots in Δ and W be the corresponding Weyl group. The exponential function exp on g is a homomorphism of t onto T. If $\xi \in T$, ξoexp is a character of t . Thus there is a $\lambda \in t^*_{\mathcal{C}}$, which takes pure imaginary values on t , such that ζ oexp = e^{λ}. Let Λ^* be the set of all integral linear forms on t. If Λ is the kernel of exp and it* denotes the set of all pure imaginary valued linear forms on t one has Λ^* = $\{\lambda \in i$ t*: λ (H) \in 2 π i2 for all $H\in\Lambda$). Finally let Λ (G) be the set of all dominant integral forms on t_c . Then Λ (G) is a semilattice in Λ^* which is in one-to-one correspondence with G^{\wedge} .

DRESELER 3

Let K be the set of all Kcit* which are compact, convex, Weyl group invariant, and with the point zero as inner point. For KE **K** denote by 1_K the indicator function of K. The numbers $L_{R}^{K}(G) = || 1_{K}(\frac{1}{R})||_{m_{1}(G)}$, $R > 0$, are called the K Lebesgue constants on G.

THEOREM Let $K \in K$. Then there exists a constant $C > 0$ which only depends on G such that

(2.1)
$$
L_R^K(T) \le C |W| L_R^K(G)
$$
 (R > 0).

PROOF Let Zcit^{*} be Weyl group invariant. Denote by T_{γ} (G) the (algebraic) span of all characters χ_{λ} with $\lambda \in \mathbb{Z} \cap \Lambda^*$. Then $T_Z(T)$ is the span of all exponentials $e^{\hat{\lambda}^A}$ with $\lambda \in Z \cap \Lambda^*$, Z is W-invariant, and the space T_{α} (T) is W-invariant. Denote by $T_{7}^{W}(T)$ the subspace of all W-invariant trigonometric polynomials in $T_{7}(T)$. As characters are class functions, it follows from the conjugation theorem that the character χ_{π} of some $\pi \in G^*$ is completely determined by its restriction to T:

$$
\chi_{\pi}(\exp X) = \sum_{i=1}^{P} m_{\pi}(\lambda_i) e^{\lambda_i(X)} \qquad (X \in \underline{t}),
$$

where $\lambda_1, \ldots, \lambda_p \in \Lambda^*$ are the weights of the representation π and $\pi_{\pi}(\lambda_i) \in \mathbb{N}$, i=1,...,p. Therefore restriction to T defines an isomorphism i* of $T_{A*}(G)$ onto a subspace of $T_{A*}(T)$. In the following we prove that

(2.2)
$$
i^*(T_Z(G)) = T_Z^W(T)
$$

for all $Z \in \mathbb{K}$. For λ , $\mu \in \mathbf{i} \mathbf{t}^*$ we say $\mu \leq \lambda$ if μ lies in the convex hull of the orbit of λ under the Weyl group W. We say $\mu \prec \lambda$ if $\mu \leq \lambda$ and $\mu \neq \lambda$ (cf. [1]). For $\mu \in i\pm i$ let $W(\mu)$ be the orbit of μ under the Weyl group W. Then

19

 $S(\mu) = \sum_{l \in W(n)} e^{A}$ is a W-invariant function on L , $S(\mu) =$ $S(v)$ if and only if $W(u) = W(v)$ and $S(u)$, $S(v)$ are orthogonal with respect to any Lebesgue measure on t if and only if $W(\mu) \neq W(\nu)$. Let d_{σ} be the number $|\{W(\mu): \mu \in \mathbb{Z}\}|$. We construct a basis of $T_{\sigma}(\mathbb{T})$ of length d_{σ} . This implies dimT_Z(T) = d_z. Thus the functions (S(u))_{uEZM}* generate $T_{\sigma}^{\mathbf{W}}(\mathbf{T})$. For $\lambda \in \Lambda^*$ define $f_{\lambda} = 1/|\mathbf{W}| \cdot \sum_{v \in \mathbf{M}} e^{\gamma(\lambda)}$. Then $f_{\lambda} \in T_{\sigma}^{\mathbf{W}}(\mathbf{T})$ if $\lambda \in Z$ Λ * and (f_1) _{16Z Λ * contains a basis of $T''_Z(T)$ which has} length d_{z} . On the other hand we have for $\lambda \in \Lambda(G)$ (cf. [1])

$$
\chi_{\lambda} \text{oexp} = S(\lambda) + \sum m_{i} S(\lambda_{i})
$$

with $m_{1} \in \mathbf{Z}$ and $\lambda_{1} \prec \lambda$. Since Z is convex and W-invariant it follows i*(T_z(G) \subset T_z(T) and W(Z $M(G)$) = Z M^* . Thus $\dim(\text{if}(\mathbb{T}_7(G)) = d, \text{ and } (2.2) \text{ is proved.}$

Let $C^C(G)$ denote the subspace of all central functions in C(G) and let $P_z:C^C(G) \rightarrow T_z(G)$ be the Fourier projection, i.e. P_z is of the convolution type P_zf = D_z*f, fec^c(G), where $\bar{D}_Z = \sum_{\lambda \in Z\cap\Lambda(G)} d_{\lambda} \chi_{\lambda}$ is the Dirichlet kernel for Z. The operator norm $||P_{Z}||$ is equal to $||D_{Z}||_1$ and P_{Z} induces a projection $P^W_Z:C^W(T) \rightarrow T^W_Z(T)$ with the same norm. Here $C^W(T)$ denotes the subspace of all W-invariant functions in C(T). Denote by S_z = $\lambda_{\lambda \in \mathbb{Z}}$ ₀₀*e the (abelian) Fourier projection of the space T_{σ} (T). For $T = T^{\sigma}$ we proved in [5; Cor. 1(ii)] the inequality $||S_{Z}|| \leq C|W||P_{Z}^{W}||$ by a symmetrization technique. This result can be proved by the same method for arbitrary tori T. Set $Z = RK$, $K \in K$, $R > 0$. Since $||S_{RK}|| = L_{R}^{K}(T)$ and $||P_{RK}^{W}|| = L_{R}^{K}(G)$ our assumption (2.1) is proved.-

DRESELER 5

COROLLARY Let $0 \subset i^*$ be the unit ball with center zero and let 1 be the dimension of T. Then

(2.3) Ω for Ω r const.logR for $1 = 1$ $E_{\rm R}$ (G) ϵ | const. $R^{(1-1)/2}$ for $1 \ge 2$ (R > 0).

PROOF For $1 = 1$ the classical estimate $L_{p}^{\Theta}(T) \geq \text{const.}$ logR holds. For $1 \geq 2$ the estimate $L_{p}^{(n)}(\mathbb{T}) \geq \text{const.}\mathbb{R}^{n-11/2}$ follows from a result of Il'in in $[7]$. Thus (2.3) follows from (2.1) .-

The recent preprints [6] and [11] contain a general Cohen type inequality for compact Lie groups which can be used to prove estimates from below for $L_p^K(G)$. Lets restrict for simplicity to simple compact Lie groups G. The number of points in ROM* increases asymptotically as the volume of RO, i.e. as const. R¹ (R $\rightarrow \infty$). From the inequality in [6], [11] one gets $L_R^{\odot}(G) \ge \text{const.}$ R. Tis result is equal to (2.3) for $1 = 3$, better than (2.3) for $1 = 1,2$ and worse than (2.3) for 1 > 3. In [8] it has been proved that $L_{\mathbf{D}}^{\sim}(\mathbb{T}) \geq \text{const.} \log R$, KE \mathbb{K} . Combined with (2.1) this implies $L_{\mathbf{b}}^{\mathbf{c}}(G) \geq \text{const.}$ logR. But it follows from [6], [11] that $L_{\mathbf{p}}^{\mathbf{p}}(G) \geq \text{const.R.}$

Our method of prove and the methods in [6], [11] and [8] are totally different. In [11] a theorem of R.S. Cahn [2] is used and in [6] an estimate of A.H. Dooley [3] for norms of characters is essential. A reduction to a general theorem of Olevskii on orthonormal systems is the idea in $[8]$.

We finish with a remark on a further method of estimating $L_R^K(G)$ from below. Let H be a compact subgroup of G. Then $X = G/H$ is a G-homogeneous space and $C(X)$ can be considered as the subspace of all right H-invariant functions in C(G). C(X) is G-invariant. Let P_{RK}° denote the restriction of the Fourier projection P_{RK} to the space C(X). Then $||P_{RK}|| \ge$ $||P_{\text{BK}}^{b}||$ if the second norm is taken with respect to the subspace $C(X) \subset C(G)$. In various special cases it is easier

21

to estimate $||P_{\text{DK}}^{b}||$ instead of $||P_{\text{DK}}||$ because P_{DK}^{b} is explicitly known. Consider for example $G = SO(2n)$, $n \ge 2$, and $H = SO(2n-1)$. Then we have from (2.3) that $L^{\bigcirc}_{D}(SO(2n)) \geq$ $\frac{1}{\cosh (n-1)}$, On the other hand we know that X is the real unit sphere S_{2n-1} in \mathbb{R}^{2n} of dimension 2n-1. The projection P_{RK}^{b} can be expressed by Gegenbauer polynomials. Thus one can deduce from [10] or [9] that $||P_{\text{DY}}^{k}|| \sim R^{n-1}$ $(R \rightarrow \infty)$. This leads to the estimate $L_{D}^{\infty}(SO(2n)) \geq const.R^{n-1}.$

REFERENCES

- $[1]$ ADAMS, J.F.: Lectures on Lie groups. New York: Benjamin 1969
- **[2]** CAHN, R.S.: Lattice points and Lie groups I. Trans. Amer. Math. Soc. 183, 119-129 (1973)
- **[3]** DOOLEY, A.H.: Norms of characters and lacunarity for compact Lie groups. J. Funct. Anal. (to appear)
- [4] DRESELER, B.: Lebesgue constants for certain partial sums of Fourier series on compact Lie groups. In: Linear spaces and approximation. P.L. Butzer and B. Sz.-Nagy (eds.). Stuttgart: Birkhäuser 1978, 2o3-211
- **[5]** DRESELER, B.: Symmetrization formulas and norm estimates of projections in multivariate polynomial approximation. In: Proc. of the Conf. "Mehrdimensionale konstruktive Funktionentheorie" at the Res. Inst. Oberwolfach, Black Forest 1979. Stuttgart: Birkhäuser (to appear)
- [6] GIULINI, S.,SOARDI, P.M., TRAVAGLINI, G.: A Cohen type inequality for compact Lie groups. Preprint
- [7] IL'IN, V.A.: Problems of localization and convergence for Fourier series with respect to fundamental systems of functions of the Laplace operator. Usp. Math. Nauk 23, 61-120 (1968)
- **[8]** MEANEY, C.: Divergence of Fourier series on compact Lie groups. Preprint
- **[9] RAU, H.:** Uber die Lebesgue Konstanten der Reihenentwicklungen nach Jacobischen Polynomen. J. Reine Angew. Math. 161, 237-254 (1929)
- **[10]** RAGOZIN, D.: Uniform convergence of spherical harmonic expansions. Math. Ann. 195, 87-94 (1972)
- $[11]$ **TRAVAGLINI, G.:** Dirichlet kernels and failure of localization principle for compact Lie groups. Preprint

Bernd Dreseler Fachbereich 6 - Mathematik Gesamthochschule Siegen Hölderlinstraße 3 D-5900 Siegen 21

(Received September 2, 1979)