ESTIMATES FROM BELOW FOR LEBESGUE CONSTANTS OF FOURIER SERIES ON COMPACT LIE GROUPS

Bernd Dreseler

In this paper the Lebesgue constants $(L_R^K(G))_{R>0}$ of Fourier series on compact Lie groups G corresponding to general one-dimensional groupings on the dual object G[^] are estimated from below by the associated (abelian) Lebesgue constants $(L_R^K(T))_{R>0}$ on a maximal torus T in G. For spherical groupings this leads to the estimate $L_R^O(G) \ge \text{const.R}^{(1-1)/2}$, 1=dimT ≥ 2 .

1. Introduction

Let G be a n-dimensional compact connected Lie group and T be a maximal torus in G. Denote by G[^] and T[^] the dual objects of G and T. The formal Fourier series of a function f in the Lebesgue space L₁(G) has the form $f \sim \sum_{\lambda \in G^{^{^{^{^{^{^{^{^{^{^{^{^{*}}}}}}}}}}d_{\lambda}\chi_{\lambda}}*f$ where χ_{λ} is the character and $d_{\lambda}=\chi_{\lambda}$ (e) the dimension of λ . A function $\phi:G^{^{^{^{^{^{^{*}}}}}} \subset G$ is said to be a (central) L_D Fourier multiplier on G if

(1.1)
$$||\phi||_{\mathfrak{m}_{p}(G)} = \sup_{0 \neq f \in L_{p}} ||\phi^{\vee} * f||_{L_{p}} / ||f||_{L_{p}} < \infty.$$

Here ϕ^{V} denotes the inverse Fourier transform of ϕ , i.e.

0025-2611/80/0031/0017/\$01.40

 $\phi^{\vee}(g) \sim \sum_{\lambda \in G^{\wedge}} d_{\lambda} \phi(\lambda) \chi_{\lambda}(g), g \in G.$ In the case support finite ϕ^{\vee} is a central trigonometric polynomial on G and we call the number $||\phi||_{m_1(G)} = ||\phi^{\vee}||_1$ Lebesgue constant for ϕ on G. In [4;Lemma 3.2] we proved a general transference result for estimates of Lebesgue constants which allows to get estimates from above of $||\phi(\cdot+\rho)||_{m_1(G)}$ (ρ is the half sum of the positive roots of (G,T)) from estimates of the associated Euclidean Lebesgue constants $||\phi||_{m_1(T^1)}$, $T = \mathbb{R}/2\pi 2$. In the following note we prove for characteristic functions ϕ of certain finite subsets of G^ the estimate $||\phi||_{m_1(G)} \ge M||\phi||_{m_1(T)}$, M > 0. With this result one can transfer estimates from below of the Euclidean Lebesgue constant $||\phi||_{m_1(G)} = M||\phi||_{m_1(T^1)}$.

2. Estimates from below of Lebesgue constants on G

We formulate and prove our main result for semisimple simply connected Lie groups G. By standard techniques it easily extends to arbitrary compact connected Lie groups.

Denote by <u>g</u> and <u>t</u> the Lie algebras of G and T and let \underline{g}_{c} and \underline{t}_{c} be their complexifications. Let Δ be the set of roots of $(\underline{g}_{c}, \underline{t}_{c})$, P be a system of positive roots in Δ and W be the corresponding Weyl group. The exponential function exp on <u>g</u> is a homomorphism of <u>t</u> onto T. If $\xi \in T^{2}$, ξ oexp is a character of <u>t</u>. Thus there is a $\lambda \in \underline{t}_{c}^{*}$, which takes pure imaginary values on <u>t</u>, such that ξ oexp = e^{λ} . Let Λ^{*} be the set of all integral linear forms on <u>t</u>. If Λ is the kernel of exp and i<u>t</u> denotes the set of all pure imaginary valued linear forms on <u>t</u> one has $\Lambda^{*} =$ $\{\lambda \in i \underline{t}^{*}: \lambda(H) \in 2\pi i \mathbf{2}$ for all $H \in \Lambda\}$. Finally let Λ (G) be the set of all dominant integral forms on <u>t</u>. Then Λ (G) is a semilattice in Λ^{*} which is in one-to-one correspondence with G².

DRESELER

Let **K** be the set of all K⊂i<u>t</u>* which are compact, convex, Weyl group invariant, and with the point zero as inner point. For K∈ **K** denote by 1_K the indicator function of K. The numbers $L_R^K(G) = || 1_K(\frac{\cdot}{R}) ||_{m_1(G)}$, R > 0, are called the K Lebesgue constants on G.

<u>THEOREM</u> Let $K \in K$. Then there exists a constant C > Owhich only depends on G such that

(2.1)
$$L_R^K(T) \leq C |W| L_R^K(G)$$
 (R > 0).

<u>PROOF</u> Let Z-it* be Weyl group invariant. Denote by $T_Z(G)$ the (algebraic) span of all characters χ_λ with $\lambda \in \mathbb{Z} \cap \Lambda^*$. Then $T_Z(T)$ is the span of all exponentials e^{λ} with $\lambda \in \mathbb{Z} \cap \Lambda^*$, Z is W-invariant, and the space $T_Z(T)$ is W-invariant. Denote by $T_Z^W(T)$ the subspace of all W-invariant trigonometric polynomials in $T_Z(T)$. As characters are class functions, it follows from the conjugation theorem that the character χ_{π} of some $\pi \in G^{-}$ is completely determined by its restriction to T:

$$\chi_{\pi}(\exp X) = \sum_{i=1}^{p} m_{\pi}(\lambda_{i}) e^{\lambda_{i}(X)} \qquad (X \in \underline{t}),$$

where $\lambda_1, \ldots, \lambda_p \in \Lambda^*$ are the weights of the representation π and $\mathfrak{m}_{\pi}(\lambda_1) \in \mathbb{N}$, i=1,...,p. Therefore restriction to T defines an isomorphism i* of $T_{\Lambda^*}(G)$ onto a subspace of $T_{\Lambda^*}(T)$. In the following we prove that

(2.2)
$$i^*(T_Z(G)) = T_Z^W(T)$$

for all $Z \in \mathbb{K}$. For λ , $\mu \in i\underline{t}^*$ we say $\mu \leq \lambda$ if μ lies in the convex hull of the orbit of λ under the Weyl group W. We say $\mu < \lambda$ if $\mu \leq \lambda$ and $\mu \neq \lambda$ (cf. [1]). For $\mu \in i\underline{t}^*$ let $W(\mu)$ be the orbit of μ under the Weyl group W. Then

$$\begin{split} & S(\mu) = \sum_{\lambda \in W} (\mu) e^{\lambda} \text{ is a W-invariant function on } \underline{t}, S(\mu) = \\ & S(\nu) \text{ if and only if } W(\mu) = W(\nu) \text{ and } S(\mu), S(\nu) \text{ are orthogonal with respect to any Lebesgue measure on } \underline{t} \text{ if and only if } W(\mu) \neq W(\nu). \text{ Let } d_{Z} \text{ be the number } | \{W(\mu): \mu \in Z\}|. We \\ & \text{construct a basis of } T_{Z}^{W}(T) \text{ of length } d_{Z}. \text{ This implies } \\ & \text{dim}T_{Z}^{W}(T) = d_{Z}. \text{ Thus the functions } (S(\mu))_{\mu \in Z} \cap \Lambda^{*} \text{ generate } \\ & T_{Z}^{W}(T). \text{ For } \lambda \in \Lambda^{*} \text{ define } f_{\lambda} = 1/|W| \cdot \sum_{\gamma \in W} e^{\gamma(\lambda)}. \text{ Then } f_{\lambda} \in T_{Z}^{W}(T) \\ & \text{ if } \lambda \in Z \cap \Lambda^{*} \text{ and } (f_{\lambda})_{\lambda \in Z \cap \Lambda^{*}} \text{ contains a basis of } T_{Z}^{W}(T) \text{ which has length } d_{Z}. \text{ On the other hand we have for } \lambda \in \Lambda(G) (cf. [1]) \end{split}$$

$$\chi_{\lambda} oexp = S(\lambda) + \sum m_{i} S(\lambda_{i})$$

with $m_{j} \in \mathbb{Z}$ and $\lambda_{j} < \lambda$. Since Z is convex and W-invariant it follows $i^{*}(T_{Z}(G) \subset T_{Z}^{W}(T)$ and $W(Z \cap M(G)) = Z \cap A^{*}$. Thus $\dim(i^{*}(T_{Z}(G)) = d_{Z}$ and (2.2) is proved.

Let $C^{C}(G)$ denote the subspace of all central functions in C(G) and let $P_{Z}:C^{C}(G) \neq T_{Z}(G)$ be the Fourier projection, i.e. P_{Z} is of the convolution type $P_{Z}f = D_{Z}*f$, $f\in C^{C}(G)$, where $D_{Z} = \sum_{\lambda \in Z \cap M} (G) d_{\lambda} \chi_{\lambda}$ is the Dirichlet kernel for Z. The operator norm $|| P_{Z} ||$ is equal to $|| D_{Z} ||_{1}$ and P_{Z} induces a projection $P_{Z}^{W}:C^{W}(T) \neq T_{Z}^{W}(T)$ with the same norm. Here $C^{W}(T)$ denotes the subspace of all W-invariant functions in C(T). Denote by $S_{Z} = \sum_{\lambda \in Z \cap A} e^{\lambda}$ the (abelian) Fourier projection of the space $T_{Z}(T)$. For $T = T^{1}$ we proved in [5; Cor. 1(ii)] the inequality $|| S_{Z} || \leq C |W| || P_{Z}^{W} ||$ by a symmetrization technique. This result can be proved by the same method for arbitrary tori T. Set Z = RK, $K \in K$, R > 0. Since $|| S_{RK} || = L_{R}^{K}(T)$ and $|| P_{RK}^{W} || = L_{R}^{K}(G)$ our assumption (2.1) is proved.-

DRESELER

(2.3) $L_{R}^{\Theta}(G) \geq \begin{cases} const.logR & for l = 1 \\ const.R^{(l-1)/2} & for l \geq 2 \end{cases} (R > 0).$

<u>PROOF</u> For l = 1 the classical estimate $L_R^{\Theta}(T) \ge \text{const.logR}$ holds. For $l \ge 2$ the estimate $L_R^{\Theta}(T) \ge \text{const.R}^{(1-1)/2}$ follows from a result of Il'in in [7]. Thus (2.3) follows from (2.1).-

The recent preprints [6] and [11] contain a general Cohen type inequality for compact Lie groups which can be used to prove estimates from below for $L_R^K(G)$. Lets restrict for simplicity to simple compact Lie groups G. The number of points in ROAN* increases asymptotically as the volume of RO, i.e. as const.R¹ (R $\rightarrow \infty$). From the inequality in [6], [11] one gets $L_R^{\Theta}(G) \ge \text{const.R}$. Tis result is equal to (2.3) for 1 = 3, better than (2.3) for 1 = 1,2 and worse than (2.3) for 1 > 3. In [8] it has been proved that $L_R^K(T) \ge \text{const.logR}$, K \in K. Combined with (2.1) this implies $L_R^K(G) \ge \text{const.logR}$. But it follows from [6], [11] that $L_R^K(G) \ge \text{const.R}$.

Our method of prove and the methods in [6], [11] and [8] are totally different. In [11] a theorem of R.S. Cahn [2] is used and in [6] an estimate of A.H. Dooley [3] for norms of characters is essential. A reduction to a general theorem of Olevskii on orthonormal systems is the idea in [8].

We finish with a remark on a further method of estimating $L_R^K(G)$ from below. Let H be a compact subgroup of G. Then X = G/H is a G-homogeneous space and C(X) can be considered as the subspace of all right H-invariant functions in C(G). C(X) is G-invariant. Let P_{RK}^{\flat} denote the restriction of the Fourier projection P_{RK} to the space C(X). Then $||P_{RK}|| \ge ||P_{RK}^{\flat}||$ if the second norm is taken with respect to the subspace C(X) \subset C(G). In various special cases it is easier

to estimate $||P_{RK}^{b}||$ instead of $||P_{RK}||$ because P_{RK}^{b} is explicitly known. Consider for example G = SO(2n), $n \ge 2$, and H = SO(2n-1). Then we have from (2.3) that $L_{R}^{\Theta}(SO(2n)) \ge const.R^{(n-1)/2}$. On the other hand we know that X is the real unit sphere S_{2n-1} in \mathbb{R}^{2n} of dimension 2n-1. The projection P_{RK}^{b} can be expressed by Gegenbauer polynomials. Thus one can deduce from [10] or [9] that $||P_{RK}^{b}|| \sim R^{n-1}$ $(R \to \infty)$. This leads to the estimate $L_{R}^{\Theta}(SO(2n)) \ge const.R^{n-1}$.

REFERENCES

- [1] ADAMS, J.F.: Lectures on Lie groups. New York: Benjamin 1969
- [2] CAHN, R.S.: Lattice points and Lie groups I. Trans. Amer. Math. Soc. <u>183</u>, 119-129 (1973)
- [3] DOOLEY, A.H.: Norms of characters and lacunarity for compact Lie groups. J. Funct. Anal. (to appear)
- [4] DRESELER, B.: Lebesgue constants for certain partial sums of Fourier series on compact Lie groups. In: Linear spaces and approximation. P.L. Butzer and B. Sz.-Nagy (eds.). Stuttgart: Birkhäuser 1978, 203-211
- [5] DRESELER, B.: Symmetrization formulas and norm estimates of projections in multivariate polynomial approximation. In: Proc. of the Conf. "Mehrdimensionale konstruktive Funktionentheorie" at the Res. Inst. Oberwolfach, Black Forest 1979. Stuttgart: Birkhäuser (to appear)
- [6] GIULINI, S., SOARDI, P.M., TRAVAGLINI, G.: A Cohen type inequality for compact Lie groups. Preprint
- [7] IL'IN, V.A.: Problems of localization and convergence for Fourier series with respect to fundamental systems of functions of the Laplace operator. Usp. Math. Nauk 23, 61-120 (1968)
- [8] MEANEY, C.: Divergence of Fourier series on compact Lie groups. Preprint

- [9] RAU, H.: Über die Lebesgue Konstanten der Reihenentwicklungen nach Jacobischen Polynomen. J. Reine Angew. Math. <u>161</u>, 237-254 (1929)
- [10] RAGOZIN, D.: Uniform convergence of spherical harmonic expansions. Math. Ann. <u>195</u>, 87-94 (1972)
- [11] TRAVAGLINI, G.: Dirichlet kernels and failure of localization principle for compact Lie groups. Preprint

Bernd Dreseler Fachbereich 6 - Mathematik Gesamthochschule Siegen Hölderlinstraße 3 D-5900 Siegen 21

(Received September 2, 1979)