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ESTIMATES FROM BELOW FOR LEBESGUE CONSTANTS 

OF FOURIER SERIES ON COMPACT LIE GROUPS 

Bernd Dreseler 

w 
In this paper the Lebesgue constants (L~(G))R> O of 

Fourier series on compact Lie groups G corresponding to 
general one-dimensional groupings on the dual object G ̂  
are estimated from below by the associated (abelian) 

Lebesgue constants (L~(T))R> O _  on a maximal torus T in G. 

For spherical groupings this leads to the estimate 
| 

LR(G)~const.R(l-1)/2 , l=dimT~2. 

I. Introduction 

Let G be a n-dimensional compact connected Lie group 

and T be a maximal torus in G. Denote by G ̂  and T ̂  the 

dual objects of G and T. The formal Fourier series of a 

function f in the Lebesgue space LI(G) has the form 

f ~ ~6G ^ d~x~ef where X1 is the character and dl=xl (e) 

dimension of I. A function $:G ̂  + ~ is said to be a 

(central) L Fourier multiplier on G if 
P 

(1.1) II ~II mp(G) = SUPo~f6Lpll ~vefll Lp/II fll Lp < "" 

Here ~v denotes the inverse Fourier transform of ~, i.e. 

the 
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#V(g) N ~16G ̂  dl~(l)xl(g), gaG. In the case supp~ finite 

#v is a central trigonometric polynomial on G and we call 

the number II #llm (G) = II ~vll I Lebesgue constant for 

on G. In [4;Lemma13.2] we proved a general transference 

result for estimates of Lebesgue constants which allows to 

get estimates from above of II ~('+P) II m (G) (p is the 

half sum of the positive roots of (G,T))Ifrom estimates of 

the associated Euclidean Lebesgue constants II ~II m1(T I) , 

= ~/2~2. In the following note we prove for characteris- 

tic functions ~ of certain finite subsets of G ̂  the esti- 

mate II ~Ilm1(G ) a MII #II mI(T ), M > O. With this result one 

can transfer estimates from below of the Euclidean 

Lebesgue constant II ~II m1(Tl ) to estimates from below of 

the non Euclidean Lebesgue constant II ~II ml(G ) �9 

2. Estimates from below of Lebes~ue constants on G 

We formulate and prove our main result for semisimple 

simply connected Lie groups G. By standard techniques it 

easily extends to arbitrary compact connected Lie groups. 

Denote by H and ~ the Lie algebras of G and T and let 

~c and t_~ be their complexifications. Let A be the set of 

roots of (~c,t_c), P be a system of positive roots in 

and W be the corresponding Weyl group. The exponential 

function exp on H is a homomorphism of ~ onto T. If ~6T ̂ , 

~oexp is a character of ~. Thus there is a ~6t~, which 

takes pure imaginary values on ~, such that ~oexp = e . 

Let A* be the set of all integral linear forms on ~. If A 

is the kernel of exp and it* denotes the set of all pure 

imaginary valued linear forms on ~ one has A* = 

{~6i~: ~(H)62~i2 for all HqA}. Finally let A (G) be the 

set of all dominant integral forms on t_c. Then A (G) is a 

semilattice in A* which is in one-to-one correspondence 

with G ̂  . 
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Let ~ be the set of all Kci~ �9 which are compact, convex, 

Weyl group invariant, and with the point zero as inner 

point. For K6 ~ denote by 1K the indicator function of K. 

The numbers L~(G) = II IK(~) II ml (G)' R > O, are called the 

K Lebesgue constants on G. 

THEOREM Let K6 ~. Then there exists a constant C > O 

which only depends o__nn G such that 

c21  > 

PROOF Let Zci~ ~ be Weyl group invariant. Denote by Tz(G) 

the (algebraic) span of all characters ~i with 16ZD ~. Then 

Tz(T) is the span of all exponentials e with 16ZNA ~, Z is 

W-invariant, and the space Tz(T) is W-invariant. Denote by 

T~(T) the subspace of all W-invariant trigonometric poly- 

nomials in Tz(T). As characters are class functions, it 

follows from the conjugation theorem that the character Xw 

of some ~6G ̂  is completely determined by its restriction to 

T: 

p I (X) 
x~(expX) = ~i=im (li) e i (X 6 t), 

where 11,...,I p 6 A �9 are the weights of the representation 

and m (li) 6 ~, i=l,...,p. Therefore restriction to T 

defines an isomorphism i ~ of TA~(G) onto a subspace of TA~(T). 

In the following we prove that 

(2.2) W 
i ~(T Z(G)) = T Z(T) 

for all Z 6 ~. For I, ~6i~ ~ we say ~ ~ I if ~ lies in the 

convex hull of the orbit of I under the Weyl group W. We 

say ~ < I if ~ ~ I and ~ # I (cf. [I]). For ~6i~ �9 let W(~) 

be the orbit of ~ under the Weyl group W. Then 
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e l S(~) = [16W(~) is a W-invariant function on t, S(~) = 

S(9) if and only if W(~) = W(9) and S(~), S(~) are ortho- 

gonal with respect to any Lebesgue measure on t if and only 

if W(~) ~ W(9). Let d Z be the number i{W(~): ~6Z}I. We 

construct a basis of TW(T) of length d Z. This implies 

dimTW(T) = d Z. Thus the functions (S(~))~6ZNA~ generate 

W Tz(T). For 16A~define fl = I/IWI'[yqw e~(1) Then fI6TW(T) 
W 

if 16ZNA ~ and (fl) 16ZNA~ contains a basis of T z (T) which has 

length d Z. On the other hand we have for 16A(G) (cf. [I]) 

xloex p = S(1) + ~mjS(lj) 

with m.6~ and I. < I. Since Z is convex and W-invariant it 
] ] W 

follows i~(Tz(G) c Tz(T ) and W(ZNA(G)) = ZNA �9 . Thus 

dim(i~Tz(G)) = d Z and (2.2) is proved. 

Let cC(G) denote the subspace of all central functions 

in C(G) and let Pz:CC(G) § Tz(G) be the Fourier projection, 

i.e. PZ is of the convolution type PZ f = Dz*f, f6cc(G), 

where D Z = [16ZNA(G) dlxl is the Dirichlet kernel for Z. The 

operator norm ii PZII is equal to II DZII I and PZ induces a 

projection P~:cW(T) § T~(T) with the same norm. Here cW(T) 

denotes the subspace of all W-invariant functions in C(T). 

Denote by S Z = [16ZNA ~ e I the (abelian) Fourier projection 

of the space Tz(T). For T = T1 we proved in [5; Cot. 1(ii)] 
�9 W 

the inequality II SzII ~ cIwIII PzII by a symmetrization 

technique. This result can be proved by the same method 

for arbitrary tori T. Set Z ='RK, K6 ~, R > O. Since 

II SRKII = L~(T)and II PRKIIW = L~(G) our assumption (2.1) 

is proved.- 
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COROLLARY Let | c i~ be the unit ball with center zero 

and let 1 be the dimension of T. Then 

(2.3) 
| r const.logR for 1 = 1 

LR(G) ~ ~ const.R (I-I)/2 for 1 ~ 2 (R > O). 

8 
PROOF For 1 = I the classical~estimate LR(T),,t ~ const.logR 

holds. For 1 a 2 the estimate L~(T) ~ const.R ~I-Is/2 follows 

from a result of Ii'in in [7]. Thus (2.3) follows from (2.1).- 

The recent preprints [6] and [11] contain a general Cohen 

type inequality for compact Lie groups which can be used to 

estimates from below for L~(G). Lets restrict for prove 

simplicity to simple compact Lie groups G. The number of 

points in R| ~ increases asymptotically as the volume of 

R| i.e. as const. R 1 (R § =). From the inequality in [6], 

| ~ const.R. Tis result is equal to (2.3) [11] one gets L R 

for 1 = 3, better than (2.3) for 1 = 1,2 and worse than (2.3) 

for 1 > 3. In [8] it has been proved that L~(T) const, logR, 

K6 ~. Combined with (2.1) this implies L~(G) const, logR. 

But it follows from [6], [11] that L~(G) const.R. 

Our method of prove and the methods in [6], [11] and [8] 

are totally different. In [11] a theorem of R.S. Cahn [2] is 

used and in [6] an estimate of A.H. Dooley [3] for norms of 

characters is essential. A reduction to a general theorem of 

Olevski~ on orthonormal systems is the idea in [8]. 

We finish with a remark on a further method of estimating 
K 

LR(G) from below. Let H be a compact subgroup of G. Then 

X = G/H is a G-homogeneous space and C(X) can be considered 

as the subspace of all right H-invariant functions in C(G). 

denote the restriction of the C(X) is G-invariant. Let PRK 

Fourier projection PRK to the space C(X). Then II PRKII 

II PRKII if the second norm is taken with respect to the 

subspace C(X) c C(G). In various special cases it is easier 
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b b 
to estimate II PRKII instead of II PRKII because PRK is expli- 

citly known. Consider for example G = SO(2n), n Z 2, and 
| 

H = S0(2n-1). Then we have from (2.3) that LR(SO(2n)) Z 

const. R (n-I)/2. On the other hand we know that X is the 

real unit sphere $2n_i in ~2n of dimension 2n-1. The 

projection b PRK can be expressed by Gegenbauer polynomials. 
Rn-1 Thus one can deduce from [10] or [9] that II PRKII N 

(R § =). This leads to the estimate L~(SO(2n)) ~ const.R n-1. 
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