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Abstract .  We investigate the communication complexity of singularity 
testing in a finite field, where the problem is to determine whether a given 
square matrix M is singular. We show that, for n x n matrices whose entries are 
elements of  a finite field of size p, the communication complexity of this 
problem is | 2 log p). Our results imply tight bounds for several other 
problems like determining the rank and computing the determinant. 

1. Introduction 

Parallel computing saves time by spreading the work load among a number of active 
elements. However, this may create the necessity of communication among those 
active elements. Yao [12], [13] introduced the deterministic model of commu- 
nication complexity to measure this additional computational resource. In this 
model there are two agents performing the desired computation cooperatively. The 
agents have their own memory and can exchange messages with each other. When 
the computation starts, each agent receives one-half of the input bits according to a 
fixed partition rule 7z. Then they execute a fixed protocol P which leads the two 
agents to perform local computations and communicatemessages according to their 
own information and previously obtained messages. At the end of  the computation, 
each agent knows the values of the output variables for which it is responsible. The 
number of  bits exchanged represents the communication requirement for this 
particular computation. 

* This research was supported in part by NSF Grant CCR-8805978 and AFOSR Grant 87-0-400. 
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Let f be the function to be computed by a parallel system and let N be the 
number of input bits. Call any partition rule which divides these Nbits into two even 
portions an even partition. Every even partition, re, together with a correct protocol, 
P, represents a possible design of a system computing f Let C(n, P) be the 
maximum number of bits to be exchanged for some input instance of size N under 
partition re and protocol P. The communication complexity o f f  under partition 7r, 
C(r0, is the minimum of C(n, P) over all correct protocols P for re. Then the 
communication complexity o f f  is defined to be the minimum of C(n) over all even 
partitions ~. 

Thompson's [9] area-time tradeoffs can be best expressed by communication 
complexity. Supposefhas N input bits and a VLSI chip computingfhas area h and 
worst-case computation time T. Thompson shows the tradeoff AT z = f~(I2). Sub- 
sequently, the area bound A = f~(/) was proven [2], [10], [13]. Combining these two 
formulas, we get AT 2~ = ~(/l+a), 0 _~ a < 1. 

We investigate the communication complexity of testing whether a matrix over 
a finite field is singular. 

Theorem 1.1. Let Fp be a finite field with p elements. Let M be a square matrix of  
dimension n, where each entry consists of  [log p] bits encoding an element of  Fp. 
(All logarithms in this paper are base 2.) The communication complexity of  
"deciding whether M is nonsingular" is | 2 log p). 

Chu and Schnitger [4] showed that when entries of Mare integers of up to k bit 
long, the corresponding communication complexity is | The proof for the 
integer case relies on the ability of encoding vectors of very large components by 
matrices. That is not applicable in a finite field as any value can be represented by 
log p bits. 

The commonly used transitivity approach of Vuillemin [ 10] does not seem to 
work for our problem, either. Vuillemin's approach is successful for many functions 
or languages that are powerful enough to express the identity problem (given two 
strings x and y, are x and y identical?). However, there does not seem to be a large 
enough identity problem embedded in the singularity testing problem. 

We utilize the following property of vector spaces over a finite field to bound 
the size of monochromatic submatrices in the truth matrix of  our problem (see 
Section 2). Let Fp be a finite field o fp  elements. Assume $1 and $2 are two sets of 
dimension m subspaces in/~p" such that, for any A E S1 and any B E $2, A N B 
contains only the zero vector. Then # $I �9 #SE < pro2§ (Lemma 3.7). 

We prove Theorem 1.1 in Section 3. Theorem 1.1 also establishes the 
communication complexity of the following problems. 

Corollary 1.2. Let M be defined as in Theorem 1.1. The 
complexity of  the following problems is O(n 2 log p). 

(a) Computing the determinant of  M. 
(b) Computing the rank of M. 

communication 
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Roundoff errors are inevitable when computing in the ring of real numbers 
using digital computers. In applications where Fourier transform is used to compute 
a convolution efficiently, an exact result is often required. However, the fast Fourier 
transform (FFT) implementation of cyclic convolution introduces significant 
amounts of roundoff errors [6]. These errors can be avoided by computing over 
a suitable finite field. Agarwal and Burrus [1 ] give efficient implementation of finite 
transforms over tings of integers modulo Fermat numbers. They report a much 
faster performance over the best FFT implementation. Convolution over a finite 
field also speeds up multiplications of long integers [7]. Another important potential 
of computing in finite fields is the use of residue number systems in arithmetic 
computations [8]. VLSI implementation computing complex inner products using 
residue arithmetic has been proposed [11]. 

Let X be a finite set of vectors from a vector space U and let L be the set of 
subspaces { V: Vis spanned by some subset of X}. The Vector Space Span problem 
is defined as follows: Given two elements of  L, V1 and V2, decide whether their 
union spans U. 

Lovfisz and Saks [5] determined thefixed-partition communication complexity 
of the vector space span problem to be O(log(#L)), where one agent reads V1 and 
the other reads Vz. Theorem 1.1 also establishes the unrestricted communication 
complexity of this problem when X is chosen to be the set of  vectors over some 
finite field. 

Corollary 1.3. When X = l~p, the communication complexity of  the vector space 
span problem is | 2 log p). 

We present a sketch of our proof techniques in Section 2. The proof of Theorem 
1.1 is given in Section 3. 

2. Proof Techniques 

Let f be some function to be computed using the communication complexity 
model. Let us fix the size of  the input to be N bits and the input partition to be ~z. 
Then the computation can be viewed as computing a function of  two arguments, in 
which the first argument consists of the N/2 input bits given to the first agent and the 
second argument consists of the remaining bits. 

In case the output consists of one bit, we can characterize the computation of a 
two-argument boolean function by a Truth Matrix. Each possible instance of the 
first argument takes up one row of the truth matrix and each possible instance of the 
second argument takes up one column. The matrix entry at the intersection of a 
particular pair of row and column contains the output bit corresponding to the 
arguments assigned to this row and this column. 

A submatrix of the truth matrix is a monochromatic submatrix if it contains 
only a single value. More specifically, if this value is 1, the monochromatic 
submalrix is called 1-chromatic; otherwise it is called 0-chromatic. Yao [12] shows 
that, given the input partition n (and hence the truth matrix) of  some boolean-valued 
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function f the communication complexity of  f under partition zr is at least 
log d ( f ) -  2, where d ( f )  is the minimal number of  disjoint monochromatic 
submatrices that partition the truth matrix o f f  

Suppose when the input dimension, n, of  the singularity testing is odd, the 
communication complexity is o(n 2 log p). Then the o(n 2 log p) bound also holds 
for the case when n is even. This is because, for any even n, the agents can pretend 
that there are one additional row and one additional column in the input matrix. All 
the entries on the (n + 1)st row and the (n + 1)st column are 0 except that the 
[n + 1, n + 1] entry is nonzero. Therefore, we only consider even input dimensions 
when proving Theorem 1.1. 

For the proof of  Theorem 1.1, we first tackle the case of  a particular input 
partition as defined below; then we show that arbitrary partitions do not change the 
communication complexity asymptotically. 

Definition 2.1. Assume the input is a 2m • 2m matrix. Let 1to denote the 
following input partition: the first agent receives all the bits encoding the entries 
in the first m columns; the second agent receives the other half. 

Given no, we define an entry of  the truth matrix to be "one" if  the 
corresponding input matrix is nonsingular. We show that there is a large submatrix, 
T, of the truth matrix such that: 

(1) T contains a large number (>p n2/z) of "one" entries. 
(2) Every 1-chromatic submatrix of T is of relatively small size (<pn2/a+n). 

This allows us to apply Yao's lower bound method. 
The first property of  T as given above is easy to prove. We use induction to 

establish the second property. The inductive step involves proving a | log p )  
bound on the communicaton complexity of  "the inner product ove r Fp." In this new 
problem each agent reads a vector in/~p and tries to decide whether the two input 
vectors have a nonzero inner product ("one" entries in its truth matrix represent 
nonzero products). In this proof we use techniques of  Chor and Goldreich [3]. In 
particular, we utilize that the truth matrix of the inner product function can be made 
orthogonal if we replace the value 0 by 1 - p .  

3. Singularity Testing over Finite Fields 

In this section we prove Theorem 1.1 Let Fp be a finite field with p elements. Our 
input, an n • n matrix over Fp, can be represented by n 2 log p bits. First, we 
establish the | z log p) bound on the communication complexity of  this problem 
under the assumption that the input is partitioned according to 7Zo (see Definition 
2.1). Note that the upper bound is trivial. 

We restrict our attention to a submatrix T of  the truth matrix. Interpret each 
column of  the input matrix as a vector in/~e" Then each row or column in the truth 
matrix corresponds to a subspace spanned by n/2 vectors. We select for T exactly 
one row and one column that correspond to each dimension n/2 subspaces of  F~p. 
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The entry [i, j] in T is set to 1 whenever the two subspaces corresponding to the ith 
row and and j th  column intersect only at the zero vector, i.e., whenever the input 
matrix is nonsingular. 

L e m m a  3.1. The number of "one" entries in T is at least p~2/2. 

Proof First we count the number of  "one" entries in a row of T. Assume 
that a row is labeled by a vector space W of dimension n/2. Consider the 
number of  distinct bases which span subspaces of  dimension n/2 and inter- 
sect W only at the zero vector�9 Let us construct such bases by picking n/2 base 
vectors one by one. 

I f  V C F~p is a subspace of  dimension d, there are exactly pn _ pd vectors 
outside of  If. We have #(F~plW) = pn _ pn12 choices for the first base vector and 
p ,  _ p./2+1 choices for the second base vector after the first one is chosen�9 In 
general, once the first i base vectors are chosen we have pn _ fln/2+i choices for the 
(i + 1)st base vector�9 So the total number of  bases is 1--I~-~/2 (P" - p i ) .  

�9 n ? 2 - -  1 n / 2  " �9 �9 The same countmg argument shows that there are 1-Ij 0 (P - / r  distract 
bases for each subspace of  dimension n/2. Therefore, the number o f "o n e "  entries in 
any row of  T is equal to 

n/2-1pn _ pn/2+j n/2-1 
IX -pnT"2--'Z--ff ~- IX pnl2=pn214" 
j=o j=o 

Since T is symmetric, there are p~2/4 "one" entries in each column of  T. This 
means T has at least p~2/4 rows�9 Therefore, the number of  "one" entries in T is 
at least p n212. [] 

Let IPZ(m, p) denote the problem of  deciding whether the inner product of  two 
vectors in ~ is nonzero. Let ~Zl be the input partition oflPZ(m, p) such that each 
agent reads one of  the input vectors. We now establish an intermediate result which 
states that IPZ(m, p) has communication complexity | logp) under partition rq. 
This generalizes a result of  Chor and Goldreich [3] for the inner product over F2. 

Let W be the set of  dimension m - 1 subspaces of  F~. W contains #W = 
(pro_ 1 ) / ( p -  1) elements because a hyperplane is specified by one linear 
equation which is unique up to the p - 1 multiples of  its coefficients. We set 
up an auxiliary matrix Z as follows. Create one row for each space in W and one 
column for each vector in/~p. For the entry at row Q and column v, set its value to 
(1 - p) if  v E Q; otherwise, set it to 1. 

A vector v is orthogonal to a subspace Q if  and only if  the inner product v �9 t is 
0 for all t E Q. Each row of  Z also corresponds to the p vectors orthogonal to Q. 
Another way to interpret Z is that each row or column of  Z corresponds to a vector; 
an entry is (1 - p) if  and only if  the two vectors have inner product 0. Hence, Z is 
also a submatrix of  the truth matrix of  IPZ(m, p) under re1 i f  we replace the value 
(1 - p )  by O. 
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Lemma 3.2. The rows of  Z are pairwise orthogonal. 

Proof We use ri to denote the ith row vector of Z. Pick any two different row 
vectors of  Z, say ri and rj. Let Qi and Qj be the elements of  W which correspond to 
these two row vectors, respectively. Then ri �9 rj = y ~ I ( Z [ i ,  k] �9 Z[j,  k]). Let v be 
the vector corresponding to the kth column of  Z. Then 

(1 _ p ) 2  if  v E (Oi fq Qj), 
Z[i ,k] .Z[j ,k]= 1, if vq~(QiUQj), 

1 - p, otherwise. 

Note that #(Qifq Qy)=pm-2 and # ( Q i U  Qj)=2p m-1 _pm-2. We obtain 
r i �9 r j  = ( p  - -  1)2p m - 2  + (pm _ 2pm-1 + pro-2) _ (p _ 1) (2pro-1  _ 2pm-2) = 

p m - Z ( Z ( p -  1) 2 -  2(p- 1) 2) = O. [ ]  

Lemma 3.3. The size of  any 1-chromatic submatrix of  Z cannot exceed 
(p - 1)p '~. 

Proof Pick any a rows and b columns of  Z. Since we do not demand any ordering 
of  rows and columns, we assume the first a rows and the first b columns are chosen 
in order to simplify notation. Define x = p a  1 ~b=l Z[i,J]. If  the submatrix 
defined by these a rows and b colmmas is 1-chromatic, tlaen x 2 must equal (a b) 2. It 
suffices to prove that x 2 _< ab(p - 1)p m. 

Observe from the proof of  Lemma 3.2 that, for every i, r i . r i  = 
(p _l)2pm-a + (pro -- pro--l) = (p _ 1)pm--a (p _ 1 + 1) = (p -- 1)p". Recall 

Cauchy's inequality: (v" U) 2 ___~ 11•112 [[/,/1[2. 

<_ b }2  z[i, ;1 
j = l  i=1 

2 

<_ b Z Z[i, j] 
j = l  i=1 

= b ri �9 ri 
k , i= l  i=1 

a 

: b ~ ( r i . r i )  
i=1 

= ab(p - 1)p m. 

interpret the outer summation 
as inner product and apply 
Cauchy's inequality 

apply orthogonality 

Theorem 3.4. The communication complexity of  lPZ(m, p) under partition ~i is 
| log p). 
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Proof. Since Zhas  # W  ~(pm _ 2 ) / ~  _ 1) rows and each rows has pm _ _  prn--1 
"one" entries, there are (p - 1)p - "one" entries in Z. Applying Yao's lower- 
bound method, we obtain that the communication complexity oflPZ(m, p) under rc 1 
is at least f~(log((p 'n - 1)/p(p - 1)) = fl(m logp).  On the other hand, the input 
read by each agent has m log p bits, which implies a trivial upper bound. []  

We restate Lemma 3.3 in a form needed in subsequent proofs. 

Lemma  3.5. Let Q1, . . . ,  Qt be elements oftP. Define D to be the complement of  
QI t3.. .  t3 Qt with respect to F~p. Then t x ( # D )  < (p - 1)p m. 

Proof The r rows of  Z corresponding to Qi, 1 < i < t, and the # D  columns 
corresponding to vectors in D form a 1-chromatic submatrix of  Z. [ ]  

Let I11 be any subset of  F~p which contains 0 (the zero vector). Let Y2 denote the 
set (/~p\Y0 U {0}. Observe that any choice of  Y1 specifies a 1-chromatic submatrix, 
S, of  T--the rows (columns) of  S correspond to the dimension n/2 subspaces 
contained in Y1 (Y2). Conversely, every 1-chromatic submatrix induces canonically a 
set Y1. 

Defintion 3.6. Let i be any integer in the range [0, n/2]. Set m := i + n/2. Let Y1 
and Y2 be any two subsets of  F~ such that 0 E Y1 and Y2 = (/~p \Y1) t3 {0}. We call 
any dimension n/2 subspace a Ill-space if it is contained in YI. Also, any dimension 
i subspace contained in Y2 is called a Y2-space. Let s(Yl) and t(Y2) be the number of  
Yl-spaces and Y2-spaces, respectively. Define E(/) as the maximum, over all choices 
of  I11, of  the product s(Y1) �9 t(Y2). 

We now investigate the fixed partition case of  the singularity testing problem. 
Note that when i = n/2, every Y2-space corresponds to a column in some 1- 
chromatic submatrix of  T, and every Yl-space corresponds to a row. Hence, E(n/2) is 
the maximum size of  any 1-chromatic submatrix. 

L e m m a  3.7. The maximum size of  any I-chromatic submatrix of  T is at most pn2/4+n. 

Proof. We claim that, for all 0 < i < n/2, E(i)< pi.n/2+2i. Hence, E(n/2)< 
pn~/a+n. This claim is proved by induction on i. 

Basis: i = O. 
We have either Y1 = FY 2 or there are no Yl-spaces. In the former case s(YO = 1 

and t(Y2) = 1. Therefore, E(0) < 1. 
Induction Step: Assume that E(i - 1) < p(i-1)~/2+2i-2 for some i < n/2. We 

prove that E(i) < pi'n/2+2i. 
Let m, Y1, and Y2 be defined as in Definition 3.6 such that E(i) is maximized. 

Let W be the set of  dimension m - 1 subspaces of  Fr~p. Recall that a YFspace is a 
dimension n/2 subspace contained in Y1 and Y2-space is a dimension i subspace 
contained in Y2- 
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Let Q be the element of  W which contains the largest number of  Y1 spaces. Let 
this number be r > 0. Consider the set of  dimension i - 1 spaces contained in 
Y2 A Q. Assume there are c of them. Then r �9 c <_ p(i-1)n/2+2i--2 by the induction 
hypothesis. Also, each Y2-space intersects Q at exactly one of  these c spaces. To see 
this, let R1 be any Yl-space in Q and let K be the intersection of  any Y2-space and Q. 
Then K must be a vector space. Since R1 and K only intersect at the zero vector, the 
dimension of  K is no more than i - 1. Since R1 and any Y2-space span F'~p, the 
dimension of  K is no less than i - 1. 

Let K be an arbitrary dimension i - 1 vector space contained in Y2 N Q. In 
order to bound t(Yz), the total number of Yz-spaces, we first bound the number of  
Y2-spaces containing K. 

We can generate a Y2-space containing K by adding one more base vector, b, to 
the basis of  K. Let R1 be any Yl-space. Then b cannot belong to the dimension 
m - 1 supspace R1 + K. Assume that there are l different spaces Ri + K (for Y1- 
spaces R 1 , . . . ,  Rt). We call l the stiffness of K. Then, by Lemma 3.5, there are at 
most (p - 1)pm/l choices for b. 

Note that each Y2-space thus generated from K contains (p - 1)p I-1 possible 
choices ofb. This is because a Yz-space containsp i vectors and each of  them, except 
those p i -  1 vectors in K, may be used as b. Therefore, the total number of  Ye-spaces 
containing K is at most (p - 1)pm/(l(p - 1)p i-I)  = pn/2+l/l. 

Assume that K0 minimizes the stiffness among all dimensions i - 1 subspaces 
contained in Y2 N Q and assume that its stiffness equals I0. then t(Y2) < cpn/2+l/lo. 

Let Rj, 1 < j  < 10, be the Yl-spaces defining the stiffness of  Ko. Then every Y1- 
space R is contained in some dimension m - 1 space R_/+ K0. Since r is the largest 
number ,of  Yl-spaces any dimension m -  1 subspace may contain, we have 
s ( Y O  <_ r . lo. 

Combining the results in the above two paragraphs, we have s(YO �9 frYe) < 
r . . . .  c pn/2+l < p(i--1)n/2+2i--2 pn/2+l _ pi .  n/2+2i-1. Therefore, E(i) < pi.  rd2+2i. [ ]  

The 0(/'/2 log p) lower bound for the input partition To0 now follows directly 
from Lemmas 3.1 and 3.7. 

We now prove our results for arbitrary partitions that evenly divide the input 
between the two agents. Since permuting the columns of  a matrix does not change 
its rank, we only need to consider the proper  partitions defined below. 

Definition 3.8. An even input partition is a proper partition if  and only if, for any 
pair of  integers i and j such that 1 ___ i < j <_ n, at least as many input bits from 
column i are assigned to the first agent as from column j. 

Let rc be any proper partition. Then n only differs from re0 on the assignment of  
up to (n z log p)/2  input bits. I f  the values of these input bits are fixed, then the 
difference between n and ZOo is eliminate& 

Definition 3.9. Given any proper partition r~, we use A to denote the set of  
input bit positions which are assigned differently under re0 and re. A function 
f :  A ~ {0, 1} is called a fixing function for n. 



Communication Complexity of Matrix Computation over Finite Fields 223 

No matter what fixing function we use to restrict the computation, the resulting 
truth matrix is a submatrix of the truth matrix defined by rio. To analyze the 
communication complexity of  this restricted computation, we select a submatrix T'  
in the same way we selected T. Accordingly, T' is a submatrix of  T. So, the 
maximum size of  1-chromatic matrices in T' is still bounded according to Lemma 
3.7. Therefore, it suffices to show that, for every proper partition, a fixing function 

exists such that the resulting matrix T' contains at leastp "2/3 "one" entries. This will 
establish Theorem 1.1. 

We first prove that such fixing functions exist for some of the proper partitions. 

Defintion 3.10. A proper partition is called a nice partition if and only if it 
partitions the input bits in each column of the input matrix evenly between the 
agents. 

In other words, if n is a nice partition, then A contains exactly in log p bit 
positions from each column of the input matrix. We use A1 to denote those bit 
positions of A in the first n/2 columns and A2 to denote the other half of  A. 
Accordingly, for any fixing function f of n, J~ (j~) is the restriction o f f  relative 
to A1 (A2). 

Definition 3.11. Let X be any dimension n/2 subspace of/~p, let n be a nice 
partition, and l e t fbe  a fixing function for n. We say X is encodable underjq if and 
only if there is an instance of the input matrix whose bits in AI are fixed according 
to f~ and whose first n/2 columns span AT. Each of such instances is an encoding 
of X under J~. 

The notion "encodable under J~" is defined in a similar way. If X is 
encodable under jq and Y is encodable under J~, then we say the pair (X, Y) is 
encodable under f 

By Lemma 3.1, there are more than p n2/2 pairs of  dimensions n/2 subspaces 
which introduce "one" entries in T. Our strategy is to show that for any nice 
partition there is a collection ofp  2~n2 fixing functions such that almost all such pairs 
of subspaces are encodable under some function in this collection. Then, by the 
pigeonhole principle, there is one fixing function which yields p O/2-20"2 "one" 
entries in T'. 

Assume that we are given a nice partition n. Our first step is to show that most 
dimension n/2 subspaces have not too many encodings under any fixing function 
and hence are encodable under a large number of fixing functions. 

Definition 3.12. Set e := ~6' A dimension n/2 subspace is concise if and only if it 
does not have more than p 2en7/4 encodings under any fixing function jq. 

Using the first n/2 columns of the input matrix to encode any dimension n/2 
subspace X, we have rrn/E-l t,,"/2 _ p nz/4 11i=0 ~ _ pi) > �9 e -2~(p-i) different ways to do so. 
(This inequality can be proved by using some suitable inequalities appearing in the 
proof of Lemma 3.14.) 
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Proposition 3.13. I f  X is concise, it must be encodable under more than 
p n2 /a-- 2en 7/4 . e -  2/(p-1) fixing functions. 

Lemma 3.14. Set 5 :=p -e2n3/2. Assume p > 8 and n > 128. All the dimension 
n/2 subspaces in F~ except for a 5 fraction o f  them, are concise. 

Proof After the bit proposition in A 1 are fixed according to any given J~, each 
column in the left half of the input matrix can only encodep n/2 vectors. Let V,- be the 
set of  vectors encodable by the ith column, 1 < i < n/2. To encode a dimension n/2 
subspace X, we must find one base vector of X in every V~. So the number of 

r-ln/2 encodings of X under J] is not larger than l ti=l #(2( n II/). 
If X is not concise, then there must be an jq and an i such that # (X n V,.) > 

p 4~n3/4. Given./] and i, let Ube the set {X." # (X  N Vi) > p4~3/,}. Let Total represent 
the total number of dimension n/2 subspaces in/~p. So 

n/2-1 pn . p j  
Total = H p,/2 " 

j=0 --PJ 

Each subspace in U must have some basis containing 4gn 3/4 base vectors from 
I4,.. Let us generate a basis for the subspaces in U by first choosing any 4en 3/4 
linearly independent vectors in V,. and then adding n/2 - 4n 3/4 base vectors from 
one by one. The number of different basis representations is at most 

4.sn3/4, ] a1.o33, 4 -- p'/). (3.1) j=4gn 

However, each subspace in U contains at least 

4gn3/4-1 p4en3/4 _ p~ n/2-1 

j~O0 4--~n3/4 ~ I-[34 (pn/2-pi) (3.2) 
= j=4en / 

sets of  base vectors counted in (3.1). So, #Uis  at most the quantity in (3.1) divided 
by the quantity in (3.2), which is 

4gn3/4-- 1 pn/2 ; n/2--1 
y [  p4nn3/4_d . ~ I pn pj 
j=0 __pJj=4/~n3/4 p n / 2  _ p j  " 

So, #U/Total is at most 

4~n3/4-1 pn/2 _ j  pn/2- t9/  (3.3) 
-I p4en3/4 ' j=0 - -  p i  pn _ pj 

Note that 

rn-1 m-1 m 
H(p'n-pj') =p m= II(1-/:g'-m) =p'n= H(1-p-J). 
j=0 j=0 j=l 
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Also, 

e -2p-j -- 1 - 2p-J + 2p -2j - 4p-3J/3 + . . .  < 1 - p - J .  

So, 
4013/4 -- 1 45/'13/4 

H (p4en3/4 _ _ p j ) - I  =p-16e2n3/2. I X  (1 __p- j ) - I  
j=0 j = l  

4ena/4 
< p-16e2nV2 " 1-I e2p-j < p-16~2n3/2 " e2/(p-1)" 

j = l  

Since (pn/2 -- pj)/(pn __ 19]) ~ p-n~2, w e  have 

4~n3 / 4 -1 
(3 .3 )<  p-16e2n3/2e2/(p-1). H (1 - j  �9 pn/2) < pl6dn3/2e2/(p-1). 

j=0 

Because there are only pn/2 different ways to assign values to the bit positions in 
the intersection of  A1 and the ith column of  the input matrix, for any given i, the set 

{S : there existsJi such that # ( S  n V/) > p 4en3/4 } 

has size less than (pn/Z p-16e2na/2e2/(p--1) ) • Total. Therefore the total number of  
nonconcise subspaces is less than a tS' = (n/2)p~/2p-16e2~3/2e2/~p-1) fraction of  Total. 
When p > 8 and n >_ 128, we have iS' < t~. []  

Next, we prove that almost all concise subspaces are encodable under a small 
collection of  fixing functions. 

2 ~ 
Lemma 3.15. Given any A, there is a set o f  pen f ixmg functtons, F1, restricted to 
A1 such that all but a p-P~ fraction o f  concise subspaces are encodable under some 
f l  E E l .  

Proof. Given a group of  m concise subspaces, we count the number of  pairs 
0q, X) such that3q is a fixing function restricted to A1, and X is a concise sub- 
space in this group encodable under 3q. By Proposition 3.13, there are at least 

n 2 4 2enT/4 2/(p 1) n2/4 m �9 p / - �9 e -  - such pairs. Since there are p different restricted fixing 
functions, one of  them must be included in at least m �9 p -2en7/4 �9 e -2/(p-1) pairs. 
This means we can always find a restricted fixing function J] such that a 
p -2~n7/4 �9 e-2/(p-1) �9 fraction of  subspaces in this group is encodable under j] .  

Starting with all the concise subspaces, we can find one restricted fixing 
function 3q such that a p-2~7/4 . e-E/(p-1) fraction of  the concise subspaces are 
encodable under 3q. Then we can find another fixing function f{ such that a 
p -2~n7/4 �9 e -2/(p-I) fraction of  all the remaining concise subspaces are encodable 
under f~. 

We can repeat this process so that after the ith step, a 1 -  
(1 - - p  -2en7/4" e-2/(p-1)) i fraction of  all the concise subspaces are encodable 
under some of  the i restricted fixing functions we have found. Carrying out this 
process p ~n2 steps gives us F1. 
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The fraction of  concise subspaces which are not encodable under any restricted 
fixing function in F1 is at most (1 -p-2~n7/, . e-2/(p-l))p~,2. This quantity is 
smaller than p-P". []  

Lemmas 3.14 and 3.15 establish that there is a set o f p  'n2 restricted fixing 
functions F1 such that almost all dimension n/2 subspaces in F~p are encodable 

under some J] E F1. The exceptions are less than a p_~n3/2 + p-p, fraction of  all 
such subspaces. 

We repeat this procedure for the last n/2 columns of  the input matrix. This 
means we have ~n2 . . . . .  p restricted fixing functions for A2 such that every dimension n/2 
subspace in F~p is encodable under some of  these functions, with the exception of  

2 3/2 - �9 less than a p-~n § p P" fraction of  all such subspaces. 
Therefore given a nice partition 7z', we have a set o f p  2"2 fixing functions such 

that almost all pairs of  dimension n/2 subspaces (X, Y) are encodable under some of  
these functions. Since p -e2n3/2 + p-P" <2p -~zn3/2, the number of  exceptions is less 
than 4p -~2n3/2 x(Total) 2, where 

n/2-1 pn _ p j  
Total= 1-[ pn/2 _ pj  

j = 0  

is the total number of  dimension n/2 subspace in Pp. (Note that Total < 
pn2/4e2/(p- 1), see the inequality before Proposition 3.13.) 

Each of  the subspace pairs corresponds to an entry in the truth matrix T. Also, 
there are at leastp n2/2 "one"entries in Tby  Lemma 3.1. So, there must be one fixing 
function which defines a submatrix, T', of  T that contains at least 
p( 1/2-2~)n2 - p(1/2-2e)nZ-e2n3/2eO(1) "one" entries. This result, together with Lemma 
3.7, establishes the following lemma by an application of  Yao's lower-bound 
method. 

Lemma 3.16. Under any nice partition re', the singularity test over the finite fieM 
Fp requires at least (n 2 log p)/8 - n log p - O(1) bits of  communication. 

Now we need to show that O(n 2 log p) bits of  communication are required for 
any proper partition n. 

Definition 3.17. (Continuing from Definition 3.9). For 1< i <n, let 6i be the set 
of  input bit positions in A which belong to the ith column of the input matrix. 

In case #6 i  < (n log p)/2 for all i, we can proceed as in the nice partition 
case by picking (n log p)/2 bit positions to be fixed in every column, 
which include all positions in 6i, 1 < i < n: The | 2 log p)  bound follows 
directly. 

Now assume that #6i > (n log p)12 for some i. Then either #6,,/2 > (n log p)l 
2 or #3,/2+1 > (n log p)/2, exclusively (Definition 3.8). We need to address only 
one of  these cases, say 4r > (n log p)/2. 
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Let m < n/2 be the index such that -#6m > (n 1ogp)/2 and #6m-1 <_ 
(n log p)/2. For each m < i <  n/2, define di to be ( # 6 i ) -  (n log p)/2. Pick 
arbitrary di bit positions from each 3~ m < i < n/2, and call them 

- X "~n/2 d characteristic positions of re. Let D - z-~i=m "i denote the total number of these 
characteristic positions. 

The proper partition re can be reduced to a nice partition re' by reassigning all 
the characteristics positions to the first agent and compensate the second agent with 
positions in column 1 through column (m - 1) which are originally assigned to the 
first agent and which are to be fixed. Therefore, the amount of communication 
required under re can be less than that required under re' by at most D bits. 

Lemma 3.18. The number o f  characteristic positions, D of  any proper partition is 
less than (1)ne log p. 

Proof By Definition 3.8, di < di+l for m < i < n/2. Let l = n/2 - m + 1. Then 
D < l �9 dn/z. The second agent receives at least #6,,/2 positions from each column 
in the right half of the input matrix. The total number of bit positions assigned 

S"~n/2 6i + (n/2)(~:~n/2). This value cannot exceed to the second agent is at least ~__~i=m 
(n 2 log p)/2. So we have the following inequality: 

nl log2 p ~ - D + ~ n  2 log p + ~ d n / 2 < ~ n  n 2 log p (3.4) 

Solve for d,,/2 in (3.4) and we get 

2D 
dn/2 <_ n ~ l o g  p 1 log p - - - n  (3.5) 

Since D < l �9 dn/2, multiplying both sides of the inequality (4.5) with l gives us 

l(n - 2l) n2 
D < (~-+-n-~-n log p. (3.6) 

Assume l = c n .  Solve (3.6) for the maximum of D. We get D =  
(~ - x/~/2)n 2 log p, when c = ( -1  + v~)/2. This maximum value is less than 

(~6)n 2 log p. [] 

Therefore, by Lemmas 3.16 and 3.18, the communication complexity of the 
singularity test over the finite field Fp is at least (n z log p)/16 - n log p - O(1), 
which is in O(n 2 log p). 
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