
Math. Systems Theory 28, 199-213 (1995) Mathematical
Systems

Theory
�9 1995 Springer-Verlag

New York inc.

Pumping Lemmas for the Control Language

M. A. Palis l and S. M. Shende 2

1 Department of Electrical and Computer Engineering,
New Jersey Institute of Technology,
Newark, NJ 07102, USA
palis@hertz.njit.edu

2 Department of Computer Science and Engineering,
University of Nebraska, Lincoln, NE 68588, USA
snnil@calypso.unl.edu

Hierarchy*

Abstract. We investigate a progression of grammatically defined language
families, the control language hierarchy. This hierarchy has been studied
recently from the perspective of providing a linguistic framework for natural
language syntax. We exhibit a progression of pumping lemmas, one for each
family in the hierarchy, thereby showing that the hierarchy is strictly separable.

1. Introduction

A large body of research in computational linguistics is devoted to the character-
ization of syntactic phenomena in natural language by means of grammatically
defined formalisms. Recent research has suggested that a hierarchy of such
formalisms, the linear control languages, may have some bearing on the study
of natural language syntax. Control languages subsume the class of context-free
languages. Moreover, they admit efficient sequential polynomial time and parallel
NC 2 recognition algorithms whose rurming times depend polynomially on the sizes
of the corresponding grammars. We are interested in these languages from a formal
perspective; in particular, we demonstrate that at every level in the hierarchy, there is
a pumping lemma for that level, thereby settling the hitherto open question of strict
separation of the hierarchy in the affirmative.

* The research reported in this paper was conducted in part at the Department of Computer and
Information Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA, and was supported
under ARO Grant DAA29-84-9-0027, NSF Grants MCS-8219116-CER, MCS-82-07294, DCR-84-
10413 and MCS-83-05221, and DARPA Grant N00014-85-K-0018.

200 M.A. Palis and S. M. Shende

2. Control Languages

Along with the elegant characterization of derivation tree paths in a context-free
derivation by Thatcher [13], several researchers have studied the consequences of
limiting derivations of context-free grammars, for instance, indexed grammars [1],
EOL-grammars [4], matrix grammars [5], [11], state grammars [7], programmed
context-free grammars [10], control grammars [2], and controlled linear context-
free grammars [8]. An excellent summary of properties of some of these formalisms
appears in the book by Salomaa [12]. We investigate a particular variation of control
grammars called linear control grammars, based on the idea of independently
controlling derivation paths in context-free derivations [16], [17]. For the sake of
brevity, we henceforth denote these grammars simply as control grammars and the
languages they generate as control languages.

Consider a context-free grammar with labeled productions. Informally, we first
restrict ourselves to a subset of the paths in any derivation tree for the grammar and
associate strings of production labels with these paths in a uniform way. Secondly,
we a priori specify a language (also called the control set) to which these strings
must belong. In particular, the control set can be a language of arbitrary complexity,
e.g., a context-free language.

We assume that the reader is familiar with context-free grammars and
derivations; our notation is basically consistent with Harrison [3]. A standard
context-free grammar is a quadruple (VN, VT, P~ Z), where VN and V T are,
respectively, finite sets of nonterminals and terminals, with Z E VN being the
start symbol of the grammar. The set of grammar symbols, VN tO VT, is denoted by
V. P is a finite set of context-free productions of the form/3 = X ~ Xa ... Xn,
where X E VN and the right-hand side X~ .-- Xn belongs to V*. The empty string is
denoted by &

The following definition of control grammars I is adapted from Weir [16], [17].

Definition 2.1. Let G = (VN, VT, P, Z) be a standard context-free grammar. Let VL
be a finite set of production labels and let Label: P ~ VL be a one-to-one function,
which assigns to every production from P a unique label from VL. In addition, for
every production with nonempty right-hand side,

p = X ~ X 1 . . . X , ,

there is a unique integer i, 1 < i < n, that identifies the symbol X,. on the right-hand
side of/3 as being distinguished. For a production

p = X---~ e,

we denote the symbol e as being distinguished. For the sake of clarity, if
Label(p) = l, then we write the labeled, distinguished production p obtained from
/~ as

p = I : X--+X1 "" Xi "" Xn if n_>l ,

1 This definition is a variation of a general formalism proposed by Ginsburg and Spanier [2].

Pumping Lemmas for the Control Language Hierarchy 201

or as

p - - l : X ~ .

G--(VN, VT, VL, Z, P, Label) is called a Labeled, Distinguished Context-Free
Grammar (or LDCFG) over the underlying context-flee grammar G. Let
C C_ V + be some language (not containing the empty string ~) over the alphabet
of labels VL. Then f9 -- { G, C} is defined to be a control grammar. Every string in
V + is referred to as a control string or a control word. We say that the LDCFG G is
controlled by the control set C, or that C is the control set of the LDCFG G in
grammar fg (for an example of a control grammar, see Figure l(a)).

Consider a control grammar f# = {G, C} as described above in Definition 2.1.
Let G be the underlying context-free grammar of G. Following standard terminol-

ogy, we say that A ~ ~ i f there is a standard context-free derivation in G of ~ E V*

from A E V in zero or more steps; each step in the derivation corresponds to the
context-free rewriting of some nonterminal symbol using an appropriate production
of G.

ThenA ~ a (read A derives a in G) simply ifA ~ a, i.e., a derivation o f~ from
6

A in G is also a derivation in G. A derivation tree of the control grammar G is
obtained by taking a derivation tree in the underlying context-free grammar G and
decorating it as follows. For every intemal node labeled X with its children labeled
X1, . . . , X,, we label the edge between the parent, node (labeled X) and the child
node (labeled X,.) with the production label l where p = l: X--+ X1 .. . ff(i "'" Xn is
the labeled, distinguished production of G which corresponds to the production used

to derive X1 " " X. from X in the tree. We denote by TreeSet(A ~ a), the set of all

such (decorated) derivation trees which correspond to the derivation A ~ ~.
, G

Figure l(b) depicts a derivation tree in TreeSet(Z ~ aabbcc) for the grammar fg
c

in Figure 1 (a), with labeled edges shown in boldface. Note that from every node in

v
11: Z ~ A Z j Z ~

1 2 : Z ~ Z E
l s Z B Z 15 : . ~ Z : ~

a Z
: ~ ~ 17

5 1 ~ 15: A ~ ~ 15 Z
l 6 B ~ b a Z ~ E

17: E ~ ~ B Z c

118 I / ,
b b

n n - ' t
C ={(/1 12) l 8 /4 [n~>l}

U {15, 16,/7}
(a)

Fig. 1.

(b)
A control grammar with a sample derivation tree.

202 M.A. Palis and S. M. Shende

the tree, there is a unique, edge-labeled path to some leaf node in the tree. In the rest
of the paper an edge-labeled path will sometimes be identified with the control
string labeling the path, i.e., the sequence of labels from the node beginning the path

to the leaf node terminating the path. Given a derivation tree F E TreeSet(X ~ ct),

the maximal labeled paths in F are called c-paths. Thus, a c-path ends at a leaf node
and begins at some node which is either the root or an internal node which is
connected to its parent by an unlabeled edge. Finally, we define ControlWords(F) as
the set of control strings that label c-paths in F. For example, for the derivation tree
F shown in Figure l(b), the set ControlWords(F) is given by

{111211121314,/5, 16, 17}.

Definition 2.2. The Control Language L(ff), generated by the control grammar
ff = {G, C}, with Z being the start symbol of G, is defined as

L(ff) = {w E Vii there is a derivation tree

F E TreeSet Z ~ w such that ControlWords(F) C_ C}.

Let ~' be any family of languages over a finite alphabet. We say that a language L is
controlled in family ~ if and only if there is a control grammar N = { G, C} such
that L = L(N) and C c ~.

The reader may verify that the control language generated by the grammar in
Figure l(a) is the context-sensitive language L(N)= {anbncnln >__ 1}, with the
context-free control set C. Hence, L(N) is controlled in the family of context-free
languages, CFL, but is itself not a context-free language. Following Weir [16], a
countable hierarchy of language families may be defined such that the zeroth level
family in the hierarchy is the family of context-free languages, and, for every integer
i >_ 0, a language in the (i + 1)th level family is generated by a control grammar
whose control set is a language in the ith level family.

Definition 2.3. The Control Language Hierarchy (CLH) is defined as follows:

�9 CLI-10 = CFL, the family of context-free languages.
�9 For a l l k > 1,

CLHk = {Lla context-free grammar Go, and a sequence of LDCFGs
G1, G2 Gk exist such that
(1) Co = L(Go),
(2) for all 1 < j < k, Cj = L({Gj, Cj-1}), and
(3) = L({Gk,

We say that Go and the sequence of LDCFGs G1, G2 Gk define L.
�9 CLI-I = {LIL ~ CzLHk for some k _> 0}.

Languages in the hierarchy have interesting formal properties. For example, the
languages generated at level one in the hierarchy are weakly equivalent to those

Pumping Lemmas for the Control Language Hierarchy 203

generated by tree adjoining grammars, a tree-rewriting formalism for natural
language syntax [6], [14]-[16]. Every family in the hierarchy forms a full
Abstract Family of Languages [17] and admits fast sequential and parallel parsing
algorithms [9].

It is well known that the language {anbn: n >_ 0} is context free. This can be
generalized by showing that, for any i > 0 and a finite alphabet {al, a2 a2i+l },
the language LCi = {aTa ~ . . . a2J§ n > 0} belongs to the family CLHi. For
completeness, we provide a brief sketch of the proof. Let k > 0, and let
~r = {al, a2, . . . , a2k+l } be an alphabet. Assume inductively that LCk E CLHk
(over the alphabet ~'). Let ao ~ d be a new symbol, and consider an alphabet

= {bl, b2, . , . , b2k+2 } disjoint from ~r tO {ao}. We define an LDCFG, Gk+l, with
control set C = LCk. {ao} such that LCk+I = L({Gk+l, C}); the set C belongs to
CLHk since the latter is an AFL. The grammar Gk+l has a single nonterminal Z and
contains the production, ao: Z ~ ~, along with 2 k+l other productions. In particular,
for every j, 1 _<j < 2 k+l, the production,

ay: Z ~ b iZb2k+~_y+l,

is in the grammar. It can be verified that the grammar {Gk+l, C} generates exactly
the strings in LCk+l, over the alphabet ~ .

Observe that every family CLHi, i > 1, can be individually separated from
CLHo by applying Ogden's pumping lemma for context-free languages [3] to the
language LC~ E CLHg. However, one of the questions that had remained open so far
concemed the strict separation of the hierarchy, i.e., whether CLHi C CLH~+I, for
all i _> 1. We answer the question in the affirmative by exhibiting a progression of
pumping lemmas, one for each level in the hierarchy.

3. Pumping Lemmas for the Hierarchy

For any k > 0, the family CLHk is clearly contained in the family CLHk+I . We
show that this containment is proper by proving a progression of pumping lemmas
for families in the hierarchy. Before doing so, we note that Khabbaz [8] defined a
subhierarchy contained in CLH, where the grammars G,-, 1 < i < k, defining any
given language at level k are restricted to be linear context-free grammars. He also
established a progression of pumping lemmas thereby demonstrating strict separa-
tion of the Khabbaz subhierarchy. To our knowledge, it has not been formally shown
that his hierarchy is a proper subhierarchy within CLH; nevertheless, our result is
more general and provides a pumping lemma progression for the entire hierarchy
CLH.

A control grammar, { G, C}, is said to be reduced if and only if every control
word in C labels some c-path in a derivation tree of the grammar. Given a grammar

= {H, D} for L, we can easily construct an equivalent, reduced grammar
f# = { G, C} for L. Let Mn be the deterministic finite-state automaton corresponding
to LDCFG H as follows. For every grammar symbol X of H (including the empty
string e), there is a state qx in MI4. For every production l: X ~)(1 . . . X i . . . Xn of

204 M . A . Palis and S. M. Shende

H, there is a transition from state qx to state qx, labeled l. All states of M~
corresponding to nonterminal symbols of H are initial states of M,q; the remaining
states are designated as the f inal states. It is clear that the grammar ~ = { G, C},
with G = H and C = D fq L(MI~), also generates the language L = L (~) . Further-
more, the construction guarantees that the grammar fr is a reduced control grammar
for L, since only those control strings that label c-paths in partial derivation trees are
retained in the final control set C. CLHk, for any k > 0, is a full AFL; consequently,
we obtain the following result:

Proposition 3.1. Let k > l. For any language L C CLHk, there is a grammar
sequence Go,Gb . . . , Gk that defines L, such that i f Lo = L(Go) and Li, 1 < i < k,
denotes the language defined by the subsequence o f grammars Go, G1, . . . , Gi, then
{ Gi, Li-1} is a reduced control grammar for Zi. In particular, Lk = L is generated
by the reduced grammar { Gk, Lk - 1 }.

To simplify the statement of the pumping lemma and the subsequent proof, we
establish the following notation. Consider an arbitrary alphabet, E, consisting of
finitely many terminal symbols. Given a string w = a l a 2 . . . a n with ai E Z
(1 < i < n), the length, n, of w is denotedas]w[. Every integer i, 1 < i < n,
is called a position of w. Informally, the position i refers to the ith symbol in w.
Hence, specifying a subset of positions can be equivalently described as marking the
corresponding symbols of w. For j_> 2, a tuple of strings (over E),
(I) ~--- ((01, (02, ' ' ' , (0j), is called a j-factorization of the string w~ = (01(02 " ' " (0j

obtained by concatenating the component strings in the tuple ~. Conversely, for a
given string w, �9 is aj-factorization o fw i fw~ = w. For any m > 0, the string w m is
the concatenation of m identical copies of w (with w ~ denoting the empty string, e).

Let F be some subset of positions in w. Then, any j-factorization, ~, of w
induces a partition of F given by the tuple (F1, F2, . . . , Fj-); the component Fi,
1 < i < j , contains exactly those positions in F which mark symbols of w in the
substring (0~ in the factorization ~. Formally, if �9 = ((01, (02 (0j), then, for
1 <_i<_j:

Fi = {m C F : 1(01(02 "'" (0i-11 (m _< 1(01(02 "'" (oil}-

Next, we define the integer sequence el, i > 0, with geometric growth given by
ei = 2 (i+2) + 1. Note that eo = 5, el = 9, and, in general, ei+l = 2ei - 1 for i _> 0.
For any given i > 0, let qb = ((01, (02 %) be an ei-factorization of the string w.
Then the stringw[~ m] is defined by the ei-factorization

(I)[m] = (U l , U 2 , . . . , Uei)

such that for any j , 1 < j < ei, the string uj = (0j i f j is odd, and uj = (0jm otherwise.
For example, for i = 1, if the string w = aba2ba2b2a2b 4 has the el-factorization

3 2 2 4 5 r = (ab, a, aba, ab, b, a 2, b 2, b, b), then the string w~t~l = aba ba bah a b is
"2 4 2 2 obtained from its el-factorization qb [2] = (ab, a 2, aba, (ab) , b, a , b , b , b). Note

that, for any i > 0 and any factorization ~ = ((01, (02, . . . , (0e) of string w, exactly
suostrings of w are pumped to yield the t'actorization w [m]. (el - 1)/2 = ,~-1 �9

Pumping Lemmas for the Control Language Hierarchy 205

For the sake of clarity, we adopt the following conventions. Derivation trees are
named by the Greek letters F, A, etc. The letters tI) and II name factorizations of
strings; the corresponding lowercase letters with suitable subscripts are used to
denote the component substrings of a factorization. We use lowercase Greek letters
to denote nodes in derivation trees. Strings are generally identified by lowercase
letters u, v, etc.

T h e o r e m 1 (Pumping Lemma Progression). Let k >_ O. For every L C CLHk,
there is a constant n such that, for every w C L and any set o f positions F in w, i f
IFI >_ n, then there is an ek-factorization �9 = (q~l, ~02, . . . , Cpek) of w that satisfies
the following three statements. Let (F1, F~ Fek) be the partition o f F induced
by the factorization ~.

(1) There is a j, 1 < j < 2 k§ such that all the components of the triple
(F2y-1, F2j, F2j+I) are nonempty.

(2) IF2k+l UF2k+I+I OF2k+,+21 <_ n.
(3) For all m >_ O, the string w[~ m] also belongs to L.

Observe that Theorem 1 for the case k = 0 is simply a restatement of Ogden's
pumping lemma for CFLs [3]. In particular, for every context-free language L, there
is a pumping constant no such that, for every string w in the language with at least
IF] > no marked positions, there is a factorization

(I) = (q~l, @2, (P3' (P4, (P5)

of w satisfying the three statements in Theorem 1. The three statements in the
theorem assert that:

1. Every component subset in the triple (F1, F2, F3) or in the triple (F3, F4, F5)
is nonempty,

2. IF2 U F3 U F41 <no.
3. For all m > 0, the string m m E L. -- ~01(P2 ~3(P4 ~5

Theorem 1 is proved, in Section 3.2, by induction on k > 0, using Ogden's
lemma as the basis for the argument. For k _> 1, by Proposition 3.1, we can assume
without loss of generality that the language L E CLHk is defined by the sequence of
grammars Go, G1, . . . , Gk, such that L is generated by the reduced control grammar
(# = { Gk, C} where the control set C is defined by the subsequence of grammars
Go, G1 Gk-1. The constant n in the statement of Theorem 1 is a property of the
grammar sequence Gi, 0 < i < k, and hence a property of the language L. To
illustrate the techniques used in our proof, we describe the proof in detail for the
case k = 1. The proof can be extended to higher levels in the hierarchy in a
straightforward manner; we specify an appropriate constant n = n(ff).

Theorem 1 has a simple application: the separation of the control language
hierarchy. For every integer i, i > 0, consider the finite alphabet
•i = { a l , a2, . . . , a2i+l }. We remarked earlier that the language LCi, i >_ O, over
the alphabet Zi defined as

n , 0 } , L C i = { a l a 2 n . _ �9 . . a 2 i + l , n >

belongs to the family CLHi.

206 M.A. Palis and S. M. Shende

Theorem 2. For every integer L i >_ 1, the language LCi does not belong to the
family CLIIi_I. Hence, the hierarchy CLtt is strictly separable.

Proof Fix i > 1 and assume for the sake of contradiction that LCi belongs to the
family CLI-I i_ 1. Let n be the pumping lemma constant for LCi using k = i - 1 in
the statement of Theorem 1. Consider the string w = a~a~ .. . a~i+l in LCi with
every position in w being marked. By assumption, w satisfies the conditions in
Theorem 1 for k = i - 1. Hence, there is an ei_a-factorization

f~) = ((~1 , (~2 , . . . , (~ei_l)

of w for which statements (1)-(3) hold. However, statement (3) implies that we can
obtain longer strings in the language LCi by pumping exactly 2; substrings of w
given by the even-indexed components of the factorization O. Among the pumped
substrings, at least one substring must be nonempty and to avoid scrambling
symbols, each such nonempty substring must be of the form a + for some j,
1 _< j < 2 i+1. This leads to an immediate contradiction, since pumping only 2 i such
substrings of w can never produce another string in LCi. []

3.1. Pumping Subtrees

Before we turn to the proof of Theorem 1, we discuss the pumping of subtrees of a
derivation tree of a control grammar. Given the language L, let { G, C} be a reduced
control grammar for L, with Z as the start symbol ofLDCFG G and C as the control

set. For a terminal string w E L, let F in TreeSet(Z ~ w) be a derivation tree for w.

Consider a subtree Fo of F with the property that the frontier of F0 contains exactly
one internal node ofF . We denote this unique node o f f as the foot node of Fo. The
subtree Fo is called an auxiliary subtree of F. An internal node in F is called a
source node if it begins a c-path. An auxiliary subtree, F0, is called a recursive
subtree o f f if both the root node and the foot node of Fo are source nodes in F with
the same label.

Under certain conditions, a sequence of auxiliary subtrees or a sequence of
recursive subtrees contained in F, may be pumped. We say that any two auxiliary (or
recursive) subtrees of F are disjoint if they do not share any node. For r > 2,
consider a sequence F1, F2 ,1" r of mutually disjoint auxiliary subtrees of F
such that there is a c-path, denoted P, from some source node o f f to some leaf node
o f F , which passes through the root and foot nodes of each subtree Is, 1 < j < r. In
particular, as shown in Figure 2(a), the path first passes through F1, then through
F2, and so on, in sequence, finally passing through F,. Let ~ be the control word
labeling the c-path, and let H = (Tr:, zr2 n2 r+ l) be the factorization of~ induced
by the sequence of subtrees. Then the following result holds.

Proposition 3.2. For every m >_ O, if f~[n m] E C, then the tree F m obtained from F
by replacing each auxiliary subtree Fj, 1 <_ j <_ r, by a stack of m identical copies of
Fj (see Figure 2(b)), is also a derivation tree of the grammar. Further, i fF derives a
string in L, then so does Fm.

Pumping Lemmas for the Control Language Hierarchy 207

Root and
foot nodes
with same Auxiliary

c-path o o
o o
o o

/

O

Fig. 2.

\

~ , ~ m copies of
q

, , ~ m copies of

o
o 0

(a)

(b)
Pumping auxiliary subtrees of F: (a) the tree F and (b) the tree Fm.

Proof The first statement is a consequence of the fact that the control grammar is
reduced. Specifically, if fi[n m] E C for m > 0, then it follows from the reducedness of
C that the root and foot nodes of each subtree I'j, 1 < j < r, are labeled by the same
nonterminal. Hence, the tree, F" , is a well-defined derivation tree of the grammar.

If F derives a string in L, then every control word of F is in the set C. On the
other hand, except for the path P, every other c-path in F either lies outside all the
subtrees I'j, 1 < j < r, or lies entirely inside some subtree I'j in the sequence. In
the former case the c-path remains unchanged in Fm; in the latter case the c-path is
replicated m times, once in each copy of the subtree I'j. It follows that every control
word in I " is also contained in the control set C, thus proving the second part of the
proposition. []

A stronger result holds for a sequence ofrecursive subtrees in F. For r > 2, let
F1, F2 , I 'r be a sequence of mutually disjoint recursive subtrees of a derivation
tree I" with the following property: there is a common root-to-leaf path in I" which
passes through the root and foot nodes of each recursive subtree Fj, 1 < j < r, in
that order (see Figure 3(a)).

Proposition 3.3. For m >_ 0, the tree F m obtained from F by replacing each
recursive subtree Fj, 1 <_ j <_ r, by a stack of m identical copies of I'j, is also a
derivation tree o f the grammar Further, ifi" derives a string in L, then so does I TM.

Proof Recall that both the root and the foot nodes of every I'j, 1 < j < r, are
source nodes with the same nonterminal label in F. Hence, the first statement of the
proposition is obvious.

208 M . A . Palis and S. M. Shende

SOUrCe

Common
path o o

o o

, /

Recursive
Subtree q

(a)

Fig. 3.

/ \

copies of
q

<~ ~ o ~ m copies of

; /J
o

/

(b)

o
o

\
rn copies of

Pumping recursive subtrees of F: (a) the tree F and (b) the tree Fm.

F has three kinds of c-paths:

(a) Paths that PaSS through nodes entirely outside the recursive subtree sequence.
(b) Paths that pass through nodes entirely inside some subtree Fj-, 1 < j < r.
(c) Paths that begin at the foot node of some subtree Fj, 1 < j <_ r, but thereafter

pass through nodes entirely outside the recursive subtree sequence.

In F m, paths in categories (a) and (c) are unaffected, whereas each path in category
(b) is simply replicated m times, once in each copy of the subtree (see Figure 3(b)).
Clearly, the set of control words in F m remains unchanged from those in F, proving
the second statement in the proposition. []

Consider the sequence of subtrees F1, F2 F r in Proposition 3.2 (or in
Proposition 3.3). The sequence naturally induces a factorization

(I) = (~01, ~2 ' " ' ' ' ~04r+l)

of the string w yielded by the derivation tree F. In particular, the substrings ~02j and
~Oar-2j+2 are, respectively, the yields of the subtree Fj, 1 < j < r, to the left and to
the right of the foot node of Fj.. It follows that if F derives the string w E L, then
the tree F m derives the string w[~ m] E L. Our proof of the pumping lemma
progression relies crucially on this observation.

3.2. The Proof

We now proceed to establish Theorem 1 for the representative case k = 1, using
Ogden's pumping lemma for context-free languages as the basis of the inductive

Pumping Lemmas for the Control Language Hierarchy 209

argument. Let f~ be a reduced control grammar for L E CLH1 defined by the
sequence of grammars Go and G1, i.e., f~ = {G1, C}, where C = L(Go) is a context-
free control set of the grammar. Let N1 be the number of nonterminals of G1, let dl
be the maximum length of the right-hand sides of productions in G1, and let no be
the context-free pumping lemma constant for Go. Then we claim that the

is given by nl = d~l corresponding constant n 1 ~ n((~) " " n0(Nl+l)
Consider a string w E L(f~) and let F b e a set of positions o f w with IFI _ nl.

Let F be a derivation tree for w, with ControlWords(F) E C, where the leaf nodes
corresponding to positions in F are marked. We define some subsets of the set of
nodes of F with the following simplifying notation: for every such subset, say A, the
nodes contained in set A are called A-nodes.

A D-node 2 in F is an ancestor of some marked leaf corresponding to a position
in F. A B-node is a D-node with the following additional property: it has at least two
immediate children in F which are both D-nodes. In other words, there is a path to
some marked leaf in F from a D-node, whereas a B-node is one from which there
are at least two disjoint paths to marked leaves. The following result may be easily
established (see p. 187 of [3]).

Proposition 3.4. Let F' be any subtree of F with the property that, for some
integer i >_ O, every root-to-leaf path in F' has at most i B-nodes. Then F' has at
most d I marked leaves corresponding to positions in E

By Proposition 3.4, a root-to-leaf path in F with at least 4no(N1 + 1) B-nodes
exists; let P be a path with the maximum number of B-nodes over all root-to-leaf
paths in F. Let the path P end at the leaf node 0~; note that ~ may or may not be a
marked leaf.

Denote by P the smallest suffix of the path P which contains the leaf node a,
begins at a B-node, and contains exactly 4n0(N1 + 1) B-nodes, i.e., P contains the
lowest 4no(N1 + 1) B-nodes along path P (see Figure 4). Let P begin at the B-node,
7, and let A be the subtree o f F rooted at node 7- From the definition o f / ' , it follows
that every path in A has at most 4no(N1 + 1) B-nodes. Hence, by Proposition 3.4,
the number of marked leaves on the frontier of A is at most nl (see Figure 4).

Let Bp denote the set of B-nodes on path P. Note that every Bp-node is inside
the subtree A. Now, every Bp-node is an ancestor of some marked leaf on the
frontier of the subtree A, such that the leaf either lies to the left or to the right of the
leaf node a. Define B1 (Br) to be the subset of Bp, such that every Bl-node (resp. Br-
node) has a marked descendant to the left (resp. right) of the leaf node a. Clearly,
B1 t3 Br = Bp, even though the sets B1 and Br may not be disjoint. Since B~ contains
exactly 4n0(N1 + 1) nodes, at least half of those nodes must belong either to B1 or to
B~, Without loss of generality, assume that B1 contains at least 2n0(N1 + 1) nodes.

Every node on path P is either a source node or is a descendant of a source node
on path P. Let S be the set of source nodes on path P, and let fl be the unique source
node defined as follows. If the root node, 7, of subtree A is an S-node, then fl = 7.

2 The notation is consistent with the terminology used on p. 187 of [3].

210 M.A. Palis and S. M. Shende

Path P

Node ~ F

G~

Fig. 4.

Less than n 1
marked leaves

The subtree A.

Otherwise, fl is the minimal source node on path P which is an ancestor of% i.e., the
c-path starting at fl enters the subtree A at the node 7. Every Bl-node belongs to the
c-path of some source node in the set S O {fl}. We have two possible cases:

Case 1: There is a source node in S O_{fl} such that the c-path starting at the node
has at least no Bl-nodes (on the path P). Choose any such source node, and let
be the control word labeling its c-path. For every Brnode encountered on the c-path,
we mark the label on the labeled edge (along the c-path) below the node. These
marked labels now serve as positions of the control word ft. We denote the set of
these positions by K; by our choice of the source node, the cardinality of the set K is
at least no. Hence, applying the inductive hypothesis to the control word fi, an e0-
factorization, II = (rq , roe0), of ~ satisfying the conditions of Ogden's pumping
lemma exists. Recall that e0 = 5; accordingly, let Kt, 1 < i < 5, be the subset of
marked positions in the substring rci, and consider the el-factorization

�9 - - , el)

of w induced by the factorization 1-I of the control word ~ (see Figure 5). Since
el = 9, let Fi, 1 < i < 9, be the set of positions in the substring cpi. We prove that the
factorization, ~, satisfies the three statements in the lemma.

1. By the inductive hypothesis, either the subsets K1, K2, and K3 or the subsets
K3, g4, and Ks are nonempty. Since every marked position of the control
word corresponds to a distinct Brnode in subtree A, it follows that, for
1 < i < 5, every marked position in K; corresponds to a distinct marked
position in Fi. From this, we conclude that either the subsets F1, F2, and F3
or the subsets F3, F4, and Fs are nonempty. This proves statement (1) of
Theorem 1 (the other symmetric cases in the statement arise when there are
more than 2no(N1 + 1) Br-nodes, and can be proved in a similar manner).

Pumping Lemmas for the Control Language Hierarchy 211

C'l~th
labeled ~ J I ~. ~ Auxiliary tree

%

Fig. 5. Pumping a c-path with at least no Bl-nodes.

2. From the observations in the preceding paragraph, the portion of the c-path,
labeled by the suffix nan5 of the control word fi, is entirely inside the subtree
A. It follows that ~04~05~06 is a substring of the yield of A. We conclude that
IF4 tO F5 tO F61 < nl, proving statement (2) of the theorem. For the sym-
metric case when there are more Br-nodes than Bl-nodes, a similar argument
suffices.

3. By inductive hypothesis, ~[n m] E C for all m >_ 0. However, the substrings 7~ 2
and rt4 induce the sequence of auxiliary subtrees F1 and F2 with the root and
foot nodes of both trees lying on the c-path, as shown in Figure 5. Hence,
Proposition 3.2 applies with r = 2, and we conclude that w~r m] E L for all
m > 0. This proves statement (3) of the theorem.

Case 2: There are less than no Bvnodes on every c-path starting at a source node in
S to {fl}. Since there are at least 2n0(N1 + 1) Bl-nodes, there must be no less than
(2N1 + 3) source nodes from the set S tO {fl}, such that their corresponding c-paths
contain at least one Bl-node along P. Of these, at least 2(/71 + 1) nodes belong to
the set S. Choose 2(N1 + 1) such S-nodes, denoted by the ordered sequence
Ctl, ~z , ~2(N,+1), with the property that for every i, 1 < i < 2(N1 + 1), the S-
node ai i s an ancestor o f the S-node ~i+1 along path P. Let the node %
1 < i < 2(N1 + 1), be labeled X,..

There are only N1 nonterminals in the grammar G1 and 2(N1 + 1) nonterminals
labeling the sequence of nodes ai, 1 < i < 2(N1 + 1). Hence, by the pigeonhole
principle, two pairs of nodes (ari, ~) , 1 < i < 2, exist such that
(i - 1)(N1 + 1) < ri < f i <__ i(N1 + 1) and X n = Xf~. In other words, F contains
two disjoint recursive subtrees, F1 and 1-'2, both sharing disjoint portions of the path
P. It is readily seen that the path P is partitioned into five segments by the recursive
subtrees; the segments, in turn, induce an evfactorization

= (~1, ~2, " ' ' , (P9)

212 M.A. Palis and S. M. Shende

Cs
Fig. 6. Pumping a recursive subtree sequence inside A.

of w (see Figure 6). As before, let Fi, 1 < i < 9, be the subset of positions of the
substring q~; in the factorization. We again prove that the factorization, qb, satisfies
the three statements in the theorem.

1. Statement (1) follows from the fact that there is at least one Bvnode in each
of the last four segments of the path P, because this implies that there is a
marked position in each of the substrings ~o2, ~03, ~04, and ~o5 of w. The
symmetric cases in statement (1) arise when there are more Br-nodes than B1-
nodes on the path P, and can be proved in a similar manner.

2. Observe that the recursive subtree, F1, is entirely inside the subtree A.
Hence, it follows that q~2q~3 "'" q~8 is a substring of the yield of subtree A.
Statement (2) is immediate; in fact, we have

IF2 t_JF3 U . . . UFs[< nl.

3. Applying Proposition 3.3 (with r = 2) to the recursive tree sequence F1
and F2, we can conclude that the factorization, ~, satisfies w~ m] E L for all
m > 0 .

This completes the proof of the theorem for the case k = 1. In general, we can
extend the argument by induction for levels k > 1 in a systematic manner. Let Nk be
the number ofnonterminals of Gk, and, inductively, let nk- 1 be the pumping lemma
constant for the control set C, defined by the sequence of grammars
Go, G1, . . . , Gk-1. Let dk be the maximum length of the right-hand sides of
the productions in grammar Gk, and define the pumping constant nk for L as

nk = d 2k+lnk-l(Nk+l).

We first use Proposition 3.4 with the constant dk, This provides a path, P, and a
minimal suffix, /3, of the path P with exactly 2k+lnk_l(Nk + 1)B-nodes on /3.

Pumping Lemmas for the Control Language Hierarchy 213

Following the same case analysis, in the first case we assume that there is a source
node in the set, S tA {fl}, with at least nk-1 Bl-nodes (or Br-nodes). The inductive
hypothesis for level (k " 1) yields a sequence o f r = 2 k auxiliary subtrees, which
can be pumped using Proposition 3.2 (with r = 2k). This disposes o f the first case.
Otherwise, we obtain a sequence o f r = 2 k recursive subtrees, and pump the
sequence using Proposition 3.3 (with r = 2k). In both cases it is easy to verify that
statements (1)-(3) in Theorem 1 are satisfied by the factorization induced by the
corresponding sequence o f subtrees. With these modifications, the theorem can be
proved for any k > 1. []

Acknowledgments

We are grateful to the anonymous referees and, especially, the editor, Prof. Joost Engelfriet, for carefully
reading the manuscript, pointing out some subtle errors, and for suggesting improvements to the overall
presentation of the paper.

References

[1] A. V. Aho. Indexed grammars--an extension to context free grammars. J. Assoc. Comput. Mech.,
15:647~71, 1968.

[2] S. Ginsburg and E. H. Spanier, Control sets on grarnrnars. Math. Systems Theory, 2:159-177,
1968.

[3] M.A. Harrison. Introduction to Formal Language Theory. Addison-Wesley, Reading, MA, 1978.
[4] G. T. Herman and G. Rozenberg. Developmental Systems and Languages. North-Holland,

Amsterdam, 1975.
[5] O.H. Ibarra. Simple matrix languages. Inform. and Control, 17:359-394, 1970.
[6] A.K. Joshi, L, S. Levy, and M. Takahashi. Tree adjunct grammars. J. Comput. System Sci., 10(1),

1975.
[7] T. Kasai. An hierarchy between context-free and context-sensitive languages. J. Comput. System

Sci., 4:492-508, 1970.
[8] N.A. Khabbaz. A geometric hierarchy of languages. J Comput. System Sci., 8:142-157, 1974.
[9] M.A. Palis and S. Shende. Upper bounds on recognition of a hierarchy of non-context-free

languages. Theoret. Comput. Sci., 98(2):289-319, May 1992.
[10] D.J. Rozenkrantz. Programmed grammars and classes of formal languages. J. Assoc. Comput.

Mech., 16:107-131, 1969.
[11] A. Salomaa. Matrix grammars with a leftmost restriction. Inform. and Control, 20:143-149,

1970.
[12] A. Salomaa. Formal Languages. Academic Press, New York, 1973.
[13] J.W. Thatcher. Tree automata: an informal survey, in A. V. Aho, editor, Currents in the Theory of

Computing, pp. 143-172. Prentice-Hall, Englewood Cliffs, NJ, 1973.
[14] K. Vijay-Shanker. A Study of Tree Adjoining Grammars. Ph.D. thesis, University of Penn-

sylvania, Philadelphia, PA, 1987.
[15] K. Vijay-Shanker and D. J. Weir. The equivalence of four extensions of context-free grammars.

Math. Systems Theory, 27:511-546, 1994.
[16] D. J. Weir. Characterizing Mildly Context-Sensitive Grammar Formalisms. Ph.D. Thesis,

University of Pennsylvania, Philadelphia, PA, September 1988.
[17] D. J. Weir. A geometric hierarchy beyond context-free languages. Theoret. Comput. Sci.,

104:235-261, 1992.

Received February 6, 1991, and in revised form June 15, 1992, and March 10, 1993, and in final form
April 29, 1993.

