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The Pigeonhole Principle for n is the statement that there is no one-to-one function between 
a set of size n and a set of size n - 1. This statement can be formulated as an unlimited fan-in 
constant depth polynomial size Boolean formula PHPn in n ( n - 1 )  variables. We may think that 
the truth-value of the variable xi, j will be true iff the function maps the i-th element of the first 
set to the j-th element of the second (see Cook and Rechkow [5]). PHPn can be proved in the 
propositional calculus. That is, a sequence of Boolean formulae can be given so that each one 
is either an axiom of the propositional calculus or a consequence of some of the previous ones 
according to an inference rule of the propositional calculus, and the last one is PHPn. Our main 
result is that the Pigeonhole Principle cannot be proved this way, if the size of the proof (the 
total number or symbols of the formulae in the sequence) is polynomial in n and each formula is 
constant depth (unlimited fan-in), polynomial size and contains only the variables of PHPn. 

The  classical proof of the Pigeonhole Pr inciple  (using induc t ion  on n)  yields 
a proposi t ional  proof where the depth  of the formulae will be large, or if we want  
to keep it cons tan t  we have to in t roduce  new variables. It  is easy to give a proof 
con ta in ing  only cons tan t  dep th  po lynomia l  size Boolean formulae bu t  of exponent ia l  
length.  

The  theorem described in the abs t rac t  solves an open problem of Paris  and 
Wilkie  [7], namely  according to their  results it implies t ha t  the Pigeonhole Pr inciple  
cannot  be proved in I A o ( f ) .  The  axiom system I A 0  is a bounde d  version of Peano  
ar i thmet ic  where in the induc t ion  axioms we allow only bounde d  quantifiers of the 
type  3x _< y or Vx _< y. We get I A o ( f )  by adding a new funct ion  symbol  f to the 
language (which can be used in the induc t ion  axioms). The  Pigeonhole Pr inciple  
is s ta ted  for the funct ion  f .  

Definit ions.  1. In  this paper  the Pigeonhole Pr inciple  means  the s t a t ement  tha t  
there is no one-to-one funct ion  of a set of size n onto a set of size n - 1. The  
usual  formula t ion  "into a set of size n -  1" is a s t ronger  s ta tement ,  bu t  since we 
are proving negat ive  results,  everyth ing remains  t rue  wi th  the s t ronger  form. Our  
proof gives the  "onto" version so we will call this the Pigeonhole Pr inciple  unless 
explici t ly s ta ted  otherwise. Cook and  Rechkow gave a proposi t ional  formula t ion  of 
the Pigeonhole Principle:  
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\ ~  j C - 1  \ jEn lien 

i E n  j E n - 1  
E n -  l j ~ k  i, I E n i ~ l  

2. A Frege system is a propositional proof system. First a finite set of axioms 
is given. E.g. qbA~--*r is an axiom. I t  means that  we may replace r and ~ by any 
propositional formulae and the resulted formula will be accepted as true. Natural ly 
we will use only axioms whose t ruth  value is true if we substitute arbi t rary true/false 
values for the formula symbols in it. 

A finite set of rules of inference is also given. The rules of inference must be 
sound in the following sense: the premises of any instance of the rule logically entail 
the conclusion of the rule. E.g. modus ponens is such a rule: it says that  from r 
and r --+ g) we may infer 4. If we infer the t ru th  of a formula according to these 
rules from the axioms or already proven formulae, then we consider it as proven. 

A Frege proof is a sequence of propositional formulae whose each element is 
either an axiom or follows by one of the inference rules from some of the earlier 
elements of the sequence. We do not fix any specific set of axioms or set of inference 
rules, our nonprovability result hold for any finite set of sound axioms/inference 
rules. 

In a Frege proof as described here it is not possible to introduce abbreviations 
for boolean formulae, so e.g. the step "denote xVy by z" is not allowed. Practically 
it means that  to prove a formula we may use only formulae which contain the same 
variables. There is a stronger version of this notion~ where this type of abbreviation 
is allowed, called extended Frege proof system. 

A weaker notion is the resolution proof system, where start ing from an unsat- 
isfiable boolean formula and using the resolution rule we t ry  to get a contradiction. 
(We will not use this notion). 

3. A formula of the language of Peano Arithmetic (that is containing the 
relation symbols =, +, x, _<, 0,1 only) is called bounded if it has only quantifiers of 
the type Vx _< y and ~x _< y, where these are abbreviations for Vx(x < y-+...) and 
3z(x<_yf...). 

/A0  is the axiom system consisting of a set of axioms describing the usual 
algebraic properties of the relations = , + ,  • <,0, 1 like e.g Vx, y x §  and 
for each bounded formula r y) the corresponding induction axiom VJ((r 0)A 
V(r --~ r  + 1))) --~ Vzr We get I A 0 ( f )  by extending the language 
with one unary function symbol f and allowing to use it in the induction axioms. In 
I A 0 ( f )  the Pigeonhole Principle is the following statement  "for all x the function 
f is not a one-to-one map of the set { 0 , 1 , . . . , x - I }  onto the set { 0 , 1 , . . . , x - 2 } " .  
Clearly this s tatement  can be given by a firstorder formula. 
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The notion of Frege system was introduced by Cook and Rechkow [5]. They 
and Statman [10] discussed the connection between length of propositional proofs 
and unsolved questions of computational complexity (e.g. NP = co-Np). 

Cook and Rechkow gave a propositional formulation of the Pigeonhole Principle 
and used as an example for a propositional formula which have a polynomial size 
proof in an extended Frege system but its only known Frege proof is of exponential 
size. (The proof in the extended Frege system actually describe a sequence of 
functions fn , . . .  ,f0, so that  fi  is a one-to-one map of {1, ... ,i} into {1,...  , i - 1 } .  
Each fi is given by i(i - 1) variables which are defined from the variables for f i+l.  
If we want to express every variable in terms of the original variables corresponding 
to fn then we get formulae of exponential size.) S. Buss proved however the 
surprising result that  the Pigeonhole Principle actually has a polynomial size Frege 
proof. (The depth of the formulae given in his construction is not bounded by any 
constant.) 

A. Haken has shown that  any resolution proof of the PHP must be of expo- 
nential size. Urquhart  gave an other example which shows that  resolution proofs 
may require exponential size even when there is a polynomial size Frege proof. S. 
Buss and Gy. Turs [4] gave exponential lower bounds for resolution proofs of gen- 
eralized forms of the Pigeonhole Principle (where the range of the function f is 
essentially smaller than the domain). 

As these results show the Pigeonhole Principle was the main target of the 
lowerbound proofs. It seems that  all of the lowerbound results handle proof systems 
weaker then the Frege system, (resolution proof systems). Our theorem gives a 
lowerbound for a proof in the Frege system, although with the additional restriction 
that  the formulae has to be of constant depth. (As Buss' theorem about the 
existence of polynomial size Frege proof shows a restriction of this type is necessary 
in the case of the Pigeonhole Principle). The following theorem is the main result. 
A preliminary version of its proof was given in [2]. In the present version we give 
a more detailed and explicit description of the forcing method used in the proof. 

Theorem 1. For all natural numbers Cl, c2 if  the integer n is sufficiently large, then 
there is no Frege proof for the boolean formula P H P n  (Pigeonhole Principle for n) 
of size smaller then n cl , so that each formula in the proof is at most of depth c2. 

A. Woods proved (see [13] or [9]) that  the existence of infinitely many prime 
numbers can be proved in a system that  we get from [A0 by adding an axiom 
which essentially guarantees the existence of X l~ for any natural number x, if 
the Pigeonhole Principle is a theorem of this system. A. Wilkie [121 has found a 
weaker version of the Pigeonhole Principle which indeed can be proved in IA0 and 
still implies the existence of an infinite number of primes, but the question about 
PHP  remained unsolved. Paris and Wilkie [7] asked whether P H P  can be proved 
in IA0( f ) .  (If it can be proved in this extended system then it can be proved in 
IA0 too). They have shown that  if PHP can be proved in IA 0 ( f )  then there is a 
polynomial size constant depth Frege proof for P H P n .  So Theorem 1 implies the 
following: 

Corollary. The Pigeonhole Principle cannot be proved i n / A 0 ( f ) .  

Although the proof of our theorem is mostly combinatorial and probabilistic, 
ideas from axiomatic set theory, namely Cohen's method of forcing, play an ira- 
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por tant  role. We prove our nonprovability result, in the following way. Let n be a 
nonstandard natural  number in a nonstandard model K of Peano Arithmetic. As- 
sume that  contrary to our assumption there is a constant depth polynomial size 
propositional proof of the Pigeonhole Principle with the required properties. We 
may suppose that  there is such a proof in K for the number n. We consider the 
structure M consisting of all numbers less than n from K with some relations like 
the ordering, ari thmetic operations and possibly others which are definable in K.  
One of these relations will code the mentioned polynomial length proof of the Pi- 
geonhole Principle. 

Now we extend our structure M by adding to it a one-to-one function f which 
maps the set {0,1, . . .  , ~ . - 1 }  into the set { 1 , . . . , n - 2 } .  The essential part  of the 
proof is to show that  there is an f so that  in the extended structure the axiom of 
complete induction up to n remains valid, that  is if we define a subset of the set 
{ 0 , 1 , . . . , n - 1 }  by a firstorder formula then it will have a smallest element. This 
will imply that  we may check our polynomial length proof for f ,  tha t  is, we may 
find the first formula in the proof which is not valid for f and this way we reach a 
contradiction with the soundness of our inference rules. 

The construction of f is done according to the general ideas of Cohen's method 
of forcing but without its specific details concerning infinite axiomatic set theory. 
There is a striking similarity to the technique of "cardinal collapsing", here the 
cardinal n collapsed onto n - 1 .  In both  cases a one-to-one function f is constructed 
between two sets of different cardinality. (Of course f will be outside of the original 
model), f is constructed by giving a set of partial  one-to-one maps in the original 
model then choosing a compatible family of them outside the model so tha t  the 
domains of the functions in the family cover the whole set. The common extension 
of the functions in the family will be f .  Our part ial  one-to-one maps will be the 
common extension of the functions in the family. Paris and Wilkie [7] have used a 
forcing argument of this kind to prove that  if we weaken I A 0 ( f )  by allowing only 
existential formulae in the induction axiom then the Pigeonhole Principle indeed 
cannot be proved. 

As we have indicated earlier our proof uses the extensions of initial fragments 
of models Peano Arithmetic where the axiom of complete induction remains true 
in the extended model. In the following we describe the intuitive meaning of such 
extensions. 

When we are proving theorems in Peano Arithmetic we accept the existence of 
natural  numbers and certain properties of them (e.g. complete induction). However 
the most often used models for computat ional  complexity (e.g. polynomial t ime 
hierarchy) suggest that  we really accept only the existence of natural  numbers up 
t o  a certain large natural  number n and larger numbers (for example, subsets of 
a set of size n) "exist" only if we can compute them with some kind of algorithm. 
Therefore it is natural  to consider a system of axioms where the universe is the set 
of natural  numbers from 0 to n and the relations are the ari thmetic operations and 
ordering up to n. Addition and multiplication will be only partial  functions. (The 
choice of these relations is somewhat arbi trary but as we will see for our present 
purposes it has essentially no importance at all.) It  is also natural  to accept the 
axiom of complete induction up to n or, which is the same, up to a fixed power of n. 
How strong is this system of axioms? We will show tha t  the Pigeonhole Principle 
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cannot be proved in it, (this is an other formulation of our result), in other words 
we prove tha t  if we add a function symbol f to the system and we allow f in the 
axioms of complete induction still it is consistent that  f is a one-to-one map of 
0 ,1, . . .  , n -  1 onto 0,1, . . .  , n -  2. Actually this consistency result will remain valid 
in a much stronger form. We may add arbi t rary axioms to the system which do 

n o t  contain f but  are consistent to Peano Arithmetic or we may add arbi t rary new 
relation and function symbols and new axioms about  them not containing f but 
consistent to Peano Arithmetic,  and we may add the axioms of complete induction 
up to n containing all of the relation and function symbols together with f ,  and 
still the Pigeonhole Principle remains unprovable. These latter results show tha t  
the initial choice of the ari thmetic relations has really no significance. 

The mentioned consistency result is proved by constructing a model where 
both  the axiom-schema of complete induction (up to n) and the negation of the 
Pigeonhole Principle is valid. As we have told we will use the method o f  forcing. 
As a "notion of forcing" that  is the set of compatible functions we use partially 
defined one-to-one maps of n into n -  1, namely we will use maps which are defined 
on a set of size n -  n e where n is nonstandard element of a nonstandard model of 
Peano Arithmetic and e is a positive rational in the world. Our terminology will 
be similar to the terminology of forcing but  we actually do not use any result from 
it. The most  difficult part  of our proof is to show tha t  in the model what we get by 
the mentioned construction the axiom-schema of complete induction (up to n) is 
valid. The proof of this fact is essentially combinatorial. Some of the ideas of this 
part  of the proof was used already in [1] for the proof of the following theorem: 

Theorem. For each k let d k be the smallest positive integer so that for infinitely 
many n there is a depth d k size n d~ unlimited fan-in Boolean circuit which decides 
for any graph G on n vertices and for any pair of vertices u, v in G whether the 
distance of u, v is smaller than k. Then limk~oo d k = co. 

Actually the same theorem holds if the input is k permutat ions of a set of size 
n containing a point p and we are looking for circuits which decide whether the 
product  of the k permutat ions  takes p into itself. 

We are not able to use any of the results proved there but a part  of the proof 
can be modified to our present needs. 

If M is a model of Peano Arithmetic and n E M then Mn will denote the set 
{x E M I M ~ x < n}. Suppose tha t  X is a k-ary relation defined on M where 
k is a natural  number. We say that  X is definable in M if there is a firstorder 
formula r  of Peano Arithmetic with the free variables x l , . . . , x k , y  
and there is a c E M so tha t  for all x l , . . .  ,xk E M we have X ( x l , . . . , x k )  iff M 
r  ,xk,c). If  X is a k-ary relation on Mn then there exists a single firstorder 
formula r  (which does not depend on X)  so tha t  if X is defined on 
Mn if and only if there exists a c X E M so that  for all Xl , . . . ,  xk E Mn we have 
X ( x l , . . . , x k )  iff M ~ r  We will suppose that  for each X a e x  is 
fixed (e.g. the smallest one with the required properties). This makes it possible 
to t reat  the relations on Mn as elements of M. 

Definition. Let L0 be the language with the binary relation symbols =,  _< and the 
ter t iary relation symbols +,  • Let 0d be a k-ary relation symbol, let ~ be a new 
binary relation symbol, L = L0 U {od}, L'  = L0 U {5~}. 
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Definition. Suppose that  T is a theory of the language L. We say that  T describes 
a large initial segment of Peano Arithmetic if the following holds: 

For all natural  number l there is a model M of Peano Arithmetic and an n E 
M so that  M ~ n > l  and there is a k-ary relation A on the set {0, 1,...  , n - 1 }  (for 
some natural  number k) which is definable in M 'so that  with the universe Mr~ = 
{0,.. .  , n - 1 }  and the interpretation T; T(~d)=A, r . ( + ) =  +MIMe, 7 ( •  XMIM~, 
7(<)  =--<M IM~ we have Mn ~- T. 

Assume that  we have an interpretation 7- with the properties described in the 
previous definition, that  is a structure J/~ = (Mn, +, x, _<, A} where M is a countable 
nonstandard model of Peano Arithmetic and n is a nonstandard integer in M. We 
want to add a new binary relation p. (We are speaking about only binary relations 
but everything remains the same for j - a ry  relations too where j is standard.) We 
want to add the relation p so that  the new structure ~/4[p] satisfies certain firstorder 
properties. E.g. we will give a p which is a one-to-one map of Mn onto Mn-1 
(this is trivial in itself since both sets are infinite), but we will do it in a way that  
induction remains true in the structure. In other words, each subset of 3,In which 
is definable by a firstorder formula from p and the other relations of the structure 
will have a smallest element. 

We will construct p in the following way. We take a partially ordered set, 
whose elements are definable in M. E.g. in the case when we want p to be a one- 
to-one function from Mn onto Mn-1 the elements of this partially ordered set will 
be partial  one-to-one maps between the two sets, which are defined in M and their 
domain is of size at most n -  n ~ for some standard e. We will pick a sequence 
(outside M) from these functions, so that  e tends to 0 and the latter elements of 
the sequence are extensions of the earlier ones. Since Mn is countable we will be 
able to pick this sequence so that  the common extension of the functions is defined 
everywhere on Mn, takes every value in Mn-1 and so it is a one-to-one map of Mn 
onto Mn._ 1. To prove that  induction remains true will be much more complicated. 

We return now to the general case. First we define a partially ordered set. We 
may think of the elements of this set as approximations of the relation p. As in the 
previous example we will pick a sequence from t_hi~ partially ordered set and the 
union of the relations in the sequence will be p. 

We will frequently deal with sets which are not definable in M but still they 
are the union of a uniform sequence of definable sets. E.g. the set of all one-to-one 
maps from a subset of Mn of size at most n - n  e into Mn-1 for some standard e >  
0. The following definition describes this situation. 

Definition. If k is a natural  number and X is a k-ary relation on M we say that  X 
is w-definable in M iff there exists a firstorder formula r  ,x~, y, z) of Peano 
Arithmetic, and a b E M so that  for all al,...,a k E M we have: X(al,...,ak) iff 
"there exists a standard natural  number y, so that  M ~ r  (The 
standardness of y is the essence of this definition.) 

Definition. Suppose that  (p, _<} is a partially ordered set, whose elements are binary 
relations on Mn and the ordering is: p<q iff qCp. Assume further that  
( i)  each element p E ~  is definable in M, 
(2) the set p is ~v-definable in M,  
(3) p has a greatest element 1~, and 
(4) p has no minimal elements. 
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We will call such a partially ordered set a notion of forcing. 

Remarks.  1. Although the elements of fo are relations on Mn, we may treat  them 
as elements of M,  so requirement (2) is meaningful. (See remark in the definition 
in the definition of definability). 

2. Since fo has no minimal elements but it is covered by a set which is finite in 
M,  it cannot be definable in M.  

Example.  Let foe = { f l f  E M, f is a one-to-one map of Mn into Mn-1 M 
"ld~ [n -n~]}  ' ' .  fo~--U1/k{fol /k lk  is a s tandard natural  number}, fo~ is a 
notion of forcing. 

Definition. Assume that  T is a subset of fo, where fo is an arbi trary notion of forcing. 
We say tha t  T is dense iff for all 9 C fo there is a h E T with h _< 9. (We will be 
mainly interested in those dense subsets which are w-definable in M.)  

Example.  In fo~ the following sets are cJ-definable dense sets. (These sets are not 
definable in M since fo~ itself is not definable in M).  

1. For each fixed standard rational ~ > 0, T 5 = f o ~ ,  fo 5. 
2. For each fixed x E Mn, Tx = {p E fo~ I P is defined at x}. 

3. For each fixed yEMn-1,  T(Y)={pE fo ~ I Y is in the range of p}. 

Definition. Let G be a subset of fo, where fo is an arbi t rary notion of forcing. We 
say tha t  G is fo generic over M iff the following three conditions are satisfied: 

(1) 9EG, hEfo, 9<_h implies hEG, 
(2) for all g , J E G  there is a hEG with h<_9 and h < J ,  
(3) if T is a dense subset of fo, which is cJ-definable in M, then G M T is non- 

empty. 
Since M is countable it is possible to pick (outside M) a decreasing sequence 

Pl,P2,... form the elements of fo so that  the sequence contains at least one element 
from every dense subset of fo which is a~-definable in M. The filter generated by 
this sequence is a generic subset of fo over M. In the example with the partial  one- 
to-one functions f _< g iff f is an extension of 9. Pl ,P2, . . .  is the sequence mentioned 
whose common extension is the required function. This will be also the common 
extension of all of the functions in the filter G generated by Pl,P2,.... 

Example. Assume that  G is fo~ generic over M and let p = UpeaP" Clearly p is 
a one-to-one map of a subset Mn into Mn-1. We claim that  it is actually a one- 
to-one map of Mn onto Mn-1. Indeed as we have remarked earlier for each fixed 
x E Mn, Tx = {p E fo~ I P is defined in x} is dense and therefore according to the 
definition of generic sets contains an element from G. Thus p is defined in x. In a 
similar way using the dense set  {p E fo~ I Y is in the range of p} we can show that  
the range of p contains y for any y E Mn-1. To show tha t  in ~ [p ]  the induction 
holds we need to know something about  the t ruth  value of firstorder formulae in 
J/tip]. We will prove essentially the following: i f ~ [ p ]  ~ r where r is a firstorder 
sentence, then there is a p E G so that  for all fo~-generie G / with p E G / and J = 
UG'---UpEG, p we have ,/~[p'] ~ r  We will need to know something about the t ru th  
value of firstorder formulae r depending on a parameter  x E Mn. Naturally, as a 
consequence of the previous statement,  we know that  for each fixed a E Mn there is 
a Pa which decides r in the sense that  either for all generic G ~ containing Pa we 
have ~ [p ]  ~ r or for all such G'  we have J/~[p] ~ -,r We will show tha t  if a 
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generic G is fixed then there is a p E G so that for all a C Mn there is a Pa C G, Pa <- 
p so that Pa decides r in the previous sense and moreover Idom(pa)-dom(p)l  < 
j for some standard j. We will also show that it is possible to assign to each a E 
Mn a set U(a) C Mn, IU(a)l <<_k for some standard k, so that any q<_p with U(a) C_ 
dom(q) and U(a)•Mn-1 Crange(q), q decides r The significance of this will be 
the following. If we know already that p E G then the t ruth value of any fixed r 
can be decided by looking at the values of p and p-1  on U(a) which contains only 
a small (standard) number of elements. For the proof of this statement we will use 
essentially the structure of ~ 

The following definitions are necessary to formulate the restllts sketched ~bove. 

Definitions. 1. Suppose that r ,Yi) is a firstorder formula of L I, ao,... ,ai E 
Mn, gEp .  We say that gH-r  iff for any generic subset G of ~ with gE 
G we have that  p = U  G implies JA[p] ~ r  ,ai). 

2. If i is a natural number then M / will denote the set of i-tuples from Mn 
and M i will denote the set of all i-tuples from M. 

We will be interested in the properties of those relations on Mn which can be 
defined by a firstorder formula from p and the relations given in ~bL 

3. Suppose that i is a natural number and X is a relation on M~. We say that 
X is in ~[p]  (or definable in ,/~[p]), if there exists a naturM number j and a firstorder 
formula r SO that for some bo,.. . ,bj E Mn we have that  
for all a0,. . .  ,a i-1 EMn: X(ao, . . .  ,ai-1) iff J/~[p] ~ r  ,a i - l ,bo , . . .  ,bj). 

Now we are able to give a precise (and somewhat more general) formulation of 
the results mentioned about the truth values of a set of formulae r x E Mn. 

Lemma 2. Suppose that i is a natural number and X is a relation on Min so that 
X is in,b~[p], where p = U  G and G is p ~  generic over M,  then the following hold: 

(2.1) for a11 ao,... ,ai-1 E Mn there is a g E G so that g I~- X(ao , . . .  ,ai-1) or 
glF-nX(ao,'",ai-1)" 

(2.2) for each q E f)~ there is a q~ E p ~ ,  ql _< q so that the relation p 1~ 
X (ao,.. . ,  ai-  1) restricted to the set p <_ q~, p E ~ ,  ao,. . . ,  ai-  1 E Mn is w-de~nable, 
and ;for any standard rational e > 0 the relation p 1~- X(ao , . . .  ,ai-1) restricted to 
the set p < q~, p E ~ ,  ao, . . . ,  ai-1 E Mn is det~nable in M 

(2.3) for ali q E ~ ~ there exists a ql E ~ ~ ,  ql < q, standard naturM numbers 
k, i and a function U which is de~nable in M so that for all a E M~, U(a) is a 
subset of A~[n with k dements, and tot nil p E p ~  if  p <_ qt and U(a) C dora(p) and 
U(a) A Mn-1 C_ range(p), then either p IF- X(a)  or p [~- - ,X(a).  

Remark. Since p ~  is not definable in M the relation p I~ -X(ao , . . . , a i_ l )  is not 
definable in M. However if we restrict p to a ~o~ as described in (2.2) it will be 
definable. (2.3) shows that it is enough to consider this restricted relation since 
already in such a ~o~' we will find an element p with pl~-X(a) or pl~--~X(a). 

As we have explained earlier, (2.3) means that if a set of formulae is given with 
parameters in Mn then they can be almost decided simultaneously, that  is there is 
a p E G so that for each fixed formula there is a set (U(a)) containing a standard 
number of elements so that if we give the values of p and its inverse p-1 there, it 
decides already whether the formula is true or false in ~[p] .  
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Using L e m m a  2 we may prove easily tha t  induct ion holds in the s t ructure  
M[p]. First  we show tha t  induct ion holds up to logn,  t ha t  is, any n o n e m p t y  subset 
of na tura l  numbers  less than  logn  which is definable in M[p] has a smallest element. 
Actual ly  we will show tha t  any such set is also definable in M so our assertion will 
follow from the validity of induct ion in M.  The  second par t  i.e., to  show tha t  
induct ion up to  logn  (in ~ [ p ] )  implies induct ion up to n is easier, for this par t  we 
do not  use anyth ing  from the  specific propert ies  of  the relation p. 

L e m m a  3. I f  G is a p ~  generic set over M,  p = U G and X is a una ry  relation on 
Mn which is in Jd[p] (definable by a first-order formula in this structure), and for 
all aE Mn, X(a )  implies a < l o g n ,  then X is detlnable in M.  

Proof .  L e m m a  2 implies tha t  there exists a q~E p ~  so tha t  for each a_<logn there 
is a U(a), I U(a)l<_ h so tha t  if p <_ q', U(a) C_ dom(p),  U(a) O ?r C_ range(p) then 
either p I~-X(a) or p I~-~X(a), moreover the funct ion U is definable in M.  Assume 
tha t  q' E p ~  with some s tandard  rat ional  e > 0. [Ua<logn g(a)l  <-- k l o g n  where k 
is s tandard.  Therefore the definition of p ~  implies t ha t  the set T = {p E p ~ l p  -< 
q', Ua_<logn U(a) C_ dom(p) and Ua<_logn(U(a) N M n - 1 )  C_ range(p)} is dense in p ~ .  
Consequent ly  there is a 9 c CAT .  Clearly we may  assume tha t  g E Pe/2"~ According 

to (2.3) for all a _< logn,  we have either 9 I~- X(a )  or g IF- ~X(a) .  By (2.2) the 
+--> 

relation p I~ X(a )  is definable on Pc/2, therefore X(a)  is definable in M.  l 

Lemma 4. I f  induction up to logn  is true in ~ [ p ]  then induction up to n is also 
true in ~ [ p ]  

Remark .  This L e m m a  remains t rue if instead of J/4[p] we take any extension of the 
s t ructure  J/~. 
Proof.  Suppose tha t  there is a nonempty  set H C_ Mn definable in Jt~[p] which 
has no smallest element. We will show tha t  there is also a nonempty  subset of 
{ 1,... ,  [log ~] }, definable in Jd[p] wi thout  a smallest element. 

We may  clearly assume tha t  H is upward closed, t ha t  is x _< y, x E H implies 
y E H.  Let H ~ = {x - y E Mr~ I x E H, y E Mn, y ~ H}. Clearly H ~ is an upward closed 
subset of Mn which has no smallest element. We claim tha t  if w E H ~ then [w/2] E 
H ~. Indeed if w = x - y, x E H,  y ~ H then let z = y + [w/2]. If  z E H then clearly 
[w/2] E H ~. If  z ~ H then x - z E H ~. Since x - z may  differ from w at most  by one 
this means tha t  w E H ~. 

Let H ' = { x l  2x EHI} .  Since H ~ is closed under  the division by 2 we have tha t  
H "  has no smallest element and clearly for each x E H ' ,  x _< logn.  Our  definitions 
show tha t  H/f is definable in JA[p] which completes o~r proof. (Here we use tha t  
the  relat ion y = 2 x is definable in the s t ructure  (Mn,+,  x,_<,=}, see [8]. We may 
avoid this, or using any th ing  about  the propert ies  of  exponentiat ion,  by  including 
the relation y = 2 z in our basic s t ructure  either as a separate new relation or as a 
par t  of the relation A.) . | 

P r o o f  of  Lemma 2. As we have seen the relation p = U  G where G is p ~  generic 
over M is a one-to-one map of Mn onto Mn-1.  In the following definitions f will 
be an a rb i t ra ry  one-to-one map of M n  onto M n - t  but  it will be of interest in the 

f =  p case. We will consider such a function f as an evaluation of certain Boolean 
variables. This motivates  the following definitions. 
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Definition. Suppose that Do and D1 are disjoint finite sets D=DoUD1. For each 
a ~ Do and b C D1 let xa, b be a Boolean variable. 

We will use this definition in the case Do = Mn, D1 = Mn-l~ (more precisely 

D1 is a copy of Mn-1 disjoint from Mn.) If ] is a one-to-one map of Mn onto 
Mn-1, then we may associate with it the following 0, l-evaluation e of the Boolean 

variables Xa,6, aCMn, bEMn-l: e(Xa,b)=l iff f ( a ) = b .  (We will also denote this 

evaluation by val(f).) 
Lemma 2 is an assertion about a firstorder formula r of the language L t. 

Suppose that ~ is fixed. The truth value of r is a function of the map f.  It is 
easy to see that there is a constant depth Boolean formula F E M on the variables 
xa, b whose value at the evaluation e is the same as the t ruth value of r (The 
evaluation e is not in M but since the Boolean formula is of constant depth an 
evaluation ca~ be defined in the natur~.l way outside M). W'e will try to replace 

F by a simpler Boolean formula F / so that F(e) --- Ft(e) for all of the possible f. 
We will construct F I in M but since the evaluation e is not in M, F I cannot be 
any Boolean formula which is equivalent to F in M. Still there are possibilities 
to construct a good F I. For example we may apply one of the Boolean identities 
(commutativity, associativity, distributivity, etc.) to F. If F I is the new formula 
what we get this way, clearly F(e)= F1(e). Even if we perform such transformations 
on a set of disjoint subformulae of F still we get a good F I, or we may perform a 
finite number of transformations one after the other of this type. (The number of 
transformations is counted in the world, not in M). To describe these things in 
a rigorous way first we define formally what is a constant depth, unlimited fan-in 
Boolean formula, then we define the mentioned operations on them. 

Definition. Suppose that X is a set of Boolean variables. We define the unlimited 
fan-in Boolean formulae in the following way. We define the formulae recursively 
according to their complexity. Let F0 = X U {0, i}. Suppose that Fk_ 1 is already 
defined. If H is a finite set of natural numbers and h is a function defined on H with 
values in Fk_ 1 then let VxcH h(x) and AxffH h(x) be elements of F k. Moreover 
if g is an element of Fk_ 1 then let both g and -~g be elements of F k. We define 
F k as the set of all elements that we can get through one of the described ways. 
F = Uk=0,1,... Fk is the set of unlimited fan-in Boolean formulae with variables in 
X. In the following Boolean formula will mean always an unlimited fan-in Boolean 
formula. The depth of a Boolean formula g will be the smallest integer k with 
g E Fk. We may define the size of the formula by induction on its depth k. For 
k = 0 the size is 1 and size(AxcHh(X))= ~xcHsize(h(x)) (and similarly for V), 
moreover size(~s) -- size(s) + 1. This definition of the size is not the same as 
the corresponding notion for Boolean circuits. However if we want only to define 
constant depth polynomial size circuits/formulae the two notions are the same. 

We will call two Boolean formulae equivalent if their value is the same under 
any 0,1-evaluation of the variables. We will consider Boolean formulae in a non- 
standard model M of Peano Arithmetic, whose depth is a standard natural number. 
For such formulae it is possible to define the value of the formula even for an evalu- 
ation which is not in M. It is possible that two such formulae are equivalent in M 
still there is an evaluation (not in M) so that the corresponding values of the for- 
mulae are different. In the following we will define relations in M which will be finer 
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than  the equivalence of formulae, and will have the property that  if two formulae 
are in relation with each other than  their values are the same for any evaluations 
(not necessarily in M).  

Definition. In the following we give some of the usual Boolean identities for unlim- 
ited fan-in formulae. (For our purposes it is important  that  they are given in the 
unlimited fan-in form.) Each identity has a dual form that  we get by changing the 
role of the operations V and A. Although we will give here only one of the two 
forms later referring to these identities we will mean both of them. 

(B1) If the ranges of the functions h and g coincide then 

A A g(x). 
x 6 H  x 6 G  

(B2) If  H = UiEiHi where {Hi} is a family of pairwise disjoint sets, hi is a 
function defined on Hi for all i E I ,  h is the common extension of all hi to H and 
Ax~H h(x) c H then 

x E H  iEI  x 

(B3) suppose tha t  h is defined on HUG and {h(x)I x E G} is a subset of {h(x)I x E 
H}.  Then AxeHuah(z)-AxeHh(Z). 

(B4) if s E F and AxEH h(x) E F then 

A h(x)- A 
x E H  x E H  

(B5) if AxeHh(X)EF then ~AzeHh(x)--VzEH~h(x).  
Apar t  from these identities for unlimited fan-in formulae we will need the usual 

Boolean identities fixing the role of 0,1 and the operation -,. 
(B6) i f s E F t h e n 0 V s - s ,  0 A s ~ 0 ,  1Vs_=l ,  1As=_s,  sV~s----1, sA~s_=0,  

As we mentioned before we want to define a relation ~ between Boolean 
formulae so that  F ~ F'  implies F(e) = F'(e) for any f where e is the evaluation 
corresponding to f .  Since f is a one-to-one map, there will be Boolean equations 
between the variables Xa, b which do not follow from the general Boolean identities 
given in (B1)-(B6) still they hold for all of the evaluations of type e. 

Definitions. 1. Let B -- B(Do,D1) denote the set of unlimited fan-in Boolean 
formulae with the variables {Xu,v}, u E Do,v E D1. A ~; r B is called a k-map 
if there is a one-to-one fimction g of a set D0(e;) C Do onto a subset of D1 so 
that  ~; = Axu,g(u) and ]D0(~)I--k.  (We may visualize a k-map as bipart i te  graph 
between Do and D1 with k vertex-disjoint edges.) We will use the notat ion Do ( n ) =  
domain(g),  Dl(t~ ) = range(g), D ( ~ ) =  D0(n ) U DI(~) ,  g =g~ ,  k = I~t. We define a 
function yr=~r~ on D by 7c(x)=g(x) if xEDo(r;) and ~r(x)=g-l(x) if x E D I ( ~ ) .  

We say that  a set V c D  covers the map ~ E B  if for each xED(n) either x E V  
or ~ ( x )  e V. 
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Assume that ~, ~i are k, resp. k I maps. We say that n and ec I are contradictory 

if there is an x E D(~)  N D(~  z) with 7c~ (x) 7~ 7r n, (x). 
2~ We. cM1 a formula h c B  a h-disjunction if h ~ V ~ c K n  , where each n E K  is 

a k/-map for some kl<_ k. 
The  set V covers the k-disjunction h = V ~ c K  ~, if it covers all n ~ K.  We 

wilt say tha t  the weight of the k-disjunction h is at most  / if there is a set with / 
elements which covers h. 

3. Suppose tha t  O, ~b are s disjunctions. We say tha t  qS.f~b if r = ViEI d(i), tb = 
ViEI' d(i), I' = {i E IIVj E I d(i) r d(j) implies tha t  map(d( / ) )  is not  an extension 
of map(d( j ) )} .  (That  is we get ~b from q5 by deleting from r those terms which are 
not "minimal") .  

We will denote the (essentially) unique ~b with CZ~b by min(r  It  is easy to see 
tha t  if Q is an evaluat ion of the variables then m i n ( r  (More 
precisely the two formulae are equivalent according to (B1)). 

4. For each fixed u C Dj, j = 0 , 1 ,  we define a Boolean formula 

vE -j  s,tEDl-j,sCt 

Tha t  is Fu states tha t  from the variables Xu,v, v E Dj -1  there is exact ly one 
whose value is 1. 

O(Do,D1) will denote the Boolean formula AuEDFu. Clearly if there is a 
0,1 assignment for the variables xu,v so tha t  the value of O(Do,D1) is 1 then the 
function g defined by g(u) =v  iff xu,v = 1 is a one-to-one map  of Do onto D1. So the 
equat ion O(Do,D1)= 1 has no solution if Do and D1 are of different cardinalities. 

5. Suppose tha t  h = V ~ e K ~  is a h-disjunction and V covers h, IVI = I. We 
define an / -d i s junc t ion  c(h, V). (c(h, V) will act  as a complement  for h if we restrict  
our a t tent ion to evaluations of the variables which define a one-to-one map  on V). 
Let M = {#1 # is a j - m a p  for some j < / ;  # is covered by V and Vn E K # is 
cont radic tory  to ~} and 

v) = V . .  
#EM 

Even if we assume tha t  g is a minimal  set covering h it is possible tha t  l > k. 
Therefore c(h, V) is only an / -d i s junc t ion  and not  necessarily a h-disjunction. It  is 

easy to check tha t  for any f if e is the corresponding evaluation then the formulae 
~h and c(h,V) have the same value under  the evaluation e. We say tha t  the 
formulae ~h  and c(h, V) are k-equivalent. 

6. If  k is a natura l  number  then we define a binary relation ~ k  between 
Boolean formulae. We say- t ha t  F ~ k  F~ if there is a set S of pairwise disjoint 
subformulae of F so tha t  if we replace each formula in S by another  which is 
equivalent to it according to (B1),. . .  ,(B6) or by a formula which is k~-equivalent to 
it for some k r _< k, then we get the formula P ~. 

If  k,r are bo th  natura l  numbers  we define the relation ~k,r by a ~k,r b iff 
there exists a sequence a0 = a, al, . . . .  ,at = b so tha t  for all j = 0 , . . .  , r -  1 we have 
a j ~ k a j + , .  
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7. Suppose now tha t  [Do[ = n  and [DI] = n - l ,  c > 0  and Q is a 0,1 assignment 
on a subset of X.  We say that  Q is an c-partial  assignment if there is a one-to- 
one map h of a subset of Do with I n - n  ~] elements onto a subset of D1 so tha t  Q 
assigns a value to a variable Xu,v iff either u E domain(h) or v E range(h), moreover 
Q(Xu,v) = 1 iff h(u) = v. We will use the notations h = map(Q),  Q = val(h) and 
set (Q) -- domain(h) U range(h). 

If  )~ is a Boolean formula then we will denote by )~Q the Boolean formula tha t  
we get from )~ if we perform the substitutions prescribed in Q. 

Let q be a one-to-one map of a subset of Do into D1, and let e > 0. 

We define a random variable R = R (q) which takes its values with uniform 
distribution on the set of all c-partial  assignments Q satisfying the condition that  
map(Q)  is extension of q. 

Theorem 5. Vs,d,u,5 > 03~ > O,k,r so that  for all su~ciently  large n if  ID01 = n, 
IDI[ = n - 1  and r E B(Do,D1)  is a Boolean formula of size at most n s and depth 
d, q is a one-to-one map of a subset of Do with at most n - n  ~ elements into D1 

and R - -  R (q) is the random assignment defined earlier, then with a probability of 
at least 1 - n - u  the following holds. There exists a k-disjunction g and a set V C 
D with k elements so that g is covered by V and CR ~k , r  g. 

In [1] a similar theorem is proved in a somewhat more complicated setting for 
the case ID0[ = [DI]. 

Using Theorem 5 we may complete the proof of Lemma 2. According to the 
original definition of ~ the elements of ~ are maps of subset of Mn into Mn-1 .  
In order to conform with the notat ion of Theorem 5 we will assume now tha t  the 
maps are between two disjoint sets Do and D1. We may think tha t  Do is Mn and 
D1 is a copy of Mn-1 ,  disjoint from M~. Natural ly (2.3) must be modified in the 
following way: 

(2.3') for all q E p ~  there exists a q1E ~ ,  ql <_ q, standard natural numbers k,i  
and a function U which is definable in M so that for all aE M~, U(a) is a subset of 
D = Do LJ D1 with k elements, and for all p E p ~  if p <<_ q' and U(a) ~ Do C dom(p), 
u(a) n D1 c range(p), then either p X (a) or p 

First we define two relations W0 and W1. Wo(p, ao , . . . , a i -1 )  will imply p I~- 
X(a) ,  Wl(p,  ao , . . . , a i -1 )  will imply p I~- ~X(a) .  For each fixed a E M / let Ca E 
B(Do,D1)  be the Boolean formula expressing the relation X ( a o , . . . , a l ) .  (Since X 
is definable in Jg[p] and p can be considered as an evaluation of the variables xs,t, s E 
D n , t E D n - 1 ,  there is such a formula Ca.) We may assume that  each q~a is of depth 
at most d and size at most n s, where the s tandard integers d, s depend only on the 
size of the first-order formula defining X but not on n or a. We apply Theorem 
5 with u = i + 1 for each fixed Ca, a E M~. Let ~ > O,k,r be the numbers whose 

existence is guaranteed by Theorem 5 and let ql be a value of .R (q) satisfying the 
conclusion of Theorem 5 simultaneously for each fixed Ca, a E M~. (Since u > i there 
is such a q~.) We define a relation W1 by WI(p, a0 , . . . ,  ai) iff "there exists a s tandard 
j so that  p E p]~/j and r ~j,j 1". (We get the definition of W0 if we substitute 

the last formula by CP ~ j , j  0). Clearly W0, W1 are co-definable. The conclusion of 
Theorem 5 implies tha t  W] is equivalent to the relation p I~- X ( a 0 , . . . ,  a l )  if p <_ q~. 
This implies the first part  of (2.2). 
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Let (~ > 0 be a standard rational. Then, according to Theorem 5 the relation 
+-+ ~ 1 "  W1 with p_< q/restr icted to p ~  is equivalent to "p E Pe and CP ~ k , r  where k and 

r may depend only on i and the size of the formula defining X but do not depend 
on the choice of a 0 , . . . , a i - 1 .  Tha t  is, pi~-X(ao, . . .  ,ai 1) is indeed definable in M, 
if p<q  f, p E p S .  

If we pick U(a) as the set V belonging to Ca then our previous argument shows 
that  (2.3) holds. 

(2.1) follows from (2.2). | 

P roof  of Theorem 5. First we show that  it is enough to prove the theorem for the 
special case when r is an s-disjunction. In this case we may suppose that  the size 
of r is not more than 2n 2s so we may drop the condition about  the size of the 
formula. In the the formulation of the result for s disjunctions we may substi tute 
the relation ~k ,r  by the relation ~g defined after the definition of s-disjunctions. 
Clearly there are absolute constants k, r so that  for all r ~ ~ implies r ~ k , r  9- 

Lemma 6. Vs, u3e > O, k so that for all sufficiently large n if ID01 = n, [D11 = n -  1 and 
r E B(Do,D1) is an s disjunction and R = Re is the random e partial assignment, 
then with a probabiBty of at least 1 - n  -u  we have: there exists a set V c D so that 
min(r  R) is covered by V and IVl_<k. 

We show that  Lemma 6 implies Theorem 5. The proof is based on the fact, 
(stated earlier) that  if an s disjunction h is covered by a set V of size k then it has a 
complement c(h, V) which is an/-dis junct ion where I depends only on k. This will 
make it possible to prove the theorem by induction on the depth of r We assume 
that  there are a polynomial number of disjoint subformulae of r of the form of -~ ,  
where ~ is a k / disjunction, for some constant k ~, so that  r is built up from these 
formulae by using only the operations disjunctions and negations in a depth of d -1 .  
Suppose now that  e f > 0 is sufficiently small. According to Lemma 6 each (~)/~'  
will be covered by some set V of size k f. Therefore it has a complement which is 
a k" disjunction tha t  is (~V)R~, is a k" disjunction and so the depth of (r is 
only d -  1 but otherwise it has the same structure as r had (with k" instead of k f) 
therefore we may complete the proof by using the inductive hypothesis. Below we 
give a more formal description of this proof. 

Let Kj  be the set of formulae of size at most nJ from B(Do,Dj)~ For each 

positive integer let U j o,l = Uo,l be the set of I disjunctions in Kj.  Suppose now that  

Ud-l,l is already defined then let Udj be the set of all formulae from Kj  which are 
either of the form VzcH h(x) where h(x) E Ud_l J for all x C H or of the form ~h 
where h E Ud_ l,l. 

Claim 7. If  g E K j  and g is of depth at most d then there is a 91 in U2d,1 and there 
are positive integers k,r  depending on only d so that 9 ~ k , r J .  

Proof. Using the identities in (B1), . . . ,(B6) we may transform g into a formula 
which uses only V and ~ as logical connectives and still its depth is not greater 
than 2d. A single variable Xa,b may be considered as a 1 disjunction. | 

Now we may continue the proof of Theorem 5 (accepting Lemma 6), by in- 
duction on d. We give the proof for d = i .  Suppose tha t  gEU1,  k i f g i s o f t h e  
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form Vh(x)  then using (B1) and (B2) we mac" transform g into a formula in UO, l 
so Lemma 6 can be directly applied. 

Assume now that  h is of the form -~r where r E U(0,1). According to Lemma 
6 with high probabil i ty we have ~ R f g  where g is a k disjunction covered by a set 
V, where ]Vl=k .  g is k equivalent to c(g,V) so we have CR~k,r+lC(g,V ). 

Before we start  the proof of Lemma 6 we formulate two combinatorial lemmas 
which will be repeatedly used throughout  the proof. (The proofs of these lemmas 
are given in [1].) The first Lemma essentially states tha t  if there is a function 
defined on a finite set H so that  at each point x the value of the function is a small 
subset of H not containing x, then inside a small random subset H r the function 
will be almost trivial, that  is H ~ will have only a constant number of points which 
are contained in a value of the function taken at a point in H/. The second Lemma 
is a generalization of the first, for functions with more than one variables. 

Lemma C. Suppose that 0 < e < 1/2, 0 < 5 < e /4  and g is a function de~ned on the 
finite set H with n elements such that g(x) C_ H, Ig(x)l _< IHI 1-e and x ~ g(x) for 
all x E H. I f  j <  1815 and H I is a random subset of H with j elements, then for a11 
t > 0  we have 

P(l{yly c H'  and y E g(x) for some x E H'}I  _> t) < n--e l f - -c2  

where el > 0 and el, c2 depend only on e. 

Lemma C'. Suppose that 0 < e < 1/2 and k is a positive integer. Then there exists 
a 5 > 0 such that for any finite set H with n elements i f  9 is a function defined 
on the Cartesian product [ I k H  with g(x)C_H, lg(x)l < IHI *-e,  g((xo, . . .  ,Xs f-/ 
{x0,... ,Xk_l}=~ for all x =  (xo,. . .  ,xk-1) E[Iklr3 r and H '  is a random subset of g 

with LIHI~J elements, then for all t > 0  we have 

k 

where e 1 > 0 and Cl, c2 depend only on e and k. I 

Now we continue the proof of Lemma 6. 

Definition. Suppose Re is the random e partial  assignment and D~ = D o -  set(Re), 
D i = D 1 - s e t ( R e ) .  For each fixed value of D; ,  D i let R~ be a 5 partial  assignment 
on the universe D~, D~. Let Re oR15 be the common extension of the functions 
Re, and R~. Each value of Re o R~ is a 5 partial  assignment on DO, D1, moreover 
the distribution of Re oR} is the same as the distribution of R~ that  is the random 
variables Rh, and Re o R~ are identical. (In the following we will use this several 
t imes without any extra warnings.) 

We prove the lemma by induction on s. 
s - -1 .  According to the definition if r is a 1 disjunction then r  V(a,b)cW Xa,b 

where W C_ DO • D1. We may write r in the form VaeDo VbEIVa Xa,b where Wa C_ 

D1 for each aEDo.  Let e>O be sufficiently small and let G = { a E D o I  IWal >_n l-e} 
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Case I. [G[ > n 2C. 

In this case with a probabili ty of at least ( 1 -  ( 1 - n - C ) n * )  n2~ > 1 - e  -n~ after 
we perform the substitutions according to Re the value of at least o n e  Za,b, bE Wa 
will be 1. So min((•) ft) is covered by the empty  set. 

Case II .  IG] < n  ~-e. Let us apply Lemma C with H---+D. We define the function 
f by f ( x )=  Wz if x E D O -  G and f ( x )=  (~ otherwise. Let H ' =  D - s e t ( R ~ ) .  Strictly 
speaking H t is not a random subset of D with uniform distribution since the size of 
HfNDo is always the same. However it is easy to see that  there is a random variable 
H II so that  H If has uniform distribution on the subsets of D with 4 [n~J elements 
and with high probabili ty H f is a subset of H If. This implies that  the conclusion 
of Lemma C, holds for H I too. Let V={yEHI I~xEH I yEf (x)} .  Clearly V covers 
the 1 disjunction CR~ and Lemma C implies that  the requirement about  the size of 
V is met  with sufficiently large probability. 

We assume now that  Lemma 6 holds for s - 1 and prove it for s. We actually 
will show that  for all s and u Be > 0, k so that  if n is sufficiently large and r is an 
s disjunction then there is an s disjunction r of weight at most k/2 and an s - 1 
disjunction r so that  

(,) v 

Then we will apply the inductive hypothesis to s -  1 and get an R8 so that  
@,Re f@/1 where ~p/, is of weight at most k/2 and therefore min((r R6) is of weight 
at most k with a sufficiently high probability. 

Definitions. 1. Suppose that  r is an s disjunction r = Vieid(i)  where each d(i) 
is an s '  map for some s '  _< ~ and min(r = Vi6I' d(i) for some [ '  c_ I .  Let (r = 
Vi~z,, d(i) where s {i E / / Imap(d( i ) )  is an smap}. (In other words we get (r 
from r by keeping only those terms which are exactly of size s and which are not 
consequences of any terms of smaller size). 

2. Suppose tha t  v=Vi6id( i )  is an s disjunction. If aEDo and bED1 then we 
will denote by ~z,y the s disjunction Vie1' d(i) where I / =  {i E I I map (d ( i ) ) ( a )=  b}. 

P roof  of (*). First we prove that  under the conditions of (*) with a probabil i ty of 

at least 1 -  n u there exists an s-disjunction r] so that  r and "for all a E 
DO, b C D1 the weight o f  7] a'b is at most k. Then we will show that  applying an other 
R5 we get that  with high probabili ty r j R ~ ( r 1 6 2  where ~p,W//~ have the properties 
given in ( ,) .  

Suppose that  a E Do and b E D1 are fixed, ca,b = Vici, d(i). For each fixed i E 
I', d(i) is an s ~ map for some s1< s. Let d1(i) be the J - 1  map what we get from 
d(i) by deleting the te rm Xa,b. Let r = Vi~l'd'(i)" ~ is an s - 1  disjunction, so by 
the inductive hypothesis with high probabili ty there is an s - 1  disjunction g so that  
CR~gg and g is covered by a set of size k - 1, which implies our assertion. 

To finish the proof of (*) let ~7 be the s disjunction with the properties described 
above. We apply Lemma C' with H--+D, k--*2. The function f is defined in the 
following way: if a E Do,b E D1 then according to Y there is a set V of size of at 
most k so that  V covers ~a,b. In this case let f ((a,b})=V. For all other (a,b) let 
f(a,b)=O. As in the proof of C a s e I I  for s = l l e t  R=R~,  H 1=D-se t (R ) .  By 
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the  same argument  the conclusion of L e m m a  C'  holds for H ' .  Let  X = { y E H '  IyE 
f (x , z )  for some x, zEH'} .  According to the L e m m a  P ( IXI  > k ) < n  -clk+c2, where 

cl > 0 and cl,  c2 depends only on e. We claim tha t  X covers (~)s R~ , where (~)s. 
Let  ~ = ViEI d(i), and suppose tha t  for a fixed i E I ,we have m a p ( d ( / ) ) ( x ) =  y. 

It  is sufficient to prove tha t  if I d o m a i n ( d ( i ) ) -  s e t ( R e ) l  = s then either x E X or y E 
X.  s>_2 implies tha t  there are a, bED with a C x  so tha t  map(d(i))(a)=b. As we 
have seen X covers 7] a,b which implies our s ta tement  and also completes the proof  
of L e m m a  6. I 
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