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Summary

A linear theory of thermoelastic materials with voids is considered. First, some general
theorems (uniqueness, reciprocal and variational theorems) are established. Then, the
acceleration waves and some problems of equilibrium are studied.

1. Introduction

Nunziato and Cowin [1] have presented a nonlinear theory for the behaviour
of porous solids in which the skeletal or matrix material is elastic and the inter-
stices are void of material. In this theory the bulk density is written as the product
of two fields, the matrix material density field and the volume fraction field. This
representation introduces an additional degree of kinematic freedom. The intended
applications of the theory of elastic materials with voids are to geological materials
like rock and soils and to manufactured porous materials.

Jarié¢ and Golubovic [2] and Jari¢ and Rankovié [3] have studied the non-
linear theory of thermoelastic materials with voids. The linear theory of elastic
materials with voids has been established by Cowin and Nunziato [4]. Another
version of the linear theory, called the dilatation theory of elasticity, was in-
dependently proposed by Markov [5]. Some applications of the linear theory were
presented in [4]—[7].

In this paper we study the linear theory of thermoelastic materials with
voids. In the first part of the paper we use the method given by Green and Rivlin
[8} in order to obtain the basic equations from the balance of energy and the
invariance requirements under superposed rigid body motions. In Section 3 we
establish theorems concerning the uniqueness of solution, the reciprocity relation
and variational characterization of solution in the dynamic theory. In the next
section we study the acceleration waves in homogeneous and isotropic bodies.
The propagation conditions and growth equations, which govern the propagation
of waves, are derived. The couplings between the discontinuities are studied. In
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the final section of the paper, some problems of thermoelastostatics (the response
to a concentrated source of heat, the deformation of a thick walled spherical shell
and a hollow cylinder) are solved. In each of these applications, the change in
void volume induced by the deformation is determined.

2. Basic Equations

We refer the motion of the continuum to a fixed system of rectangular Car-
tesian axes Oz; (v = 1, 2, 3). We shall employ the usual summation and differen-
tiation conventions: Latin subscripts (unless otherwise specified) are understood
to range over the integers (1, 2, 3) whereas Greek subscripts are confined to the
range (1, 2), summation over repeated subscripts is implied and subscripts pre-
ceded by a comma denote partial differentiation with respect to the corresponding
Cartesian coordinate. In what follows we present a linear theory for the behavior
of porous solid in which the skeletal or matrix is a thermoelastic material and the
interstices are void of material. We assume that the initial body is free from
stresses. The concept of a distributed body asserts that the mass density at
time ¢ has the decomposition y» where y is the density of the matrix material and »
is the volume fraction field [1]. We denote by u; the components of the displace~
ment vector. We consider an arbitrary material volume ¥ in the continuum,
bounded by a surface £ at time ¢, and we suppose that V is the corresponding
region in the initial undeformed state of the continuum, bounded by a surface 4.
Let the outward unit normal at 4 be n;, referred to our fixed rectangular frame
of reference.

We postulate an energy balance for an arbitrary material domain, in the form

[olwids + ) AV + [ oeaV
Y v 2.1)
= fe(fsv.- + 48 dV + f(tw.- + kv 4+ q)dA,

14 A

where v; = 4;, g is the density in the reference configuration, x is the equilibrated
inertia, ¢ is the internal energy per unit mass, f; is the body force, [ is the extrinsic
equilibrated body force, s is the extrinsic heat supply, #; is the stress vector
agsociated with the surface £ but measured per unit area of the surface 4, h is the
equilibrated stress, ¢ is the heat flux associated with the surface 4 but measured
per unit area of the surface A, and a superposed dot denotes the material der-
ivative with respect to the time. We suppose that the body has arrived at a given
state at time ¢ through some prescribed motion. Following [8], we consider a
gecond motion which differs from the given motion only by a constant super-
posed rigid body translational velocity, the body occupying the same position at
time £, and we assume that &, f;, I, s, t;, h, ¢ are unaltered by such superposed
rigid velocity. If we use the Eq. (2.1) with v; replaced by v; + a;, where o; is an
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arbitrary constant, we obtain

[eb:dV = [ofidV + [t d4. (2.2)
14 14 A

Using the well-known method, from (2.2) we get

b = tjny, (2.3)
and
tii,; + ofi = oi;. (2.4)

Taking into account (2.3) and (2.4), the Eq. (2.1) reduces to
Jete + i) av = [[ywn; + ol + 914V + [(ah+ ) dd.  (25)
v 1% A

With an argument similar to that used in obtaining (2.3), from (2.5) we obtain
(b — hing) ¥ + ¢ — qin; = 0, (2.6)

where h; is the equilibrated stress vector [1] and ¢; is the heat flux vector. With
the help of (2.6), Eq. (2.5) reduces to

(hi,s + ol — b)) 9 + v 5 + qis + 08 + hiv, s — pg = 0. (2.7

Let us now consider a motion of the body which differs from the given motion
ouly by a superposed uniform rigid body angular velocity, the body occupying
the same position at time £, and let us assume that &, I, s, &y, ki, ¢; are unaltered
by such motion. In this case, as in [8], the equation (2.7) leads to

tij = L. (2.8)
With the help of (2.8), the Eq. {2.7) reduces to
08 = tijy; — g¥ + hiv i + ¢ii + 08, (2.9)
where we have used the notations

1
6,"- = -2— (u,-,,- + uj,,-), (2.10)

and
g = b — hi,; — gl. (2-11)

The Eq. (2.11) was obtained in [1] from the balance of equilibrated force. The
function g is the intrinsic equilibrated body force {1].
The entropy production inequality is

, 8 q
dVv = —dV 4 .
f‘m fe T fT a4, @ 12),
14 14 A
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for an arbitrary material domain. Here # is the specific entropy and 7' is the
absolute temperature. The free energy is

=& —qyT. (2.13)
Let us introduce the notations
6=T-1T,, Q=9 —,, (2.14)

where 7', is the absolute temperature in the reference state and v, is the volume
distribution function for the reference configuration. We assume that 7'y and »,
are constants.

We restrict our attention to the linear theory of thermoelastic materials where
the constitutive variables are ¢;;, @, ¢,;, 0, 0,;. It is easy to see that the constitutive
variables are invariant under superposed rigid-body motions.

We assume that at each point = and for all time, ¥, &, g, ki, h and ¢; are
functions of e;;, v + @, ¢,i, T+ 0, 0,; consistent with the assumption of the
linear theory. Moreover, we assume that  and g are functions of ¢;, v, + ¢,
@i To + 0, 0,; and n;. ,

For a given deformation, 7 in (2.6) may be chosen arbitrarily so that, on the
basis of the constitutive assumptions, we have

h = h,‘?’l,‘, q = qin;. (215)
Using (2.15), the inequality (2.12) reduces to
1
oTh — o8 — tii + 7 T 2 0. (2.16)
With the help of (2.9) and (2.13), the inequality (2.16) becomes
, 1
—o(p + 0) + Liiéi; + g9 + P, + T g8, = 0. (2.17)

If we use the constitutive equations and the standard arguments, then the
inequality (2.17) implies the restrictions

’lJ = lp(eih ©> P,is 0)!

oo oo
L= — = —— 2.18
i 2er, g Py ( )
. do . do
M=% P e
and
q;B,; =0, (219)

where ¢ = g
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The inequality (2.19) implies that
;=0 if 06;=0. (2.20)

In the linear theory, and assuming that the initial body is free from stress and
has zero intrinsic equilibrated body force, we have

o= 3 Cijratijers — Bijeifd — 3 ab?

1
+ 3 Aijp.:9. + Bijpei; + Dijeeijp.r (2.21)

1
+ dipp,; + 5 Eg? — mbp — a;p,i0.

Using (2.18), (2.20) and (2.21) we obtain the following constitutive equations
tij = Cijrere + Bijp + Ding.x — Biss
hi = A0, + Drsiers + dip — aib,
g = —Biei; — & — dig,i + mb, (2.22)
o = Bijei; + b + mp + aig,i,
¢ = kiff,;.
The coefficients in (2.22) have the following symmetries
Cijrs = Crsij = Cjirsy  Bij = Biis
Djjx = Dy, Aij = Aji,  Bij = By

(2.23)

In the case of an isotropic material, the constitutive equations (2.22) become
li; = Aers0i5 + 2ueq; + bpdy; — 06;,
hi =ag,;,
g = —be, — Ep+ mh, (2.24)
on = feq, + af 4 mey,
gi = kb ;,

where 4;; is Kronecker’s delta and 2, g, b, 8, «, & m, a, k are constitutive coef-
ficients.
In the linear theory, the energy equation (2.9) reduces to

0Tl = gi.i + 8- (2.25)
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We assume that the body occupies a bounded regular region B of three-

dimensional Euclidean space. Let us consider the subsets Z; (¢ = 1,6) of 2B so
that S, uZl, =2, 0, =2, 0% =0B, ZinL, =202, =2nZ,=0. We
consider the following boundary conditions

u; = @; on 2_71><[0,t0), t=1; on 2. X [0, t),

f

p=§ on X,x[0,4), h=h on X X[04%), (2.26)
6=08 on Z;x[0,%), g=¢q on Z;x[0,4)),

where 4;, £, @, i, 6, { are prescribed functions and ¢, is some instant that may be
infinite.

The basic equations of the theory are: the equation of motion (2.4), the
balance of equilibrated forces (2.11), the energy equation (2.25), the constitutive
equations (2.22), the geometrical equations (2.10). To the system of field equations
we adjoin the boundary conditions (2.26) and the following initial conditions

ui(x’ O) el uio(x) ’ 'ﬂ'i(x3 0) == v,-o(x),

p(, 0) = ¢%x), ¢z, 0) = L), (2.27)

0(z, 0) = 6%=z), 7(z, 0) = n%x), z€ B,

where %, v;°, ¢° {9, 6%, n° are prescribed functions.

From (2.4), (2.11), (2.24) and (2.25) we obtain the field equations in terms of
the displacement, volume fraction and temperature, for homogeneous and iso-
tropic bodies

pdu; + (A + p) we,ri + bp,; — B0,; + ofi = i,
ade — bu, » — @ + mb + ol = gn, (2.28)
kA0 — BTty — aTob — mTog = —gs,
where 4 is the Laplacian. Let us introduce the notations

¢ = (A -+ 2p)fo, ¢ = plo,

(2.29)
¢ = ofon, ¢ = aT,.
The Eqs. {2.28) may be written in the alternative form
b B "
e?Au; + (6% — ¢5?) uy55 + . @i — P 0+ fi =,

1
g — Lyt My L, 2.30)

0% ox 0% %

kA8 — BT iy, — mTop — e = —ps.
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3. Uniqueness and Variational Theorems

In this section we establish some general theorems in the dynamie theory of
thermoelastic materials with voids.

Theorem 3.1. Suppose that
2W = Cijreijers - 2B;ieiip + 2Dijeeiip,r
+ 2dipg,; + &¢® + Aip,ip; = 0, 3.1)
>0, x>0, a>0, T, > 0.

Then the boundary-initial-value problem of thermoelasticity has at most one
solution.
Proof. With the help of (2.22) we obtain
tijéi; + i, — g -+ 007 = W + af. (8.2)
On the other hand, from (2.4), (2.10), (2.11) and (2.25), we find that
tijéi + b, — g9 + 007
. 4 . —
= {tijls + ki@ + - @0).5 + o\t + 1 + = o0 (3.3)
T, T,

1
— T g0 i — olil; + »%¢p).
0

By the divergence theorem and (2.3), (2.15) it follows that

[ (tisti + hagps — 99 + o) AV

B
f (t.u. +hop+ — qﬂ) dA4 + f (f.u. Ip + — sﬂ) av (34)
oB

1
— f oltit; + #g@) AV — gi6,;dV.
To
If we introduce the total energy U on [0, {,) by

1
U= [ (otith; + »¢* + 2W + ab6?) AV, (3.5)

B
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then, from (3.2), (3.4) and (2.19) we conclude that

. 1 1
U—fe (fiﬂi—l—l?" + —SG)dV—f<tidi+h¢+ —q@) d4
T, T,
i o (3.6)
1
= _qu‘e"‘w§°'

0

Suppose that there are two solutions _{u,-‘“’, @, 9, ety '™, lg’, B, g™, g,
(0 =1,2). Then their difference II = {#; = u;® — u;®, = P — @),
6 =00 —6®,..,§ =qg® — ¢®} corresponds to null data. Tf T is the total
energy corresponding to I7 then from (3.6) we obtain

U =U0), 0=t<t.

The initial conditions imply U(0) = 0. By hypothesis we find T(f) = 0,0 < ¢ < ¢,.
Hence #; =0, $ =0, 8 =0 on B x [0, £,). But %; and # vanish initially; thus
;= 0,5 =0o0n BX[0,4).

The uniqueness of the solution in the theory of elastic materials with voids
has been proved in [4].

With a view toward establishing the variational characterization of the
solution we first give an alternative formulation of the boundary-initial-value
problem and prove a reciprocity relation.

Let « and v be scalar fields on B X [0, ¢,) that are continuous in time. We
denote by « * v the convolution of % and »

¢
[u*v] (2,8 = fu(x, t — 1) o(z, 7) dr.

0
Let us introduce the notations
ety =t, jt)y=1,
F; = olex f; + t0° + w0,
3.7
G = gle I + »(t° + ¢")],
S = gj* s+ oToy°.
Following [9, p. 337], [10, p. 370] one can prove

Theorem 3.2. The functions w;, @, 9, &, ki, g, ¢; satisfy the Egs. (2.4), (2.11),
(2.25) and the initial conditions (2.27) if, and only if

&3 ti‘-i + F,- = QU;,
ex (hi; + g) + G = oxp, (3.8)
j*aii+8 =oTom.
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This theorem enables us to give an alternative formulation of the boundary-
initial-value problem in which the initial conditions are incorporated into the
field equations. Thus, the admissible process IT = {u;, @, 9, €i;, 1, tij, ki, g, i} is &
solution of the boundary-initial-value problem if and only if I7 satisfies the
Egs. (2.10), (2.22), (3.8) and the boundary conditions {2.26).

Let us consider the body subjected to two-different systems of loadings
LI = ({0, 1), g g F0 g F) §, gl g 06 400 p00) L0 (o — 1 9),
and the two corresponding solutions IT® = {1, ¢, 6, ..., ¢;*}. The func-
tions F;, @, S corresponding to the system L will be denoted by F;*?, G, §©,

Theorem 3.3. (Reciprocal theorem). If a thermoelastic solid with symmetric
conductivity tensor is subjected to two systems of loadings Z® (x = 1, 2), then
between the corresponding solutions I7 there is the following reciprocity
relation

f (F;tl) w4 ® - GO 5 @ — %- e % S x W)) av
0
B

-+ fe # (t,-(l) x4 - D % e — 5’1._ j# g % 9(2)) dA
[+
2B

(3.9)
== f(F,-(z) * ;D - @ % @) — -% e % S@ % 0(1)) av
0

B

-+ fe % (t,-(2> w ;D) L A % o) — Ti jg® % 6(1)) dA4.
0

B

Proof. On the basis of the relations (2.23) we conclude from the constitutive
equations that

2
£ % € + Bt sk @ ;@ — gD 5 @  HO % 5@

(3.10)
= 13 % ) + hi® % g ;0 — g® % g L 9§ x O,
If we introduce the notation
Ly~ fe # (67 % eff) + B % @) — g 5 P
B (3.11)

— en(a) % o(ﬁ)) av,
then from (3.10) we get

Ilg _ I21' (3.12)
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By using (2.10) and (3.8) we can write

% (tg;‘) e 8:-;-3) + hi(“) % (P,(f) _ g(a) % (p(ﬂ) — Qn('x) ¥ e(ﬂ))

1
— e (t}j}’ w4 B 5 P — T J o g s 0“9’),,,
0

3.13
4 P s G 5 P _;_0 e % 8@ 4 B 1
— o(u * ;P 4w % o) - f_l’l—o ek § s by 8 % Bff’.
In view of the divergence theorem we find that
I :f(Fi(u) £ uP f GO g g %_ e % 8@ 4 e(ﬁ)) v
; 0
+ f e x (t.—“’" P 4 A 5 P — % IETAE 9“") dA (3.14)
B

1

f(@u % 4P 4 oug % o — T s § 5 by 0 % Off’) av.
0

B

Finally, (3.12) and (3.14) imply the desired result.

This type of reciprocal theorem in the thermoelastodynamics has been estab-
lished in [11].

From (2.10), (2.22) and (3.8) we obtain the field equations in terms of the
displacement, volume fraction and temperature. These equations can be written
in the form

fu=JF, (3.15)
where the five-dimensional vectors u, £u, F are defined by

1
u=(ul3u2;u3,~(p36)3 JZ(FI;FzyFsyg) ""Z",_e*S)7

0
Liu = gui — e * (Cijrstty, s + Biyp + Dinp.i — Biff) .5,
Ly = onp — e * [(Aii¢,i + Dr.n'ur,s -+ di?’ - a;ﬂ),,- (3-16)
— Bijui,j — Sp — dig,i + mb],

5“"3*[—7*(krcea)r—ﬁrsur3_ae“‘mgv'“a|¢]

In what ollo e consider the case of homogeneous boundary conditions,
jel;=i; =k = ¢ qd= f = 0. If ¢ and b are five-dimensional vectors, then

5
é*ﬁ:Z’a,-*b,v.

i=1
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If we introduce the notations u = (u;®, u,®, u,®, M, 6O, » = (4, @), u,®,
u,®, @@, 6®) then by (3.15), (3.16) the relation (3.9) can be written in the form
fu*fvdV=fv*i’udV.
B B

This relation shows that the operator £ is symmetric in convolution. Let us
denote by D the domain of the definition of the operator £. Following [12], we
are led to the variational theorem

Theorem 3.4. Let £ < D be the set of all admissible vectors u = (u;, @, 0)
which satisfy the homogeneous boundary conditions, and for each ?¢€ [0, £)
define the functional I'{-} on K by

Ti{u} = [ e (Cijratte, o wij + 2By # wi g
: B

+ 2D, ;% o - 2dip k@ + Ep o+ Aypix o
— 2Biu; % 0 — 2mbx @ — 2a:p,;% 0 — al x 0)dV
—l—fg(ui % u; - 2 * @y dV (3.17)

B

1
—Zf(F,-*u,;—l—Gwp——T—e*S*B)dV
0

1
- Efe*j*k,,@_,*@_,dff,
B

for every u € JC. Then
0l {u} =0, t€ [0, %),

at u € K if and only if « is a solution of the boundary-initial-value problem with
homogeneous boundary conditions.

The Theéorem 3.4 is a variational theorem of Gurtin type. In the classical
theory of thermoelastodynamics, the variational theorems of this type are pre-
sented in [9, p.338], [10, p. 370]. Variational theorems for nonhomogeneous
boundary conditions can be derived by the method given in [12].

4. Acceleration Waves
Let X be a moving surface defined by
x; = x;(0%, 62, 1), (4.1)

where 61, 62 are curvilinear coordinate on the surface. We assume that the func-
tions (4.1) are continuously differentiable with respect to their arguments and
that X is smooth in the sense that the matrix (dz;/00%) has rank two. The metric
tensor of the surface is given by a.p = i %,
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In this section we will denote by #; the unit normal to £. We note that [14]

— — — = e
nmn, = 1, 'nixi;“ == O, xi;aﬂ = baﬁni, ’l’l,-;a = —a bpaxi;l’ (4.2)

where indices followed by a semicolon represents covariant partial differentiation
based on the metric of 2, b,; is the second fundamental form of the surface and
a*® are the elements of the inverse of matrix (a, 5). We also note that

b,

LH

1
Tjp = Oy — 1y, =3 a4, (4.3)
where H is the mean curvature of the surface.
The propagating surface X is said to be an acceleration wave if «;, ¢, 8 have

the following properties:

1) u, @, 0, 44 ¢, 6, %45, @i, 0,5 are continuous functions everywhere;

ii) s, @, g, Ui jker Poijp 0.5 Birgs Do 6',,- and all higher-order derivatives of these
quantities have, at most, jump discontinuities across 2 but are continuous
functions everywhere else.

In this section we study the acceleration waves in homogeneous and isotropic
bodies. Let f be one of the functions u;, ¢, . We list for future reference the
compatibility conditions satisfied by the jumps on 2 of the second and third
derivatives of this function

/il = Cninj,  [f.1=—CVn;,  [fl=7V2C,

] = a,"‘ﬂ(C'nk);a (n@j;p + nyie) — a“ﬁa”QbMOnkxi;ﬁxj;g + [ ped 715

. )
[f,si] ES ——a“ﬂ( VOns);a xz';ﬂ + 72,- —6} (Ons) — V[f.qu] npnq’)’li, (4-4)

. oV 0
[/l = —On,— — 2V = (Cn) + Vi[f.sl miny,

[7,i7ed = —2HCn, - [f,5i5] ninj
where

é 7

- at "

i
is the displacement derivative, V is the speed of propagation of 2 in the direction
of the normal m, and C = [f ;n;n;]. A detailed account of compatibility conditions
bolding on singular surfaces has been given in [15], [16, pp. 491—529]. Derivation
of the Egs. (4.4) can be constructed in a straightforward manner from these
sources. We assume that f; =7 = s = 0. On forming the jump of each term in
the Eq. (2.30) on the singular surface 2 and using the compatibility condition
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(4.4), we obtain

(V2 — ) 4 — (¢ — &%) mjm; = 0, (4.5)
(V2 — 25 =0, (4.6)
]CC + ﬂTOVl,%; = 0, (4.7)

where A; = [ui,retss), 7 = [@,ransne), & = [0,5min5).
Equations (4.5) admit a non trivial solution for ; if, and only if

(e — V22 (¢,2 — V?) = 0.

It is an immediate consequence of Eq. (4.) that longitudinal waves of first kind
(for which 4; = An;) propagate with the speed ¢,. The speed of propagation of
transverse waves (for which 4;n; = 0) is ¢,. From Eq. (4.7) we note that { = —g7T,
- ¢;A/k for a longitudinal wave of first kind, and { = 0 for a transverse wave.

If n == 0, the wave is an acceleration wave of compaction or distension. This
wave is called the longitudinal wave of second kind. The possible speed of prop-
agation of this wave is c,.

Let us study now the growth of the acceleration waves. We first apply to each
term of Eqgs. (2.80) the operator 8/0xz, and form jumps across the wave 2. Next we
make use of the compatibility condition (4.4), then multiply by », and sum on the
repeated index s. We obtain the equations

(VE — %) i — (642 — ¢.2) {ujnym; + a"‘"x,-;ﬂ(l]-;an]- — a”gb“,,ljxj;e)

» o b 8
+ @l gt — 2V 5% + 2He,2h; — E nn; —Q- {n; =0,

4.8)
on b
(V2 — ¢?) 7 4 2Hegtny — 2V = &+ — 4m; =0,
o o

OA;
pT, (Vy,-n,- — n; 5 + Va“ﬂﬂj;axj;ﬂ) +ky + (¢V — 2kH) L 4+ mT,Vyp =0,

where

Wi = [Uipgr] npgnes T = [@an] ninmes 7 = [0,i5] ningm,

and simplifications have been effected with the aid of Egs. (4.2) and the fact
that V is constant for acceleration waves. It is known [17, pp. 43—45] that
on;/dt = —ax;,V ;. Using this result and the fact that V is constant for all
waves we find
o4 82;
—_— . 4.
st (49)
With the help of (4.2) and (4.3) we obtain

@'l @i = 0 (Awjg),e — 2HA, Ay — 2@ m, = A, (4.10)
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Using (4.9) and (4.10), we can write (4.8) in the form
(V2 — ) pi — (c:® — 5% {pjmimi + a’aﬂ(ljxj;ﬁ);a n; + a‘aﬂA,axi;ﬁ}

84 b
— 2V 5 + 2H{c,?h; + (¢ — ¢2%) Ang} — ’ nn; + 4 {n; =0,
Q
on b
(V2 — ety v — 2V 2 4 90,2Hn + 2 A =0, (4.11)
ot 0%

84
BT Vun; + ky — pT, {E — Va5 . + 2HVA}
+ (e¢V — 2HE) { + mT,Vn = 0.

On multiplying throughout Eq. (4.11), by n;, summing on the repeated index #
and using Eqgs. (4.2) and (4.9), we obtain

oA b
(V2 — ¢,%) pnj — (6% — ¢?) a’aﬂ(}']’x]‘;ﬁ);a — 2V T + 2He2A — — 9y + EC = 0.
Y g

(4.12)

In what follows we assume that ¢, 3= ¢,, ¢; == ¢4, €2 == ¢5. In the case of longitudinal
waves of first kind, V = ¢y, 4; = An;, { = —pTc,A/k, and 5 = 0.
The Eq. (4.12) yields the growth equation

Lod _dd _ ([, et (413
T ~ %) 13)

where n is the distance measured along the normal to the wave, measured from
the wavefront at ¢ = ¢, and
e = 2T, /coc,?, w* = cc,?fk.

In view of (4.13), Egs. (4.11) reduce to

p; — npn; = a4 g, (4.14.1)
b
(¢ —ec?)r=—4, (4.14.2)
ox
o* 1
BT oeaping -+ by = BTy, A {H + o (1 —3 8)} (4.14.3)
1

Suppose that, at # = ¥, the mean and Gaussian curvature of the wavefront are H,
and K,, respectively. Then, the mean curvature at a subsequent time ¢ is given
by [14, pp. 108—113]

H = (Hy — nKy)/(1 — 2nH, + n2K,),
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and the transport Eq. (4.13) can be integrated to give the decay law for 4,
A = A1 — 2nH, - n2K,)~ Y2 exp (—ew*n/2¢,), (4.15)

where A, is the strength of the wave at time ¢ = f,. From (4.14.2) and (4.15)
we obtain

ba
T = m (1 — 2nH, + n2K,)" 12 exp (—ew*n/2¢,), (4.16)
so that a disturbance in the porosity, which is of third order is induced by a
longitudinal wave of first kind. This discontinuity propagates with the same
speed as the inducing longitudinal wave. The decay law (4.16) contains the ex-
ponential factor exp (—ew*n/2¢,) which ensures that the strength 4, and hence
the jumps 4;, £, 7 tend to zero as the interval ¢ — ¢, increases indefinitely.

It follows that 4;, £, = are completely determined if A, is known. To determine
the jumps u; and y, we see from Eqgs. (4.14.1, 3) that it is necessary to have
prior knowledge of one of these jumps.

In the case of transverse wave we have V =¢,, 4 =0, 9=0, { =0 and
the Eq. (4.12) reduces to

Bty = —'a':xﬁ(lrwr;ﬂ);a'
Using this result in (4.11), we get
142,
—~ — — H, 4.17
cy Ot ) ( )

together with the result
=y =0.
As before, we have
A = A1 — 2nH, + n2K,)" 12,

where 1; = 1% when ¢ = {,. To determine the jumps y; it is necessary to have
prior knowledge of two of the jumps ;.

In the case of an acceleration wave of compaction or distension we have
V =c¢;5, 4 =0, =0, and the Eq. (4.12) reduces to

b
(es% — ¢.2) ujn; = E 7. (4.18)

The Eq. (4.11) become
{(Cs? — €2%) 6ij — (€22 — ¢22) myms} pj = 2 Ny
Z = Hy, (4.19)

BT ocopsn; + ky + mTocan = 0.

6 Acta Mech. 60/1-2
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The solution of the Eqgs. (4.18), (4.19) is

n = no(1 — 2nH, + n2K,)~ 13,

bnino

m (1 —_ 27’LH0 + ’}’I,ZKO)_IIZ, (4:.20)

pi =

mesTong fb
— 1+ 1 — 20H 2R \-1/2
k ( m(cs® — 012)) ( 2nHo + n2Ko) ™

‘J/:

where % = 7, when { = {,. We note that an acceleration wave of compaction
or distension is accompanied by third order discontinuities in mechanical and
thermal fields.

5. Equilibrium Theory

Let us consider the linear theory of thermoelastostatics for homogeneous
and isotropic materials with voids. As in the classical theory we assume that the
mechanical loadings are absent, the principal attention being devoted to the
deformation due to the temperature field. The Eq. (2.28) reduce to

g + (A ) Up,gi - b, — 0.; = 0,

(5.1)
oadp — b, , — &p +mb = 0,
and
kA0 = —ps, (5.2)
in B. Let us consider the boundary conditions
o9 5 <
tﬁ?’li:O, -a—n—=0, 0 =6 on 0B. (03)

The Eq.(5.2) with the corresponding boundary condition determine the
temperature variation 6.

In what follows we study the effect of a concentrated source of heat in a
body which occupies the entire space and the thermal stresses in a thick walled
spherical shell and a hollow cylinder.

i) Concentrated source of heat. Let us consider the case of a concentrated
source of heat applied at the point y(y;) of a body occupying the entire space.
Let s = @d(x — y), where @ is a constant and &(-) is the Dirac delta. From (5.2)
we get '

e

= drkr’

(5.4)
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where 72 = (z; — ¥;) (z; — ¥;). We assume now that u; = @ ; where @ is an
unknown function. The Eq. (5.1) are satisfied if the functions @ and ¢ satisfy
the equations

4% =+ T (80 — be),

(5.5)

Ap — 120 = —f0,

where
1
T = T2 (A -+ 2u) & — 87,

(5.6)

_m bg

=3 (A + 2u)

It is known [6] that ¢ > 0. This is a consequence of the fact that the internal
energy density is a positive definite quadratic form. From (5.4) and (5.5) we

find
L QQ ﬁg — mb fb —r
@—4nk12(z+2y){ 5 T T )]’
®.7)
of@ e
= dmkrr (L —e™).

Let us note that in the classical theory of thermoelasticity [18, p. 162] the function
® has the form Cr where C is a constant. In the case of thermoelastic materials
with voids the displacement field contains new terms characterizing the influence:
of the material porosity.

ity Thermal stresses in a thick walled spherical shell. We assume that B is a
thick walled shell. Let the internal and external radii of the shell be a, and a,,
respectively. We take the center of the shell to be at the origin. We assume
that the heat source is absent, the flow of heat in the shell being produced by
maintaining the outer surface of the shell at the constant temperature 7, and
the inner surface at the constant temperature 7. In this case

1
0= — 4+ 4, (5.8)

where 72 = x;x; and

A = a,05(T, — Tl)’ A,

Ay — Ay Qg — Oy

_ Toay — Thay

We seek the solution of the system (5.1) in the form

u = Plr), =g (5.9)

6*



84 D. Tegan:

The substitution from (5.9) in (5.1) yields the equations

2

) =g

(86 — by) -+ 4,2,
(5.10)
b
A — %9 = — 4, — [0,
o

where prime denotes the derivative with respect to 7, and 4, is an unknown
constant. From (5.10) we obtain

5
P = 30 4, + Az + H(r),
xt?
(5.11)
i
9 = polr) + — (29 — b4y,
ot
where
1
Py = "; (B + Bye™y,
beo'(7) (5.12)

— y — —————————————
= PO+ 2 f PO dr — ST 20
[i] .

_ (4 20) (g — bm)
(A+2p)&—0% "~
and 4,, B,, B, are unknown constants.

A simple calculation shows that the stress 7', = £;7;n; in the radial direction
n; = a;r is

4
T, = pAl - _7:[:; 4. — 4:”’H(T)’ (5'13)
where
1
I —_ 2
P =5— [(81+ 2) § — 357,

For the determination of the constants B, we have the boundary conditions
@'{r) =0 for r=a,, r=a,, (6.14)
and, on solving these equations, we get

B, = f =5 (L 4 7a) — (1 + )],
(5.15)

Bo= I et — a) — 1 — ),
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where .
D = %91 — 1q,) (1 4 70,) — e " 9(1 — 1a,) (1 + 7a,).
By using (5.8), we obtain

b
24 + 2u) 73

v

h= T

(3 A+ 2/1) + [Bie ™ (zr 4 1) — Bye™(zr — 1)].

(5.16)
The surface of the shell is free of external loads if

T.w=0 for r=a,, r=a,. (5.17
From (5.13) and (5.17) we find that

dpla,*H(as) — a°H(ay)]

4= plas® — a;3) ’
(5.18)
o aa’[H(ay) — H(ay)]
P ag® — a® )

Let us note that p > 0. This is a consequence of the fact that the internal energy
density is a positive definite quadratic form [4]. With the help of (5.14), we
obtain
Ha) = m [3 (ai — aziﬁ )/11 4 2/12], (x=1,2). (5.19)

By using (5.19) we can express the constants 4, in terms of the temperatures
T, and T',. Thus, the functions ¢ and ¢ are given by (5.11) where ¢,, H are defined
by (5.12), (5.15), (5.16), and the constants 4, are uniquely determined from
(5.18), (5.19).

The radial stress T',, can be calculated from (5.13), (5.16), (5.18) and (5.19).
The “hoop stress™ Ty, in the tangential direction, is

Too = (34 + 2u) ¥ + ' — B6 + be.

If T, =1T,=1T% then 4, = 0, A, = T* and (5.15) implies ¢, = 0. In this
case we obtain
pE — mb

6 = T*, Y= T*,

_ [(34 + 2p) m — 3bB] T
(82 4 2u) & — 3b2 -

(37 + 2p) & — 30

The radial displacement u = w;z;/r is given by

pé — mb

—_— %
“BitemE_sm

Let us note that in the classical theory of thermoelasticity the radial displacement
is BT*r[(34 + 2p).
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The result established here can be used in order to obtain the solution in
the case of the elastic space with a spherical cavity.

iii) Thermal stresses in a hollow cylinder. Let B be a right hollow cylinder
with the generic cross-section 2. We assume that the domain % is bounded
by two concentric circles of radius o, and a,, where a, < a,. The rectangular
Cartesian coordinate frame is chosen such that the w; axis coincides with the
center line of the cylinder. We assume that the heat source is absent. We suppose
that the temperature on the inner surface of the cylinder is 7', and that the
temperature on the outer surface is 7,, where 7, are constants. In this case
the body is in a state of thermoelastic plane strain, parallel to the z1%,-plane.

We have

=G, Inr -+ G, (5.20)
where 72 = 2,2, and
_ T,—T, g — Tilnay —TyIna,
' In (ay/ay)’ : In (ay/ay)
We seek the solution in the form
U =Tg(r), U =0, ¢=¢0). (5.21)

The Eq. (5.1) are satisfied if the functions y and ¢ satisfy the equations

’
2\ — -
) =+ T (B0 — bp) + O,
(5.22)
b
A(p——rztp:;Cl — /0,
where C, is an unknown constant. From (5.22) we obtain
& 1
1= ﬁ01+702+ﬁ1(7)’
(5.23)

1
@ = @olr) + Q (af8 — bO,),

where
Po = D1Io('”) + D, K(er),
Fe— g P
(A -+ 2p) 72 (A 4 2u) o2
0

C., Dy, D, are unknown constants, and I,, K, are modified Bessel functions
of order n.
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The radial stress 7,, is given by

oy =2 (co1 — 7/; C, — ,;F), (5.24)
where
£— (A4p)é§—0
B 2x72 )

The constants D, and D, are determined by thec onditions ¢'(a,) = 0
(e = 1, 2). We obtain

D, 16
050

_ e

a1 a0y

fa. K, (7“2) — o, K, (ray)],

[ao11(taz) — auy(7a,)],

2

where
d = I(ra,) Ky(za,) — L(za,) K (ra,).

The constants C, and C, are found from the condition that the surfaces
r = a, and r = a, are free from forces. We find that

. plas2F(ay) — a,2F(ay)]

“ o — o)
C. — a0’ Flas) — Fla,)]
z 2 2 :
a® — ay

Thus, the functions ¥ and ¢ are determined. By a simple calculation we can
find the other components of the stress tensor.
If T1 = Tg e T*, then

(8¢ — mb) T* _Gtmm—bp

- ki

LN me—br YT GrmEi—b

6 = T*,

and the radial displacement is given by

" P& — mb
2[4 + p) £ — b7

"

In the classical theory of thermoelasticity the radial displacement is S7*r/2(4 4- ).

In the isothermal case, the problems of the thick walled spherical and circular
cylinder shells under internal and external pressure are solved by Cowin and
Puri {86].
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6. Conelusions

The results established in this paper can be summarized as follows:

a) General dynamic theory. We have derived a linear theory of thermoelastic
materials with voids. To obtain the field equations we have used the balance
of energy, the entropy production inequality and the invariance requirements
under superposed rigid body motions. Some basic theorems concerning the
uniqueness appropriate to the fundamental boundary-initial-value problem, the
reciprocity relation and the variational characterization of the solution are
proved.

b) Acceleration waves. The propagation conditions and growth equations,
which govern the propagation of acceleration waves in homogeneous and isotropic
materials with voids, are derived and discussed. The couplings between the
discontinuities are studied. In general, three speeds of propagation are possible:

e =[(2 4 2w/el?, e = (o), s = (xfox)".

It is shown that the longitudinal wave which propagates with the speed ¢, induces
a disturbance in the porosity which is of third order. This discontinuity propagates
with the same speed as the inducing longitudinal wave. The foregoing longitudinal
wave is accompanied by a second order discontinuity in thermal field. The
acceleration wave of compaction or distension, which propagates with the speed
¢3, is accompanied by third order discontinuities in mechanical and thermal
fields. The transverse wave propagates without affecting the temperature and
the porosity of the material.

¢) Thermoelastostatics. The solutions for the traditional problems of con-
centrated source of heat, the deformation of a thick walled spherical shell and
a hollow cylinder have been developed for a thermoelastic material with voids.
The salient feature of these solutions is that the displacement field, the tem-
perature and the stresses contain new terms characterizing the influence of
the material porosity and their values are therefore modified from the values
predicted by the classical theory of thermoelasticity.
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