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Abstract. Let f b e  a radial function and set T ' f  (x) = sup0<~<l I Ttf(x)i, xE R', 
n ~> 2, where (TJ)~(~ :) = e~tl~l"f(~:), a > 1. We show that, if B is the ball centered at 
the origin, of radius 100, then j" [ T ' f  (x) [ dx ~< c (f IjT(~ :) 12 (1 + I # [2) ~ ds) ~/2 if and only 
ifs~> �88 B 

Let  f belong to the Schwartz class 5 a ( ~ ' )  and  consider  

Tf(x )  = sup I ~ eZ~XeeZtlel"f(~)d~l, x~" ,  n>~2, 
O < t < l  ~n 

for every a > 1, where 

.f(~) = ~ e-Z"ieXf(x) dx. 

Let  H~ ( ~ 3  denote  the closure o f  {f6 5a: [(1 + [ ~ 12)~j~(~)]vE L 2} under  

the n o r m  ] ] f J J 2 = S ( l + l ~ 1 2 y l j ~ ( ~ ) 1 2 d ~ .  We shall prove the 

fol lowing 

Theorem. Let us assume f radial and let B = {x : l x j  ~< 100}. Then 
the inequality 

II TfHL, W~ <~ c, llfHn, (1) 

holds i f  and only if  s >>- 1. 

In the par t icular  case a = 2, the theorem has as a consequence tha t  

i f  radial  f belongs to H ~, s ~> �88 then 

u(x, t) = S e2~iX~ eitJ~r2fc(~)d~, 
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.#u 
a solution to the Schr6dinger equat ion z~-~ = A u, converges a.e. to 

f ( x )  as t ~  0. 
Inequali ty (1) and the a.e. convergence of  u (x, t) have been studied 

by several authors,  namely L. CARLESON, B. DAHLBERG and C. KENIG, 
C. KENIG and A. Rulz ,  A. CARBERY, M. COWLING, P. SJOLIN. In one 
dimension,  inequality (1), with a = 2, has been established for s >/�88 
in [2] and such a result has been proved to be sharp in [4]. In 
dimension n > I the best result up  to now can be found in [7]. It states 
that  

[[ T*fIIL=(B) ~< c llfllm for s > �89 

Our  p roo f  is in the spirit of  [2]. We shall need the following L e m m a  
1, for the p roo f  of  which we refer to [6] and L e m m a  2, the p roo f  of  
which we postpone.  

Lemma 1. Let k >~ 0 be half o f  an integer and let •k denote the 
Bessel function of  order k. Then 

(a) IJ (OI  <ck, t> 0; 

( (b) Jk( t )  = 2 ~ t c o s  t -  2 + Ek(t) 

ek 
where i Ek (t) I <. t3~, t > A (k) > O. 

Lemma 2. Let a > 1 and let s, s" belong to (0, 100]. Set 

F(s, s') = ~ exp (i (2 z~ r (s - s') + (t (s) - t (s')) r~ dr 
(1 + 

w h e r e t h e i n t e r v a l o f i n t e g r a t i o n i s ( m a x ( A ! n ) , A ! n ) ) , + o o ) .  Then 

C 
I f ( s , s ' ) l  <~ is_s't " 

By cn, ca, c we denote  constants  not  necessarily the same in all 
instances. 

Proof of  the theorem. Let s = Ix1 and r = I~ l- We linearize the 
operator  T, by making  t into a funct ion of  s, t (s) and we obtain (see 

[81, P. 155) 
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Tf(s) - 2 or ~ f( .-2)/2 (2 Jz r s) eir~ r ~/2 dr. 
s(n-2)/2 0 (2) 

(We still write T for the above operator.) All we have to prove is 

100 

S I Tf(s) ls"-lds <~ c, llfllm. (3) 
0 

We break up the domain of  integration in (2) as follows (0, A (n)/s) 
and (A (n)/s, + or). So we can write T f =  T l f+  T2f We can prove 
easily estimate (3) for T~. For  by (a) and Schwarz inequality we have 

a (~)/s 
T~f(s) l <~ Cn Cn S (n-2)/2 ! r]'(r) rrn/2dr <~ ~ l ] . / q l m B ( s )  =, ] 

A (n)/s 
r r2) ~ dr <~ ~/2" Therefore T 1 satisfies (3). w h e r e B ( s ) =  ! ( 1 +  

Now we turn our attention to T 2. We shall use the equality 

J(n_2)/2(r) = [~(,,_2)/2 (r) - - i e  i(r-('~/4)n-(~/4))~ + ie-i(r-(=~)n-(=/4)).~.~;; 1 +  

i ei(r - ( ~ / 4 )  n -  ( ~ / 4 ) )  i e - i ( r -  (~r/4) n -  (~ /4 )1  
+ 

-~/2orr 2 - ~  

and write Tzf=  T3f+ T4f+ Tsf By (b) and Schwarz inequality we 
have 

t'n oo 1 C n S 3/4 
[ T3f(s) I ~< s(n_2)/2 A~)/s(r-~)3/2 Ij~ lr~/2dr <~ ~ l l f r [ m .  

So T 3 satisfies (3). 
Now we are going to deal with T4fand similarly one can estimate 

Tsf We have 

and 

oo 

IT4f(s) l -  c ] I e2~iraeir~ 
s(n- 1)/2 .4 (n)/s 

100 

II T4flIL,(B)= S O(s) T4f(s)sn-l ds 
0 

where 0 (s) T4f(s) = I T4f(s) ! and so ] 0 (s) I = 1. By exchanging the 
order of integration and by Schwartz inequality we obtain 
10 Monatshefte ffir Mathematik, Bd. 109/2 
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oo 
II T4fllL,(~) ~< Ilfllm(I O(r) dr) ~ 

0 
where 

oo l Al~Or~nl/ 2 S 0~(1 +r2)  ~ O(s) ei(2~r'+t(~lr~) s(n-O/Z ds dr= 

co 1 10o loo 

-- J0 (1 + r 2~�88 A(n)/rA(~)/r [" J O(s)O(s')eit2'~r176 
100 100 

= I o (,0 s(,- ,/2 I ~ asas'. 
0 0 

oo 

By Lemma 2 we have (S O(r)dr)~ <<. c. So T4 satisfies (3). This 
0 

completes the proof  of the positive part of the theorem. 
The counterexample goes as follows. We shall define even 

functions f~ (x): R -+ ~ such that 

(i) lim IIf~ li,,, = 0 if s < �88 
v-+0 

(ii) if we choose t(x) = x v2a-2/a then there exists a small number 
b (a) such that I Tf~ (x) I ~> ~ for all x, b (a)/2 ~< I x I ~< b Ca) and v 
sufficiently small, depending upon a and g. 

This evidently shows that (3) and therefore (1) cannot hold unless 

Let g be a positive even function in C~ ~ (~) supported in [ -  1, 1], 
such that .[g(Od8 = D # O. We set 

where ~'~,~(~)= vg(v8  + l/v) and f2.~(8)= v g ( v 8 -  l/v). In [7] the 
following has been proved 

(i') l i m  IIf~,~ IIH~ = 0 i f  S < �88 
t~---, 0 

(ii') if t(x) = xv2~-2/2 then / Tfl,~(x) l >1 c for every x in a neigh- 
bourhood I(a) of the origin and v small. 

From now on we denote by c exactly the constant that appears in 
(ii'). Now (i) is easy to prove, while (ii) will be proved by (ii') and the 
following 

c 
(ii") I T f2, ~ (x) I ~< ~ for all x, ~ I x [ < b (a) and v small, 
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that we proceed to show. By Taylor's formula we have 

I r f2,o(x)  l ~< I 
+ 0 0  

I ei(2(x/v)r162 + 
- - 0 0  

+O(3 

+1 S ei(2(x/~)~+i(a-Ox~:)(eir 1 ) g ( 0 d ~ l  = 
- - 0 0  

= M(x) + E(x). 

For all x, Ix! ~< 1 and v small IE(x)  l 4 c l x l  v <~ c/101~ Now we 
write 

M(x) <~l~eiZ(~l~>Sg(8)d~j+l~e'2(~l~)~'(e~(~-l)~;- 1)g(O d#l = 

= M 1 (x) + M 2 (x). 

We have M l ( x ) = l ~ ( x / s v ) [ < ~ 1 0 - 1 ~  if Ixl>~lI(a)4/2 and v 
sufficiently small. Moreover  

M2(x ) <~ ~ i e  i2(x/~ X# 2 g(Od~ + ]Tail(x)l  
h = l  

where 
2 2 D  c 

I Tail (x)] ~< (M + 1)! Ig(~)  a t  ~< (M + 1)! ~< 101--~' 

if a - l x ~ 2  < l ,  t h a t i s l x l <  2 
2 a - I  

2 
other hand if I xl < - -  then 

a - 1  

and M large enough. On the 

1 {a - 1  ~2h ~ ~.[(g(O ~2h/ 

Now being g smooth we have I ( g ( 0  #2h)~(x) I < effj x l if I xj > 1 a n d  
so (x) c 

1 " 

if ix l >  [I(a)[/2 and v is sufficiently small. Since we can assume 
rI(a) l ~ min (2/(a - 1), 1), we proved that (ii") holds for ]I(a)[/2 ~< 
<.G I xl <~ I I(a) [ and v small. This ends the proof  of the theorem. 

10" 



140 ELENA PRESTINI 

N o w  we tu rn  to the 

Proof of  Lemma 2. First  we assume t(s) # t(s') and  change  
variables as follows ~ = I t (s) - t (s') 11/a r. T h e n  

ei(2~(s-s')l t(s)- t(s31 -(1/o)~ _+ ~ 
F(s, s') = I t(s) - t(s')l -O/a) _(2/a) 2)~d~ 

m(s,s')(1 + I t (S ) -  t ( s ' ) [  

where  m (s, s') = I t (s) - t (s') I + O/a) m a x  (A (n)/s, A (n)/s'). N o w  we set 
2 z~ i t (s) - t (s') i - o/a) ( s -  s') = v and  so 

m e iv' e ++-i~a 
F(s,s') = It(s)  - t(s')l -~ ~ (1 + I t(s)  - t(s')l-(2/a)~72) +d*]" 

m (s, s') 

To prove  L e m m a  2 all we have to show is 

I S eiV'e+-i~~ ] P(s's')l/2afvl�89 
[Q(v)  l = (l + P(s,s,)_(2/a)rl2)�88 ~ ~ c  , (4) 

m (s, s') 

where  P (s, s') = [ t (s) - t (s') [. We  write 
100 oo 

O(v) = S d~7 + S d~7= Ql(v) + Qz(v). 
m (s, s') 100 

First  assume ! v I ~< 1. T h e n  I Q1 (v) I <~ c el/2a. Since it is always 

Iv -4- a~a-*l t> G > 0, in tegrat ing by par ts  we obta in  

i Q2(13)] ~ Cap1/2a.t - S ( a(a- -  1)~7 a-2 
100 Iv_+ a ~ l T ( / +  P--(2/a>~2) �88 + 

2 P - (2/a~ *t ' 
+ IV _+ a*]a-li(l7>-(2/a)rti)5/d) _ <~ cap1/2a" 

So est imate  (4) has been p roved  for  I r i s<  1. Secondly  assume 
t v I > 1. We start  by Q1 (v) assuming m (s, s') ~< [ v I - 1. (At those 
points  (s,s ')  such tha t  m ( s , s ' ) > I v  I-1 the est imates are slightly 
simpler and  they are left to the interested reader) .  

A n  in tegra t ion  by par ts  shows tha t  
l/Ivl 1 eivn e ++-i~ a ]100 [ 

I Q l ( v ) [ ~ <  I e-l~a@ d~+ - - - -  " m(s,r i V  (1 + e-(2/a)~2)kJl/[v I I + 
~o eiV~e+iCrla-1 Ca ~0 eiV~e+_iCp-(2/a)rl d~ 

+ ~va[ l / ,v l ( l  + p-(2/a)~72~drll-b~l]l/,v,(1 + p-(2/a)~]2)5/4 
~ p1/2a ( l Ca ) pl/2a 

~< 

N o w  we are going to consider  Q2 (v). Again  we shall integrate  by 
parts ,  bu t  this t ime it might  be tha t  v _+ a~a- l=  O, namely  for  
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rt = (+_ v/a) 1/(~ ~t~. Assume ~%~> 100 (otherwise we are in a 
simpler case). Then we subdivide the interval of integration into three 
pieces 

13 = (100, fly -- (I V I/a)(Z-a)/2(a-O), 

/ 4  = (7= - (l vl/a) (2-~)/2(~-1), ~ + (I v[/a)(2-~)/~(a-~ 

I5 = 0% + ([ vl/a) (2-a)/2(a-I), --k 0(3). 

Accordingly Q2 = Q3 + Q4 + Qs. 
We start by the estimate of Q4. 

p 1 / 2 a  ([~_)(2_a)/2(a_l) v�89 ~ Ca - [ Q4(v) [ <~ ~ d ~ l  <<. c P  1/2a p1/2a 
z, Ivl �89 

Now let us consider Q5 (v) and integrate by parts. 
1 p1/2a a-2 

iQs(v) l ~< Iv + a r a - l l  F - W -  + ca~ _ ~7 a-1 P-(2/a)~72)~d~ + _ z ~ l v + a  [2(1 + 

p - (2/~) 
+ Ca I a~a-I p-(2/a)~2)5/4 d~" 

where F =  ~ + 2(! v I/a) (2-a)/2("-~ We are going to show that each 
one of the three terms in the above formula is dominated by 
cap~/2~/I v I ~. First we claim that 

Iv + al'a-* l >1 q'al vl (a-2)/2(a-l)" (5) 
This easily implies the estimate we want for the first term. To prove 
our claim we write I v + a / ' a -  11 > I I v I - a F a- 1 I. Now 

( (~ ) -a , ,~ . - , , }a -~  
I v l - a F a - l = l v l - l v l  l-I- = 

= l v l - l v l  1 + ( a -  1) + 

+ 2 + " "  

by the binomial series expansion. This expansion from a certain point 
on, depending upon a, will show alternating terms. So if 1 < a < 2 

i Iv, a F ' - ~ l > ~ ( a  1) (~)( ' -2)/2("-  ~ ( a - - 2 ( ~ )  -a/2(a-l) ) 
- - 1 +  >/ 

a 

a -  1 (I v 1"~(~-2)/2( ~-0, 
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w h i l e i f a  ~> 2, quite simply I I v l - a l " a - l l > ~ ( a  - l)(L~_)(a-2)/2(a-1)./I,,l', 
\ / 

This proves the claim. 
Now let us go back to the original estimate for Qs and consider the 

third term. By (5) we know that if ~TEIs= (F, + oo) then 
Iv+ a~-~  l >~ Ca] Vl (a-2)/a(a-1). Moreover  F>~ (I vl/a) ~/(~-~. From 
these two inequalities the estimate we want  for the third term follows 
easily. We are left with the second term. As we already pointed out 
if n~I5 then Iv ___ a~fl-a I >~ GIv l  (a-a)/2(a-0, but at infinity it is more 
convenient to use the estimate Iv + a~fl-11 "" a~ a-~. Therefore we 
decompose/5  as follows 

and 
I s = (/', 2rio)w (2r/~, + oo) 

d ((~)l/a-1 (~)(2-a)/2(a-1) 
U + 2i-  I I 
i=1 

(~_)l/a-I (~)2-a/2(a-1)) 0 
+ 2i = 4. 

i=1 
Now as in the proof  of  (5) one can show that for every i~< d 
we have iv-a~7"-l[>~c,,2i]vl (a-2)/2~176 if ~J/,. and that if 
r lE(2(I  V I/a) l/a-l, + oo) w e  have iv - arla-ll >11 Car] a-1. From these 
inequalities the correct estimate for the second term follows. Let us 
show it for instance for 

~Ta-2p1/2a -2i~]a-5/2 [ 4 ] p1/2a 
__ a - I  [2~7}d~7 ~< Ca P1/2a2 ~ ~/~" 

Ss, l v+  a Ivl (a-2~/(a-l> CaTlvl 

p1/2~ 
So we proved that I Qs(v)] ~< G I v112. In a similar way one can 

estimate Q3 (v). Namely we use the same integration by parts as in the 
estimate of  Q5 (v), eventually writing 

( 2 ) (  ~ 7]e (~)(2- a)/2 (a-- 1)) 
13 = 100, k.) 2 '  -- u 

On (100,~d2) we use the inequality lv+a~"- l l>~c, , Iv l  and 
eventually we furthermore subdivide ( r /d2, r~v-(Ivl /a)  (2-'~176176 

p1/2a 
with a dyadic grid. So we showed that I Q (v) I ~< C a ~  for all v's. 
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N o w  suppose  t (s) = t (s'). T h e n  F(s, s') = 

By an in tegra t ion  by par t s  we have tha t  

oo e2nir(s_ s') 

(1 + r2) "x-&" 

e2~irs l/s 1 1 ! ~ e 2 n i r s  _+_2;2) 5/4 dr  10 
I ( f  + r ~  dr <" ! (1 + r2) ~dr + ~ +  <" ~-" S 2 S 1Is (1 S ~- 

C 
So we p r o v e d  tha t  I F(s, s') ] ~< I s - s' I ~ at  those  po in t s  (s, s') such 

tha t  t (s) = t (s'). This  ends  the p r o o f  o f  L e m m a  2. 
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