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Abstract. Let ' be a radialﬁfunction and set T* f(x) = supy,«; | Lf(x)], xeR",
n 2, where (T,f) (&) = ¢""*"“f(&), a > 1. We show that, if Bis the ball centered at

the origin, of radius 100, then_f | T*f(x) | dx < c(flf(f)\ (I + £ ds)**if and only
ifs>=1 4-

Let f belong to the Schwartz class % (R") and consider

Tf(x)= sup | [ & e f(g) de|, xeR", n>2,

O<i<!l Rr

for every a > 1, where

J@©= fe‘z““f(X) dx.

Let H,(R") denote the closure of {fe % [(1 + | £{H)°F(&)] € L?} under
the norm ||flf = _[(1 + &1 /(&) |?de. We shall prove the

following

Theorem. Let us assume f radial and let B = {x:| x| < 100}. Then
the inequality
|| Tf”Li(B) C Hf”HS (1)
holds if and only if s = %.

In the particular case a = 2, the theorem has as a consequence that
if radial f belongs to H’, s > 1, then

ux,1) = [ e T de,
Rn
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. 1 . .0
a solution to the Schrodinger equation % g u, converges a.e. to

ot
f(x)as t—0.

Inequality (1) and the a.e. convergence of u (x, f) have been studied
by several authors, namely L. CARLESON, B. DAHLBERG and C. KENIG,
C.KeniG and A. Ruiz, A. CARBERY, M. COWLING, P. SIOLIN. In one
dimension, inequality (1), with @ = 2, has been established for s > %
in [2] and such a result has been proved to be sharp in [4]. In
dimension n > 1 the best result up to now can be found in [7]. It states
that

I T* fllpa < ¢llfllye for s> 3.

Our proof is in the spirit of [2]. We shall need the following Lemma
1, for the proof of which we refer to [6] and Lemma 2, the proof of
which we postpone.

Lemma 1. Let k> 0 be half of an integer and let ¢, denote the
Bessel function of order k. Then

@ [ADI <o 120

() £ (1) = y2fm tcos (z ~ 2k~ g) + E()

where | E, ()| < ﬁ, t>Ak) > 0.
P

Lemma 2. Let a > 1 and let s,s" belong to (0,100]. Set
exp (i 2ar(s — 5) + (1) — tGENT) 4.

F(s,s') =
(559 =§ 1+ rd*
where the interval of integration is (max (één_)’A (,n)), - oo>. Then
¢
. < -

By c,,c,, ¢ we denote constants not necessarily the same in all
instances.

Proof of the theorem. Let s = | x| and r = | &]. We linearize the
operator T, by making ¢ into a function of s, #(s) and we obtain (see
8], p- 155)
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Tf(s) = (n 2)/2 j j(n Y] (2nrs) e”at(s)f(”) " dr. 2

(We still write T for the above operator.) All we have to prove is

100

g | Tf(s)| 5" "ds < ¢l fll - 3)

We break up the domain of integration in (2) as follows (0, 4 (n)/s)
and (4 (n)/s, + 0). So we can write Tf = T,f + T,f. We can prove
easily estimate (3) for 7;. For by (a) and Schwarz inequality we have

¢, A(n)fs
FIVIGIES TR I e dr < s (,, 25l Al B(9)2,
A(n)/s ’
where B(s) = g m; 3/2 Therefore T} satisfies (3).

Now we turn our attention to 7,. We shall use the equality

f(n—z)/z (r) = [f(n—z)/z (r) —

i C—@Hn-GA) ;=i (n/4))]
+

\/271}’ * -\/27”

j ol r— M=) = i(r= () n= (/)

R2ar  2ar

and write T, f = I, f + T,f + Tsf. By (b) and Schwarz inequality we
have

Y . c, s
’ Téf(S) | = (n 2)/2' (_!;)/sm|f(r) | r /zdr (n+1)/2Hf”H&

So T, satisfies (3).
Now we are going to deal with 7, f and similarly one can estimate
T.f. We have

0
| thf(s) | = r= I)/21 j‘ eZnirseiraz(s)f(r) F=Dp2 dr|
Any/s

and
100

I TSl m = _g 0(s) T,f(s)s" ' ds

where 0(s) T.f(s) = | T,.f(s)! and so | 0(s)| = 1. By exchanging the
order of integration and by Schwartz inequality we obtain
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H T4fHL1(B) Hf”H}(j @(V) dr)‘L

where

}OQ(r)dr-—

1 100
j o (L+r7)? A(E)/r

0 100
1 10

2
(S) ei(2nrs+t(s)r") S(nf1)/2 dS d}’ -

B(S) [ (S') ei[2nr(s—s’)+(t(s)‘l(.s")) 9 (Ssr)(n—l)ﬂ dsds' dr

'I(1

= | B(s)s" V"7 _[ 0(s) (s D2 F(s,5)dsds’.
0 . g

+ r?)s A(n)/rA(n)/r

By Lemma 2 we have (| @(r) dn*< c. So T, satisfies (3). This
0

completes the proof of the positive part of the theorem.

The counterexample goes as follows. We shall define even
functions £, (x): R — R such that

O lm||f,iig=0 if s<i;

r—0

(ii) if we choose £(x) = x v?“~?/a then there exists a small number
b(a) such that | Tf,(x)| > ¢ for all x, h(a@)/2< |x| < b(a) and v
sufficiently small, depending upon a and ¢.

This evidently shows that (3) and therefore (1) cannot hold unless
s= %

Let g be a positive even function in Cy° (R) supported in [— 1, 1],
such that [g(§)dé = D # 0. We set

R

L© =10+ 71,0, 0<v<1,
where f, (&) = vg(v& + 1/v) and f, (&) = vg(vé — 1/v). In [7] the
following has been proved

(@) m|if; ,llg, =0 if s<Z
v-0

(i) if 7(x) = xv**~*2 then | Tf, ,(x)| = c for every x in a neigh-
bourhood I(a) of the origin and » small.

From now on we denote by ¢ exactly the constant that appears in
(ii"). Now (i) is easy to prove, while (ii) will be proved by (ii') and the
following

") | Th, ()] < for all x, ( ) x| € b(a) and v small,
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that we proceed to show. By Taylor’s formula we have

inzy(x)i < | J‘ z(2(x/v)§+l(a Um)g(é‘)dél n

+ | T e Ul Ha—DxE) (10010 _ 1) g (£) dE| =

= M(x) + E(x).

For all x,|x|<1 and v small |E(x)| < c|x|v<¢/10"°. Now we
write

M(.X) < ij‘eiZ(x/v)Eg(E) df[ + |j‘ei2(x/u)§(eié(a—1)x§z _ 1)g(§) df’ _
= M1 (.x) + le (x).

We have M, (x)=|g(x/nv)| <107 ¢ if |x|>|I(a)|/2 and v
sufficiently small. Moreover

_ h
1'<9—§—3x§2> 89 ds |+ Tail (9|

ei2(x/v)§
Fe

M
M;(x) < z

h=1

where
2D < c ,
(M + 1)t~ 10"

| Tail (x)| < W—i—ﬁfg(f) dé <

if |2 21< 1, thatis | x| < - 2 1 and M large enough. On the

2

other hand if x| < —2—1 then
a

M1 /a
Yl
Now being g smooth we have | (g (£) &) (x)| < ¢,/ x| if | x| > 1 and-

S0

e et enal <o (5|

Y €@ (2)< EaT < o

if | x| >|I(a)}/2 and v is sufficiently small. Since we can assume
| I(a)| < min(2/(a — 1), 1), we proved that (ii"") holds for | I(a)|/2 <
< [ x| < |I(a)| and v small. This ends the proof of the theorem.

10*
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Now we turn to the

Proof of Lemma 2. First we assume 7(s) # ¢t(s") and change
variables as follows = | £(s) — ¢(s") |'“r. Then
oo z(27z(s $) () —t(s) |~y £ 49

" iy —(a)
FO =160~ 1O [ e~ e

where m (s, s') = | t(s) — t(s") | """ max (4 (n)/s, A (n)/s"). Now we set
27 t(s) — t(s)|~ ¥ (s—s5) = v and so

F(s,s) =1t(s) — t(s) 70 e -
m({s’) (1 + I I(S) - t(S )| @ )772)4
To prove Lemma 2 all we have to show is

eivneiin”

© eivneiin“ P(S sr)1/2a
= dn| < e 24—, 4
1 Q(v)] m(_!:S’)(l ¥ PG, S,)_(z/a)nz);f n 4 Tl 4)

where P(s,5") = | t(s) — 1(s")|. We write
100

Q)= [ dn+ Idn—Ql(v)+Qz(v)

m(s, s 100
First assume [v|< 1. Then |Q,(v)| < c P'*% Since it is always
v+ an®'| > c,> 0, integrating by parts we obtaln

K - D™
< ¢ Py < a(a
1@, (v <, 14;0 v+ an*" 1| 1+ P @/a) 2)

2 p-@a . i
+ <c .
lv+an® |1+ p—(2/a)172)5/4> =G

So estimate (4) has been proved for |v|< 1. Secondly assume
lv| > 1. We start by Q,(v) assuming m(s,s’) < |v|~'. (At those
points (s,s") such that m(s,s’) > [v|~! the estimates are slightly
simpler and they are left to the interested reader).

An integration by parts shows that
Yol

1 ‘e eiiﬂa 160
10, ()| <m(£f)P_1/2a > W]

_,I_

il
c, 100 PUIPEIUN 1 17'+ ¢, 100 eV etin® p- (2/a)ndnl<
_—a_ N <
ol o (1 + P (2/")772)l [0 170/ (1 + P~ 5% l

N

1 1 P1/2a
pifa + 4+ ——)<c )
v} Ivl lo|ate “lo|t

Now we are going to consider Q,(v). Again we shall integrate by
parts, but this time it might be that v+ an*"' =0, namely for
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1= (% v/a)"“"" =y, Assume n,> 100 (otherwise we are in a
simpler case). Then we subdivide the interval of integration into three
pieces
L = (100, 5, — (| v|ja)®~ 2@V,
I, = (5, — (10}/@)®=92@=, 1 (| v]/a)@-92@-D),
Iy = (i + ([0l + o),

Accordingly O, = O; + Q4 + Os.
We start by the estimate of Q,.

P1/2a p\@-92@-1 P1/2a
mi<]T dn<cP1/2”(l—a—|> < e,

T 1
I |v]

Now let us consider Q;(v) and integrate by parts.
1 P1/2a na—Z
10s(v)| < —+ ¢, sdn +
195@)] lotal™ | I {Ivian"‘ll2(1+P‘(2/“)n2)4 7
p-eia,
+ ¢, dn.
‘1[!0 ¥ an® (1 + P @D, 4
where I' = 7, + 2(Jv]/a)?~?2@=Y, We are going to show that each

one of the three terms in the above formula is dominated by
¢, P'4/| v |}, First we claim that

ok al™ !> c,|v|ePRED, (5)

This easily implies the estimate we want for the first term. To prove
our claim we write [v + al“ "> ||v]| — al“'|. Now

—al2{a—-1)ya—1
|u;—arﬂ—1=[uf—au|{1+<|ﬂ> } -
a

IU; —af2(a—1)
=|v|——|vl{1+(a—-1)(—) +

N (a — 1)2(a -2) <_Z_!>a2a/2(a~1> . }

by the binomial series expansion. This expansion from a certain point
on, depending upon g, will show alternating terms. So if 1 < a< 2

ol—arz @ ()T (1 2 ()T
- a a a =

— @—2)2(a—1)
Sa=1ol
2 a

3



142 ELENA PRESTINI

o .. @-22@-1
while if a > 2, quite simply | [v| — al™ ' = (a — )( )

This proves the claim.

Now let us go back to the original estimate for Qs and consider the
third term. By (5) we know that if nely= (I, + o0) then
vt an ' =c,|v|¢ P26 Moreover I'z (|v|/a)“ . From
these two inequalities the estimate we want for the third term follows
easily. We are left with the second term. As we already pointed out
if el then v+ an®'| = ¢, v|® 226D but at infinity it is more
convenient to use the estimate |v + an*"'| ~ an*”". Therefore we
decompose I as follows

IS= (Faznv)u(znw + OO)

d — - —
| v l 1ja—1 i1 | v l Q2-a)2{a—1)
I,2n,)= — 27—
r2=U((5)" +27(7) ,
|U| 1ja—1 . HJI 2—a/2{a—1)
R 2L~
(o) =) )

Now as in the proof of (5) one can show that for every i< d
we have |v—an®'|>c,2"|v|@ P26 if yeJ and that if
ne(vi/a)"*"!, + c0) we have |v — an*"'| > ¢,n*"". From these
inequalities the correct estimate for the second term follows. Let us
show it for instance for

and

C&

J;-
1

a 2P1/2a 2 2_2177a—_5/2|‘]" Pl/la
a v 1
jJ:|U ¥ a2y %dn S 6 |y @ =D = cazi|vll/2'
p'ie -
So we proved that |Qs(v)!| < cam%—. In a similar way one can

estimate Q,(v). Namely we use the same integration by parts as in the
estimate of Q(v), eventually writing

= Mo N . |—U—l Q2-a)f2(a-1)
=)o G- (G) )

On (100,7,/2) we use the inequality |v+ an®'|>c,|v| and

eventually we furthermore subdivide (7,/2,7, — (| v|/@)@~92@"D)
12a

with a dyadic grid. So we showed that | Q (v) | < I‘J B for all v’s.
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0 2nir(s—s")
Now suppose (s) = ¢(s). Then F(s,s") = j i—fdr.
(A ) (1 + 1)

By an integration by parts we have that

Zairs < Ijl-s 1 r l 3‘0 2rirs d}" < 10
.I(1+”2) T+ % Sl (1+r2)5/4 st

So we proved that | F(s,s")| < ‘—CA—F at those points (s, s") such
§s— 5|
that #(s) = ¢(s"). This ends the proof of Lemma 2.
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