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Abstraet. It is proved that a functional law of the iterated logarithm is valid for
transitive C? Anosov flows on compact Riemannian manifolds when the observable
belongs to a certain class of real-valued Holder functions. The result is equally valid
for semiflows over piecewise expanding interval maps that are similar to the
Williams’ Lorenz-attractor semiflows. Furthermore the observables need only be
real-valued Holder for these semiflows.

1. Introduction

In [7], M. RATNER proves a functional central limit theorem for
transitive C> Anosov flows on compact Riemannian manifolds of any
dimension. The proof requires the use of Markov partitions to
represent the Anosov flow as a special flow, a flow built under a
function. RATNER proceeds to prove that for a certain class of real-
valued Holder observables, the characteristic function (or Fourier
transform) derived from the composition of the observable with the
special flow can be approximated as the product of two other
characteristic functions that converges to the two-dimensional nor-
mal characteristic function. The idea of representing the quantity of
interest as a product of other quantities that are simpler in a sense is
exploited in the present paper to prove a functional law of the iterated
logarithm for transitive C* Anosov flows on compact Riemannian
manifolds. Moreover this result extends to semiflows obtained from
suspending certain piecewise expanding interval mappings, and by
using the construction in [8], the result is equally valid for the flows
obtained by extending the semiflows,

2. Preliminaries

Let {7} be a transitive C*> Anosov flow on a compact Riemannian
manifold M for which M and the Riemannian metric on M are C*.
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Forsuch flows there are smooth invariant measures, Gibbs measures
that maximize a variational principle [2]. By means of a Markov
partition [7], one gets a special representation of the flow {7'}. This
partition determines a matrix 4 = [a;]], a;; = 0, 1, of order r, such that
for some integer s > 0, all the entries of 4° are positive. Using this
matrix, one constructs the space X C {1,2,...,7}% of sequences
= (x)2_, with a,,,  =1forall ieZ. Define p: X—> X by px =
= (x))2 _, where x{=x;1;.

The Markov partition enables one to define:

(i) a continuous positive function / on X satisfying a Holder
condition,

(i) a special flow {S'} acting in the space
W=(X,D)={(x5:3xeX,0<s <), (x,](x) = (px,0)}
so that for ¢ < inf,.x (%),
(xs+1) fort<lI(x) —s
(pe,t+s—1x) fort = 1) —s

and {S'} is uniquely determined for other values of ¢ by the condition
that it be a one-parameter transformation group;

S'(x,s) ={

(iii) a continuous mapping w: Wi M such that ¢ S'=T'y.

If » is an {S"}-invariant Borel measure on W such that the set on
which y fails to be one-to-one has »-measure 0, then the flows {S'} on
(W,v) and {T'} on (M, *») are isomorphic (for a Borel set 4 C M,
p*v(4) =»(y ' 4)). Itis pointed outin [7], the method above is used
by Ya. Sinai to construct invariant Gibbs measures for transitive C?
Anosov flows. A Gibbs measure » on W induces a ¢-invariant
measure x on X such that dv = (I*) 7' (du x di) where [* = (1) du,

X
and the shift ¢ on (X, ) is a Bernoulli automorphism with uniformly
strong mixing, specifically, for any sets B,e 4., Bin B;= 0G#)
and Aed* ,

ZIM(BiIA)—M(Bi)I <Cy” 1)
whére 0<y<l,a>0,C>0aconstant, and .# b is the o-algebra of

the sets measurable with respect to {x;:i =a,...,b}.
For a continuous 4: X+ R, let
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var,i=sup{|h(x) —h(@)]: 5, ¥ X, x;= x| for |i| < n}.

One says that h e Fif forsome C > 0and 0 < y < I, var, i < Cy"for
all »>0. (For a continuous H: W R, define var,H and %
analogously.) It will be assumed that { belongs to .

Let ¥ be the infinitesimal operator corresponding to the group
{V} of unitary operators adjoint to the flow {S},i.e., V,=exp (it V).
Consider the equation:

Vh(w)=f(w) — f* where f* = [ fdv and fe L2 (W).  (2)
W

3. Statement and Proof of Theorem

Theorem (Law of the Iterated Logarithm). Let f belong to Fy and
suppose that equation (2) has no solution in L? (W). Then

v({we W:lim sup (|f[f(S;”)—f*] du| (2o’ tlog logs®f) ') = 1})=1
e 0 I(x) (3)
with 0'2 = 27[([*)_11"[:_(;*/1*)1(0) > 0 and F(X) = j‘ f(I,S)dS‘
0

(r¢ (o) is the spectral density of G).

(For brevity, “log,” will be used in place of “log log”.)
The theorem is proven by a sequence of propositions and results
from (5], [7], [9].
Proposition 1. Let Fe %y and
N-1

L F=([Y (Flp~'5) = F*)du.
X i=0

Ifo% F— o0 as N — o0, then F satisfies the law of the iterated logarithm
for @ with respect to (X, u) and 63 F ~ og N for some op > 0. Moreover
o’ = op in the law of the iterated logarithm (abbreviated “LIL” ).

Proof: For xe X, let 4,(x) = {x' e X:x/= x,, |i| < k}.

Denote
F®=[kU®)] " | Fdu.

g (x)

Because Fe %, it follows that in L2 (X)
IF @) — E(x)]. < Cy~. 4)
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From [5], (4) implies that when (1) holds, ¢% F ~ o N for o > 0,
and from [9], F satisfies the LIL with o* = op. []

As RATNER points out, since for Gibbs measures of transitive
Anosov flows, {S%} is a Kolmogorov flow in (W,»), the equation
UG — G =1— I* has no solution in L2 (X) where U is the unltary
operator in L2 (X) adjoint to ¢, and consequently o2l ~aqn
for ;> 0. Smce le %, I satisfies the LIL for ¢ with ¢*=o,. For
fe %y, define

1(x)
F@) = | f(x ydt and F~ (x) = F(x) — (F*/I*) 1(3).
0

In [7], it is proved that the equation V4 (w) = f(w) — f* not having
a solution in L? (W) is equivalent to the equation UH — H =
= (F*/I*) not having a solution in L’ (X). Thus ¢2 F~ ~ op-n as
n— o where op~ =2nrp-(0) >0 with r;(o) the spectral density
of G. Further because F~ € %, F~ satisfies the LIL for ¢.

In the central limit theorem for special flows, RATNER proves
t
that if o2f= [ [[(f(S™“w) — f*)dul’dv, then o}f~ ot for or=

w0
=2x(%) " rp- (0) > 0. In the present situation of the LIL, the same
or is used for o* in (3). One notices that because op- = 2z rp-(0),
op~=1*op=1*0 2,

Notation. 1. Let

n—1

A={xeX: limsup|) F~(p'x)| Qopnlogop-n =1}

n—co i=0
2. For xe X, define n(x, 1) by

a0 . nix, D+1 '

YieTn<i< Y 7. 5)

i=0 i=0
3. Let
= {xeX:lim sup ((*)*?|n(x, &) — (I*) ' t|- Qo,tlogaaif) 1 = 1}.

' £~ 00

4. Let 6 = ;= (I*) "'op~ and

P = {we W:lim sup 2stlogyot)~ 1/le[f(S'”m) f*ldu| = 1}.

t— 00
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Proposition 2. x () = 1.
Proof: For xe X, (5) implies

n(x, 1)

Qon(x, Dlogron(x,0) ™2 { ¥ g™ = M+ 1%} <

i=0
< Qon(x, logyon(x, ) 2 [t — I*n(x, 1)

n(x, H+1

< Qaon(x Hlogyon(x, ) "2 { Y [ 'x) — I¥]+ 21*].
i=0

Because ¢ is ergodic, n(x, 1) - o0 as ¢t — oo for almost every x with
respect to u, and because / satisfies the LIL for ¢,

lim sup Qoyn(x, Hlogyon(x, ) " |t — I*n(x, 0| =1

{—>c0

for almost every x with respect to u.
Thus for ¢ sufficiently large,

ll - l*l’l(x, I), < 2(20‘[”1($, t)logzagn(x, l))l/z.

For some C > 0 that depends on / only,
[t n( )™ = 1] <2(*n(x,0) "' Qon(x, 9 logyon(x, )7
< C(nx, )12,

Consequently, (I*) 't ~ n(x, f) and

=lim sup |t — I*n(x, )| Qon(x, )logyon(x, ) "2

t—o0

= lim sup/*|(1*) "'t — n(x, )] Qo (%)~ logy o1 (1*) ™)~ 112

t—co

= lim sup(l*)m ,(1*)—1 t— n(x, t)|(2cr;t 10g201t)_1/2

t— 00

for almost every x with respect to u, i.e., u(#)=1. [

Proposition 3. If w=(x,t0)e L with t,€[0,1(x)), then {x}x
x[0,1(x)) C &, i.e., the “fiber” over x belongs to &L if one point of the
“fiber” belongs to &.

Proof: For 0 < s < 1,
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FU(S™w) — f*ldu= [ [f(S™*(x,5)) — f*]du
0 0 (6)
t+(t0—5)

—E ST @) —fHdu+ [ (S “(,9) — f*]du
0
= g[f(S‘"(%, ) = f¥ldu = [f(S™" (x,9)) = f(S™* ()]t — 5)

for some t{and L, with 0 < 1y < tand 1 < 1, < t + ({5 + 5). From (6),
one can imply that

Q2otlogye )™ [ [f(S ™" w) — f¥ldul >
0

£

> (2o tlogya )T {[F(ST"(x,5) — f*]du| — Qatloge 1) "' Cl(x)
0

for some C = maxy|f].

Because we &, one concludes

3

1 > lim sup 2o tlogyo ) 2| [ [f(S 7 (x, ) — f*] dul.

-0 0

Furthermore since by (6)

Qotlogyo )™ [ [f(S™"w) — f*¥]du| <
< Qotlogon ™' |f [F(S™“(x,9) — f¥ldul + 2o tloga ) 2 CI(),
0

lim sup (20 tlog, o £) "2 j[f(S“"(x,s)) ~f*¥ldu| > 1.
t— w 0

Hence for 0 <5 < 1y, (x,5)e Z.

By an analogous argument, (x,s)e % for t, < s <I(»). [J

Proposition 4. If xe A N A, then (x,0)e &.

Proof: For xeX, let c(m)= Y I(p~'%). From some f, with
cnx D) <t<t, i=0
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f[f(S_”(x,O)) —f*ldu =

c(n(z0)

= j [F(S™*(x,0)) — f*] du + (j ))[f(S “(2,00) = Hldu (7
c(n(z!
n{x, g @)

=) | [T &0) —fHdu+[f(S"@0) —f* (t — c(nx, 1))

i=0 c(i—1)
nix ) Hp='s)

=Y | S "*'%0) —*ldu+4,

i=0 0
nx, 1)

=) F p7'e)+dr=4,+ 4,
=0

where 4, =[f(S°(x,0)) — f*](t — c(n(zx, 1))
It is now claimed that
Cu({xeX: lim Qotlogot) Pt —cnEx )] =0D=1. (8

{—00
Let
E={xeX:lim sup2otlogyet) "'t — c(n(x, 1))] > 0}.

=0

It is enough to show that x (E) = 0.
EC{xeX: lim supRotlog,at) (g "® 7 15) > 0}

f— o0

C {xeX: lim supQonlog,on)~21{(p V5 > 0}.

H—

By using Markov’s inequality and the invariance of ¢ with respect to
u, one has for a given ¢ > 0

u({xeX: Qonlogyon) Pl " V3 > €}) <
< )2+ e 727 2onlogyony 2ETY
for a fixed 5 > 0 and

Y u({zeX:Qonlogyon) Pl "tV > e}) <

nzl

SI3E e Y Qonlogon) ™) < o0,
n>l

By the Borel-Cantelli 0-1 Law, one concludes that
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p({xeX:lim sup(Ronlogyon) ~Pl(e~ " Vx) > x) > 0}) = 0.

-0

Because of (8), one concludes that for almost every x,

lim 2o tlog,o 1) 1?4, =0. ©)

10
QRotlogyot) |4, = Qop-n(x, H)log, o5 n(x, 1) -
‘|41 [(o tlogao ) (ap- n(x, D) logy o5~ n (x, D'
Because o5~ = [* o and n(x, 1) ~ (I*) ' ¢ for xe #,
(otlogyo ) Hopn(x, H)log op-n(x, ) ~
~ (o tlogyo )" [I* ot (1) logyI* o £ (1%) ] = 1

Using (9), (10) and the fact that F~ satisfies the LIL for ¢, one has for
xeAn I,

lim sup (2o tlogyo )™ 1/2” (ST 0) — f*ldul <

t— 0

< lim sup(2otlog,af) ™ 1/2|A1| +lim sup2otlogyat) 2|4, =1.

(10)

=00 -0
Similarly,
lim sup 20 tlog,at) ™12 j [F(S™*(x,0)) — f*] du| >

> lim sup 2o tlog, o 1) ~"*|4¢] — lim sup Qo tlogyo£) ~1?|4,] = 1.

{— 00 t— o0

Thus (x,0)e L. [
Proposition 3. »(Z) = 1.
Proof: Recall that dv = (I*) ™! (du x dt).
(L) = jdv = (I*)"! j duxdt= (%" jdﬂl(f)dt

AnH 0

=*)""[l®du=1 since u(AnH#)=1. 0

ANK

Remarks. 1. If v: W+ M is the isomorphism relating {S’} on
(W,») to (M, »*) (v* the Gibbs measure on M) and if #: M+ Ris such
that [h(z) —h ()| < Cy #llogd@ 2! for some C >0, %> 0,0 <y < 1,
and d the metric on M, then f(w) = h(yw)e Fy[7]. Thus the theorem
is valid for the class of all such 42 on M.
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2. If {T"} is a transitive C*> Axiom-A flow on a compact Rie-
mannian manifold M and L is a basic hyperbolic set with m (L) >
> 0 (m is the measure on M derived from the Riemannian metric),
then L is a connected component of M and {T'} restricted to L is an
Anosov flow [3]. Consequently, the law of the iterated logarithm is
valid when » is an equilibrium state for {7} restricted to L.

4. Semiflows from Interval Mappings

Let ¢:[0, 110, 1] possess a partition of [0,1], Z = {0 =a, <
<a,<a,<...<a,_; <a,=1},for which ¢ is C' on (a;,a;,,) and
|dp/dx| ™! is of bounded variation on [a;,a.,] for i=0,1,...,
m ~— 1. Suppose that inf, |dp/dx| =o' > 1 and that there exists a
p-invariant weak-mixing measure u absolutely continuous with
respect to Lebesgue measure on [0, 1]. In [8], RATNER proves that 2 is
weakly Bernoulli and hence the natural extension of ¢ is Bernoulli.
Moreoverif/e L' and /™!, the reciprocal of /,is Holder with exponent
2 (0 < « < 1), then either {S7}, the special flow build under / using the
extension of g and dv = (I*) ' du x dt, is Bernoulli, or for some #, > 0,
S™is not ergodic. In this section, it is shown that the law of iterated
logarithm is valid for f Holder and for /e L2+ with /=" being Holder.
(To simplify the discussion, this section deals with the semiflow
obtained from suspending ¢, not its extension, by /. The proof of the
LIL can be modified to handle the case of the semiflow.)

To begin, from HOFBAUER’s and KELLER’s work [4], the ¢-
invariant weak-mixing measure u, described above, actually satisfies
(1.

If W is the space on which the semiflow is defined, then the
requirement that fe % can be relaxed to f being Holder. The
condition “‘fe %" is used so that (4) is satisfied for F~. However as is

shown in [1], it is sufficient for Y | F~ — F; ||, < co. From [11], by
knowing that o < 1 and G is Pfglldcr on [0,1], Y G — Gy, < c0.
Consequently,if > ||/ — |, < co and fis H('Sld]; 1on W, one has the
desired series cor];jelrging.

Proposition 6. Let ¢ and u be as above. If Ic L? and 1 ™" is Holder
of exponent o (0 <a<1) on [a;,a;.1] for i=0,1,...,m— 1, then
2 =Ll < oo

k=1

12 Monatshefte fiir Mathematik, Bd. 94/2
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Proof: Observe that for each 4,
ST U= lde= [ Pdo=p9™ ([1d0* = [ Pdu~ | i,

Ax Ak Ak

e, [lidu< | 1*du
Ar Ag
and hence ||, < ||!|,. For a fixed k > 1, for each 4, there is an
xr €4, such that I(x;) = . (x;). Consequently, for some constant
C>0,

fU—-1)du= I(l—l(xk)) M—Il 1) 1o ™~ 171 du <
Ar
<C292ak 51 lidy
Jars

By the Cauchy-Schwarz inequality,
1= Ll < Co™ 12 < Co* | 2 | el < Co** 11115

The conclusion follows directly from this last inequality. [

As to the supposition that equation (2) has no solution in L2 (W),
it is noted in §3 that this condition is equivalent to the equation
UH — H = F — (F*/I*) [ not having a solution in L . In the present
situation, U is not a unitary operator but an isometric operator
adjoint to ¢ [6). Thus if UH — H = F — (F*/I*) [ has no solution in
L2 the analogue to equation (2) has no solution in L? (W).

Because all of the conditions for the theorem are fulfilled for
semiflows obtained by suspending ¢ with an / described in Proposi-
tion 6 and a Hoélder fon W, the law of the iterated logarithm is valid
for such semiflows.

Remarks. 3. The reason why it is of interest to permit / to escape to
infinity is that the semiflow obtained from the Willlams’ Lorenz
attractor has such a return-time function (see [8], [10]). The escape to
infinity means that the point never returns to the cross-section and is
caught on the stable manifold of the origin, a stationary solution to
the Lorenz equations. (Because of this desire to have infinite return
times, /e L2*? for some & > 0 in order that (8) is valid. (8) is used to
imply (9) rather than deriving (9) from the assumptlon that [ is
Holder.)
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4, If one considers all the properties that have been proven for the
Williams® Lorenz-attractor flow: the Bernoulli isomorphism, the
functional central limit theorem (by modifying the proof in [7]), and
the functional law of the iterated logarithm, one is led to believe that
the flow exhibits “chaotic” behavior from the probabilistic aspect
(with “random’ or “‘stochastic” replacing ‘‘chaotic”).
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