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Abstract. It is proved that a functional law of the iterated logarithm is valid for 
transitive C 2 Anosov flows on compact Riemannian manifolds when the observable 
belongs to a certain class of real-valued H61der functions. The result is equally valid 
for semiflows over piecewise expanding interval maps that are similar to the 
Williams' Lorenz-attractor semiflows, Furthermore the observables need only be 
real-valued H61der for these semiflows. 

1. Introduction 

In [7], M. RATNER proves a functional central limit theorem for 
transitive C 2 Anosov  flows on compact  Riemannian manifolds of any 
dimension. The p roof  requires the use of Markov  partitions to 
represent  the Anosov flow as a special flow, a flow built under a 
function. RATNER proceeds to prove that for a certain class of real- 
valued H61der observables,  the characteristic function (or Fourier  
transform) derived from the composi t ion of the observable with the 
special flow can be approximated as the product  of two other 
characteristic functions that converges to the two-dimensional nor- 
mal characteristic function. The idea of  representing the quantity of 
interest as a product  of  other quantities that are simpler in a sense is 
exploited in the present paper to prove a functional law of the iterated 
logarithm for transitive C 2 Anosov  flows on compact  Riemannian 
manifolds. Moreover  this result extends to semiflows obtained from 
suspending certain piecewise expanding interval mappings, and by 
using the construction in [8], the result is equally valid for the flows 
obtained by extending the semiflows. 

2. Preliminaries 

Let {T t} be a transitive C 2 Anosov flow on a compact  Riemannian 
manifold M for which M and the Riemannian metric on M are C ~ 
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For :such  f lows there are s m o o t h  invar iant  measures ,  G ibbs  measures  
that  maximize  a var ia t ional  principle [2]. By means  of  a M a r k o v  
par t i t ion  [7], one gets a special  r epresen ta t ion  of  the f low {Tt}.  This 
par t i t ion  de te rmines  a matr ix  A = [aij], a;j = 0, 1, o f  order  r, such that  
for  some  integer  s > 0, all the entries of  A ~ are posit ive.  Us ing  this 
matrix,  one cons t ruc ts  the space X C { 1 , 2 , . . . , r }  z of  sequences  

= ( x i ) ~ _ ~  with a~,~+~ = 1 for  all i ~ Z .  Def ine  q):X~--~X by  q~x= 
= (xi) L - ~ where  x; = xi+ 1. 

The  M a r k o v  par t i t ion  enables  one to define" 

(i) a con t inuous  posi t ive  funct ion  l on X satisfying a H61der  
condi t ion,  

(ii) a special  f low {S t} act ing in the space 

w =  ( x , / )  = 0 s < = 0)} 

so tha t  for  t < i n f~x l (x ) ,  

~(x, s + t) for  t < l(x) - s 

S t (x, s) = ((9~, t + s - l(x)) for  t >~ l ( t )  s 

and {S t} is un ique ly  de te rmined  for  o ther  values  of  t by  the condi t ion  
that  it be  a one -pa rame te r  t r ans fo rma t ion  g roup ;  

(iii) a con t inuous  map p in g  r :  W~--, M such that  r S t =  Tt~0. 

I f  ~, is an {S ~}-invariant Borel  measu re  on W such that  the set on 
which ~0 fails to be  one - to -one  has v-measure  0, then the f lows {S t} on 
(IV, ~) and  {T t} on (M,  W * ~') are i somorph ic  (for  a Borel  set  A C M,  

�9 ~, (A) = v (W - 1 A)). It is po in ted  ou t  in [7], the m e t h o d  a b o v e  is used  
by  Ya. Sinai to  cons t ruc t  invar iant  G ibbs  measures  for  t ransi t ive C 2 
A n o s o v  flows. A G i b b s  measu re  v on W induces  a 9~-invariant 
measu re /~  on X such that  d~, = (l*) -1 (d/~ x dt) where  l* = S l ( t )  d/~, 

x 

and  the shift ~0 on (X,/~) is a Bernoul l i  a u t o m o r p h i s m  with un i fo rmly  
s t rong mixing, specifically, for  any  sets Bi ~ all/~+ n, Bi ~ nj  --= 0 (i ~ j )  

and  A ~J /k_oo,  

F,I ,(B,I A ) -  (Bi)l < (1) 
i 

where  0 < ~ < 1, ~ > 0, C > 0 a cons tan t ,  and J g  b is the a-a lgebra  of  
the sets measu rab l e  with respec t  to {x~" i = a , . . . ,  b}. 

F o r  a con t inuous  h : X ~ - ,  N, let 
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var,~h = sup {Jh (x) - h ( x ' ) l : x , t ' e X ,  X i ---~ X~ for lil ~< n}. 

One says thath eo~xifforsome C > 0 a n d 0  < 7' < 1, var,,h ~< C),"for 
all n ~> 0. (For a continuous H: W~--~N, define var, H and ~w 
analogously.) It will be assumed that I belongs to ~ .  

Let V be the infinitesimal operator corresponding to the group 
{~} of unitary operators adjoint to the flow {St}, i. e., V,= exp (i t V). 
Consider the equation: 

Vh(w)  = f ( w )  - f *  w h e r e / *  = ~fd~ a n d f ~ L  2 (W). (2) 
W 

3. Statement and Proof of Theorem 

Theorem (Law of  the Iterated Logarithm). Let f belong to ~w and 
suppose that equation (2) has no solution in L 2~ (W). Then 

t 

({w E W: lira sup (I j" [f(S • ~) - f * ]  d/~ [ (2 ~r 2 t log log a 2 t) -1/2) = 1 })= 1 
, - ~  o l(~ (3) 

with o 2 = 2 :r (l*) - 1 re-(r*/z*)l (0) > 0 and F (x) = .f f(x, s) ds 
o 

(ro (5) is the spectral density o f  G). 

(For brevity, "log2" will be used in place of "log log".) 
The theorem is proven by a sequence of propositions and results 

from [5], [7], [9]. 

Proposition 1. Let F ~  and 

N - 1  

- 

X i = 0  

I f  o2N F ---, oo as N ~ ~ ,  then Fsatisfies the law of  the iteratedlogarithm 
for  c; with respect to (X, #) and a2u F ~ aF N for  some (7 v > O. Moreover 

2 = o1~ in the law of  the iterated logarithm (abbreviated "LIL") .  

Proof." For I~X,  let Ak(t) = { t ' e J ( : x ' =  xi, [il ~< k}. 

Denote  
Fk(x) = Lu (A~(:Q)]-' .[ Fd~.  

& (z) 

Because F e ~ ,  it follows that in L 2 (X) /a 

II F(~) - Fk (t)112 < CY k. (4) 
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From [5], (4) implies that when (1) holds, ~2 u F ,,~ o F N  for o- F > 0 ,  

and from [9], F satisfies the LIL with o z = OF. []  

As RATNER points out, since for Gibbs measures of transitive 
Anosov flows, {S t} is a Kolmogorov flow in (W,v), the equation 
U G  - G = l - l* has no solution in L 2 ( X )  where U is the unitary # 

operator in L2(X) adjoint to 9~, and consequently o,  # 

for o! > 0, Since l e ~ x ,  l satisfies the LIL for ~ with 0 2 =  or. For  
f e ~ w ,  define 

l (~) 

F(~) = ~ f ( x ,  t) dt and F ~ (t) = F(x) - (F*/ l*)  l(~). 
0 

In [7], it is proved that the equation Vh  (m) = f ( m )  - f *  not  having 
a solution in L 2 (W) is equivalent to the equation U H -  H =  
= (F*/ I*) I  not  having a solution in L 2 (X). Thus O 2 F ~ ~ OF~ n as /~ n 

n ~ ~ where a e - =  2z~rF-(0)> 0 with rG(o) the spectral density 
of G. Fur ther  because F -  e ~x, F ~ satisfies the LIL for 9J. 

In the central limit theorem for special flows, RATNER proves 
t 

that if o 2 f =  S [~(f (S-uw) - f * )  du]zd*, then o 2 f  ,.~ al t  for o f =  
w0 

= 2re (/*)-1 re-(0) > 0. In the present situation of the LIL, the same 
o I is used for a 2 in (3). One notices that because or- = 2nrF-(0) ,  
OF- = l* of = l* 0 2. 

Notat ion.  1. Let 
n - 1  

A = {xeX:  lim sup/  ~ F - ( ~ o - i x ) l  (2aF-nlog2crF-n) -1 /2= 1}. 
n ~ c o  i = 0  

2. For  x e X, define n (x, t) by 
n(~, t) n(~, t)+ 1 

< t (5) 
i = 0  i = 0  

3. Let 

J f  = { t e X : l i m  sup(l*)3/2Jn(x,  t) - (I*) -1 t l . ( 2 ~ l t l o g z a l t )  -1 /2= 1}. 
t -*cO 

4. Let c~ = ~y = (I*)-I~F~ and 
t 

~ = {we W:lim s u p ( 2 ~ t l o g 2 ~ t ) - l / z l s [ f ( S - U w )  - f * ] d u l  = 1}. 
t--* oo 0 
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Proposition 2./~ (YF) = 1. 

Proof: F o r  t ~X,  (5) impl ies  

n (~, 0 
(2~rln(x, t) logz~rln(x,  t)) -1/2 { ~ [ l(q~-it)  - l*] + l*} < 

i = 0  

< (2 crl n (x, t) log2 al n (x, t)) - 1/2 [t - l* n ( t ,  t)] 

n(x, 0 + l  

~< ( 2 a l n ( x ,  t)logzcrzn(x, 0)  -1/2 { ~ [l(9~-ex) - l*] + 2 /*} .  
i = 0  

Because  9~ is ergodic ,  n (x, t) ~ ~ as t ~ ~ fo r  a l m o s t  every  x w i th  
respec t  to/~,  a n d  becaus e  l sat isf ies  the L I L  for  % 

lira sup (2 at n (x, t) log2 at n (x, t)) - I/2 I t - l* n (x, t) j = 1 
l---~ 00 

for  a l m o s t  every  x wi th  respec t  to/~.  
T h u s  fo r  t suf f ic ien t ly  large,  

Jt - l* n(x,  01 < 2 (2 a tn  (:~, t)log2 a ln  (~, t)) 1/2 . 

F o r  s o m e  C > 0 t h a t  d e p e n d s  on l only ,  

tt (l* n (x, t)) -1 _ 1 J < 2 (l* n (x, t)) -1 (2 al n (x, t) log2 or n (x, t)) 1/2 

< C (n (x, t)) - 1/2 

C o n s e q u e n t l y ,  (l*) -1 t ,-, n ( t ,  t) a n d  

1 = l im s u p l t  - l* n(x,  01 ( 2 a l n  (x, t ) l og2a ln  (x, t)) -1/2 
l---~ oO 

= l im sup  l* I(l*) - 1 t - n (x, t) l (2 ~rz t (l*) - 1 log2 at t (l*) - 1) - 1/2 
t - + ~  

= lira sup  (l*) 3/21(l*) - 1 t - n (x, t) l (2 ~z t logs ~z 0 - 1/2 
t--+ oO 

for  a l m o s t  every  x wi th  respec t  to/~,  i. e. , /~ (~(~) = 1. [ ]  

Proposition 3. I f  to = (x, to) e ~ with to ~ [0, l (x)), then {~} x 
x [0, l(x)) C ~ ,  i. e., the "fiber" over x belongs to ~ i fonepo in t  o f  the 
"fiber" belongs to ~q~. 

Proof." F o r  0 ~< s < to, 
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t t 

~" [ f (S -~ m) - f * ]  du = ~ [ f (S -~  (x, s)) - f * ]  du 
o o (6) 

to-s t+(to-s) 

- S [ f (S-U (x, s)) - f * ]  du + I [ f (S-" (x, s)) - f * ]  du 
o 0 

t 

= S [ f (S -~  (x, s)) - f * ]  du - [ f (S  -t~ (x, s)) - f ( S  - '~ (x, s))] (to - s) 
0 

for some tl and  t: with 0 < tl < t and  t < t: < t + (to + s). F r o m  (6), 
one  can imply tha t  

t 

(2 o t log2 o t) - ,/2[ j" [ f ( S -  u to) - f * ]  dul >~ 
0 

t 

~> (2 a t log2 a t) - 1/21 j" [f(S -u (t:, s)) - f * ]  dul - (2 a t log2 a t) - ,/2 C l (x) 
0 

for some C >~ maxw0q.  

Because m e s one concludes  

t 

1 ~> lim sup (2 cr t log2~ t) -1/21 ~ [ f (S -~ (x , s ) )  - f * ]  dul. 
t--* o~ 0 

F u r t h e r m o r e  since by (6) 

t 

(2 a t log2 a t) - 1/21 j" 
0 

I f ( S - "  m) - f * ]  du[ <~ 

<~ ( 2 a t l o g 2 a t )  -1/2 I~, [ f (S-U(x ,s ) )  - f * ]du l  + ( 2 a t l o g a a t ) - l / 2 C l ( x ) ,  
0 

t 

l im sup (2 cr tioga a t) - 1/21 f [ f ( S - U  (t,  S)) - -  f * ]  du[ >~ 1. 
t ~ o e  0 

Hence  for 0 ~< s < to, (~, s )6  5q. 

By an ana logous  a rgument ,  (x, s ) s  s for to ~< s < l (x). [ ]  

Proposition 4. I f  x ~ A c~ ~ ,  then (t, O) ~ 5~. 

/1 

Proof:  For  •eX, let c ( n ) =  ~ l (q ) - i t ) .  F r o m  some 
c (n (x, t)) < to < t, i=o 

to with 
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t 

j" [ f ( S - "  (t, 0)) - / ' 1  du = 
0 

c (n (~, 0) t 
= f [ f ( S - " ( x ,  0)) - f * ] d u  + ~ Dc(S-" (x, O)) - f * l d u  (7) 

0 c (n (~, t)) 

n (x, t) c (i) 

= E  i 
i=O c ( i -  1) 

nQ:, t) l(q~-ir) 

= E ~ [ f ( S - U ( c t ) - i + l : ~ ' O ) ) - f * ] d u - J I - z ] 2  
i=0 0 

n (t, t) 

= ~ F~(q ) - i~ )+zJ2=AI+A2  
i=O 

where  A2 = I f ( S -  '~ (~, 0)) - f * ]  (t - c (n (~, t))). 

It is now cla imed that  

~ ( { x e X :  l im(2atlog2~t)-l/2[t - c(n(~,t))] = 0 } ) - - -  1. (8) 
t -*oO 

Let 

~ ( S  -" (x, 0)) - f * ]  du + I f ( S -  to (~, 0)) - f * ]  (t - c (n (x, t))) 

E =  { x e X :  lim sup(2atlog2~t)-I/2[t - c(n(x, 0)] > 0}. 
t-- ,oO 

It  is enough  to show that /~ (E) = 0. 

E C {x e X: lira sup (2 a t log2 a t) - 1/2 l (;v -"  (~' o-  1 ~) > 0} 
t--* o~ 

C {~c~X': lira sup(2anlogzan)-l/2l(q)-(~+l)~) > 0}. 
/ 7 ~  ~t2 

By using M a r k o v ' s  inequal i ty  and  the invariance of  9) with respect  to 
/~, one has for a given e > 0 

/ z ({ t~X:  (2~nlog2~rn)-l/al(q:-(n+l)~) > e}) ~< 

~< [llll 2+6 # - 2 - 6  ( 2 a n l o g 2 a n )  -I /2(2+6) 
2+b 

for a fixed c~ > 0 and  

/~({x~X: (2anlog2an)-l/Zl(~-(~+l)x) > e}) ~< 
n~>l 

11/ll2+~ -(2+~) X" ( 2 c f n l o g z c r n ) - l / 2 ( 2 +  6) < oo 2+6 8 Z.~ 
J~>~ 1 

By the Borel-Cantel l i  0-1 Law, one concludes  tha t  
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/z ({x e X:  l im sup (2 a n log2 a n) - 1/2 l (9 - ("+ 1) t )  > x) > 0}) = 0. 
n - * o o  

Because  o f  (8), one  c o n c l u d e s  t h a t  for  a l m o s t  eve ry  x, 

l im (2 a t log2 a t) - 1/2 I A 21 = 0.  (9) 
t-~- CO 

(2 a t log2 a t) - 1/2 IA 11 = (2 aF- n (x, t) log2 aF- n (~, t)) - 1/2. 

�9 I A 1[ [(a t log2  a t) - l (aF- n ( t ,  t) log2  ae -  n (x, t))] 1/2. 

Because  O'F~ = l* (7 a n d  n(x,  t) ,-~ (I*) -1 t for  x e f i g ,  

(a t log2 a t) - 1 (a~-~ n (t ,  t) log2 aF- n (x, t)) 
(10) 

(~r t log2 ~ t) - ~ [l* ~r t (l*) - ~ log2 l* a t (I*) - ~] = 1. 

U s i n g  (9), (10) a n d  the  fac t  t h a t  F ~ sat isf ies  the  L I L  fo r  9, one  has  for  
: ~ A  n fig, 

t 

l im sup  (2 a t log2 a t) - 1/2 [ S [ f (S  -u (~, 0)) - f * ]  du] <~ 
t ~  0 

~< l im sup  (2 a t log2 a t) - 1/2 [A 1[ + lira sup  (2 a t log2 a 0 - m [A 21 = 1. 
t-*CO t--~ OO 

Similar ly ,  
t 

l im sup  (2 a t log2 ~r t) - 1/2[ ~ [ f ( S - "  (~, 0)) - f * ]  du[ >~ 
t ~ o o  0 

~> l im sup  (2 a t log2 a t) - 1/2 [A 1[ - lira sup  (2 a t log2 ~ t) - ~/2 [A 21 = 1. 
t--~CO t ~ o O  

T h u s  (x, O) ~ s [ ]  

P r o p o s i t i o n  5. v ( A  a)  = 1. 

Proof: Reca l l  t h a t  dv = (l*) - 1 (d/z x dt). 
1 (~) 

= I = ( l * ) - 1 1  + x at = ( l * ) -11  a# I dt 
L c~ Ac~ .~ t  ~ 0 

= ( l * ) - 1 S  l(~)dlz = 1 s i n c e / z ( A  c~ fig) = 1. [ ]  
A n ~  

Remarks.  1. I f  ~o: W ~ - , M  is the  i s o m o r p h i s m  re la t ing  {S t} on  
(W, ~) to  (M,  ~,*) b'* the  G i b b s  m e a s u r e  on  M )  a n d  if  h:  M ~ +  ~ is such  
t h a t  [h(z) - h (z')] < C? ,€176 for  s o m e  C > 0, ~ > 0, 0 < ), < 1, 
a n d  d t h e  me t r i c  on M ,  t h e n f ( t o )  = h (~ to) ~ ~'w [7]. T h u s  the  t h e o r e m  
is va l id  fo r  the  class o f  all such  h on  M.  
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2. If  { T  t} is a transitive C 2 Axiom-A flow on a compact  Rie- 
mannian  manifold M and L is a basic hyperbolic set with m (L) > 
> 0 (m is the measure  on M derived f rom the Riemannian  metric), 
then L is a connected componen t  of M and { T  t} restricted to L is an 
Anosov  flow [3]. Consequent ly ,  the law of the iterated logar i thm is 
valid when v is an equilibrium state for {T ~} restricted to L. 

4. Semiflows from Interval Mappings  

Let ~v:[0, 1]~-~,[0, 1] possess a part i t ion of [0, 1], ~ = {0 = a0 < 
< al < a2 < . . .  < am- l  < am = 1}, for which q9 is C I on (ai ,ai+O and 
[dcp/dxJ -1 is of bounded  variation on [ai, ai+l] for i = 0 , 1 , . . . ,  
m - 1. Suppose that  inf~[d~v/dxl = 9-1 > 1 and that  there exists a 
~-invariant weak-mixing measure  # absolutely cont inuous  with 
respect  to Lebesgue measure  on [0, 1]. In [8], RATNER proves that  ~ is 
weakly Bernoulli and hence the natural  extension of ~v is Bernoulli. 
Moreover  i f l~  L 1 and l -  i, the reciprocal of/ ,  is H61der with exponent  p 

(0 < ~ ~< 1), then either {S t}, the special flow build u n d e r / u s i n g  the 
extension of~  and dv = (l*) -1 d/~ • dr, is Bernoulli, or for some to > 0, 
S to is not  ergodic. In this section, ft is shown that  the law of i terated 
logar i thm is valid fo r fH61de r  and for l e  L j+~ with l-1 being H61der. 
(To simplify the discussion, this section deals with the semiflow 
obtained f rom suspending % not  its extension, by I. The p roo f  of the 
LIL can be modif ied to handle the case of the semiflow.) 

To  begin, f rom HOFBAUER'S and KELLER'S work [4], the ~v- 
invariant  weak-mixing measure/~, described above, actually satisfies 
(1). 

If  W is the space on which the semiflow is defined, then the 
requirement  that  f ~ - w  can be relaxed to f being H61der. The 
condit ion " f~  ffw" is used so that  (4) is satisfied for F ~. However  as is 
shown in [1], it is sufficient for ~ HF- - F ~  [12 < ~ .  F rom [ll] ,  by 

k~>l 

knowing that  ~ < 1 and G is H61der on [0, 1], ~ iJ G - Gk [12 < ~ .  
k~>l 

Consequent ly ,  if ~ IIl - lk II 2 < ~ a n d f i s  H61der on W, one has the 
k>~l 

desired series converging. 

Proposit ion 6. L e t  ~ a n d #  be as above.  I f  l ~ L ~ a n d  l - l is H 6 l d e r  
o f  e x p o n e n t  ~ (0 < ~ ~< 1) on [al, ai+l] f o r  i ---- 0, 1 , . . . ,  rn - 1, then 

k>~l 

12 Monatshefte ffir Mathematik, Bd. 94/2 
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Proof." Observe that for each Ak, 

0 <~= ~ ( l -  lk)2d/z= S 12d/z-  /z(Ak)-l (y td/z)2= S l 2 d # -  J l~ d#, 
At: Ak A k At: At, 

i.e., ~ l~d~<~ ~12d/z 
3k At: 

and hence J[lk[[2 ~< 111[[2. For a fixed k >/1, for each Ak, there is an 
xkeAk  such that l ( xk )=  Ik(xk). Consequently, for some constant 
C > 0 ,  

( l -  lk)2d~ = ~ ( 1 -  l(xk)):/~ = I 12l(Xk)2ll(Xk) -1 - - / - l l2d/z  < 
Ak dk At: 

3t: 

By the Cauchy-Schwarz inequality, 

Ill-/kl12 ~< Cq ~klll/kll2 ~< Co ~kllll121llkl12 ~< Ce ~kllll12. 

The conclusion follows directly from this last inequality. [] 

As to  the supposition that equation (2) has no solution in L~ (W), 
it is noted in w 3 that this condition is equivalent to the equation 
U H  - H = F - (F*/l*) l not having a solution in L 2 . In the present 
situation, U is not a unitary operator but an isometric operator 
adjoint to ~ [6]. Thus if U H  - H = F - (F*/l*) l has no solution in 
L 2 , the analogue to equation (2) has no solution in L 2~ (143. 

Because all of the conditions for the theorem are fulfilled for 
semiflows obtained by suspending q~ with an l described in Proposi- 
tion 6 and a H t l d e r f o n  W, the law of the iterated logarithm is valid 
for such semiflows. 

Remarks. 3. The reason why it is of interest to permit l to escape to 
infinity is that the semiflow obtained from the Williams' Lorenz 
attractor has such a return-time function (see [8], [10]). The escape to 
infinity means that the point never returns to the cross-section and is 
caught on the stable manifold of the origin, a stationary solution to 
the Lorenz equations. (Because of this desire to have infinite return 
times, l eL~  +~ for some ~ > 0 in order that (8) is valid. (8) is used to 
imPly (9) rather than deriving (9) from the assumption that l is 
HSlder.) 
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4. I f  one  considers  all the p roper t i es  tha t  have  been  p ro v en  for  the 
Wil l iams '  L o r e n z - a t t r a c t o r  f low: the Bernoul l i  i somorph i sm,  the 
func t iona l  cent ra l  limit t h e o r e m  (by modi fy ing  the p r o o f  in [7]), and  
the func t iona l  law of  the i t e ra ted  logar i thm,  one  is led to believe tha t  
the f low exhibits  " c h a o t i c "  behav io r  f r om the probabi l is t ic  aspec t  
(with " r a n d o m "  or " s tochas t i c "  replac ing "chao t ic" ) .  
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