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Abstract. The 2: 2: 1-resonance case for a potential problem with three degrees of freedom is characterized
by the existence of two isolating approximate integrals apart from the energy. This result completes a
statement by Gustavson concerning the number of formal integrals in resonant Hamiltonian systems.

1. Introduction

A contribution towards understanding the problem of the disappearance of formal
integrals in the case of systems with three or more degrees of freedom has been given
recently by Contopoulos (1978). Some misunderstanding however may have arisen
from a statement by Gustavson (1966) concerning the number of formal integrals in
Hamiltonian systems with N degrees of freedom, when r independent resonance
relations exist between the unperturbed oscillation frequencies of the system.
Gustavson states that, apart from exceptional cases, only N—r formal independent
integrals exist apart from the energy integral, starting with (independent) quadratic
terms. In fact, this statement does not imply a disappearance of integrals: it does not
exclude the existence of other algebraic formal integrals or transcendental ones,
obtained by other methods. For three degrees of freedom systems with two resonance
relations (N = 3, r = 2) this is still an important open problem; cf. van der Aa and
Sanders (1979) who studied the 1: 2: 1-resonance. We shall show in the sequel that for
the 2:2: 1-resonance the general potential problem has apart from the energy two
formal integrals, a quadratic and a cubic one. We shall use the concepts of integral,
formal integral and approximate or asymptotic integral; for a discussion of this
terminology see Verhulst (1979) and Sanders and Verhulst (1979), Section 7.

2. An Example of a 2:2:1-Resonance
Consider the system with three degrees of freedom characterized by the potential
¢ =1(4x? + By? + Cz?) — exz? — nyz? 1)
with \/A :\/B:\/C=co1 Tw, iy =2:2:1,
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By introducing a canonical transform to action-angle variables, we obtain for the
Hamiltonian

H=o1 +w,l,+o,1;+exl,,1,)[cos(0, —20,)+
+2cos 0, +cos (0, +20,)] +np,,I,) x
x [cos (0, — 20,) + 2 cos 0, + cos (0, + 26,)].

Among the first order terms, all will be rapidly varying, except the terms involving
cos (8, — 26,) and cos (9, — 26,). After elimination of the fast variables, we remain
with two combinations of angles only. A new transformation of variables (I, ) —
(J, x) realized by means of the generating function

S=(0,—-20,)J, +0,—-20,)J,+0,J,
leads to
H=wJ +w,J,+0,(=2J, =2J,+J,)+ea(J ,J5)cos x; +
+np(J,,J;)cos x,
The new angle x, is ignorable so that the corresponding action J, is an integral.
Jy=1,+21,+2I,.
If we write 0| = @, — 2w, and o}, = w, — 2w, the Hamiltonian takes the form

H=o\J +0,J, +w,J;+ex(J,,J;)cos x, +nB(J,,J;)cos 1,.

b

Fig. 1. Definition of the direction (6, ¢) of the observer E with respect to the system of axes used in
Figure 2.
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We have assumed o) =@, =0. In this case, following the arguments given by
Gustavson (1966), only two formal integrals may be constructed. In fact, the reduced
Hamiltonian is

H =ea(J,,J )cos x; +nB(J,,J;)cos x,.

In cases where o and § would have a more general dependence on J;, there were
effectively no isolating integrals besides H' itself. So the system would be, to a large
extent, stochastic. But the present example belongs to a case previoulsy discussed by

Fig. 2b.
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Fig. 2d.

Fig. 2a—-d. Stereoscopic views of invariant surfaces represented in the system (x, y, x) and observed from
the direction 6 = 30°, ¢ = 0°. Different initial conditions were chosen: With 4 =04, B =04, C=0.1 and
the energy h = 0.00765.

@ x,=—00l, % =0 y,= 0030, j,=0, &=005 n=003.
(b) xo = —0.055, %, =0, y,=—003, j,=0, =005 #=003.
(©) xo=—0.0367, %,=0, y,=—00l, =0, =01 n=01.
() x=—00L,  %,=0 ypy= 0059, y,=0, £=01 75=01.

I
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Contopoulos (1979): « is a function of J, only and B a function of J, only, since J,
is constant; then both quantities « cos x, and B cos x, are integrals. Therefore the
system under consideration has 3 integrals. A numerical investigation based on the
method of ‘surface of section’ and of ‘stereoscopic views” described by Martinet and
Magnenat (1981) has been undertaken. For a large set of initial conditions chosen in
different domains of the phase space and for not too large values of ¢ and n we effective-
ly found good invariant surfaces of the type shown in Figures 2a — d, which agrees
with the existence of 2 isolating integrals besides the energy in this problem. The order
in which the coordinate axes are given in the caption of Figure 2 corresponds to the
order indicated in Figure 1. Let the points of interest be near the origin of the axes of
the representation. The direction of the observer E with respect to this origin is defined
by the angles 6 and ¢ as shown in Figure 1 and his distance to the origin is constant.
A constant value of the angle of convergence of the two eyes towards the origin,
o =15°, is adopted.

3. The 2: 2: 1-Resonance for the General Potential Problem

In this section we shall show that the particular example which we discussed in
Section 2 presents a generic case for potential problems in 2:2: 1-resonance.

Le. perturbation of the Hamiltonian of Section 2 produces the same qualitative
picture as has been sketched above. Consider the Hamiltonian

H=1(4x* +4y> 4 2) + 1(3% + y* + 72) — e¢, (x, , 2) + O(e?). )

¢, is a homogeneous cubic in x, y and z ; the term of 0(¢*) contains terms of degree
4 and higher in x, y and z. The Hamiltonian has been obtained by the usual scaling
process in the vicinity of a stable, critical point of a Hamiltonian vector field, cf. for
instance Verhulst (1979).

In Section 2 the Hamiltonian was treated by transforming to action-angle variables
and averaging out the rapidly varying terms. Here we shall do essentially the same
thing but by slightly different transformations. This produces the same result, as does
Birkhoff transformation, but it has the additional advantage that it becomes trans-
parent that the approximations are not formal but asymptotic in the mathematical
sense.

We write explicitly

$y=a, x> +a,y’ +a,2° +a,xy’ + a;xz> + agyz* +
+a,x*y  +agx’z+agxyz+a,,y’z
and transform
x=r,cos(2t+¥,) %=—2r sinQ+¥,)

y=r,cos(2t +¥,) y=—2r,sin(2t +¥,)

z=rycos(t+ ;) z=—rysin(t+¥,)
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in which r,,¥;,i=1,2,3 are functions of t. This is a generalized van der Pol-
transformation which produces the standard form for averaging

dr, ) dy, ' .
—d—t——sfi(r, U, t;a), i =eg,(r,¥.t;a), i=1273

where r=(r,r,,r;), ¥Y=(¥,,¥,,¥,), a=(a,,....a;,) The equations in the
standard form are 2n-periodic in ¢t and we can perform first-order averaging over ¢ ;
for details and other applications, see Verhulst (1979). The averaged equations produce
solutions which approximate the phase-flow induced by the original Hamiltonian (2)
to order ¢ on the time-scale 1/e.

We now obtain the remarkable result that of the coefficients a, ...a,, only a5 and ag
are retained in the averaged equations. The same result is obtained by applying canonical
Birkhoff transformation.

We conclude that the example treated in Section 2 represents the approximate
behaviour of general potential problems with three degrees of freedom in 2:2:1-
resonance.

We shall now derive the approximate integrals in the original coordinate system
as this adds some elements to the discussion. The phase-flow induced by Hamiltonian
(2) is approximated by the solutions of system

X +4x =easz* 3)
J+ 4y =ea 2, 4)
24+ z=2elagx +agyz. (5)

One easily deduces from Equations (3, 4)
d2
ai(a(,x —agy)+4agx —agy)=0.
This equation has the integral
(agx — as ¥y + Hagx — asy)* (6)

which is a second independent integral of system (3-5), the first integral being the
Hamiltonian.
On introducing u = a;x + a4y we derive from system (3-5)

U+ 4u = glal + a?)z?, Q)
Z + z=2euz.

The system (7) becomes Hamiltonian after transforming (a? + a2)z* = z°. Apart from
the energy another approximate integral of system (7) is (see Verhulst, 1979)

(asx + agy)z> — (asx + agy)i® + (as X + ag y)zz, (8)

where we replaced u, z again by x, y, z.
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We note that the asymptotic validity of the integrals derived here is restricted to the
time-scale 1/e. They may be valid for all time. The integral (6) is exact, the integral (8) is
an approximate integral of system (3-5). Both (6) and (8) are approximate integrals
of the general potential problem (Hamiltonian (2)).

We finally remark that if one performs Birkhoff transformation of the Hamiltonian
(2) the cubic integral (8) is again produced by normalization up to order three; this
result has been obtained by van der Aa and will be published in a more general setting
later on.
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