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Abstract. The 2: 2: 1-resonance case for a potential problem with three degrees of freedom is characterized 
by the existence of two isolating approximate integrals apart from the energy. This result completes a 
statement by Gustavson concerning the number of formal integrals in resonant Hamiltonian systems. 

1. Introduction 

A contribution towards understanding the problem of the disappearance of formal 
integrals in the case of systems with three or more degrees of freedom has been given 
recently by Contopoulos (1978). Some misunderstanding however may have arisen 
from a statement by Gustavson (1966) concerning the number of formal integrals in 
Hamiltonian systems with N degrees of freedom, when r independent resonance 
relations exist between the unperturbed oscillation frequencies of the system. 
Gustavson states that, apart from exceptional cases, only N - r  formal independent 
integrals exist apart from the energy integral, starting with (independent) quadratic 
terms. In fact, this statement does not imply a disappearance of integrals: it does not 
exclude the existence of other algebraic formal integrals or transcendental ones, 
obtained by other methods. For three degrees of freedom systems with two resonance 
relations (N = 3, r = 2) this is still an important open problem; cf. van der Aa and 
Sanders (1979) who studied the 1: 2: i-resonance. We shall show in the sequel that for 
the 2: 2: 1-resonance the general potential problem has apart from the energy two 
formal integrals, a quadratic and a cubic one. We shall use the concepts of integral, 
formal integral and approximate or asymptotic integral; for a discussion of this 
terminology see Verhulst (1979) and Sanders and Verhulst (1979), Section 7. 

2. An Example of a 2:2 :I-Resonance 

Consider the system with three degrees of freedom characterized by the potential 

~9 = I ( A x 2  + B y  2 + C z  2) - ~,xz 2 - rlyz 2 (1) 

with x/A :x/B :x/C = % :09 2 :co 3 = 2: 2" 1. 
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By int roducing a canonical  t rans form to act ion-angle variables,  we obta in  for the 
Hami l ton i an  

H = 0)1 I1 + 0)2 I2 + 0)3 I3 + ect(Ii ,  I3) [cos (01 - 203) + 

+ 2 cos 01 + cos (01 + 203)  ] -t- rlf l(I2,13) • 

X [COS ( 0  2 - -  203) + 2 cos 02 + c o s  ( 0  2 --[- 203) ]. 

A m o n g  the first order  terms, all will be rapidly  varying, except  the terms involving 

cos (01 - 203) and  cos (0 z - 203). After e l iminat ion of  the fast variables,  we remain  
with two combina t ions  of  angles only. A new t rans format ion  of variables (I, 0) 

U, x) realized by means  of the generat ing function 

leads to 

S = (01 - 203)J 1 + ( 0  2 - -  20a)J  2 q- 0 3 J  3 

H = 0)1 J1 -1- 0)2J2 -t- 0) 3 ( - -  2J  1 - 2J  2 q- J3) -t- e~(J i , J3) cos Z1 q- 

+ t/fl(J2, J3) cos Z2 

The  new angle X3 is ignorable so that  the cor responding  act ion J3 is an integral. 

J3 = I3 + 211 + 212" 

t i If  we write 0)1 = 0)1 - 20)3 and 0)a = 0)a - 20)a the Hami l ton i an  takes the fo rm 

H = 0)'1Ji + 0)2 J2 -t- 0)3 J3 -t- e~(J 1 , J3) cos X1 -t- rift(J2, J3) cos Z2. 

Fig. 1. 
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Definition of the direction (0, ~b) of the observer E with respect to the system of axes used in 
Figure 2. 
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! 
We have assumed co'~ = 0 )  2 = 0 .  In this case, following the arguments given by 
Gustavson (1966), only two formal integrals may be constructed. In fact, the reduced 
Hamiltonian is 

H'  = eot(J~, J 3 )  c o s  Z1 + rift(J2, J 3 )  c o s  ~(2" 

In cases where ~ and fl would have a more general dependence on J~, there were 
effectively no isolating integrals besides H' itself. So the system would be, to a large 
extent, stochastic. But the present example belongs to a case previoulsy discussed by 
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Fig. 2a-d .  Stereoscopic views of invariant surfaces represented in the system (x, y, 5c) and observed from 
the direction 0 = 30 ~ ~b = 0 ~ Different initial conditions were chosen: With A = 0.4, B = 0.4, C = 0.1 and 
the energy h = 0.130765. 

(a) x o = - 0 . 0 1 ,  :~o=0, Yo= 0.030, 2)o=0, 8=0.05, r/=0.03. 

(b) x o = - 0 . 0 5 5 ,  :~o=0, Y o = - 0 " 0 3 ,  3)o=0, ~=0.05, r/=0.03. 

(c) x o = - 0 . 0 3 6 7 ,  x o = 0 ,  Y o = - 0 " 0 1 ,  *Vo=0, ~=0.1 r/=0.1.  

(d) x o = - 0 . 0 1 ,  :~o=0, Yo= 0.059, 3~o=0, ~=0.1 t /=0.1.  
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Contopoulos (1979): e is a function o f J  1 only and/~ a function o f J  2 only, since J3 
is constant; then both quantities c~ cos Xl and/~ cos )~2 are integrals. Therefore the 
system under consideration has 3 integrals. A numerical investigation based on the 
method of 'surface of section' and of 'stereoscopic views' described by Martinet and 
Magnenat (1981) has been undertaken. For  a large set of initial conditions chosen in 
different domains of the phase space and for not too large values of e and t/we effective- 
ly found good invariant surfaces of the type shown in Figures 2a - d, which agrees 
with the existence of 2 isolating integrals besides the energy in this problem. The order 
in which the coordinate axes are given in the caption of Figure 2 corresponds to the 
order indicated in Figure 1. Let the points of interest be near the origin of the axes of 
the representation. The direction of the observer E with respect to this origin is defined 
by the angles 0 and ~b as shown in Figure 1 and his distance to the origin is constant. 
A constant value of the angle of convergence of the two eyes towards the origin, 

= 15 ~ is adopted. 

3. The 2: 2: 1-Resonance for the General Potential Problem 

In this section we shall show that the particular example which we discussed in 
Section 2 presents a generic case for potential problems in 2: 2: 1-resonance. 

I.e. perturbation of the Hamiltonian of Section 2 produces the same qualitative 
picture as has been sketched above. Consider the Hamiltonian 

H=�89 2 + @ 2 + z  2)+1  .2 ))2 7(x + + ~2)-ec~3(x,y,z)+O(e2). (2) 

~b 3 is a homogeneous cubic in x, y and z ; the term of 0(e 2) contains terms of degree 
4 and higher in x,,y and z. The Hamiltonian has been obtained by the usual scaling 
process in the vicinity of a stable, critical point of a Hamiltonian vector field, cf. for 
instance Verhulst (1979). 

In Section 2 the Hamiltonian was treated by transforming to action-angle variables 
and averaging out the rapidly varying terms. Here we shall do essentially the same 
thing but by slightly different transformations. This produces the same result, as does 
Birkhoff transformation, but it has the additional advantage that it becomes trans- 
parent that the approximations are not formal but asymptotic in the mathematical 
sense. 
We write explicitly 

~b 3 = a l  x3 +a2Y 3 + a 3 z  3 +a,  xy 2 +asxz 2 +a6yz2+ 

+ avxZY + aaxZz + a9xyz + aloYzz 

and transform 

x = r 1 cos (2t + tP1) 

y = r 2 cos (2t + tP 2) 

2 = r 3 cos (t + ~P3) 

2 = - 2r 1 sin (2t + tP1) 

37 = - 2r 2 sin (2t + ~P2) 

= - r 3 sin (t + ~d3) 
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in which r i, Wi, i = 1, 2, 3 are functions of t. This is a generalized van der Pol- 
transformation which produces the standard form for averaging 

dr i 
- ef i(r  , ~b, t ; a), dd~ = egi(r, ~b, t ; a), i = 1, 2, 3 

dt  

where r = ( r l , r z , r 3 ) ,  W=(qJ1,W2,W3), a = ( a  1 . . . . .  al0 ). The equations in the 
standard form are 2rt-periodic in t and we can perform first-order averaging over t ; 
for details and other applications, see Verhulst (1979). The averaged equations produce 
solutions which approximate the phase-flow induced by the original Hamiltonian (2) 
to order e on the time-scale 1/e. 

W e  now obtain the remarkable  result  that  o f  the coef f ic ients  a 1 ... a lo  only  a s and a 6 

are re tained in the averaged equations.  T h e  same result  is obtained by  applying canonical  

B i r k h o f f  t ransformation.  

We conclude that the example treated in Section 2 represents the approximate 
behaviour of general potential problems with three degrees of freedom in 2: 2: 1- 
resonance. 

We shall now derive the approximate integrals in the original coordinate system 
as this adds some elements to the discussion. The phase-flow induced by Hamiltonian 
(2) is approximated by the solutions of system 

2 + 4x  = ea s z 2 (3) 

j~ + 4y = ea 6 z 2, (4) 

+ z = 2e(a5x  + a6Y)Z. (5) 

One easily deduces from Equations (3, 4) 

d 2 
~ ( a 6  x - -  as Y ) + 4(a6x - as y ) = O. 

This equation has the integral 

(a 6 5r -- a 5 3)) 2 + 4(a 6 x -- a 5 y)2 (6) 

which is a second independent integral of system (3-5), the first integral being the 

Hamiltonian. 
On introducing u = a s x + a 6 y we derive from system (3-5) 

ii + 4u = e(a~ + z 2 a6)z  , (7) 

+ z = 2euz. 

The system (7) becomes Hamiltonian after transforming (a25 + a 2 ) z  2 = ~2.  Apart from 
the energy another approximate integral of system (7) is (see Verhulst, 1979) 

( a s x  + a6Y)Z 2 - ( a s x  q-- a6 y):~ 2 d- (ass + a6Y)ZZ , (8) 

where we replaced u, Z again by x, y, z. 
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We note that the asymptotic validity of the integrals derived here is restricted to the 
time-scale 1/e. They may be valid for all time. The integral (6) is exact, the integral (8) is 
an approximate integral of system (3-5). Both (6) and (8) are approximate integrals 
of the general potential problem (Hamiltonian (2)). 

We finally remark that if one performs Birkhoff transformation of the Hamiltonian 
(2) the cubic integral (8) is again produced by normalization up to order three; this 
result has been obtained by van der Aa and will be published in a more general setting 
later on. 
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