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Abstract. We derive a condition for a closed invariant subset of a compact 
dynamical system to be an attractor (resp. repellor) combining the usual Ljapunov 
function methods with time averages. Applications are given to concrete systems 
endowed with some cyclic symmetry. In particular, cooperation of the inhomo- 
geneous hypercycle is shown. 

1. The General Theorem 

We consider a dynamical system on the simplex 

Sn = {x = (Xl , . . . ,x , )e~n:  Vi:xi ~ O, ~ x i =  1} 

which leaves the boundary and all faces of S, invariant. Such a system 
is given by the differential equation 

Jci= xi[Gi(xl,...,xn) - r i=  1, . . . ,n (1.1) 

with ~b = ~ xi Gi (x). 
i=l 

This type of equation was introduced by EIGEN and SCHUSTER [1], 
who called it a dynamical system under constant organization. 
Equation (1.1) and in particular the special case where the functions 
Gi are linear, plays an important role in such different fields as 
prebiotic evolution [ 1], population genetics and animal behaviour [3]. 

Such a dynamical system on S, is called cooperative, if the 
boundary bd S, is a repellor, i.e. there exists a constant ~ > 0 such 
that if x~ (0) > 0 for all i then x~ (t) > O for all sufficiently large t and 
all i = 1,. . . ,  n. 

Let x(t) be the orbit of (1.1) with x ( 0 ) = x .  Let P be a 
(differentiable) function on Sn which satisfies 

P(x) = 0 x~bdSn ,  P(x) > 0 xe in tSn  (1.2) 
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and assume further that (1.1) implies 

P = P . ~  (x) where ~ is continuous on Sn. (1.3) 

Theorem 1 : I f  for  some function P which satisfies (1.2) and (1.3) the 
condition 

T 

Vx~bdSn  3 T >  1 such that S~(x( t ) )dt  > 0 (1.4) 
0 

is fulfilled, then the system (1.1) is cooperative. 

Remark." Condition (1.4) implies that for every fixed point 
x ~ bd S, we have ~ (x) > 0. Conversely, if ~ is strictly positive on the 
whole o~-limit of  the orbits on the boundary,  (1.4) is satisfied and the 
theorem applies. 

Corollary: I f  P satisfies (1.2) and (1.3) and every orbit on the 
boundary o f  Sn converges to a f ixed point, then 

~(x) > O for all f ixed points on the boundary 

implies cooperation. 

This corollary was proved by SICMtrND in [4] - -  although it was 
not  explicitly stated in this form. 

Proof. Let h > 0 and 

Uh = x~Sn" 3 T >  1 with ~ S ~(x( t ) )dt  > h > 0 . 
o 

For x e Uh we can define the function 

T h ( x ) = i n f  T >  l ' ~ j ' ~ ( x ( t ) ) d t > h  . 
0 

(1) For  every x s  Uh and ~ > 0 there exists a d > 0 such that if 
y e Sn with d(x, y) < ~ then y s Uh and T h (y) ~< Th (x) + ~. This means 
that Uh is open and Th is upper semicontinuous on Uh. Indeed, for any 
~ > 0 there exists a time Te(1 ,  Th(x) + ~) such that 

1 r 
e : =  T ~ W(x(t))dt - h > O. 

0 

Since ~o is uniformly continuous on Sn there exists a ~1 > 0 such that 
d(y,)7) < ~1 implies 

I o(y) -  07)1 < (1 .5)  
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Since the solutions of  an ordinary differential equation depend 
continuously on the initial conditions, there exists a 6 > 0 such that 
d ( x , y )  < 6 implies d ( x ( t ) , y ( t ) )  < 61 for all te l0 ,  7]. Together  with 
(1.5) we obtain 

1 ~ 1 r ( t))  d t  1 r 
-T ~ V' (x (t)) dt - - -  ~ ~o (y <. y ~ IV (x (t)) - ~ (y (t))l dt < e 

o T o  o 

and therefore 

1T l T 
~ ~p (y (t)) dt > -~ ~ ~p (x (t)) dt - e = h.  
o o 

Hence y ~ Uh and Th (y) <~ T < Th (x) -4- ~ for all y with d (x, y) < 6. 

(2) Condit ion (1.4) says that for each x ~ bd Sn there exists a h > 0 
with x ~ Uh, in other words: { Uh, h > 0} is an open covering of  bd Sn. 
The compactness of bd Sn then implies that for some h > 0 we have 
bd S, ~ Uh, and that there exists a p > 0 such that 

I ( p ) : =  { x 6 S , :  0 < P ( x )  <<.p} ~_ Uh. 

(3) If x e Uh c~ int Sn, then x (t) ~ Uh for some t > 0. 

Indeed, otherwise we would have x (t)~ Uh for all t > 0. This means 
that to each point x (t) of  the orbit there exists a length of  time 
T > 1 such that 

(x (s)) 
T h <  ~ ~ (x ( s ) )d s  = ! ~ d s  = l o g P ( x ( t  + T ) ) - l o g P ( x ( t ) )  

(x (s)) 
that is 

P (x (t + T)) > P (x (t)) e Th > P (x (t)) e h . (1.6) 

Proceeding inductively one would obtain a sequence 

0 ----- to < t1 < t2 < . . .  with P(x( t~+l)  ) > P(x ( tn ) )e  h , 

i.e. P (x (t,)) would tend to infinity which is not  possible. 

(4) There exists a q ~ (0,p) such that x ~ Uh implies x (t) ~ I(q) for 
all t/> 0. 

Indeed, since Th is upper semicontinuous there exists an upper 

bound Th (x) < Tfor  x e I(p).  Let t6 be the first time when the orbit of  
x enters the layer I(p), i. e. 

t~ = rain {t >~ 0, x ( t ) e l (p )} .  
17 Monatshefte ffir Mathematik, Bd, 91/3 
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Let y --- x (t;). Then P (y) = p. Now define m = min {~ (x) : x ~ Sn), 
which is a negative number  in general and q = p e  -Imlr. For all 
t e [0, f0 we have 

1 t 
v ( v ( s ) ) d s  >1 m 

to 

and hence P(Y(0)  t> P(Y(0))e ''t > P  e - f ra i l=  q and for at least one 
point of  time v s  [rh (y), 71 we obtain from (1.6) 

P (y(T)) ~> P(y(O))e  h > p .  

This shows that y(t) does not  reach I(q) for 0 ~< t ~< T and 
y(T)  = x (t~ + T)6I(P) ,  so that at time t~ + T we are in the same 
situation as at time O. Repeating this argument  we see that x (t) 
never reaches I(q). 

Remark." It is obvious that it is not essential for the dynamical  
system to be defined on the simplex S,:Sn may be replaced by any 
compact  space X a n d  bd S, by any closed invariant subset YofX .  Our 
theorem then gives a rather general condition which implies that the 
set Y is a repellor. A similar condition 

I li ) V x s Y 3 T >  1 such t h a t ~  ~(x ( t ) )d t<O 

forces Yto be an attractor. In this sense the function P of  Theorem 1 
may be considered as a generalization of  the concept of  a Ljapunov 
function. 

2. Applications 

2.1 The Inhomogeneous Hypercycle 

~ i = x i ( q i + k i x i _ l - q ) ) ,  k i > 0 ,  i =  1 , . . . , n .  (2.1) 

This equation was studied in [5]. The following results were obtained 
there: The system is cooperative if the selfreplication terms qi are 
sufficiently small, i.e. if it is only a slight perturbation of  the 
homogeneous hypercycle (all qi = 0), for which cooperation was 
shown in [4]. On the other side, (2.1) and more general systems can 
only be cooperative if there exists a unique inner equilibrium (see 
Theorem 4 or [5]). The converse of  this statement is left there as an 
open problem. 
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Theorem 2: The inhomogeneous hypercycle (2.1) is cooperative i f f  
there exists a f ixed  point in int S, .  

Proof." Let  p = ( P l , . - . , P , )  be the fixed poin t  in int S, .  Then  the 
fol lowing equa t ions  are satisfied:  

qi "[- kiPi- 1 = ~ (P),  i = 1 , . . . ,  n .  

Since all coord ina tes  p~ are posi t ive we have 

(b (p) > max  qi. 
l<~i<~n 

Using  (2.2), the different ial  equa t i on  (2.1) takes  the fo rm 

~i = x~ [ki  (x~_ 1 - p ~ -  ,) + r (P) - qs].  

For  P = I ]  x~/ki we obta in  
i =  1 

PIP = ~p (x) = ~ 1  [ki (xi-1 - Pi-a) + q~ (P) - q~] = 
Ki 

= [q~ (p) - ~b] > (max q i -  q~). 

(2.2) 

(2.3) 

In order  to satisfy condi t ion  (1.4) o f  T h e o r e m  1 and because  o f  
(2.3) it remains  to prove  the fol lowing s ta tement :  Fo r  every  x e bd  Sn 
and  every  e > 0 there exists a time T > 1 such tha t  

1 r 
! cp (x (t)) d t <  max q; + e. 

We  proceed  indirectly and show induct ively that  o therwise  all 
coord ina tes  xi(t) would  tend to 0 with t ~ 0% which cont radic ts  
~ , x i =  1. A s s u m e  X i - l ( t ) ~  0 (since x e b d S n ,  at  least  "one co- 
ordinate  is equal  to 0). Then  5ci/xi = qi + ki x~_ 1 - q) implies 

1 T 2  z l ogx i (T)  -- logx~(0) 

= T - 

ki ~1 o xi-1 (t) d t -  ~ So ~ (x (t)) dt q i+ 

and for  sufficiently large T 

1 
~ l o g x i ( T )  ~< qi - m a x q j  - ~ ~< - e. 

17" 
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Hence xi (7) <~ e - ~ T  and x~ (7) --, O, and the proof  is finished. 

2.2 The Generalized Hypercycle 

Xi : Xi [Xi- 1 Ft ( x )  - ~ ] ,  i = 1, . . . ,  n (2.4) 

where the F/are continuous and strictly positive functions on Sn. That  
these rather general assumptions already guarantee cooperation has 
been proved in [2]. This result follows also in an easy way from 

Theorem 1 : We choose P = 1-[ xi. Then 
i=1 

P / P  = = Y xi-1 F (x) - n 

Since ~ x i - l F i ( x )  ~> m > 0 holds on S, for some m it remains to 
show the following assertion: For every x e bd S, and every e > 0 
there exists a T > 1 such that 

1 T 
~ !  q)(x(t))dt  < e. 

1 r 
Indeed, otherwise ~ [. r (x (t))dt >>. e would hold for all T >~ 1 and 

0 
integrating 2 i / x i = x i _ l F ~ ( x ) -  r would under the assumption 
xi-1 ~ 0  again imply x ~ ( T ) ~  e -r~ for large T. This leads to the 
same contradiction as in 2.1, namely that all coordinates would 
tend to 0. 

2.3 Stability of a Polygon with Cyclic Flow 

Let us consider a CI-flow on a two-dimensional orientable 
manifold M which exhibits a finite number  of  cyclically connected 
saddles. Of  course the flow is then not structurally stable, but such 
situations often occur in concrete dynamical systems (defined on 
compact  subsets of  En where the boundary  is invariant). ~ 

Let L be this connected invariant set consisting o f n  saddles 
F~,. . . ,  F~ and n connecting orbits. Since the manifold is orientable, a 
certain neighbourhood U o f L  may be embedded diffeomorphically in 
the plane. Let V be the component  of  U \  L which lies "inside" the 
polygon L. An orbit starting in V(close to L) which is not closed may 
have L as ~- or as ~o-limit. Our aim is to derive a criterion which of  
these cases occurs. 
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One can choose  " c o o r d i n a t e s "  xg:M-~ ~ such tha t  x i >  0 
in V, xi = 0 a long the orbit  connect ing  F/_I with F~ and  finally 
xi • x/+l is a d i f f eomorph i sm o f  a n e i g h b o u r h o o d  of  F~ onto  a neigh- 
b o u r h o o d  of  the origin in E2. Then  consider  the vectorfield near  the 

d 
saddle Fi: Along the orbit  xi = 0 we have ~txi+l(x (t)),.~#itXi+l (X (t)) 

a 
near  xi+l = 0 and  along xi+l = 0 we have -~xi(x(t))~Z2ixi(x(t)) 

near  x~= 0, where 2 i>0  and  # i < 0  are the eigenvalues at  the saddle 
point  F~. 

Theorem 3: Let L be the above polygon, 2~ > O, #~< 0 the 
eigenvalues of  the saddles and let 

, p ~  - -  . 

i = l  

Then L is an attractor (for orbits in V close to L) tf~ < 1, and a repellor 
if~,> l. 

Hence ~ may be interpreted as something like the eigenvalue of  a 
certain Poincare section map. 

n 

Proof." Consider  the funct ion  P = l-[ xpi (where Pi > 0 will be 
i=1  

specified later), which is positive on V and  equal  to 0 on L. Then  

b " .2j ;' ( 2 . 5 )  (x)  = pj  
x; 

is con t inuous  since 2j = 0 for xj = 0 and  the vectorfield (20 is C I. In 
view of  the above remarks ,  (2.5) reduces at  the i-th corner  to 

p (t;~ = Pi2i -~ Pi+l ~i 

which is positive i ff  P~+I < _ _ 
Pi [zi 

Mult ip ly ing  over all i = 1 , . . . ,  n, we see tha t  this is possible for all i 

- -  v -1/" . Hence  the i ff  v =  _ - > 1 define e.g.  Pi ~i 

corol lary  o f  T h e o r e m  1 applies and  L is a repellor  for v > 1, and  an  
a t t rac tor  i f  ~ < 1. 

Remark." A special case o f  this s i tuat ion was t rea ted  in [3] and  
applied to prove the existence o f  limit cycles inside the polygon.  
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3. An Exclusion Principle 

The following theorem strengthens a result obtained in [5] for 
equations (1.1) with linear growth functions Gi. 

Theorem 4. If the system 

Xi = "~i [ E aij x j  -- q3] w i th  q~ : X i aij x j  
j=l  i,j=l 

defined on Sn has no fixed point in int S~ then the nonwandering set and 
hence the w-limit of every orbit is contained in the boundary of Sn. 

Proof." If there is no interior equilibrium then the convex set 

{ A x  = ( E a i j x j ) i :  x ~ i n t  Sn} _ ~n 
J 

is disjoint from the line M : =  {y~n:y~ = . . .  =yn) .  Hence there 
exists a linear functional e = (e l , . . . ,  On) such that 

c A x  = ciaijxj  < ciyi = (F~ci)yl 
i,j=l i=1 i=l 

holds for x eintS~ and y e M .  Since we may choose an arbitrary 

Yl e N, ~ ci has to vanish. But then the function P = [:I xiC', de- 
i q  

i~l ~ i=1 
fined on intSn, satisfies P = P .  c~a~jxj < 0 on intSn. There- 

i,j= 1 
fore every point in the interior of S~ is wandering which proves the 
theorem. 
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