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Abstract. The isometrics with respect to the Hausdorff metric of spaces of 
compact or compact convex subsets of certain compact metric spaces are precisely 
the mappings generated by isometries of the underlying spaces. In particular this 
holds when the underlying space is a finite dimensional torus or a sphere in a finite 
dimensional strictly convex smooth normed space. 

1. Introduction 

Let E a, S a, B a denote the Euclidean space, its unit sphere and the 
solid unit ball respectively of  dimension d. In recent papers (e. g. [5]--  
[9], [11]) the isometrics of  some of  the spaces of  compact  or compact  
convex subsets of  E a, S d, B a endowed with the Hausdorf fmetr ic  or the 
symmetric difference metric were completely described. We say that a 
mapping I of  some space of  subsets of  a given space into itself is 
generated by a mapping i of  the underlying space if I (C) = i(C) = 
= {i(x) x ~ C )  for each subset C. It turned out that in the cases 
mentioned before the isometrics of the spaces of  subsets into them- 
selfes were either generated by or were strongly related to isometrics 
or measure preserving mappings of  the underlying space. 

Our aim is to prove some general theorems of  this type (section 2) 
and to deduce from them the corresponding results for the torus T a 
and the unit sphere U a o f  any strictly convex smooth normed space of  
dimension d (section 3). Tools for the proofs are Brouwer's theorem 
on invariance of  domain and a result of  DANZER and GR~NBAUM on 
the maximal number  of  points with equal mutual  distance in a finite 
dimensional normed space. 

For a metric space (M, ~) define the Hausdorf f  metric ~ on the 
space X = Y (M) of  all nonempty  compact  subsets of  M or on any 
subspace of  • by 
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8 (C, D) : =  max {sup inf  O (x, y), sup inf  ~ (x, y)} for C, D ~ ~ff. 
x~C y~D y~D x~C 

Call the metric space (M, ~) antipodal if it has finite diameter  d iam M 
and if for each x ~ M there exists a unique po in t  xae M such that  

(x, x") = diam M. The  point  x a is called the ant ipode of  x and the 
pair x, x a an ant ipodal  pair. We will not  dist inguish between x e M and 
the singleton {x} e 3r ~ (M). The symbol for the interior is int. 

2. General Results 

Theorem 1. Let (M, ~) be an antipodal compact metric manifold. 
Denote by ( ~ ,  d) a subspace o f  (~ff (M), 8) such that each set o f  L~ is 
connected and ~ contains all singletons. Then each isometry o f  (Sf , 8) is 
generated by an isometry o f  (M, ~). 

Theorem 2. Let (M, ~) be an antipodal compact metric space and 
suppose that there exists a number m = m (M) such that some m points 
o f  M have pairwise equal distance ( >  0) but no m + 1 points o f  M have 
this property. Let (A a, 8) be a subspace o f  (oY- (M), 8) with the following 
properties: 5f contains all singletons and for each singleton L o ~  
there exist sets L1 . . . .  , Lm ~ ~ all o f  them containing Lo and such that 
Lo,.. . ,  Lm have pairwise equal distance ( >  0). Then each isometry o f  
(~q~, d) is generated by an isometry o f  (M, 9). 

Preliminaries. Here we collect some results which will be used in 
the proofs  of  the theorems. 

It is well known that  
each isometry o f  a compac t  metric space into itself actually is (1) 
onto  

(see e.g. [10], p. 45). An immediate  consequence of  Brouwer 's  
theorem on invariance o f  domain  (see e. g. [1], p. 396) is: 

A h o m e o m o r p h i s m  of  an open subset o f  a manifold M i n t o  M (2) 
has an open image, 

We prove,  

let (M, 0) be an ant ipodal  metric space and let C, D ~ ~Y- (M) 
be such that  8 (C, D) = diam M. Then  C = {c} and c a ~ D or (3) 
D = {at} and da~ C. 
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Suppose that  D is not  a singleton. This together  with the compactness  
of  C and D, the cont inui ty  of  0 and the uniqueness  of  the ant ipode 
yields 

sup inf Q (x,y)-= inf5 (p,y) < d i a m M ,  
x s C  y~D y~D 

sup inf 5 (x, y) = inf  5 (x, q) <~ diam M (4) 
y~D x~C x~C 

for suitable p ~ C, q e D. Since ~ (C, D) = diam M, equality holds in 
(4). This implies C-----{qa}. Hence C = { c ' =  qa}, ca= q~D, thus 
proving (3). 

Let (M, 5) be an ant ipodal  compact  metric space. Then  the 
ant ipodal  mapp ing  a : M  ~ M, defined by a ( x ) : =  x a is a (5) 
h o m e o m o r p h i s m  of  M onto  M. 

Obviously a is onto  and bijective. Since M i s  compact  it suffices for the 
p roo f  that  a is a h o m e o m o r p h i s m  to show that  a is cont inuous.  
Choose  x, x~ ,x2 , . . .  e M such that  xl,  xa , . . .  ~ x. We are finished if 
we can show that  each limit point  of  the sequence x ~, x ~ . . . .  coincides 
with x a. (Note that  M is compact.)  Let y be any limit point  of  
this sequence and assume that  Xgl,X~2,... ~ y . - T h e n  5 ( x , Y ) =  
= lira 5 (xkj, x ~ ) =  diam M. Hence the uniqueness of  the ant ipode 
implies y = x ~. This completes  the p roo f  of  (5). 

Let (M, 5) be an ant ipodal  compact  metric space. Suppose 
that  ( 5  ~ ~) is a subspace of  (gff (M), ~) containing all single- 
tons. Let I be an isometry of  (50, 0) such that  I(x) is a (6) 
singleton for each x e M. T h e n / i s  generated by an isometry 
of  (M, 5). 

Since 5 (x, y) = 6 (x, y) for x, y ~ M, the map  

i: M -~ M defined by i (x) : =  I(x) is an isometry of  (M, 5). (7) 

To  prove (6) we show that  

I (C)  = i(C) for each C ~ .  (8) 

Choose  C. In order to see that  the inclusion 

i(C) C I (C)  (9') 

holds,  let x e C. By (7) 

d i a m M  = O (x a, C) = 0 (I(x~), I(C)) = 6 (i(x~), I(C)). 
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Hence (3) yields (i(x~))a~I(C). Since i is an isometry it maps 
pairs of  antipodal points onto pairs of  antipodal points. Therefore 
(i(x~))a= i(xa~)= i(x). This shows that i (x)~I(C),  thus prov- 
ing (9'). To prove the converse inclusion 

I(C) C i(C),  (9") 

let y s I ( C ) .  Then y = i(x) for some x ~ M  by (7) and (1). Hence 
yO= (i(x))a = i (x a) by the same argument  as before. This yields 

diam M = ~ (v ~, I(C)) = a (i (x~), I(C)) = ~ (I(x% I(C)) = a (x ~, 6).  

From this together with (3) we conclude that x = XaaeC and thus 
y = i (x)s i (C) .  This proves (9"). It follows from (9') and (9") that 
I (C) = i(C) thus finishing the proof  (8). This concludes the p roof  
of  (6). 

Proof o f  Theorem 1. Suppose t h a t / i s  an isometry o f ( ~ ,  ~). Define 

S : =  { x e M [  I(x) is a singleton}. 

Since the mapping x -~ diam I(x) for x ~ M is continuous, 

S is closed. (10) 
We show 

S u S a = m .  (11) 

For x ~ m we have {x}, {x ~} ~ ~r and 

diam m = ~ (x, x ~) = 6 (I(x), I(x~)). 

Thus (3) implies that I(x) or I (x  ~) is a singleton. Hence x ~ S or x a ~ S 
and therefore x e S u S ~. This proves (11). 

T: = {y = I(x) [x ~ int S) is open in M. (12) 

The mapping x ~ y = I(x) for x ~ int S is an isometry and hence a 
homeomorphism of  the open subset int S of  the manifold M onto 
T C M. By (2) this yields (12). To prove 

int S C S a (13) 

choose x e int S. Let y = I(x). Suppose x 6 S~. Since 

d i a m M  = a (x,x ~) = 0 (I(x), I(x~)) = 6 (y, I(x~)), 

(2) yields that y~I (x~) .  By definition of  T we have y e  T and thus 
y ~ T " .  Since by (12) T is open, (4) implies that T ~ is open too. By 
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assumption x ~ S  a and thus xa~ S. This together with the definition 
of  S and y a e I ( x  ~) shows that {S} C i ( x  ~) By our assumption on - 
5 ~ the set I (x  ~) is connected. Therefore we can choose a point 
z a ~ i ( x  ~) ~ T a \ {ya}. Since z e T, we have z = I(u) for some u ~ int S. 
From I(u) = z ~ y = I(x) it follows that u r x. From 

diam M = d ( I (x% z) = a ( I (x% I(u)) = a (x a, u) 

we infer that x a, u is an antipodal pair and thus x = xaa=  u, a 
contradiction. This finishes the proof  of  (13). Propositions (13) and 
(4) yield 

int S = int S ~. (14) 

In order to prove that 

S is dense in M (15) 

it is sufficient to prove that any nonempty open subset E of  M meets 
5'. Let E be a nonempty  open subset of  M. If E does not  meet  S 
we have E C S ~ by (11) and thus E C in tS  a. Hence (14) implies 
E C i n t S C  S, a contradiction. This proves (15). It follows from 
(10) and (15) that S = M, that is, 

I(x) is a singleton for each x e M.  

Now (5) applies. It follows t h a t / i s  generated by an isometry o f (M,  ~}. 

Proof  o f  Theorem 2. Let I be an isometry of  {5r d}. We show that 

I(x) is a singleton for each x e M .  (16) 

Assume the contrary. Then for some x e M  the set I ( x ) i s  not a 
singleton. 

diam M = 6 (x, x ~) = ~ (I(x), I(x~)). 

Hence I (x  ~) = Y0 for suitable Y0 s M by (2). Let L0:= {x ~} and choose 
L1, . . . ,  Lm~ ~ such that 

X a ~ L 1 , . . . ,  L,7, (17) 

a ( x L L k ) = a ( L j ,  Lk)=o~ >O forj ,  k e { 1 , . . . , m } , j  # k .  (18) 

(17) implies that 

d i a m M  = a (x, Lk) f o r / d e { I , . . . , m } .  (19) 

Applying I to (18), (19) we obtain 

d(yo,I(Lk)) = d(I(Lj),I(Lk)) = c~ fo r j ,  k6  {1 . . . . .  m } , j  r k ,  (20) 

d i a m M  = O (I(x), I(Lk)) for k e  {1 . . . .  ,m}. (21) 
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Since I(x)  is not a singleton, it follows from (2) and (21) that 
I (L1) , . . . , I (Lm) are singletons. This together with (20) shows that 
there exist m + 1 points of M having pairwise distance ~ which 
contradicts the definition ofm and thus proves (16). (16) together with 
(4) yields that I is generated by an isometry of (M, ~). 

3. Torus and Sphere 

We denote the d-dimensional torus Ed/z d by T d. One can represent 
T d in the form [0, 1[ a with addition mod 1 in-each component. The 
quotient metric 0 on T a is defined by 

o(x,y)  = i n f { t J x -  y +  l]] ]leY_ d) for x, y E T  a 

where [] [[ denotes the Euclidean norm on E d. The isometrics of(T a, 0) 
are the mappings of the form 

x = (~1,...,$a) ~ (el~i, + T1 . . . . .  ed~i,+ Td) mod 1 for x ~ T  d 

where ej . . . . .  ed = + 1, (il . . . . .  id) is a permutation of (1 . . . .  , d) and 
r l , . . . , r d e  R. For any (d + 1)-dimensional strictly convex smooth 
normed space denoteits unit sphere by U d and denote the metric on 
U d induced by the norm by e- It seems to be an open problem to 
characterize the isometries of (Ua, q), unless U a is of a very simple 
type, e.g. U d-- S a. This problem belongs to the class of rigidity 
problems for convex surfaces. 

A continuous curve in a metric space (M, 0) connecting two points 
is called a geodesic segment if it has minimal length among all such 
curves. Call a subset of M geodesically convex if any two of its points 
can be connected by a geodesic segment contained in the set (see e. g. 
[12]). Denote by ~ = egg (M) the space of all compact geodesically 
convex subsets of M. For special spaces there exist various concept-s 
of convexity (see e. g. [4], p. 157--163, [2] and the references there). In 
particular We call a subset of U d strongly convex if it can be 
represented as the intersection of U d with a closed convex cone with 
unique apex at the origin. A subset of Udis called Robinson convex if it 
is connected and can be presented as intersection of U a with a family 
of closed half spaces, each containing the origin on its boundar~r 
plane. Denote the spaces of strongly convex and of Robinson convex 
subsets of U d by ~ = Cgs (U d) and ~ = ~ (ud). 

Theorem 3. The isometries o f  the spaces ( ~  (Td), 6) and (JY (Ta), 0) 
are precisely the mappings generated by the isometries o f  (T  d, ~). 
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Theorem 4. The isometries of  the spaces (% (Ua), ~), (N(Ua), 6), 
(~r (Ua), 6) and (2((U~), 6) are precisely the mappings generated by the 
isometries of ( U d, q). 

Proof of  Theorem 3. It is obvious that each isometry of (T d, 9) 
generates isometrics of  ( ~  (Te), 6) and ( X  (Td), ~). 

To prove the converse we note that {T d, 0) is a compact  metric 
manifold (of dimension d) and for each x = (~1 . . . .  , ~d) e T d the point 
x a :=  (~l + � 89  ~)mod 1 is the unique antipode of x. It has 

distance w/-d/2 = diam T d from x. Hence (T a, 9) is antipodal. 

Theorem 1 implies that each isometry o f ( ~  (T~), 6) is generated by 
an isometry of (T d, O). 

In the case of{g( (TeL ~) we will apply Theorem 2. Our first aim is 
to prove the following proposition: 

Let Xl, . . . ,Xm~ T d be m points with equal mutual  distance (22) 
> 0. Then m ~< 3 d. 

Consider yl : =  xl as a point of E a. Then by definition of q there are 
points Y2,. . . ,  y~ ~ E d equivalent rood 1 to x2,. �9 x,~ respectively, such 
that 

[lYl-Yjlt = ~, /lYe- Ykll ~ ~ for j ,  k e  {2 . . . .  , m } , j r  k. 

Hence the m balls of radius ~/3 and centers at  Yl,�89 + 2y2, 
�9 . . , �89 have disjoint interior and are contained 
in the ball of  radius ~ and center Yl. Thus m. (1)d ~< 1. This proves 
(22). (22) implies that 

m (T d) exists and is ~< 3 a. (23) 

We next show, 

for each singleton L o =  {x0}~J{(T d) there are 4 d -  1 
(~> m (Ta)) sets in g (  (T a) containing L0 which have equal (24) 
distance (>0)  from L0 and from each other. 

The 2 d  points 

x j =  x0 + (0 , . . . ,0 ,  �88 sign j,  0 , . . . , 0 )  rood 1 , j E { +  1, . . . ,  +d} 

T 
[jl-th place 
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have distance �88 from x0 and distance > �88 from each other. Hence the 
4 a -  1 sets 

L j: = {x0} u {xj IJ E J} E X (Ta), 0 ~ J C { + 1,..., + d) 

are as required in (24). Propositions (23) and (24) make sure that one 
can apply Theorem 2 to (~(((T~), ~). Thus each isometry of(~# (Td), 6) 
is generated by an isometry of (T a, q). 

Proof  o f  Theorem 4. As before each isometry of (U d, ~) generates 
isometries of (% (Ua), 6), (~  (Ud), ~), (~ (U~), d)and (3ff (Ua), ~). 

(U d, ~) is a compact metric manifold of dimension d. Since Udis the 
unit spere of a strictly convex normed space for each x ~ U d the point 
xa:= - x is the unicNe antipode and ~ (x, x ~) = 2 = diam U a. Hence 
(U a, O) is antipodal. 

By Theorem 1 each isometry of (% (Ua), 6), (~  (Ua), d), (c~ (Ua), ~) 
is generated by an isometry o f ( U  d, ~). 

We now consider ( •  (U#), ~). Since (Ud, q) is isometrically em- 
bedded in a (d + 1)-dimensional strictly convex normed space (with 
unit sphere Ua), there can be at most 2 d + l -  1 points with equal 
mutual distance (> 0). This is an immediate consequence of a result 
of DANZER and GRidNBAUM [3]. Hence 

m (U ~) exists and is ~< 2 d+~- 1. (25) 

We prove, 

for each singleton L0 = {x0}eS (U #) there exist 4 d -  1 
(~> m (Ud)) sets in ~(" (U d) all of which contain L0 and have (26) 
equal distance (> 0) from L0 and from each other. 

Choose Lo = {x0} ~ U a. Since U a is smooth there exists a unique 
supporting hyperplane of U d containing x0, say x0 4- H. Inscribe to 
H r U ~ a d-dimensional crosspolytope (i. e. d-octahedron) which is 
symmetric in the origin and has the following property: The 
supporting hyperplane of U d at any pair of its vertices + x] is par- 
allel to the Subspace generated by the vertices + x l , . . . ,  _+ xj-1, 
+_ xj+~,.. . ,  +_ Xd. Hence the strict convexity of the norm I [ with U d 
as unit sphere yields 

I x j -  ( -  xj)[ = 2 ~ > 1 4-2e, [ + x j -  (++_Xk)l >~ 1 4- 2e 
(27) 

forj ,  k e  {1 . . . . .  d } , j r  
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for suitable e > 0. For # > 0 we consider the 2 d points 

xo +_ ~,xj~(xo + ,, U d) c~ (x0 + H ) , j ~  {1, . . . ,d}.  

By (27) these points have mutual  distance/> r (1 4- 2 e) and distance 
from x0. Since U a is smooth and thus differentiable at x0, we can 
choose # > 0 so small that for suitable points 

y+~(xo + # U)  r~ Ud, j~  {1 . . . .  ,d} 

(chosen close to the corresponding points x0 4- # x  j) the following 
holds: These points have mutual  distance ~> ~ (1 4- e) and distance # 
from x0. Hence the 4 d -  1 sets 

Lj :=  {x0} w {yk[keJ}eK(Ud) ,  0 ~ J C {+_ 1 . . . . .  +_- d} 

satisfy (26). (25) and (26) together with Theorem 2 imply that each 
isometry of  ( S  (Ud), d) is generated by an isometry of (U a, O). 

4. Final Remarks 

As can be seen from the proofs, our theorems can be refined 
somewhat. In particular it is possible to replace U a of Theorem 4 by 
any smooth closed convex surface of constant width of a finite- 
dimensional strictly convex normed space. 

It remains an open question to prove the corresponding results for 
the Euclidean unit ball B ~ and the hyperbolic space H ~. Furthermore 
many problems of  this type for the case of the symmetric difference 
metric are not yet settled. 

In general one cannot expect that each isometry with respect to the 
Hausdorff  metric of  a space of  closed bounded subsets of a metric 
space is generated by an isometry of the underlying space. One 
example for this is provided by E a (see [7]). Another example is as 
follows: Let S be the unit sphere of 12 endowed with the metric 9 
induced by the norm of  12. Let ~ be the space of closed circular caps 
C (m, e) on S with center m E S and radius t >~ 0 endowed with the 
Hausdorff  metric & Define an isometry i of (S,9) by i (x):= 
:=  (0, 21, ~2,...) for x = (21, ~2,...) 6 12. Then the isometry i of (~, 6) 

defined by I (C (m, e)):= C (i (m), e) is not  generated by an isometry 
of (s,  e). 

Acknowledgement. For many discussions we thank Dr. LETTL. 
Many thanks are due to Prof. WEISS for his help in the preparation of 
the manuscript. 



126 P.M. GRUBER, R. TICHY: Isometries of  Spaces of  Compact Subsets 

References 

[1] ALEXANDROFF, P., HOPF, H. : Topologie I. Berlin: Springer. 1935. 
[2] BOLTYANSKI, V.G., SOLTAN, P. S. : Combinatorial geometry and convexity 

classes. Uspekhi Mat. Nauk 33, 3--42 (1978) and Russian Math. Surveys 33, l ~ 4 5  
(1978). 

[3] DANZER, L., GRi)NBAUM, B. : Ober zwei Probleme beziiglich konvexer 
K6rper yon P. Erd6s und V. Klee. Math. Z. 79, 95--99 (1962). 

[4] DANZER, L., GR~NBAUM, B., KLEE, V. : Helly's theorem and its relatives. In: 
Convexity. Proc. Sympos. Pure Math., Seattle 1961, pp. 101--180. Providence: 
Amer. Math. Soc. 1-963. 

[5] GRUBER, P. M. : Isometries of the space of  convex bodies o r e  d. Mathematika 
25, 270--278 (1978). 

[6] GRUBER, P. M. : Isometries of  the space of  convex bodies contained in a 
Euclidean ball. Manuscript. 

[7] GRUBER, P. M,, LETTL, G. : Isometries of  the space of convex bodies in 
Euclidean space. Bull. London Math. Soc. 12, 455~460 (1980). 

[8] GRUBER, P. M., LETTL, G. : Isometries of  the space of compact subsets o f E  a. 
Studia Math. Hungar. (In print.) 

[9] LETTL, G. : Isometrien des Raumes der konvexen Teilmengen der Sph/ire. 
Archiv Math. 35,471--475 (1980). 

[10] NABER, G.L. :  Topological Methods in Euclidean Spaces. Cambridge: 
University Press. 19801 

[11] SCHNErDER, R. : Isometrien des Raumes der konvexen K6rper. Coll. Math. 
33, 219--224 (1975). 

[12] WALTER, R.: Konvexit/it in Riemannschen Mannigfaltigkeiten. Jber. 
Deutsch. Math. Ver. 83, 1--3l (1981). 

Prof. Dr. P. GRUBER 
and 
Dr. R. TICHY 
Institut ~ r  Analysis, 
Technische Mathematik und 
Ver sicherungsmathematik, 
Technische Universit~t Wien 
Gusshausstrasse 27 
A-1040 Wien, Austria 


