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Abstract. Most asymptotic convergence analysis of interior-point algorithms for monotone linear
complementarity problems assumes that the problem is nondegenerate, that is, the solution set
contains a strictly complementary solution. We investigate the behavior of these algorithms when
this assumption is removed.
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1. Introduction

In the monotone linear complementarity problem (LCP), we seek a vector pair
(z, y) € IR" x IR"™ that satisfies the conditions

y=Mz+gq =z>0, y>0, 27y=0, (1)

where ¢ € IR", and M € IR™" is positive semidefinite. We use S to denote the
solution set of (1).

An assumption that is frequently made in order to prove superlinear conver-
gence of interior-point algorithms for (1) is the nondegeneracy assumption:

Assumption 1. There is an (z*, y*) € S such that <} + y; >0 forall i=1, ..., n

In general, we can define three subsets B, N, and J of the index set
{1, ..., n} by

B={i=1,...,n|z; >0 for at least one (z*, y*) € S},
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N={i=1,...,n]|y; >0 for at least one (z*, y*) € S}, 2
J={i=1,...,n|z; = y; =0 for all (z*, y*) € §}.

It is well known that B, N, and J form a partition of {1, ..., n}. Another useful
result is the following.

LEMMA 1.1. There is an (z*, y*) € S such that =} > 0 for all i € B and y; > 0 for
all i€ N.

Proof. Choose |B|+|N| members (z', y') of S (where |-| denotes set cardinality)
with the property that zi > 0 for i € B and y{ > 0 for i € N. Define

i€BUN

(= y") =

Since (z)Ty/ = (2/)Ty' = 0 for any two solutions (2, y') and (27, y7) of (1), it
is easy to check that y* = Mz* + ¢ and (2*)Ty* = 0. Moreover, z} > 0 for all
i€ B and y} > 0 for all ¢ € N, giving the result. 0O

Assumption 1 can be restated simply as J = 0.

An infeasible-interior-point algorithm solves (1) by generating a sequence of
strictly positive iterates {(z*, ¥*)}, £ = 0, 1, 2,..., while aiming to satisfy the
two equality relationships in (1) in the limit as ¥ — oo. Feasible interior-point
algorithms require all iterates to satisfy y* = Ma* + ¢ in addition to strict
positivity (z*, y*) > 0.

This paper starts with general results about infeasible-interior-point algorithms.
In our presentation, “Q-superlinear convergence” always means Q-superlinear
convergence of the complementarity gap (z*)Ty"* to 0. In Section 2, we define
the broad class of infeasible algorithms considered in this paper and show that
no algorithm of this class can achieve Q-superlinear convergence when J # 0.
Ye and Anstreicher [10] presented a trivial LCP for which J # § and observed
that no feasible algorithm whose steps approach the primal-dual affine scaling
directions can converge superlinearly for this example. Our result generalizes
Ye and Anstreicher’s observation to all instances of problem (1) for which J # 0
and to a broader class of algorithms that includes many infeasible algorithms.

Section 3 proposes a scheme for estimating the index sets B, N, and J and
shows that a finite termination scheme based on these estimates eventually yields
an exact solution of (1). The results of this section generalizes the results obtained
in Ye [9] for linear programs to the context of degenerate monotone LCPs.

Feasible algorithms in which the step vectors asymptotically converge to the
primal-dual affine scaling direction are discussed in Section 4. In this case, we
are able to prove stronger results about the asymptotic behavior of the steps
(AzF, Ay*) and to derive formulae for the linear rate of convergence of the
complementarity gap in terms of the current iterate and the current stepsize.
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In Section 5, we analyze the two-step linear rate of convergence of the
predictor-corrector algorithm. We show that this rate is linear with a constant
of at most 1 ~ ¢/Q'/*, where Q < min{|J|, n — |J|} and c is not too small. This
result shows that if |J| contains only a few indices, or it contains all but a few
indices, then we can expect a linear rate of convergence that is not too slow.

The following notation is used throughout the paper. Superscripts on matrices
and vectors and subscripts on index sets and scalars denote iteration indices
(usually k), while subscripts on matrices and vectors define components. The
subvector zp denotes [z;];cp, while the submatrix Mpy is [M;;)ics, jen. Subvectors
and submatrices corresponding to other index sets are defined likewise. We use
pr to denote the normalized complementarity gap py = (2%)7y*/n. If w € IR®
then diag (w) denotes the diagonal matrix having the components of w as
diagonal entries. The matrices X* and Y* are defined as X* = diag («*) and
Y* = diag (y*). If w and v are two vectors of the same length and v € IR, then
uv denotes the vector whose i-th component is w;u; and u” denotes the vector
whose i-th component is u?. The vector (1, ..., 1)7, regardless of its dimension,
is denoted by e. For any vector z, the notation z, is used for the vector whose
i-th component is max(xz;, 0). Unless otherwise specified, || - || denotes || - |l,. If
{6} and {e,} are two positive sequences, we say 6 = O(e;) if lim sup, 6x/ex < 00
and 8, = o(e) if limy 6; /e, = 0. The distance function to the solution set S is
defined as

dist((z, y), §) = min _||(Z, 3) — (=, ).
(T, y)es
Throughout the paper we assume implicitly that (1) has at least one solution,
that is,

S # 0.

2, Infeasible algorithms: local convergence

In this section we largely restrict ourselves to discussing interior-point algorithms
that fit the following framework, which we refer to as the standard framework.

(2) For all k£ >0 we have (¢, 4*) > 0 and
Iz*, ¥*)l < Gs, €)
for some constant C; > 0.
(b) There is a ¥ € (0, 1) such that
afyf >Fu, foralli=1,...,n and k> 0. 4)

(c) The step has the form (z¥*1, y**1) = (¥, y*) + ap(Az*, Ay*) with o € (0, 1].
The search direction (Az*, Ay*) satisfies the equation
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M—I| | Az* rF
k xk K| ko & ’ )
YPX®| | Ay —z"Y" + oppe
where r* = y* — Mz* — ¢ denotes the residual vector and oy, € [0, 1] is the

centering parameter.

(d) There are constants p and p such that 0 < p <p and

70 T
Sl ©)

Ho ek Ho
For feasible interior-point algorithms, we have »* =0, £ =0, 1, ..., and so (d)

is trivially satisfied.

Infeasible-interior-point algorithms that fit the standard framework include
those of Zhang [11] and Wright [7]. This framework is broad enough to
include most algorithms that have been proposed to date, including path-
following and predictor-corrector algorithms (see, for example, Zhang [11] and
Ji, Potra, and Huang [2]). Many algorithms use a central-path neighbor-
hood different from (4); we use (4) partly because these alternative neigh-
borhoods are usually subsets of our neighborhood when 7 is chosen suffi-
ciently small.

We note that the analysis of most algorithms does not require Assumption 1
to hold in order to prove global linear convergence or polynomial complexity.
It is usually needed only to obtain a local convergence rate that is faster than
the global rate (which is usually Q-linear or two-step Q-linear).

The following observation (see Zhang [11, Proposition 3.3]) will be needed in
subsequent results. If we define

k-1
=1 wn= H(l —a;), Vk>0,
o

then,
=y VE>0. N

The first few results of this section give upper and lower bounds on the
components zFand y¥ and their ratios. In Lemma 2.1, we show that (3) can be
a consequence of other frequently-made assumptions.

LEMMA 2.1 If either
(a) p>0or

(b) there is a strictly feasible point for (1), and the sequence {u} is bounded, then
(3) holds.



LOCAL CONVERGENCE OF INTERIOR-POINT ALGORITHMS 135

Proof. For case (a), our proof uses techniques similar to those of Mizuno [4,
Lemma 3.3], Potra [6, Lemma 4.1], and Wright [8, Lemma 3.2]. Given any point
(7, §) with (Z, §) > 0, § = MZ + ¢, and the starting point (z°, 3"), we have

M@a® + (1 — w)Z — 2F)
= yMz® + (1 — ) MZ — Mz*
=@ —¢-r)+1-w)F -9 - ¢ g~
=y’ + (1 - )y - "
Hence, by positive semidefiniteness of M, we have
0< e+ (1 - )7 — 2T (® + (1 — )7 — o).
Rearranging this expression, we obtain
Vi (:I:OTyk + kayO)
< V,f:noTyO + :L'kTyk + (1 — ) (mOTy + ETyO)
+(1— ) F5— (1 - w) (‘ny’“ + w’“Ty) : (8)

Since (Z,7) > 0, (zF, ¥*) > 0, and (1 — v;) > 0, the last term on the right-
hand side is nonnegative, so we can drop it without affecting the inequal-
ity. Also, we can choose (Z,7) € S to ensure 7'y = 0, and after some
manipulation (8) becomes

T T T T
° yk + zF y0 < ypa® y0 + n& + (mo Y+ 'a'c'TyO)
Vk
T T
<z’ yO + nH2 + (zo §+?ETyO),
P

where the second inequality follows from (6). If we define

= 1 1 0T . —T 0
o= s { gy o (14 3) + (774 79)] .
then (3) follows.

For (b), we choose (Z, 7) to be a strictly feasible point, so that (Z, ) > 0. By
rearranging (8), we obtain

1 -w) (ETyk + kay>
< u,%z'OTyO + kayk + v(1 — i) .(xOTﬂ + ETyO)
+(1 — )G - u (mOTyk + kayO) . 9

Again, the final term is nonnegative, so we can drop it without altering the
inequality. We also use v € [0, 1] and



136 MONTEIRO AND WRIGHT

1-p>2l-v=ay>0, Vk>0 (10)

to write
_ T_ 1 T T T_ —T—
mTyk + 2" y < a—— (mo yO + z* yk) + 20 v+ mTyO + mTy.
0

Boundedness of :c"Ty’“ can now be used to obtain (3). |

Our next result gives bounds on components of z§ and yk.

LEMMA 2.2, There is a positive constant Cy such that for all k > 0,
i€ B=yf < Cuy, o 27/Cn; 11
i€ N=af <O, of 27/C1. (12)

Proof. Again, we choose (Z, ) in (8) to be a solution of (1) for which ; > 0
for i € B and 3; > 0 for : € N. From (9) we have

(1—-w) (?ETyk + kay)
T T T T 1
<vie 0 + 2Py + (1 - w) (:L‘O 7+ ETyO) — v (mo y* + askTyO) .

Dropping the (nonnegative) final term on the right-hand side and using v, € [0, 1],
we have

ot _ r_
(1 —w) (:I:Ty"c + a:kTy) < vpnpg + npy + (1 - vy) (9:0 7+ mTyO) . (13)

Using (10), (13), and (6), we can write

T 1 T
Zy" + 2P < — (o + ) + i (wo 7+ Ev'TyD)
0

1 _ 4 T_ |,
< —(npus + npg) + L (330 7+ wTyO)
ag Ho
S Cll"‘kv
where C; is defined in an obvious way. The upper bounds on 2% and y% follow

when we define

— 1 1
C; = Cymax (max —, max -_—) .
ieB T; ieN y;
To prove the remaining inequalities, we use (4). Taking ¢ € B, we have

ko k> ks THE S THE _ T
TiY VMR T 2 e 2 A = A
' Ty T O G
The lower bound on y¥, i € N, is proved analogously. O

The following consequence of a result of Mangasarian and Shiau [3] bounds
the distance to the solution set in terms of ;.
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LEMMA 2.3. There is a positive constant C, such that for all k > 0,

dist((z ,yk) S) < i, (14)

Proof. From Mangasarian and Shiau [3, Theorem 2.7], there exist positive con-
stants Cy, and Cy such that

. =k
min —
T|(F, MT+q)eS 17 = 2%eo

)T (Mz* + q) 12
BT & ~Mz* — ¢
< Cha —Mmk—q + (:z:) (Mz +q)+CZb .
—k e +12
+il2
(15)
In our case, Mz* + ¢ = y* — r* and (z*, *) > 0, so by (6),
{@ (M* + g)}e < |(@)(M* + g)| < @)y + |l2*]f]Ir]
0
< (s otz u,
=312 = ol = e* =)o < I < ) < Ol
(=241 = 0
Substitution of these inequalities into (15) indicates that
min || - 2"l = O* + ). (16)

7| (E, ME+q)eS

Now

dist "), 8) =
ist((@", ¥, §) = min_

7 — gk
7—y

min
7| MF+q)es

z— 2k
l:(ME +q)— (MzF +q+ rk)]

< i 1+ |M|D|E - =* k
—m,%’iq)es( IMDI[Z - =™ + [|*)

S IMIWE, min |~ o + /o

oW en)

giving the result. g
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The next two results give bounds on the ratios of components of z* to
components of y*.

LEMMA 2.4. If C; is the constant from Lemma 2.3, then for all k > 0,
u;lc/ 2 <ot <o’ lu}/ <yt < Czui/ %, Viel, (17)
C, G
and
Vi€ J. (18)

<3<

Al

S3=
$a-lﬂ =

Proof. We prove the bounds (17) only for z¥, i € J, since the results for yF
are similar.
Since zf = yf = 0 for all i € J, we have

ccf = oF — 2! < dist((*, ¥*), §) < C’zul/z,
1 t k

which gives the upper bounds. For the lower bounds, we use (4) to write

'Ylv"k Yuk 7 12
b 22 > = 1,172
= yl = Cz[,l,,lc/z Ozu
The bounds (18) follow immediately from (17). ]

LEMMA 2.5. If C is the constant from Lemma (2.2), then for all k > 0,

k o2
%<, VieN, (19)
Y; Y
k o2
Yi .
3 < #Mk, Vi € B. (20)
Proof. The proof follows immediately from (11) and (12). |

It is possible to prove global linear convergence and polynomial complexity
for a number of algorithms that fit the standard framework without assuming
nondegeneracy (see, for example, Zhang [11}, Wright [7], and Ji, Potra, and
Huang [2]). However, Assumption 1 is used to prove Q-superlinear convergence
in Ye and Anstreicher [10], Ji, Potra, and Huang [2], and Wright [7]. We are
therefore led to pose the question, Is nondegeneracy necessary for superlinear
convergence? The following two results resolve this question in the affirmative.

THEOREM 2.6. Suppose that J # 0. Then there is a constant ¢ > 0 such that
Wie1/ bk > € for all k sufficiently large.



LOCAL CONVERGENCE OF INTERIOR-POINT ALGORITHMS 139

Proof. Suppose for contradiction that there is an infinite subsequence K such
that 41 = o(uy) for k € K. Taking any index i € J, we have from (17) that

o< <ol o7,

1/2 172
0<yf <Oyl =o (/‘k/ ) ‘
Now
et = of + o Act = o Axt = —2F + 25 = —df+ o (u,lc/z)

and, similarly,
1/2
ozkAy,lc = —yf +o0 (uk/ ) .

From (5), we have

yi Azt + af Ayt = —abyt + o
= yf(oxAz}) + 2¥ (o Ayf) = —anatyf + oranm
1/2 1/2 3
= —2:1ci-°y£c +o0 (uk/ ) mf +o0 (uk/ ) yf = -akxfyf + orou .

If we divide this last expression by zFy¥, we obtain

1/2 12
o) o(w”) "
-2+ + = —qy + oo —,
xk Y byt

and using the lower bound in (17) for =¥ and y¥, we conclude that

2—ap= —akak——lz—%— + o(1) £ —opap/n + o(1).
TY;
If we take the limit for k € K, k — o0, 2 — oy, is bounded below by 1, while the
right-hand side of the above inequality will eventually be less than any positive
constant. This gives a contradiction, and therefore we cannot have pyy1 = o(ug).
0

COROLLARY 2.7. When the assumptions of Theorem 2.6 hold, the sequence {u}
cannot exhibit {-step superlinear convergence to zero, for any integer £ > 1.

Proof. The proof follows from pu.e/p, > € for all sufficiently large . a

As well as precluding Q-superlinear convergence of infeasible-interior-point
algorithms such as the one in Wright [7], Corollary 2.7 shows that 2-step super-
linear convergence is not possible for predictor-corrector algorithms such as the
one in Ji, Potra, and Huang [2] applied to degenerate problems.
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3. Infeasible algorithms: finite termination

In this section, we propose a technique for estimating the index sets B, N, and J
and for performing a projection from the current iterate onto the solution set S.
We prove that finite termination can be achieved from any sufficiently advanced
iterate (that is, when % is sufficiently large). The projection scheme is similar to
that of Ye [9] for linear programming.

In the interests of generality, we make a number of assumptions on the iterates
(z*, y*) themselves, rather than on the algorithm used to generate them. This
strategy allows the analysis of this section to be applied to algorithms such as
the one in [8], in addition to algorithms that fall within the standard framework
of Section 2.

We require the following bounds to be satisfied for all sufficiently large :

k
ieJ= Z% < % <G, O<zf<ou 0<yf <o’ (22a)
i
!c
ieB=>o<fT;gc4uk, ok > Cs, (22b)
ok A
ieN=>0<j,;sc4uk, y; > Cs, (22¢)
=, ¥9)I < Gs, (22d)
k 0
I < Bl (22¢)
Ui Ho
lim py = 0, (22f)

where Cs, Cy, Cs, Ch, and p are positive constants with C3 > 1 and Cy > 1.
The inequalities (22a), (22b), and (22c) immediately suggest a scheme for
estimating B, N, and J. We define estimates By, N, and Ji by

y—'}t < min (1/2, ui’z)} ,

T . 1/2
= - <
Ny {z o S min (1/2, y )} ,

Jp = {1, 2,00y n}\(Bk U] Nk).

LEMMA 3.1. For all k sufficiently large, we have
B,=B, Ny=N, J.=J

Proof. Choose a positive integer K such that for k > K; the bounds (22) hold
and, in addition,

e < min(1/Q2C3), 1/C3).
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Then

ieB= L <o < (Cunll?) ull? <l

szrlza

and, since Cy > 1,

k
ieB=% <oy <1/20) <1)2.
€

Therefore ¢ € By. Similar logic shows that : € N = i € N;, for k > K;. For
1 € J, we have

.'L‘k 1 1/2

—k>5 /ilgNk,
while

k

Yi 1 1/2 .

m_{?253>“’“ =1 ¢ By.

Therefore 1

m

Ji, and the proof is complete. O

On later iterations, when the index set estimates By, NV, and J;, have stopped
fluctuating from one iteration to the next, the following projection subproblem
can be solved in an attempt to find an exact solution to (1). The problem is
an equality-constrained quadratic program and hence is easier to solve than the
original LCP.

I+

Problem P(k): mxyxllv 2”.'BBk — ka 2|]yNk - yfi,kll2
k

subject to

0= MBkaBk"EBk + g,
0= My, Bz, + 44,
YN, = Mn,, Bz, + qN-

Let (Z},, 7%,) denote the optimal solution of this problem. A candidate solution
(@, 7*) of (1) is obtained by setting

. Tp)i 1€B Un)i i€ Ng
= (T5,) v k , 7= Fw.) t koo 23)

0 otherwise 0 otherwise

kS
!

THEOREM 3.2. For all k sufficiently large, the solution of Problem P(k) and the
construction (23) yield a solution of (1).
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Proof. Assume that k is large enough that the bounds (22) and the result of
Lemma 3.1 hold. (We can subsequently refer to By, N, and J; as B, N, and J
without confusion.) For any (z*, y*) € S, we have that (z}, yy) satisfies the
equality constraints in Problem P(k), so the feasible set for P(k) is nontrivial.
Using a change of variable

~k — ko o~k k
B=ZB—%p, YN =YN—UN

we can reformulate P(k) as
min 3(1Zz(* + 3llgv(, (24)
B YN
subject to
—Mp, 5Tf = qp + Mp By,
— M pTf = g1 + My pzh, (25)
T — My, sTh = av + My, zh — yh.

Since the constraints (25) are consistent, Hoffman’s lemma [1] implies that there
is a sequence of vector pairs {(Z§, 7&)} such that (¥£, 7%) is feasible for (25) and

—k qs + MB,Bm%

Tg

—k =0 q; t+ MJ,BﬁkB . (26)
Yn

v + My, gzt — yk

Since (Z% — %, 7% — y%) is optimal for problem (24)-(25), we have

T "ﬂ [ﬁg} . @7)
ok
Un

B
Now, using the bounds (22), we obtain

ap + Mp pz¥,

q; + M; gzt

gy + My gzl — yf
Mp, naf + Mp sel — yh
<llg+ Ma* — ¥l + || | My naty + My o - b
MN,N:vfi, + MN’ng
= [*ll + Ollei Il + llzbll + Nl + sl
=o(m"). (28)
It follows from (26)-(28) that there is a constant Cg > 0 such that
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_ 1/2 ] 1/2
Iz — bl < Cam?, 7k — |l < Col/™.

Hence, we have

E’f; > :z;% - ng,]c/ze > Cse — C’gu,lc/ze,

— 172 172
T 2y ~ Cspy/*e > Cse — Cauy e,

and for k sufficiently large, we conclude that (z%, 7%) > 0. The construction
(23) then yields a vector pair (7%, 7*) that solves (1). O

4. Feasible algorithms

In this section we consider only feasible algorithms (v* = 0) in which all iterates
lie in the relative interior of the feasible region. Condition (6) of the standard
framework of Section 2 becomes redundant. Theorem 2.6 shows that no algo-
rithm from this framework can converge superlinearly when J # 0. Hence, the
best we can hope to show is that the algorithm has a linear rate of convergence
that is not too slow. Specifically, if we define

. k1T k1 . [t
A= limsup T = lim sup —, 29
k00 xk yk k—oo Mk
then we hope that the value 4 € (0, 1) is not too close to 1.
The main result of this section—Theorem 4.1—assumes that o} converges to
0 and gives a formula for the linear rate of convergence in terms of just the
current iterate and the current step size.

THEOREM 4.1. Assume that v* = 0 for all k > 0 and limj_o0r = 0. Then A
defined by (29) satisfies

=1 ngy.lg
A—imsup l—op + « . 30
N k k' +T & ( )

The proof of this theorem is postponed until we have proved several prelim-
inary results.

Note that if oy converges to 1, then the rate of convergence becomes simply

kT &
A = limsup | =L 1%/‘] < L
kooo | 4k gk 4

This expression indicates a reasonably fast linear convergence rate, but we have
not been able to design an algorithm that achieves this rate since it is difficult
to enforce the condition limy_,. o = 1.

We now derive lower and upper bounds on the linear rate of convergence.
The following result is a consequence of Theorem 4.1.
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COROLLARY 4.2. Assume that v* = O for all k > 0 and limpeor = 0. If
liminf,_,o o = @, then

1 wk+1Tyk+1 1
1-a+ -a?L < limsup ——— < 1—a + =&, 31
k00 .'l?kTyk 4

.l;

where

<

J
L=7—n_: U= ’Y| I

+(1-9)<1L

Proof. Using relation (4), we can easily show that

kT &

L< miTy-’ <U. (32)
zh” y*
Hence,
. 41T k41 1, 1
uknﬂsol;p Ty < hIersogp [l - o + 4oku] =1-a+ 4a U,

where the last equality follows because the quadratic 1 —a+ (U/4)a? is decreasing
on {0, 1]. We have therefore proved the second inequality of (31); the first
inequality follows by a similar argument. m|

We now concentrate our efforts on the proof of Theorem 4.1

LEMMA 43. Let a € IR'., b € IR%,, and z € IR" be given. Let H C IR* be a
subspace with the property that

(u, v) € H=uTv>0. (33)
Then, the relations
au+bv =2z (u,v)€H, (34)

have at most one solution (u, v).

Proof. Assume for contradiction that (u!, v!) € IR* and (u?, v?) € IR* are two
solutions of (34). We have (u! —u?, v! —v?) € H since H is a subspace. Therefore,
in view of (33), we have

(! = )T (! - v} > 0. (35)
On the other hand, we obtain

a(u! —u?) +b(v! —v?) =0, (36)
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which in turn implies
vl = = b lau! -, w' - = a7 B (0t -
Combining these relations with relation (35), we obtain
("0 2wt — )] 20, —l(@B) 2" = ?)]| 2 0.

It follows from these last two inequalities that u! = u? and v' = v?, so our result
is proved. g

LEMMA 4.4. There hold

Al = O(w), Ayl = O(u); (37
ads=0(n"?),  agh=0(un"); (38)
Ack =0 (#]16/2 + ok) . M =0 (ui/z + O‘k) . (39)

Proof. The proof is a modification of eatlier results of Ye and Anstreicher [10]
and Wright [7, 8]. For completeness, we include it in the appendix. a

LEMMA 4.5. Assume that v* = 0 for all k > 0 and limi_..c ox = 0. Then

Proof. 1t follows from Lemmas 2.4 and 4.4 that the sequence {((z%)" Azk, (y5)!
Ay%)} is bounded. Let (w®, w¥) be an accumulation point of this sequence, so
that there is an infinite subsequence K with

lim((a5)~" A%, (45) 7 Ay}) = (w*, w?). (40)

By further restriction of K if necessary, we use Lemmas 2.4 and 4.4 again to
deduce that there are vector pairs (17, 1¥) and (67, %) such that

1 .
fim 7 (@5, v5) = (5, #) > 6, (1)
k

and

1 .
i 7 (45, ) = 5, 8), (42)
k
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By using Lemma 4.4, the fact that lim;_, o = 0, and the relations
m"}Ay'I} + y"}Am"} = Opppe — m’}y"},
AyF — MAZk =0,
we can easily verify that
1769 + V6" = -I°DY, (43)
I;6Y — M ;6" € Range[ly, —M g]. 44)
Let (zZ, 7) be an arbitrary solution of (1). Then, we have
0=y" - Mz*—¢
=y* — Ma* — (7 - M3)
=" -9) - M(=" - %)
This relation and the fact that ;x5 = 0 and Fg_; = 0 then imply

k k k k

L + 1,50 - My - Mak € Range[Ly,—M ). (45)
H, P P P

It follows from Lemma 2.2 that the first and fourth terms in the left-hand side
of relation (45) converge to 0, so we obtain

IV —M,l"e Range[I_N, —MB]. (46)

It is easy to verify that the subspace H of the vectors (u, v) € IR satisfying
relation (46) (with (I, I¥) replaced by (u, v)) has the property expressed by
relation (33). Hence, by Lemma 4.3, the system defined by (43) and (44) has at
most one solution. From (46), it is clear that

(6%, &) = 1@, )

solves (43) and (44) and is therefore the unique solution. Hence, from (40),
(41), and (42), we obtain

(w®, w’) = ((I)7'6", () 7'¢%) = —{(e, o).
Since every accumulation point of {((z%)~1 Az, (y%)~1Ayh)} is equal to —1(e, €),
the result follows. O

We are now in a position to give the proof of Theorem 4.1.

Proof of Theorem 4.1. From the standard framework of Section 2, it is straight-
forward to see that

k+1T, k41 kT Ak

T A" A

—kT—y - 1_ak+akak+a2—'—'—1€y—
oy Yy

& k xk’f (47)
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Observe that relation (30), and therefore Theorem 4.1, follows immediately from
(47) once we show that

AkaAy’“ _ w’}Ty"}

- 4
Ty Py + o(1). (48)
To show (48), define
th = @) 1Ak — Je, 1= (5T Ay - Le. “9)

By Lemma 4.5, we know that t* = o(1) and tf = o(1). Using (49), we have

Ack Ayt = abyh (3 + @10+ @] = S+ g (50)
where
af =2[(E): + (1) + 2(D)u(ty)i ] = o(1). (1)
From (50), we obtain
A Ays _ ahTyh oo + o(1), (52)
kT yk 4 kT ok P T 4gkTyk 4k Tk

By using Lemma 4.4, we can casily verify that

Am’i;TAyg A:EfvTAyfv _
Ty = o(1), T o(1). (53)

Relation (48) now follows by combining (52) and (53).

5. Convergence of the predictor-corrector algorithm

In this section we use the results of the preceding section to analyze the two-step
linear rate of convergence of the predictor corrector algorithm (see, for example,
[2], [S], and [10]) when applied to degenerate LCPs. We show that this rate is
less than or equal to 1 —c/Q'* where Q < min{|J], n— |J[} and c is a positive
constant that is not too small. This result shows that if |J| contains only a few
indices, or all but a few indices, then we can attain a linear rate of convergence
that is not too slow.

Although the predictor-corrector algorithm fits the standard framework of
Section 2 (and can be described accordingly by letting predictor steps be taken
at even values of k and corrector steps at odd values), it is more convenient
to use the description below, which closely follows [2]. For a given constant
B € (0, 1), define

NB)={(z,y) 20|y =Mz +g, |Xy— pe| <Bu},
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where, as earlier, u = zTy/n. For (z,y) > 0 with y = Mz + ¢, the following
system defines a direction (Az, Ay) which is used in the description of the
predictor-corrector algorithm:

MAz — Ay =0, (54a)
yAz + zAy = ope — zy, (54b)
where o € [0, 1].

Predictor-corrector algorithm: Let the constants 8 € (0, 1/4] and 7 € (0, ], and
a strictly feasible solution (z°, y°) € N(8) be given. Set k = 0, and go to step 1.

(1) Compute the predictor step (Az*, Ay*) by solving system (54) with (z, y) =
(=*, ¥*) and o}, = 0.
(2) Compute the step size ox > 0 by

o = max{a € [0, 1] | (=* + @Az, y* + 3AY*) e N(B + 1), Va € [0, o]},

and set (2%, §*) = (¢, ¥*) + ax(Az®, Ayb).
(3) Compute the corrector step (A%, AF*) by solving system (54) with (z, ) =
(&%, 9*) and o}, = 1.
(4) Compute the new iterate as
@, ) = (8, §) + (485, A9Y).
Set k =k + 1, and go to step 1.

We now state several properties of the predictor-corrector algorithm. The
main properties of the centering steps are given by the following result.

LEMMA 5.1. Let i, = (8*)T79*/n for all k > 0. The following statements hold for
every k> 0:

(a) AR AGH| < Bp¥;

() (AT A < pb/8;

() (@, y**h) = (@%, 9%) + (A%, A9%) e N(B);

(@) ()T = (8 + 48T (9 + A9%) <1+ 1/(8n)1 (@) 5",

Proof. Statements (a) and (c) follows from arguments similar to the ones used

in Lemma 2.3 of Ji, Potra, and Huang [2], while (b) and (d) are based on
Lemma 3.1 of [2]. O

As a consequence of Lemma 5.1, we have the following result.
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COROLLARY 5.2. For all k > 0, we have

($k+1)Tyk+l i B ) (A:I:k)TAyk
-——-————kayk <(1+ o 11—+ ak——-—-——kayk . (55)

Proof. The result follows immediately from Lemma 5.1(d) and the fact that
@9 = (o + Az (7 + mdy®) = (1 - o)™ o + of(AH)T A%, O
For the predictor steps, we have the following result.
K LEMMA 5.3. The following statements hold for every k > 0 :
(a) | Az* Ay*|| < (2M)Ty*/2;

(0) (Azh)TAy* < =)yt /4
(c) The step size oy, satisfies

172
2 (;)
and
o > 2__ (56)
HE R
where
AV k
F=L (A:ckAyk - Me) ; 7)
o n
(d) If T > 1/(16n), then
ﬂc/c+1Tylc+1 N
=2 <1
(- )

For a proof of Lemma 5.3, we refer the reader to Lemma 3.1, Lemma 3.2,
and Theorem 3.1 of Ji, Potra and Huang [2] and Lemma 2.2 of Ye and Anstre-
icher [10].

It is well known that Lemma 5.3(d) implies polynomial convergence of the
predictor-corrector algorithm. Our final goal—stated in the next theorem —is
to provide an upper bound on the ratio of successive elements of the sequence
{(=*)Ty*} which is sharper than the one implied by relation (58).

THEOREM 35.4. Assume that 7 > 1/(8n) and 0 < |J| < n. Then,

T 4
ph+1 yk+1 <1 (T/Z)I/Z
ahTyh = 2Q1/4

lim sup

k~+00

(59)
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where

= O ¢ ingis), - 11y

The proof of Theorem 5.4 is postponed until we have proved the following

preliminary result.
LEMMA 5.5. Assume that n > 2. For all k sufficiently large, we have
2%l < @'2/2.

Proof. Define w* € IR™ as

wh, 0
k —
wh ) \ahsh

Using Lemmas 4.4 and 4.5, we can easily verify that

. AzH)T Ay* 1 k)T yk
2t = ||Az* Ay* - %————e =2 ’ wk — g%._J

Since (zF, y*) € N(B), a simple argument shows that

()T

m.kly.’} - ‘JI ell < Ilw'}y’} - ll'ke” < Buk.

Also,
(@5 ys < (1 + B |,

so we obtain
T k 2
wk — (EJ)

n

ENT
ko — (=3) y5

kol kez e |J|>((””-’) yJ)

2

SNl W 0 P GO d': 3
T 1 n

+ - (S22 )2

x T 2
< myt + O 8Tty 4 oy (S22)

ell + o(u).

(60)

(61)
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= (m? + Sl

< (B + TG+ 94

< ui(1 + )’ [ﬂz + 2 VI LJW']
<ui(i+87 |8 +Q|.
Hence, for all £ sufficiently large, we have from (61) that
fuz®|| < uk( + ) [ﬁz + Q} + o) < .Uk ﬁ) [ﬂ + Qm] < %IC'QW,

where the last 1nequality follows from the fact that 8 < 1/4 and Q2 >1 / V2.

0
We are now in a position to give the proof of Theorem 5.4.
Proof of Theorem 5.4. Using relations (56) and (60), we obtain
2 S 2 T2 (62)

k 2 = = )
1+ /1+2Q12/r = 2,/2Q77)r QW

where the second inequality can easily be verified by using 7 < 1/4 and Q'/? >
1/v2. Using relations (55), (62), and Lemma (5.3)(b), we conclude that for all
k sufficiently large, we have

wk+1Tyk+1 1 ap\2
Y < — —
kaylc = (1 + Sn) (1 2 )

n
Qg
< {1 =k
< (1 2)
1/2
< (12"
- 2Q1/4
where the third inequality follows from (62) and the fact that 7 > 1/(8n)
and Q2 < n. O

Appendix

We prove Lemma 4.4 for the infeasible case r* # 0, although a proof for the
feasible case would suffice for the purposes of Section 4. Before doing do, we
prove some useful auxiliary results. First, we recall a result due to Ye and
Anstreicher [10].
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LEMMA A.l. Let M be a positive semi-definite matrix, and partition M as
Mpp MPQ)
M= ,
(MQ’P Moo

where the pair of index sets P C {1,...,n} and Q C {1, ..., n} forms a nontrivial
partition of {1, ..., n}. Then

Mpp Mpo _ Mzp MEp
Range( 0 J = Range 0 y:

As a consequence of Lemma A.1, we obtain the following result which will be
explicitly used in the proof of Lemma 4.4.

LEMMA A.2. There holds

Mpp Mp; Mpy\ _ Mgp Mjp Mg
Range( 0 0 T )—Range( 0 0 NAE (63)

Proof. Applying Lemma A.1 with P = BUJ and @ = N, we obtain

Mpp Mp; Mpn Mk Mjp My
Range | M;jp My; M,y | =Range| Mg; Mj; Mgy, |,
0 0 I 0 0 ~T

which in turn immediately implies (63). a

The following lemma is similar to Lemma 3.5 of Ye and Anstreicher [10] and
Lemma 5.2 of Wright [7]. For this proof and the proof of Lemma 4.4, we drop
the iteration index k on matrices and vectors for clarity, and define the diagonal
matrix D = X~1/2y/2, (The principal submatrices Dy and Dp are defined in
an obvious way.)

LEMMA A.3. The vector pair (Azg, Ayn) is the unique solution of the convex
quadratic programming problem

gulizl) HDpw|? - oxpre’ X5'w + || D3 2||* - orurel Yz, (64)
subject to
Mppw = rp — MpjAz; — MpnAzn + Ayp,
Mjpw =r; — MjjAzy; — MynAzy + Ayy, (65)

Mypw —z=1ry — MyjAzy — MynAzy.

Proof. By the Karush-Kuhn-Tucker conditions, a candidate solution (w, z) is
optimal if it is feasible with respect to (65) and, in addition,
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Diw — oy Xg'e ME, MY, ME,
( D;lzz _ crkkaﬁle € Range 0 0 2T ) (66)

We prove the result by showing that (Azp, Ayy) satisfies this condition. Clearly,
(Azp, Ayn) is feasible with respect to (65). Using (5), we have

DiAzp — akungle
= —yp — Ayp
= —yYp — (MBBA:I:B —rg+ MpyAzy + MBJA{L'J)
= —MBB(:I)B + AmB) - MBN(-'L'N + A:I}N) - MBJ(mJ + A:L‘J),

and
D Ayn — oymYyle = —(zy + Azy).
Therefore,
Diw — opuXp'e Mps Mp; Mpy
( Dz -y Yyle € Range { ™ 0 2k 67)
From relations (63) and (67), it follows that (Azp, Ayy) satisfies (66). O

We are now in a position to give the proof of Lemma 4.4.
Proof of Lemma 4.4. First, we show that

[DAz|| = Ow/»), D 'Ay| = 0@ (68)

We introduce vector pairs (£, 9) and (%, 7) that satisfy

(v -1 [a] [r
= , (69a)
Y X v 0
(v -1|[z] [ o
= , (69b)
Y X| |7 —2Y + Oppke
so that

(Az, Ay) = (&, T) + (g, 7).
It follows exactly as in [8, Lemma 3.3] that
Ial = 0 ("), 1Dl = 0 (). (70)

If we use (6) and the boundedness assumption (3), minor modifications to the
proof of [8, Lemma 3.4] can be used to show
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Ipall = 0 (), 1070l = 0 (") (71)

The relations (68) follow from (70) and (71).
We now prove (37) for Azy (the proof for Ayg is similar). Taking i € N, we
have from (68) and (19) that

12
Ti
172 a2 \'"?
&3 1/2 1 1/2
st (2) 0 (W) < ( . uk) 0 (1) = o),
as required.
To prove (38), we observe from (68) and (18) that for i € J, we have

(%)1/2 Aay| = (’)(Hi/z)

= |Az| = (—z—:)l/zo (u}c/z) =0 (Mllc/z) ,

as required. The proof for Ay; is identical.
For the remaining inequality (39), we use the result of Lemma A.3. Since the
feasible set for (65) is nonempty, there is a feasible vector pair (, Z) such that

i@, 2|l = OIrl) + Ol Az, + | Azn | + [[Ays(| + | Ay5])

-0 (i)

where the last equality follows from (6), (37), and (38). The remainder of the
proof follows by using identical logic to that of Lemma 5.3 of Wright [7], so we
omit the details. a

< ipaz| = 0 (/)
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