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Abstract. Various upper bounds are given for the number of integer points on 
plane curves, on surfaces and hypersurfaces. We begin with a certain class of convex 
curves, we treat rather general surfaces in E 3 which include algebraic surfaces with the 
exception of cylinders, and we go on to hypersurfaces in R n with nonvanishing 
Gaussian curvature. 

1. Introduction. It is well k n o w n  (JARNIK [8]) tha t  on  a plane convex 
curve o f  length l >~ 1 there are ~ 12/3 integer points.  This est imate is 
best possible, and  the cons tan t  in ~ is absolute.  The convex curve m a y  
be a closed curve or  it m a y  be a curve y = f i x ) .  In part icular,  if  f (x) is 
twice differentiable in some interval  of  length at  mos t  N >~ 1, with 
e i t h e r f "  > 0 o r f "  < 0 th roughou t ,  and  if  the range o f f  is conta ined  in 
an interval  o f  length N, then  the number  Z of  integer points  on the 
curve y = f ( x )  satisfies 

Z ~ N 2/3 . (1.1) 

SW~>aNERTON-DYER [1 1] t ook  up the quest ion of  wha t  can be said if 
higher  derivatives exist. Let  g be a fixed curve y = f ( x )  where x runs 
t h rough  some finite closed interval,  w h e r e f ' "  exists and  is cont inuous ,  
and  where f "  > 0 or  f "  < 0 th roughout .  Let  ZN be the number  of  
integer points  on  the b lown up curve N g ,  consisting o f  points  
(Nx, Ny) with (x, y) on g. Then  according to Swinner ton-Dyer ,  we 
have 

Z N ~ c 1 (~ ,  g) N (3/5)+e (1.2) 

f o r N > ~  1 a n d e > 0 .  

1 Written with partial supports from NSF grant No. MCS-82t 1461. 
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Since in this result a fixed curve is blown up, we may  ask what  can 
be said of  an arbitrary smooth  curve contained in a square of  side N. 
Now given an arbitrary chain of  integer points, one can always 
construct  a curve, differentiable to any prescribed order, which passes 
th rough  these points. Moreover,  if the chain of  points  forms the 
vertices of  a convex polygon,  then the smooth  curve can also be made  
convex, so that  one cannot  assert more  than (1.1). Hence my first plan 
was to impose a condi t ion on the sign o f f ' " .  However,  it turns out  that  
the third derivative is dispensible, it being enough that  the second 
derivative is monotonic .  

Theorem 1. Let  ~ be a curve contained in a square o f  side N >>- 1, 
given by y = f (x) where f "  exists and is weakly monotonic, and vanishes 
for  at most one value o f  x. Then for  ~ > O, the number Z o f  integer points 
on ~ has 

Z ~ c 2 @) N (3/5)+~ . (1.3) 

The essential point  is that  the constant  does not  depend on 02. The 
exponent  is the same as in (1.2), and indeed the p r o o f  is a variation 
on the a rgument  of  Swinnerton-Dyer.  I conjecture that  in fact 
Z<<, c3N ~/2, or at least Z<~c3(e )N  (1/2)+~ for e > 0 .  The example 

f ( x )  = x / ~  shows that  the exponent  1/2 would be best possible. 

Let ~ be an algebraic curve defined by an irreducible polynomial  
equa t ion f (x ,  y) = 0 of  degree d > 1. Such a curve consists of  at most  
c4 (d) pieces of the type y = f ( x )  with mono ton ic  f "  and with f "  not  
changing sign, plus at most  c5 (d) extra points.  By Theorem 1 the 
number  Z (iV) of  integer points  (x, y) on ~ with Ixl ~< N, [Yl ~< N w h e r e  
N ~> 1, has 

Z ( N )  ~ c 6 (d, 8) N (3/5)+E . (1.4) 

I believe that  when ff is of  positive genus, then in fact 
Z ( N )  ~< c7(d, e)Nq Of  course, by Siegel's result, Z (N)  ~< c8 (t) in this 
case, but  our  c7 is supposed to be independent  o f f .  

We next will discuss surfaces in ~3. Very roughly speaking, our  
result is that  for reasonably nice surfaces contained in a cube of  side N, 
the number  Z of  integer points  on the surface has Z ~ N 3/2. The 
precise formula t ion  takes a little effort. When  the surface is a cylinder, 
i. e. if it consists of  the translates of  a curve ff in a given direction, then 
it is clear that  it could have N times as many  integer points  as the curve. 
So, for instance when ff is a plane convex curve, the cylinder could 
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have as many as >> N 5/3 integer points in a cube of  side N. Hence we 
have to rule out  cylinders. 

A surface J will be called proper if it consists of  points (x, y, z) with 
z = f ( x )  where x = (x, y) runs through a nonempty open set I?, and if 
the partial derivatives of  f up to the third order exists on ~ and can be 
extended to continuous functions on the closure ~ of  f3. A proper 
surface will be called an elementary piece if f3 is of  the type a < x < b, 
~01 (x) < y < ~2 (x) with continuous functions ~1, ~2 in a ~< x ~< b, iffy is 
weakly monotonic  on each of  the two curves y = vJ~ (x), y = V;2 (x) 
(a ~< x ~< b), and iffyy r 0, W r 0 throughout  ~3, where 

Ly f,x 
m~- m ( x , y ) =  Lyy Lyx " 

A proper  surface is part  o f a  paraboloid i f f i s  a quadratic polynomial. 
Such a paraboloid is either a (parabolic) cylinder or an elliptic or 
hyperbolic paraboloid.  

Theorem 2. Suppose that either 5 P or 5P(~/4) or J ( ~ / 2 )  or 50(3 ~/4) 
is an elementary piece, where 5~(q)) is obtained from Y by rotation about 
the z-axis by ~ degrees, or else that 5 ~ is part o f  an elliptic or hyperbolic 
paraboloid. Then the number o f  integer points on 5 D lying in a cube o f  
side N >~ 1 is ~ N 3/2, with an absolute constant in 4 .  

This was essentially obtained by the author  some twenty years ago 
[10]. The conclusion remains true when 5P(qJ) is an elementary piece 
with tan ~ rational, but  now the constant in ~ depends on q~. The most  
severe restriction for an elementary piece is that W r 0. If  W is not 
identically zero, one can expect that 5 P is contained in the union of  not 
too many elementary pieces and their boundaries. The question thus 
arises, what does it mean when W = 0 on 3 ?  We will see that it means 
that 5 P is a surface o f  translation, i. e. the intersection of  Y with each 
plane x = c is always the same curve, up to a translation which may 
depend on c. So what  happens when each of  Y,  Y(~/4), ~(~/2) ,  
5~(3 z~/4) is a surface of  translation? In the case w h e n f i s  analytic, we 
will see that in this case 5 p is either part  of  a cylinder or part  of  a 
paraboloid.  Note  that a proper  surface is part  of  a cylinder when 

f (x)  = g (L (x)) + M(x) (t.5) 

with linear forms L, M and with g a function of  one variable. 
Define W~ in the obvious way with respect to 5p(~); its domain is 

the rotated set ~ of  f?. 
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Theorem 3. Let 5: be aproper 2 surface such that W 1 = W, W~/4, W~/2, 
W3~/4 vanish identically. Then 7~ contains a nonempty open subset ~ such 
that the surface z = f ( x )  with x ~ ~ is part o f  a cylinder or part o f  a 
paraboloid. 

The conclusion would still obtain with other angles, and perhaps 
with fewer angles. Combin ing  Theorems 2, 3 we will deduce the 
following 

Corollary. Let n >t 3 and let 5: ~ ~" be an algebraic hypersurface, 
defined by an irreducible, non-trivial polynomial equation o f  degree d. 
Suppose that 5 ~ is not a cylinder, and by this I mean that 5 ~ should not 
consists o f  the translates o f  a curve ~ in directions parallel to a given 
(n - 2)-dimensional subspace. Then given N >~ 1, the number Z (N) o f  
integer points on 50 in the cube Jxil < N (i = 1, . . . ,  n) satisfies 

Z ( N )  <<. c9 (n, d) N "-(3/2) . (1.6) 

When  the algebraic hypersurface is a cylinder but  not  a linear 
manifold,  the bound  Z(N)  ~< Cl0 (n, d, e )N  n-~7/5)+~ follows f rom (1.4). 

In the case of  a cone, i.e. a surface defined by a homogeneous  
irreducible polynomial  equat ion of  degree d ~> 2, HEATH-BROWN [7] 
recently had occasion to derive the slightly weaker estimate 
Z ( N )  <<, c l l (n ,d , e )N  "-~3/2)+~ f rom a paper  of  S.D.  COHEN [4]. In 
contrast  to Cohen 's  work,  our  p roo f  will use only simple geometric 
arguments.  I conjecture that  Z ( N )  <~ N ~-2+~ unless 5: is a rational 
surface. Of  course, much  better estimates can be expected for "mos t "  
algebraic hypersurfaces. 

Let R be a closed convex body in N~ where n > 1. Suppose that  R 
has a finite and positive volume V, and surface area S. Fur ther  
suppose that  there are Z integer points  on the surface of  St, not  all 
contained in a linear manifold  of  dimension less than  n. ANDREWS 
[1, 2] has shown that  if R is strictly convex, then 

Z ~ S "/~+l) , (1.7) 

Z ~ V ~-1)/~"+~) , (1.8) 

with constants in ~ which depend only on n. Since Andrews '  p roo f  of  
(1.8) was difficult, we will present another  p roo f  here. Whereas 

2 In our proof, in order to avoid complications, we will suppose thatfhas fourth 
order partial derivatives. 
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Andrews'  argument depended on "exterior angles" ofpolytopes,  etc., 
our argument will use the Geometry of Numbers.  

Given R as above, let 3 be the set of extremal points, i. e. points in 
which are not in the interior of a line segment contained in !R. Then ,3 

is just the surface of !;l is strictly convex. In general, 3 is contained in 
the surface of ~,  and !R is the convex hull of 3.  

Theorem 4. Let R, V, S be as above, and let A be a lattice of 
determinant A. Suppose there are Z lattice points in 3, not all lying in a 
linear manifold of dimension less than n. Then 

Z ~ S ~/(n+ 1~ A -~-~/(n+ ~,  (1.9) 

Z ~ V(n-I~(~+~A -(n-l~/(n+l~ (1.I0) 

Andrews formulated his theorems only for strictly convex bodies, 
but his proofs work for any convex bodies if Z is defined as in our 
theorem. Thus Andrews showed (1.10) when A = Z n, the lattice of 
integer points. Since any lattice is obtained from 7/" by a suitable linear 
transformation, (1.10) follows in general. Furthermore,  (1.9) follows 
from (1.10) by the isoperimetric inequality. Thus Theorem 4 is not 
really more general than (1.7), (1.8), but the formulation in terms of 
lattices will be convenient for our proof. 

When n > 2, it is not  clear whether the exponents in (1.9), (1.10) 
are best possible. 

L e t f ( x l , . . . ,  x,_ 1) be analytic (i. e. expandable into a power series 
in a suitable neighborhood of each point) in an open domain 3 .  Let 
J(9.1) be the surface z = f ( x l , . . . , x~_ l )  with (x l , . . . ,x~_l )  running 
through some compact subset N of 3 .  Finally, let ZN be the number of 
integer points on the blown up surface N J(9.I). 

With every point of a differentiable hypersurface in R ~ one 
associates n - 1 principal curvatures, which may be positive, negative 
or zero. 

Theorem 5. In addition to all the other properties, suppose that each 
point of  5e(9I) has at least r curvatures which are all positive or all 
negative. Then for N >~ 1, 

,~ {r ~1~'~ ~Fn--2+2/(r+2) 
Z N ~ t.12 k], 4.~] x~ 

Now when 5P(9.1) has nonvanishing Gaussian curvature, then 
r >~ [n/2] (where [ ] denotes integer parts), whence 

Z N ~ c12 (f~ ~[)  N n-2+2/([n/2]+2) . (1.11) 

4 Monatshefte for Mathematik, Bd. 99/1 
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Like Swinnerton-Dyer, we have to blow up a fixed manifold. For a 
convex surface in a cube of side N, the surface area S is ~ N n- 1, and 
(1.7) gives Z ~ N n-z+z/(n+ 1). Presumably the same estimate holds for 
ZN in the situation of (1.11). 

Our proofs of Theorems 1 through 4 will be independent of each 
other. Theorem 5 will be deduced from Theorem 4. 

2. Swinnerton-Dyer's Lemma. Consider triples of integer points 
(ul, Vl), (u2, v2), (u3, v3) with positive ul, u2,u3. Given such a triple, put 

Zll=] u2Y2 u3Y3 ' A2= ;: u3 '  A 3 = v 3  Ulvl U2v2 , (2.1) 

so that 

Put 
U2ZI 2 = UlZJ 1 q- U 3 A  3 . 

A = u 1 (u  1 -4- Uz) A 1 - -  u 3 ( u  3 q- u2) ZI 3 . 

(2.2) 

(2.3) 

Lemma 1. Given N > 0, A ~> 1, B > 0, C > 0, the number o f  triples 
with 

ui~<N ( i =  1,2,3),  

and 

& 

I vil<<,Aui ( i =  1,2,3),  

O < A i ~ B  (i = 1,2,3),  

IAI <C 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) N ~ B ~ ( A B C  + A B  3) , 

with a constant in ~ depending only on e > O. 

This is just an elaboration on Lemma 2 of [11]. 

Proof. At first we keep A 1, zI2, El3 fixed and we estimate the number 
of triples with these values of A1, A2, A3- By reasons of symmetry we 
may restrict ourselves to triples with u 3 ~ u 1 . Also, initially we will 
restrict ourselves to triples with ul lying in a fixed interval of the type 
X ~< ul < 2 X, and with a given value d of (ul, u3) = g. c. d. (ut, u3). 
Note that d divides A2. 

We suppose that a triple (u~, v~), (u~, v~), (u~, v~) with all these 
properties is given, and we consider all possible triples (ul, v0, (u> v2), 
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(u3, v3). I f  we use (2.2) to eliminate u2 f rom (2.7), we get 

I ~ ] ( Z I !  -t- Z12)/32 - -  Z]3(~ 3 -~ ~ 2 ) " 2 1  ~'~ zJ2C . 

Since this is also true for the given triple, we may  infer that  

+ 2 -/3f u])t + . ;2) .  

Moreover,  since u3~<ul, u;~<u{ and X ~ < u l , u { < 2 X ,  we have 
u 2 + u; 2 ~< 2 (u~ us + ul u~), whence 

l Ul ~/; - -  b/{ U31 < 2 A i- ~ C .  (2.9) 

F r o m  the validity of  (2.2) for both  triples we find that  

41 (/31 /3~ - -  U{ b/a) = ~2  (U2 b/~ - -  ~/3 U2) , 

so that  Ul u~ - u{ u3 is divisible by A 2/(A1, A 2). It is similarly divisible by 
A2/(A3, A2), hence is divisible by A2/D where 

D = (ZI1,A2, A3) . 

So by (2.9), the number  of possible values of  u~ u; - u~/33 is at most  

4A~ -1 A 2 1 D C  + 1 . (2.10) 

When/31 u; - u{ u3 and u~, u; are given, then the pair ul, u3 is given up 
' d-1 , (where d = (ui", @) ,  but  since we to adding multiples of  d-1 u l, u3 

also want  that  d = (Ul, u3), the pair u~, u3 is given up to adding 
multiples ofuf ,  uj. In view o f X  < u~, uf < 2 X, the pair ut, u3 is in fact 
uniquely determined.  But then u2 is determined by (2.2). Now vl, vz, v3 
have to be chosen to satisfy (2.1). The only possible f reedom for 
v~, v2, v3 consists in adding 2 u~, 2 u2, 2 u3 where 2 is rational. But the 
denomina to r  of  2 must  divide (u~, u2, u3), hence must  divide D. Thus  
there are at most  D possibilities for vl (modulo  u0, so that  by (2.5) 
there are altogether ~< (2 A + 2)D possibilities. In conjunct ion with 
(2.10) we get 

AD(A~ ~ z]21 DC + 1) 

possible triples. Since the interval 1 ~ u~ ~< N m a y  be covered by ~ N ~ 
intervals of the type X ~< ul < 2 X, and since the number  of  possible 
divisors d of  A 2 is ~ z]~/3 ~ B d3, we see that  for given A1, A2, A3, the 
number  of  possible triples is 

4* 

N~B~/3AD(A11 A21 DC + 1) . 
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We have Ai = EiD with 0 < Ei <~ B D  -1 by (2.6). If  for given D we 
take the sum over E~, E2, E3, we obtain 

,~ N~B~/2A(BCD-1  + B3D -2) . 

Summation over D ~< B yields 

,~ N ~ B ~ ( A B C  + A B  3) . 

3. Theorem 1 under an additional hypothesis. We first will prove 
Theorem 1 under  the additional assumption that  f " '  exists and is 
weakly monotonic  throughout.  

It clearly will cause no loss of  generality if we restrict x to a 
subinterval I in which, say, f ' "  ~> 0, and in which f " , f '  are of  given 
sign. Suppose that f "  > 0, f '  > 0 in L Let 

I(0) consist of  x s I with f '  (x) ~< 1 , 

and for natural  ~ let 

I(~) consist of  x ~ I w i t h  e ~-1 < f ' ( x )  ~< e ~ . (3.1) 

Then since f "  > 0, each I(~) is an interval, possibly empty. I is the 
union of  the intervals I(~) with ~ >i 0. Since the range off ,  as well as I, 
are contained in intervals of  length ~< N, the length of  I(~) satisfies 

#(I((~)) ~ e "N  (~ ~> 0) .  (3.2) 

In fact the union of  the intervals I(~) with ~ > ~0 forms an interval of  
length ~ e -s0 N, and when ~0 > log N, this is ~ 1. Since an interval of  
length ~ 1 gives rise to r 1 integer points, it will suffice to consider the 
intervals I(~) with ~ ~ log N. 

Next, let I(~,0)  consist of  xEI (~ )  with f " ( x ) ~ < N  1. Given 
natural/3, let I(~,/3) consist of  x c I(~) with 

e~-l N -1 < f " ( x )  ~< e~N -1 . (3.3) 

Then I(0~) is the union of  the intervals I(~,/3) with/3 >~ 0. Denoting the 
end points of  I(~,/3) by a ~< b, we have in the case /3 > 0 that 
f ' ( b ) > f ' ( a ) + ( b - a ) e  ~ 1N 1, and therefore b - a < N e  ~-~+l. 
The last relation is trivially true for/3 = 0, so that 

#(I(~,/3)) ~ e~-~U (~ ~> 0,/3/> 0) . (3.4) 

By an argument  as above we may restrict ourselves to /3 ~< ~ + 
+ O (log N) ~ log N. 
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Finally, let I(~,/~, 0) consist of  x e I(~,/~) with f ' " ( x )  ~< N -2, and 
let I(~, ~, 7) where y > 0 consist of  x e I(z,/~) with 

e r i N - 2  < f ' " ( x )  ~< e T N  -2 . (3.5) 

Since f ' "  is monotonic ,  each I(~,/~, y) is again an interval--possibly 
empty.  In analogy to (3.4) we find that  

#(I(~,/L~')) "~ e ~ - y N  (7,/?,~' >~ 0 ) ,  (3.6) 

and we may  restrict ourselves to 7 "~ log N. 
Combin ing  (3.2), (3.4), (3.6) we have 

/z (I(~,/~, ~,)) ~ q0 N (3.7) 
with 

q~ = q) (~,/~, 7) = rain (e -~, e ~-r e ~ r) . (3.8) 

Put  
= q) N 2Is . (3.9) 

Let Z (~, ~, ~) be the number  of  integer points on our  curve y = f ( x )  
with x ~ I ( a , ~ , y ) .  Since the number  of  possibilities for c~,~, 7, which 
we need consider is ~ (log N) 3, it will suffice to show that  Z (~,/~, 7,) 

N(3/5)+q So let 
P1, e2 , . . . ,Pz  (3.10) 

with Z = Z(~,/~, ),) be the integer points in question, and ordered 
according to their x-coordinates.  When  Z >~ 4 and when 

Qo = (xo,Yo), Q1 = (x l , y l ) ,  Q2 = (xz,y2), Q3 = (x3,y3) (3.11) 

are any four consecutive points  among  (3.10), consider the triple 
(ul, vl), (u:, v:), (u3, v3) with ui = xi_ 1 - xi, ve = y,-+~ - Yi (i = 1,2, 3). 
We distinguish 4-tuples Q0, Qt,  Q2, Q3 of  two types, characterized by 

u 1 + u 2 + u 3 > q~ (3.12) 
and 

Ul + u2 + u3 ~< ~b . (3.13) 

The number  of  4-tuples with (3.12) is clearly 

q -i # N3/5 

by (3.7), (3.9). 

The type (3.13) is more  difficult. By the mean  value theorem, 
vi/ui = f ' ( ~ )  with ~ in xi < ~ < xi+t. Hence by (3.t), ]vii ~< e~ui, and 
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(2.5) holds  with A = e ~. By applying the mean  value theorem twice 
one  sees (as was  explained in [11], fo rmula  (9)) tha t  

A 3  __ b/1 V2 - -  b/2 l~l 1 tt  

ul u2 (ul + u2) - ul u2 (ul + u2) = 7 f  (7) 

where  ~ lies in Xl < ~/<  x3. Thus  0 < A3 < q93e~N -I  by  (3.3). The 
same b o u n d  holds for  A1. It is also true for  A2, as seen f rom fo rmula  
(11) in [11]. Thus  (2.6) holds  with B = q~3e~N -1. Finally,  f rom 
fo rmula  (10) o f [ l l ]  we see that  IA] ~< q ~ 6 e ~ N - :  by (3.5), so that  (2.7) 
holds  with C = ~ 6  e y N - 2 .  Subst i tu t ing  this into (2.8) we ob ta in  

.~ N2~(q~9 e~+~+~N -3 + qb9e~+3t~N -3) 

= N2~q~9N -3 (e~+a+y + e ~+3a) 

= N0/5~+2~ 9 (e~+~+~ + e~+3~) . 

But  q~9~<qo6~e-3~e2(~-~)e~-~=e -~-/~-7 and  999~<qjT~<e-4~e 3(~-~)= 
= e -~-3a. Since e > 0 was arbi t rary,  we get < N 0/5~+~ four- tuples  
(3.11) with (3.13). Thus  indeed Z (o~, 13, 7) "~ N~3/5) +~. 

4. Theorem 1 in general. W e  m a y  well w o n d e r  if  this is jus t  an 
exercise on  pa thologica l  funct ions!  

W e  need some facts f rom calculus. Given  x0 < xl and given a 
f u n c t i o n f ( x )  in x0 ~< x ~< xi ,  let g (x) = a x + b be  the linear funct ion  
with g(x i )  = f ( x i )  (i = 0, 1). Then  

xl 

a (xl  -- Xo) = f ( x l )  - - f ( x o )  = ~ d f ( x )  . 
xO 

Next ,  given x0 < xl < x2, let ~ (x) = ~ (x0, Xl, x2; x) be the funct ion  
in x 0 ~< x ~< x 2 with ~,(x) = ( x -  Xo)/(xl - Xo) in x 0 ~< x ~< xl ,  bu t  

(x)  = (x2 - x) / (x2 - x l )  in xl ~< x ~< x2. Given  a funct ion  f ( x )  in 
x 0 ~< x ~< x2, let g ( x )  = a x  2 + b x  + c be the quadra t ic  po lynomia l  
with g (xi) = f ( x i )  (i = 0, 1, 2). Then  if  f has a d e r i v a t i v e f '  o f  b o u n d e d  
var ia t ion  in x0 ~< x ~< x2, we have 

X2 

a (x 2 -- x0) = ~ ~ (x) d f ' ( x ) ,  
x0 

where  the right hand  side is a Stieltjes integral.  We  omi t  the p r o o f  since 
our  real interest  lies in fo rmula  (4.1) below. 

Given  x0 < xl < x2 < x3, we define co (x) = ~ (x0, xl ,  x2, x3;x)  in 
x0 ~< x ~< x3, as follows. 
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co(x)= 

( X - X o )  2 

2 ( X 2 - - X o ) ( X l - - X o )  

1 ( x - x O  ~ 

2 2 ( X  3 - -  X1) (X2- -XI )  

in Xo ~ Xl ~ X l ,  

(X 2 - -  X) 2 

2 (x2 - Xo) (x2 - x:) 
in X 1 < X < X2, 

X - -  X) 2 
in x2 <~ x <. x3, 

2 (x 3 -- x:) (x 3 - x2) 

Then  co (x) has a con t inuous  derivative,  and co and its derivat ive vanish 
at the end points  xo, x3. It  is easily checked that  0 <~ co (x) < �89 and  that  

X3 

i s (X) dx  ~- 1 (X 3 _ X0) . 
x0 

L e m m a  2. Le t  f ( x )  be defined in Xo <. x ~ x 3 and have a second 
derivative f "  o f  f ini te  total variation. Le t  g (x) = a x 3 + b x 2 + c x + d 

be such that g (xi) = f ( x i )  (i = 0, 1, 2, 3). Then 

X3 

a (x3 - Xo) = S co (x) d f " ( x )  . (4.1) 
xo 

Proof. This is certainly true when  f ( x )  = g (x), because  then 

X3 X3 X3 

co (x) d f " ( x )  = ~ co (x) g ' " ( x )  dx  = 6 a ~ co (x) dx  = a (x3 - Xo). 
xo xo xo 

Setting h (x) = f ( x )  - g (x), we see that  it will suffice to verify that  

X3 

co (x) dh"  (x) = 0 
Xo 

for  funct ions  h with h (x,) = 0 (i = 0, 1, 2, 3) and with h"  o f  b o u n d e d  
variat ion.  Apply ing  part ial  in tegrat ion twice and recalling that  co, co' 
vanish at  the end points,  we get 

X3 X3 X3 

S co (x) dh"  (x) = - ~ co'(x) h"  (x) dx  = ~ co" (x) h ' (x)  d x .  
Xo )co -gO 

But  since co" is cons tan t  in each o f  the subintervals  xt < x < x~+ t, the 
last integral  is a linear combina t ion  o f  the values h (x/) (i = 0, 1,2, 3), 
hence is zero. 

N o w  in order  to p rove  T h e o r e m  1, we may  wi thout  loss of  
general i ty  restrict  x to an interval  I w h e r e f "  is weakly  m o n o t o n i c  and 



56 W.M. SCHMIDT 

w h e r e f '  > 0 , f "  > 0. We define I(~) and I(~,/~) as before. We consider 
the points  (3.10) on our  curve with x s I(~,/~); this t ime Z = Z (~, fl). 
Again we consider the 4-tuples of  consecutive points  Q0, Q~, Q2, Q3 
among  (3.10), and we construct  triples (Ul, Vl), (u2, v2), (u3, v3). Again 
define A by (2.1), (2.3), and put  

M = ]A](u 1//2//3 (b/1 -t- //2) (b/2 -}- /23)(//1 "4- /'/2 "~ //3)) -1 

Now  write Z(~, fl, 0) for the set of  4-tuples with M ~< N 2, and 
Z (c~,/~, 7) where 7 > 0 for the set of  four-tuples with 

eT-l  N -2 < M <~ eT N -2.  

Since M ~< A ,~ N 4, the "get %(c~,fl,7) is empty  unless 7 ~ log N. 
It will suffice to show that  each Z(~,fl, 7 ) has cardinality 

N (3/5) + ~. 

We define % q~ by (3.8), (3.9). Four- tuples  with (3.13) again satisfy 
(2.5), (2.6), (2.7) w i t h A  = e ~, B = Cb3e~N -1, C = q)6e~N-2,  and the 
a rgument  goes th rough  as before. There remain the four-tuples in 
3; (0~, fl, y) with (3.12). The cubic polynomial  g ( x )  = a x  3 + . . .  with 
g(x i )  = f ( x l )  (i = 0, 1,2, 3) satisfies (4.1). On the other hand,  a = M 
([11], formula  (10)). Thus  for 7 > 0 we have 

X3 
[. ~ ( x ) d f " ( x )  > e T - 1 N - 2 ( x 3  - X o )  > e~-l  N - 2 c b  . 
xo 

In the last inequality we used that  x3 - x0 = Ul + u2 + u3 > q~ by 
(3.12). Since 0 ~ < ~ ( x ) < l / 2 ,  we may  infer that  f " ( x 3 ) -  
- f " ( x o ) > >  e r N - 2 ~ .  S i n c e f "  is mono ton ic  with [f"(x)l  ~< e ~ N  1 in 
I(~,/~), the number  of  4-tuples in question is ~ N~b -1 e ~-7. 

As in w the number  of  4-tuples with (3.12) is bounded  by 
N q~ - 1 e - ~ and by N q~ - 1 e ~- ~. Hence the cardinality of  3; (~, {1, 7) is 
N q)-lop = N 3Is. This is true both  when 7 > 0 and when 7 = 0. 

5. Proof  of Theorem 2. When  5 p is an elementary piece, our  
theorem is essentially Satz 1 of  [10]. In the nota t ion  of  that  paper  we 
have A ~< N, B ~< N, and Hilfssatz 5 should become l (1Ii) ~ N. We are 
making  slightly weaker hypotheses than in [10] about  the partial 
derivatives on the boundary  of  ~,  but  this has little effect on the proof.  
It may  happen  that  our  elementary piece is not  itself contained in the 
cube of  side N, which might  necessitate some further easy modifica- 
tions of  the arguments  in [10]. 
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Rotat ion by ~/2 transforms integer points into integer points. So if 
5~(~/2) is an elementary piece, the same conclusions may be drawn as 
before. Rotat ion by ~/4 or 3 ~/4 transforms the lattice 7/2 of integer 

points into the union of  two translates of  x /2  7/2. It easily follows that 
the number  of integer points in our cube is again ~ N 3/2 if 5P(r(4) or 
5e(3 .~/4) is an elementary piece. 

When 5 ~ is part  of  an elliptic or hyperbolic paraboloid, inter- 
change the roles of  x , z .  We obtain a surface which is the union 
of  a bounded number  of  elementary pieces. 

6. Surfaces with W = 0. Given a curve z = g (y) in the (y, z)-plane, 
it gives rise to surfaces of  translation z = g (y - Yl (x)) + z 1 (x). The 
intersection of  this surface with the plane x -- e is the original curve, 
translated by (Yl (c), zl (c)). Writing f ( x ,  y)  = g (y - Yl (x)) + zl (x)  
and assuming suitable differentiability conditions we have s = g', 

L Y  = g ' "  L Y Y  = g" ' ,  s  = -- g "  Y~, .fyyx = -- g ' "  Y~ (with g', g", g" '  
evaluated at y - Yl (x)) ,  whence W = O. 

The surfaces z = a (x) y + b (x) whose intersection with any plane 
x = c is a straight line are in general not surfaces of  translation, but 
f (x,  y)  = a (x)  y + b (x)  again has W = O. 

Now suppose conversely t h a t f h a s  continuous third order partial 
derivatives and has W = 0 on an open set 9 .  I f s  = 0 on 9 and if, say, 
9 is convex, then f = a (x)y  + b (x). Suppose then that s  does not 
vanish identically on 9 ,  so that in fact s  r 0 in some nonempty 
subset 91 of  9 .  Thus 

a ( x , s  
y )  - s  o ,  

and the map (x, y) ~ (x ,s  is 1 - 1 on a nonempty open subset 32 of  
91. The inverse map has 8 x / S x  = 1, 8y /Sx  = - f x y / s  and therefore 
(as a function of  x , s  

oL, 
ax  - s  + = = o . 

Thus s  is a function o f s  alone, say 

s  = B(/y) .  (6.1) 

Now let x be fixed and set h = s Then dh/dy  = s  = B (h) va O, 
hence dy/dh = B (h) - 1. Thus y = B1 (h) + Yl where Bi is an indefinite 
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integral of  B 1 and where y~ is a constant. Since B1 is monotonic,  we 
can solve for h to get fy = h = B 2 C v - y l ) ,  where B 2 is the inverse 
function of  BI. Finally f = g (y - Y0 + zl where g is an indefinite 
integral of  B2 and where zl is another constant. For  varying x we have 
y~ = y~ (x), zl = zl (x), so that z = f ( x ,  y) is, at least locally, a surface 
of  translation. 

7. Proof of Theorem 3. Let J be the Jacobian 

j _  •(fx,fy) _ fxx fxy[ . 

y) L+ Ly I 
We will see that when J = W = W~/2 = 0 on 3 ,  then z = f ( x ,  y) is 
locally a cylinder. On the other hand when J is not  identically 0 on ~) 
and when W = W~/4 = W~/2 = W3~/4 = 0, then z = f ( x ,  y) is locally a 
paraboloid.  

By definition, a Wronskian of  functions p (x, y), q (x, y), r (x, y), 
defined and twice differentiable in an open set, is a function 

Dop Dip D2p 

~ 3 = ~ ( x , y ) =  Doq Dlq D2q , 

Dor D1 r D2r 

where Di is a partial differentiation operator  of  total order ~< i. When 
p, q, r are linearly dependent  (over E), then each Wronskian vanishes. 
Conversely, when p, q, r have continuous second order partial deriva- 
tives and when every Wronskian vanishes, then there is a nonempty  
open set where p, q, r are linearly dependent.  (See e. g. [9, Lemma 1], 
where this is shown for rational functions). Since D o is the identity 
operator,  we may specify D1, D2 to have positive order. We will apply 
these facts to p = f~, q = fy, r = 1. A typical Wronskian becomes 

(DI, D2 ) = Dlfx Dzfx = det (grad Dlf,  grad D2f ) , 
O1L D2 L 

where for a function h we set grad h = (hx, hy). 

Now J W 0 gives ~ ( ~  ~y// ~ ~ 02 

For  points where gradfy r 0, or points which are limits of  points with 
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this property, it follows that ~ ~x '  = 0. But in open sets with 

gradfy = O, we have fyy = s  = O, hence again ~ , = O. 

Differentiating the relation J = 0 with respect to y we obtain 

2B , + ~ = 0, so that ~ = 0. 

If  we make the further assumption that W~/2 = 0, we may 
interchange the roles of  x, y and see that every Wronskian vanishes. 
Thus there is an open subset ~ of ~) where f~,fy, 1 are linearly 
dependent. Say afx + bfy + c = 0. When b = 0, then f~ = ~ (a con- 
stant), so that f = g (y) + g x. Thus the piece of  our surface with 
(x, y )~  ~ belongs to a cylinder. The situation is similar when a = O. 
When a b r 0, we may write f ( x ,  y)  = h (a x + b y, b x - a y) with a 
certain function h = h (u, v). Now 

0 = af~ + bfy + c = aZhu + abhv  + bZhu - abh,.  + c = 

~" (/7/2 + b 2) hu + c . 

Therefore h, = d (a constant) and h ( u , v ) = g ( v ) +  ~u, whence 
f (x, y) = g (b x - a y) + ~ . (a x + b y). Thus z = f (x, y) with (x, y) e 
is part  of  a cylinder. 

Suppose now that J is not  identically zero on ~ and that W = W~/4 
W~/2 = W3~/4 = 0 on 3.  In view o f J  ~ 0 there is an open subset o f~ l  of  
~3 where the map (x, y) ~-+ (f~,fy) is 1 - 1. The argument  given for (6.1) 
shows that there is a nonempty open subset of  ~ wherefyy = B (fy). 
Since also W=/2 -- W,/4 = W>~/4 = 0, we find further that fx~ = A ~ ) ,  

L~ + 2Ay +fyy  = C(f~ + L ) ,  
(7.1) 

fxx - 2fxy + L y  = D(f~ - - L )  

for certain functions A, C, D and for (x, y) in a certain open subset ~z 
of  ~ .  It follows that 

2 A ( f x )  + 2 B (fy) = C ~  +fy)  + D(J~ - f y ) ,  
so that 

2A(E) + 2B(~) = C(E + ~/) + D(~ - ,7) (7.2) 

for (E, 7) in the image 52 of ~2 under (x, y) ~ ~ , f y ) .  Since A, B, C, D 
are continuous, it may be deduced from (7.2) that they are quadratic 
polynomials on every connected part  of  52. To avoid technicalities, we 
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will suppose here that  f has four th  order  partial derivatives, so that  
A,B,  C,D are twice differentiable. Taking second order partial 
derivatives of  (7.2) we find that  

2 A"  (~) = C"(~ + ~) + D"(~ - ~) ,  

2 B"(~) = C"  (~ + 7) + D "  (~ -- ~) .  

We infer that  A "(~) = B"  (7) for (~, ~) e ~2, so that  A "(~) = B"  (V) is 
some constant,  call is 2a. Thus  

A(~) = a~ :2 + 2b~  + d, B(~) = a~] 2 + 2c~  + e ,  

say. Substi tuting this into (7.2) we find that  

C (~e + r/) = a (~e + ~7)2 + 2 (b + c)(~: + r/) + d * ,  

D(~ + ~) = a (~ - -  ~)2 + 2(b - c)(~ - 7) + e* . 

F r o m  (7.1) we get 4fxy = C(fx +fy)  - D ( f ~ - f y ) .  Thus  

f~x = af2x + 2 bf~ + d ,  

fyy = af2y + 2c fy + e , (7.3) 

fxy = afxfy + b fy + cfx + (d* - e*) /4 .  

Suppose at first that  a ~ 0. 

Z ~  = a(fx + 

L y  = a N  + 

Then (7.3) becomes 

al) 2 + d l ,  

bl) 2 + el, 

al) 0cy + bl) + ul ,  

(7.4) 

with constants  al, bl, dl, e~, ut. Since fxxy =fxyx, we get 

2 a (ix + al)Ay = a (ix + a l )Zy + a ~ + b l )Lx ,  

(ix @ al)Ay = (fy -1- b l )Ax.  

Substi tut ing f rom (7.4) and simplifying we obtain 

+ a~)u~ = ~ + h i ) d l ,  

whence the identity (~ + al)ul  = (~ + bl)dl .  Therefore ul = d l  = 0. 
Similarly el = 0. The formulae (7.4) now yield J = 0 ,  contrary to our  
assumption.  

Hence a = 0 in (7.3). Not ing  again that  f ~ y  =f~yx, we have 
2 bf~y = bfxy + efxx, or bf~y = efx~. Similarly, fyy~ = fxyy gives 
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Cfxy = bfyy. Since J r 0 on ~2, we have b = c = 0. It now follows 
from (7.3) tha t f~ , fyy , f~y  are constants. So for (x, y) ~ ~2 our function 
f i s a  quadratic polynomial, and the surface z = f ( x ,  y) with (x, y) e ~2 
is part  of  a paraboloid. 

8. Proof of the Corollary. The constants in this section will depend 
on d, n only. We begin with the case n = 3. The singular points of  the 
surface form an algebraic set of  dimension ~< 1 and of  degree <~ 1, i. e. 
defined by equations of degree ~< c (d). There are ~ N singular integer 
points in a cube ~3 (N) of  side N ~> 1. The nonsingular points can be 
covered by a bounded number  of  pieces, where each piece, possibly 
after permutat ion of  the variables, is of  the form z = f ( x ,  y) with f 
analytic in some open set ~) __ ~2. 

N o w w h e n  W = W~/4 = W~/2 = W33~/4 = 0 on 3 ,  then byTheorem 3, 
the part  of  the surface z = f ( x ,  y) with (x, y) in a certain nonempty 
open subset of  ~) belongs to a paraboloid or a cylinder. Since our 
surface is an irreducible algebraic surface, it is then itself a paraboloid 
or a cylinder. When it is a paraboloid, the number  of  its integer points 
lying in ~3 (N) is ~ N 3/2 by Theorem 2. Cylinders are ruled out  by our 
hypothesis. 

Suppose, then, that W ~ 0 on 3.  (The cases when one of ~/4,  ~/2,  
W3~/4 is not zero on ~ can easily be reduced to this.) Then alsofyy ~ 0 
on 3.  Since W and fyy are algebraic functions of  bounded degrees, 
there is a bounded number  of  open sets ~1, .  �9 -, ~l  such that Wandfyy  
have no zeros in any of  them, and ~ = ~1 w . . .  w ~)l. Each ~3 may be 
chosen to have as its boundary  parts of  algebraic curves of degree ~ 1, 
and the same is now true of  each ~i- Points in ~ which do not belong 
to any ~)i are part  of  a bounded number  of  algebraic curves of  
bounded degrees, and these give rise to ~ N integer points in N (N), 
hence may  be ignored. We shall say that ~ is "essentially" the union of 
~)1,..., ~)t. In the same way, since their boundaries belong to algebra- 
ic curves of  bounded degrees, each ~ic~ ~ (N) is essentially the 
union of  a bounded number  of  proper domains ~ j .  If  a typical 
domain ~)ij, call it ~ for brevity, is given by a < x  < b ,  
VJ~ (x )<y<~2(x ) ,  let ~* be the subdomain a * < x < b * ,  
,p~" (x) < y < y* (x) with a* = a + (b - a) N -1, b* = b - (b - a) N-1,  
~ = ~Ol -~- (W2 - -  Wl) N - t ,  ~o~ ~ = W2 -- (~02 -- Wt) N - I .  The number  of  
integer points with (x, y) in ~ but not  in ~* is ~ N a n d  may be ignored. 
f i s  analytic in ~* and on its boundary.  The functions gi = fy (x, W 3 (x)) 
(i = 1, 2) are algebraic of  degree ~ 1 in a* ~< x ~< b*. This interval may 
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be broken into a bounded number  of  subintervals, where gl, g2 are 
weakly monotonic.  Thus ~* is essentially the union of ~ 1 domains ~" 
such tha t fy  is monotonic  on the "upper"  and "lower" boundaries of 
~ .  

The surface z = f ( x ,  y) with (x, y) e ~ is an elementary piece. By 
Theorem 2 this surface contributes ~ N 3/2 integer points. 

We now turn to the case n > 3. Reasoning as for n = 3, we may 
concentrate on a piece of  the algebraic surface of  the type xn = 
= f ( x l , . . . , x n _ l )  where f is defined and analytic in some open set 
~3_  E,-1.  Write (X l , . . . , x , _O  = ( x , y , x ' ) = x  with x ' ~ R  n-3 and 
X ~  n-I" 

Suppose at first that not all the Wronskians of  1,fx,fy vanish 
identically. Here by Wronskian I mean a special Wronskian which is a 
determinant  with rows (D i l, Difx,  Dify ) (i = 0, 1, 2) where Di is a 
partial differentiation operator  of  order ~<i involving only the 
variables x ,y .  So the points x where all these special Wronskians 
vanish lie in an algebraic set ~t ~_ En-~ of  dimension ~< n - 2 and of  
degree ~ 1. These points contribute ~ N "-2 to Z(N).  Hence it will 
suffice to consider x '  for which the special Wronskians do not vanish 
identically in x, y. For  such x', let 5 p (x ~ be the surface in R 3 consisting 
of  (x, y, z) where z = f ( x ,  y, x') with (x, y, x )  6 3 .  This surface is part  
of  an algebraic surface which is not  a cylinder. By the case n = 3 it 
contains ~ N 3/2 integer points with [xl, lyh Izl < N. Taking the sum 
over x '  we obtain a total of  ~ N n-3 N 3/2 = N n-(3/2) integer points. 

We may thus suppose that all the special Wronskians of  1,fx,fy 
vanish identically. Thus for given x', there is a relation of  linear 
dependency 

a + bfx + Cfy = 0 (8.1) 

where a, b, c depend on x '  only and are not all zero. Since a map 
(x,y,  x3 , . . . , x i , . . . ,X ,_ l )~ -~(x , y ,  x3 , . . . , x i  + y , . . . ,  x~_l) gives a 1 - 1 
correspondence of  integer points, we may further suppose that we still 
have this property for the functions f ( x ,  y, x3 , . . . ,  x~ + y , . . . ,  x ,_  ~), 
and still on top of  that after a permutat ion of  the variables. We will 
show that in this case our surface is a cylinder as defined in the 
Corollary. 

It will suffice to verify that at most two of  the functions 
1,fx~,...,fxo_~ are linearly independent over R. We endeavour to show 
that 1,f~,fy are linearly dependent, where x , y  stand for any of  the 
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variables Xl , . . .  , x n_ 1. More precisely, we wish to establish a relation 

A + B f ~ + C f y = O  

where, in contrast  to (8.1), the coefficients A, B, C should be independ- 
ent of  x = (x,y, x'). For  this it will be enough to see that the general 
Wronskians of 1,fx,fy vanish, where a general Wronskian is a 
determinant  

D O 1 DI 1 D 2 1 

Dofx Dlf~ Dafx 

Dofy Dlfy D2fy 

= Dlf~ D2fx 

DIL D2L 

where Do = I, D1 r I, D2 r  where DI, D2 are partial differentia- 
tion operators involving any of  the variables x l , . . .  , x n_ l- 

When D1, D2 are both of  order 1, such a Wronskian is of  the type 

fx~ fxv (8.2) 
L f,v 

where u, v are among xl , .  �9 x~_l. We know from the vanishing of  the 
special Wronskians that 

fxx Ay =0 

where x ,y  stand for any of  x l , . . . ,  xn_l. It follows that whenf~x = 0, 
then f~y = 0 where y is any of x~,...,Xn_l. Replacing f by 
f(x, y, x3 ,  � 9  v + y , . . . ,  x n _  1) w h e r e  v = xi we find that 

fxx fxy +fxv fw = 
fxy + fx~ fyo, + 2fy~ + 

fx~ f~y + fxx f ~  f~, fx~ 
Lx Lv! +2 

so that fxx fx~ = O. 
Lv 

A similar relation holds with u in place of v. Therefore whenfuu r 0 we 
see that (8.2) vanishes. But whenfxx = 0, thenf~ ~ = fx ~ = O, and again 
(8.2) vanishes. 

When D~, D 2 a re  of  respective orders 1, 2, the Wronskian is of  the 
type 
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UXU fXI~W 
L ,  fyvw (8.3) 

where u, v, w are among Xl, . . . ,  xn-1. We know from the vanishing of 
the special Wronskians that (8.3) is zero when u, v, w belong to the set 
{x, y). We may therefore suppose that the set 

S = {x, y, u, v, w} (8.4) 

contains at least three distinct variables. We may further suppose that 
none offxx,. . . ,fww is identically zero, for if, say, fww = 0, then also 
f~w = 0 and (8.3) vanishes. Taking partial derivatives in (8.1) we get 

bf~x + Cf~y = O, bfxy  + efyy = 0 . 

Thus neither b nor c is identically zero. The function fxy/ fx~ = 
= f y y / f x y  = - b/c  does not  depend on x , y .  Now if z is a variable in 
S distinct from x , y ,  we see that fyz/fyy = f z J f y z  does not depend on 
y , z ,  and f zx / f~z  = f ~ J f z x  does not depend on x , z .  We observe that 

( f~y/ f~)2 Q~y~/fyy)2 ( f ~ j f ~ ) 2  = ( fyy / f~)  (f~Jfyy) (fx~/f~z) = 1 ,  

and the three factors depend, respectively, on z, x, y, and on variables 
other than x, y, z. It follows that actually f~y/fyy does not depend on 
x, y or z. Clear ly fxy / fyy  does not depend on any variables belonging to 
S. So the quotients fab/f~a with a, b, c, d in S are independent of the 
variables of S. It follows thatf~b = g(a,b) h, where g(a,b), h are functions 
such that g(a,b) is independent of the variables of  S. By the vanishing of 
(8.2), 

I 
g(X,U) (X,~) 
g(y,u) g(y,v) = 0 . 

We obtain 

Lu Lvw = h g(, ,v) = 0  

9. Proof of Theorem 4. Whereas (1.7) does not  imply (1.8), it turns 
out that (1.9) does imply (1.10). For by a theorem of Jordan, there is an 
ellipsoid ~ with R ~ ~ and V(~) ~ V(~). Let T be a linear map of 
determinant 1 such that ~ ~ is a ball. We have 

. 
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The validi ty o f  (1.9) for  T R a n d ,  A implies the validity o f  (1,10) for  T 
and T A, hence the val idi ty o f  (1.10) for  R and A. Thus  it will suffice to 
p rove  (1.9). 

Let  ~3 be the convex cover  o f  3 c~ A. Then  !13 is a convex  po ly tope  
con ta ined  in R. The  vertices o f  !13 are precisely the elements o f  3 c~ A, 
so that  ~ has Z vertices. Since S(~3) ~< S, it will suffice to p rove  (1.9) 
for  po ly topes .  But  at  first we will p rove  that  

F ~ S n/(n+ 1) A -(n-~)/(~+ ~ , (9.1) 

where  F is the n u m b e r  o f  ((n - D-dimensional)  faces o f  ~ .  
W e  m a y  suppose  wi thou t  loss o f  general i ty that  A = 1. Let  

'11 ~< . . -  ~< 2n be the successive minima o f  A (with respect  to the unit 
ball), so that  accord ing  to Minkowsk i ,  1 ~ '1~... 2~ ~ 1. Let  a l , . . . ,  an 
be a basis o f  A with Eucl idean n o r m  [a;[ ~ 2~ (i = 1 . . . .  , n). W h e n  n = 2 
and x = (xl,  x2), pu t  x* = (x2, - xl);  in par t icular  this defines a*, a~. 
W h e n  n > 2, define a , , . . . ,  a* by  

a i  $ ~ a 1 A . . .  A a n _  i A a n _ i +  2 A . . .  A an, 

i. e. as an exter ior  p roduc t .  Then  a~ ' , . . . ,  a* are l inearly independent  
and (since A = 1) they generate  the polar  lattice A*. W h e n  , t* , . . . ,  L* 
are the successive min ima o f  A*, then according  to Mah le r  (see e. g. [3, 
w 1 ~'1''1n_~+~ ~ 1 (i = 1 , . . . , n )  and'1* ~ [a*l ~ ' 1 * . W r i t e H  
for  the hyperp lane  spanned  by  a * , . . . ,  a* 1. It consists o f  points  x with 
inner p roduc t  x al = 0. 

Lemma 3. The number z ( r )  o f  lattice points  x o f  A* with Ix[ ~< r 
which do not lie in H satisfies 

z (r) 4. r n . 

Proof.  In H there are the n - 1 linearly independent  lattice points  
a , , . . . ,  a'n_1 with [a*] ~ ;~* (i = 1,. . . , n -  1). Hence  every lattice poin t  
x no t  in H has ] x] >> 2*. Therefore  z (r) = 0 unless r >> ,t*. In this case, 
when 1 ~< j ~< n and  2* ~< r < 2"+,, then z (r) ~ #/ ( '1~. . .  '1)*) (see [5, 
L e m m a  1]), and  thus z (r) ~ rn/('1*...  2*) ~ rL 

Given  a face ~? o f  ~3, let v0, vl, �9 �9 vn_ 1 be vertices o f  ~? (hence o f  !13) 
which do  no t  lie in a linear mani fo ld  o f  d imens ion  less than  n - 1. 
Then  ~ conta ins  the simplex with vertices v0, v l , , . . , v n  1- Therefore  

has ((n - 1)-dimensional)  vo lume S ( ~ )  ~> S ( ~ ) ,  where  ~ is the 
simplex with vertices 0, xl = Vl - v0 , . . . ,  xn_l = vn_l - v0. Set y = x~' 
when n = 2  and  y = x l  A . . .  AXn_I when n > 2 .  Then  S ( ~ ) =  

5 Monatshefte ffir Mathematik, Bd. 99/1 
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= ((n - 1) !) - ~ I Y I. Since the x~ lie in A, the vector y = y (5) lies in A*. It 
is perpendicular to the face 5. No t  more than two faces of  ~ can be 
parallel to each other, so that at most  two faces can lead to the same 
vector y. In fact, when v0, . . . ,  v, _ ~ are ordered properly, different faces 

will give rise to different vectors y(~).  

Write F -- A + B, and let ~ , . . . ,  ~a be the faces o f ~  which are not 
parallel to al, but  (51,.. -, (SB the faces which are parallel to al. Writing 
y~ = y (~ )  (i = 1 , . . . ,  A) we have Yi al 5;& 0, SO that yi does not  lie in H. If  
we order in such a way that ]Yll ~< . .-  ~< ]YAI, then lYi[ >> il/" by the 
Lemma. Thus 

lyll + -. .  + lYAI >> A (n+~)/~ �9 

On the other hand, 

ly~l + . - -  + lyAI ~ S ( ~ )  + . . .  + S ( ~ A )  <. S ,  

whence A ~ S n/('+l) . 

L e t / / b e  the orthogonal  projection map into H. Then H ~ -- ~ '  
is a polytope in (n - 1)-dimensional space with (n - 1)-dimension- 
al volume V(~ ' )  < S ( ~ ) .  Each face (5i (of  ~ )  projects down to a 
((n - 2)-dimensional) face (5" = H (5i o f  ~ '. The face (5"is perpendic- 
ular to the vector y ((5i) which also lies in H. Since the vectors y ((5~) 
have different directions, the faces (5~, . . . ,  (5) are distinct. Therefore 
~ '  has at least B faces. 

Let A ' =  H A  be the projection of  A on H. It is a lattice of  
determinant A' = A/[ a~[ = 1/[ a~[ >> 1. The vertices of  ~ '  belong to A'. 
When n = 2, so that ~3' is a line segment, we have B ~< 2 and 
S (~)  > V ( ~  ~) >~ A' >> 1, whence B ~ S "/('+ 11. When n > 2, we invoke 
the case n - 1 of(1.10), which follows from the case n - 1 of  (1.9), to 
get B ~ V(~3') (n-2)/n ~ S('-2)/L So when B r 0, then S >> 1 and 
B ~ S '~/('+~). This, together with the bound  for A already given, 
establishes (9.1). It remains for us to deduce (1.9) from (9.1). 

10. Faces of  arbitrary dimension. Andrews accomplished this 
deduction with the following trick. Given an edge of  ~ with end points 
u,v (which are then vertices of  ~3), put  Zl = �89 (2u +v),  z2 = �89 (u+2v ) .  
Let ~ '  be the convex cover of  all these points z. Then the vertices of  ~3' 
are among these points z, which clearly lie in A' = 1 A. Furthermore,  it 
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may be seen that the number  of  faces F ( ~ )  cannot be less than Z 
= Z(~3). Hence 

Z <~ F(~3~ ~ sn/(n+l)(3 nA)-(n-l)/(n+l) , 

whence (1.9). 
In fact we will prove rather more. For  0 ~< d ~< n - 1, let Fd be the 

number  of  d-dimensional faces of  ~3. Then we will prove that 

Fd .~ sn/(n+I) zl (n-1)/(n+l) (10.1) 

In other words, we will prove the following 

Theorem 6. Let ~3 be a convex polytope in ~" o f  positive volume and 
o f  surface area S, whose vertices belong to a lattice A o f  determinant A. 
Then (10.1) holds for  d =  O, 1 , . . . , n  - 1. 

When n = 3, then Fa ~ F = F2 (d = 0, 1,2) for arbitrary polytopes 
([6, w 10.3]), but  already for n = 4 we have in general neither F 2 ~ F 
= F3 norF1 ~ F([6, w 10.4]). Hence for polytopes in general, (9.1) does 
not  yield (10.1). 

We will say that a set ~ of  points spans a linear manifold 93~ if93l is 
the smallest linear manifold containing | We will say that points 
z l , . . . ,  Zm have affine dimension d if the linear manifold spanned by 
them has dimension d; this happens when the vector space spanned by 
the differences zi - zj has dimension d. 

Lemma 4. Suppose that x0, xl, . . . ,  xd as well as Y0, Yl,. �9 Ya have 
affine dimension d, but x0 . . . .  , xa, Y0 . . . .  , Yd have affine dimension > d. 
Put 

=(d+l )  -l(x0+...+xd), ~r 
and suppose that ~, ~ lie in the interior o f  a half  space H. Then there are 
elements Vo,..., va, re+ 1 among x0, . . .  , ya which are ofaffine dimension 
d + 1, and there is a point z in the interior o f  H, o f  the type 

z = q- l (a0v0 + . . .  + ad+lva+j) with q = ( d +  1) 2 (10.2) 

and with natural ao, . �9 ad+ 1 having 

a0 + al + . . .  + ad+l = q. (10.3) 

Proof. The hypothesis as well as the conclusion is invariant under 
translations. Hence we may suppose that the origin lies on the 
boundary  of  H, so that H may be defined by L (x) > 0 with a linear 
form L. Let v 0 be one among x0, . . . ,  xd, Yo,. �9 yufor which the value of  
5* 



68 W.M. SCHMIDT 

L is largest. Since L (x0 + . . .  + Xd) > 0, we have dL (v0) + L (xi) > 0, 
and similarly dL (v0) + L (yi) > 0 (i = 0 , . . . ,  d). Choose v~,. . . ,  va+ l 
among x0, �9 Ya such that v0, v~,. . . ,  va+~ have affine dimension d + 1. 
Define z by (10.2) with a0 = d(d + 1), al = . . .  = ad+l = 1. Then 

qL(z)  = d(d + 1) L(z0) + L(Zl) -1-- . . . -]- L(Zd+l) - ~ -  

d+l 
= Z (dL (z0) + L (zi)) > 0 ,  

i=1 
so that  z lies in H. 

Now let ~3 be the polytope of  Theorem 6. Let v0,. . . ,  vd+~ be any 
vertices which together have affine dimension d + 1. Let z be any point 
of  the type (10.2), (10.3). We define ~ '  as the convex cover of  all these 
points z over all possible (d + 2)-tuples v0,...,va+~. Then ~ '  is a 
convex polytope whose vertices are among the points z, and hence they 
belong to q - l A. Given v0, �9 �9 Vd+ 1, the points z with (10.2), (10.3) span 
the linear manifold containing v0 . . . . .  va+ 1. It follows that ~ '  "spans" 
R n and therefore has positive volume. We leave it as an exercise to 
show that every d-dimensional face 15d of  ~ lies in the  complement  of  
~3'. Since ~ '  _ ~ we have S ( ~  ~) ~< S. We know from (9.1) that 

F(~3') ~ S(9(3') "/(n+l) (q -1 A) -("-~)/("+~) ~ S "/('+~) A -(,-~)/(n+~) 

It will therefore be enough to show that 

Fd(~3 ) ~< g ( ~ 3 ) .  (10.4) 

Let p be a fixed point in the interior of  ~ ' .  On every d-dimensional 
face 15 of  ~3 choose d + 1 vertices x0, . . . ,  xd of dimension d and let 

- (d + 1) - 1 (x0 + . . .  + xa) be the center of  the simplex associated 
with them. By what we said above, i lies outside ~3'. The line segment 
from p to ~ will intersect the boundary  of  ~ '  in some point x. There is 
at least one (n - 1)-dimensional face 5 '  of  ~ '  containing x. Make 
some choice and write 5 '  = 5'(15). Now (10.4) will follow once we can 
show that the map 15 ~ 5 '((5) is 1 - 1. Suppose to the contrary that 
5 '  (151) -~" 5 '  (152) = ~ ' ,  say. This face 5 '  determines a hyperplane and 
two open half  spaces Hi , / /2 .  The polytope ~ '  lies in and on the 
boundary  of  one of  them, say H1, and is disjoint f rom //2. Let 
x0, . . . ,Xd belong to 151 and Y0,.--,Yd to 152 and define f~,~, in the 
obvious way. Both :~, .~ lie in H2. By Lemma 4 there are vertices 
v0,. �9 Vd+ ~ of  affine dimension d + 1, and there is a point z of  the type 
(10.2), (10.3) in Ha. By construction, z belongs to ~ ' ,  so that ~3' has 
points in common  wi th / /2 ,  contradicting what  we said a few lines 
above. 
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11. P r o o f  of  Theorem 5. 

L e m m a  5. Suppose g ( u ) =  g(u~,...,Ur) is analytic 3 in the ball 
[ul <<. R where lul is the Euclidean norm and where R > 1. Suppose that 
]g(u)[ < A R throughout, with f ixed A > 1, and that 

g ( l  (U 1 _~_ U2)) < 1 (g(Ul) _]_ g(u2)  ) (11.1) 

for ul :# u2. Given a lattice A c ~r+l of determinant 1, the number of 
lattice points (ul, �9 �9 ur, z) = (u, z) on the surface z = g (u) with lul <~ R 
is 

A R r- 1 +(2/(r+2)) . 
r 

Proof. Let !;l be the convex cover o f  the surface z = g (u) wi th  
]ui ~< R. Then  R is compac t  and is easily seen by (11.1) to have positive 
volume V. Since V ~ A R '+!, Theo rem 4 yields 

Z ~ A r/(~ + 2) R r- ~ + (2/(r + 2)). 

It  therefore will suffice to check tha t  every point  (u0, z0) on the given 
surface is an extremal  point  of  .9. But  if  the tangent  hyperplane  at  
(u0, z0) has the equa t ion  z = M(u) ,  then  it is a consequence of  (11.1) 
t h a t f ( u )  > M (u) for  u 4= u 0 . Hence  the surface, and  therefore R, with 
the exception of  (u0, z0) itself, lies all on one side o f  the hyperplane.  
Thus (u0, z0) is indeed an  extremal  point.  

A quadra t ic  po lynomia l  is a funct ion  q ( u ) =  a + L ( u ) +  Q (u) 
where a is constant ,  L is a l inear form, Q is a quadra t ic  form. Such a 
po lynomia l  is "posi t ive def ini te"  i f  Q is. In tha t  case 

• (q (Hi) -~ q (u2)) - q (1 (u, + u2)) : 2 
(11.2) 

= Q(�89 (ul - u2)) ~>,ClUl - u212 

with positive c, and  hence q satisfies (11.1). 

N o w  let 5 e be a surface in R n given by z = h ( x )  where x 
= (x~ , . . . ,  xn_~) runs t h rough  some doma in  ~ c ~n-1. Given a subset 
5 2 _  3?, let 5~ be the " subsur face"  z = h (x) with x e52. Wri te  
ZN(h, 5D) for the number  o f  integer points  on the b lown up surface 
NSf(52), i. e. the surface z = N h ( N  -1 x) with x r  

3 By this we mean that g (u) is expandable into a power series in a suitable 
neighborhood of every point of its domain. 
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Lemma 6. Suppose n = r + s + 1 where r > 0, and write h (x) = 
= h (u, v) with x = (u, v) = (u l , . . . ,  u~, v l , . . . ,  vs). Suppose h is analytic 
at the origin with an expansion 

h(u,v)  = q(u) + hi (u,v) (11.3) 

where q is a positive definite quadratic polynomial in u, and where h 1 
consists o f  terms which are at least o f  degree 3 or which involve v. Then 
there is a neighborhood ~ o f  the origin such that 

ZN(h, s <~ c~3 (h, 9 )  N n-a+(2/(r+2)) . (11.4) 

Proof. The power  series 

12 (hi (Ul , v) + hi (112, v)) - hi (1 (u 1 + t!2) , v) (l 1.5) 

lies in the ideal generated by g~j = (ule - u2i) (ulj - u2j) (1 ~< i , j  <~ r), 
in fact in the ideal generated by 

gijUlk, gijU2k, guVl (1 ~ i , j , k  <~ r, 1 <~ l <~ s) . 

Thus (11.5) is ~ l ul - u2l 2 (I Ull + I u21 + Iv [). As a consequence,  we see 
that  when (Ul, v), (u2, v) lie in a sufficiently small ne ighborhood  s of  
the origin, say in l u 1, l vl < Q, then the expression (11.5) is of  modulus  
< 21 c l u l  - u2l 2. In conjunct ion with (1 1.2), (11.3) this shows that  for 
fixed v, the funct ion h (u, v) has proper ty  (11.1). Also the function gN 
= N h  (N-1  u, N -1  v) has this property.  We are concerned with integer 
points  x = (u, v)~ N ~ .  For  fixed v, the point  u runs th rough  l u[ < R 
with R = NO ~ N, and gN has values [gN[ < A R with A ~ 1. Thus  for 
fixed v, L e m m a  5 applies and we get ~ N r-~+(2/(r+2)) integer points 
(u, z). Taking the sum over v we get an extra factor ~ N s = N n- ' - l .  
The assertion of  the lemma follows. 

We now zero in on Theorem 5. For  each x0 e 2[ we will construct  a 
ne ighborhood  ~ such that  

ZN(f, )~) ~ C14 (f,)r N "- 2 +(2/(r + 2)) . (11.6) 

Since 9~, being compact ,  is covered by a finite number  of  these 
neighborhoods ,  the theorem will follow. We may suppose that  x 0 = 0. 
By our  hypothesis  on  the surface 5 a, the quadrat ic  form of  curvature 
associated with each point  is of  the type 

_ . . . . . .  L 2 + (L~ + + L 2 + Cr+lL~+ l + + C,_l , -1)  (11.7) 
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with independent linear forms L1, . . . ,  Ln_~. The coordinates x, z in 
z = f ( x )  are not  intrinsic coordinates, but nevertheless the expansion 
o f f  at the origin is 

f =  a + L(x)  + F(x)  + f0 ,  (11.8) 

where L is a linear form, F i s  a quadratic form of  the type (1 1.7), and 
f0 contains terms of  degree > 2. We may suppose that the + sign 
holds in (11.7). After a suitable orthogonal change of  variables 
from x = ( x l , . . . , x , _ l )  to ( u ' , v ' ) = ( u f , . . . , u ' , v ~ , . . . , v 3  (where 
r + s +  1 = n ) ,  

,2 (1 1.9) F(x)  = a~u~ 2 + . . .  + aru "2 + bl v( 2 + . . .  + b~vs 

with a; > 0 (i = 1, . . . ,  r). There is only one problem: this change of 
variables will change 77 n ~ into some other lattice, and hence Lemma 6 
will not  apply. (Never mind that Lemma 5 holds for any lattice of  
determinant  1). 

Suppose the coordinates u ' ,v '  belong to the or thonormal  basis 
k~,. . . ,kn_~, i.e. suppose that 

x = u ~ k l  + . . .  + U~kr q- vfkr+l + . . .  + V~kr+s . 

Given large natural  t, pick points l l , . . . ,  In_ 1 in Z "-~ with II e - tki] ~ 1 
(i = 1, . . . ,  n - 1). The points l~,. . . ,  In_ 1 have a determinant of  abso- 
lute value T ~ t "-~. Now write 

x =  T - l ( U l l l + . . . + U r l r + v l l r + l + . . . + V ~ l r + ~ ) .  (11.10) 

Then u ' =  T -1 ( t u  i q- O(lU[-+-]vl)), V[ = T -1 ( t  vi + O(Ju[ + Iv])), and 
(11.9) becomes 

2 + bl + . . .  + + F0(u, v) F(x)  = t Z T - Z ( a l u ~  + . . .  + arU r 

where F0 has coefficients ~ t T -2. Thus when t is sufficiently large, 
F(x)  = Q (u) + F1 (u, v) with positive definite Q and with every term of  
F1 involving v. Substitution into (1 1.8) givesf(x) = h (u, v) with h of  the 
type (1 1.3) of  Lemma 6. 

The definition of  T and (11.10) show that when x is an integer 
point, then so is (u, v). By Lemma 6 there is a neighborhood ~3 of  the 
origin with (1 1.4). Now the transition (u, v) ~ x is effected by a certain 
linear t ransformation T. Setting L[ = r23 we have indeed (1 1.6). 
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