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Abstract. Various upper bounds are given for the number of integer points on
plane curves, on surfaces and hypersurfaces. We begin with a certain class of convex
curves, we treat rather general surfaces in R which include algebraic surfaces with the
exception of cylinders, and we go on to hypersurfaces in R” with nonvanishing
Gaussian curvature.

1. Introduction. It is well known (JARNIK [8]) that on a plane convex
curve of length / > 1 there are < /*? integer points. This estimate is
best possible, and the constant in < is absolute. The convex curve may
be a closed curve or it may be a curve y = f(x). In particular, if f(x) is
twice differentiable in some interval of length at most N > 1, with
either /" > O or f*" < 0 throughout, and if the range of fis contained in
an interval of length N, then the number Z of integer points on the
curve y = f(x) satisfies

Z < N (1.1)

SWINNERTON-DYER [11] took up the question of what can be said if
higher derivatives exist. Let € be a fixed curve y = f(x) where x runs
through some finite closed interval, where /" exists and is continuous,
and where /"' > 0 or f” < 0 throughout. Let Zy be the number of
integer points on the blown up curve NG, consisting of points
(Nx, Ny) with (x,y) on €. Then according to Swinnerton-Dyer, we
have

Zy < ¢ (€, ) NCHFe (1.2)

for N>=1and ¢ > 0.

! Written with partial supports from NSF grant No. MCS-8211461.
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Since in this result a fixed curve is blown up, we may ask what can
be said of an arbitrary smooth curve contained in a square of side N.
Now given an arbitrary chain of integer points, one can always
construct a curve, differentiable to any prescribed order, which passes
through these points. Moreover, if the chain of points forms the
vertices of a convex polygon, then the smooth curve can also be made
convex, so that one cannot assert more than (1.1). Hence my first plan
was to impose a condition on the sign of /" However, it turns out that
the third derivative is dispensible, it being enough that the second
derivative is monotonic.

Theorem 1. Let € be a curve contained in a square of side N > 1,
givenby y = f(x) where [’ exists and is weakly monotonic, and vanishes
for at most one value of x. Then for ¢ > 0, the number Z of integer points

on € has
Z < ¢,(e) NGP+e (1.3)

The essential point is that the constant does not depend on €. The
exponent is the same as in (1.2), and indeed the proof is a variation
on the argument of Swinnerton-Dyer. 1 conjecture that in fact
Z < N2, or at least Z < c3(e) N¥P*¢ for ¢ > 0. The example

f(x) = \/; shows that the exponent 1/2 would be best possible.

Let € be an algebraic curve defined by an irreducible polynomial
equation f(x, y) = 0 of degree d > 1. Such a curve consists of at most
¢4 (d) pieces of the type y = f(x) with monotonic /' and with /"’ not
changing sign, plus at most ¢s(d) extra points. By Theorem 1 the
number Z (N) of integer points (x, y) on € with |x| < N, |y| < N where
N =1, has

Z(N) < ce(d,e) NCPFe | (1.4)

I believe that when € is of positive genus, then in fact
Z(N) < c;(d, ) N°. Of course, by Siegel’s result, Z (N) < ¢g(f) in this
case, but our ¢; is supposed to be independent of f.

We next will discuss surfaces in R>. Very roughly speaking, our
result is that for reasonably nice surfaces contained in a cube of side N,
the number Z of integer points on the surface has Z < N*2. The
precise formulation takes a little effort. When the surface is a cylinder,
1. e. if it consists of the translates of a curve € in a given direction, then
itisclear that it could have N times as many integer points as the curve.
So, for instance when € is a plane convex curve, the cylinder could
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have as many as > N> integer points in a cube of side N. Hence we
have to rule out cylinders.

A surface & will be called proper if it consists of points (x, y, z) with
z = f(x) where x = (x, y) runs through a nonempty open set D, and if
the partial derivatives of fup to the third order exists on © and can be
extended to continuous functions on the closure © of ©. A proper
surface will be called an elementary piece if D is of the type a < x < b,
p; (X) <y <y, (x) with continuous functions y,, y,ina < x < b,iff, is
weakly monotonic on each of the two curves y = y; (x), ¥y = y,(x)
(@a<x<b),and if f,, # 0, W # 0 throughout D, where

Fov S
f)’y}’ fyyx

A proper surface is part of a paraboloid if fis a quadratic polynomial.
Such a paraboloid is either a (parabolic) cylinder or an elliptic or
hyperbolic paraboloid.

Theorem 2. Suppose that either & or F(n/4) or F(7/2) or F (3 n/4)
is an elementary piece, where & (¢) is obtained from & by rotation about
the z-axis by ¢ degrees, or else that & is part of an elliptic or hyperbolic
paraboloid. Then the number of integer points on & lying in a cube of
side N> 1is < N¥2, with an absolute constant in <.

W=W(x,y =

This was essentially obtained by the author some twenty years ago
[10]. The conclusion remains true when %(p) is an elementary piece
with tan ¢ rational, but now the constant in < depends on ¢. The most
severe restriction for an elementary piece is that W # 0. If W is not
identically zero, one can expect that & is contained in the union of not
too many elementary pieces and their boundaries. The question thus
arises, what does it mean when W = 0 on ©? We will see that it means
that & is a surface of translation, i. e. the intersection of .% with each
plane x = c is always the same curve, up to a translation which may
depend on c¢. So what happens when each of &, #(=n/4), #(n/2),
F(3x/4) is a surface of translation? In the case when f'is analytic, we
will see that in this case & is either part of a cylinder or part of a
paraboloid. Note that a proper surface is part of a cylinder when

Jx) =g(L{x)+ M(x) (1.5)

with linear forms L, M and with g a function of one variable.
Define W, in the obvious way with respect to #(¢); its domain is
the rotated set D, of D.
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Theorem 3. Let & be a proper* surface such that W, = W, Wy, W5,
W, s vanish identically. Then © contains a nonempty open subset € such
that the surface z = f(x) with xe € is part of a cylinder or part of a
paraboloid.

The conclusion would still obtain with other angles, and perhaps
with fewer angles. Combining Theorems 2, 3 we will deduce the

following

Corollary. Let n > 3 and let & <= R” be an algebraic hypersurface,
defined by an irreducible, non-trivial polynomial equation of degree d.
Suppose that & is not a cylinder, and by this I mean that & should not
consists of the translates of a curve € in directions parallel to a given
(n — 2)-dimensional subspace. Then given N > 1, the number Z (N) of
integer points on & in the cube |x;| < N (i = 1,...,n) satisfies

Z(N) < co(n, d) N"~C (1.6)

When the algebraic hypersurface is a cylinder but not a linear
manifold, the bound Z (N) < ¢,y (n, d, ) N*~ 7P+ follows from (1.4).

In the case of a cone, i.e. a surface defined by a homogeneous
irreducible polynomial equation of degree d > 2, HEATH-BROWN [7]
recently had occasion to derive the slightly weaker estimate
Z(N) < c;i(n,d, ) N*~®*¢ from a paper of S.D.CoHEN [4]. In
contrast to Cohen’s work, our proof will use only simple geometric
arguments. I conjecture that Z (N) < N"~2%¢ unless & is a rational
surface. Of course, much better estimates can be expected for “most™
algebraic hypersurfaces.

Let & be a closed convex body in R” where n > 1. Suppose that &
has a finite and positive volume V, and surface area S. Further
suppose that there are Z integer points on the surface of &, not all
contained in a linear manifold of dimension less than n. ANDREWS
[1,2] has shown that if & is strictly convex, then

Z < S+ (1.7)
Z < V(n—l)/(n+1) , (18)

with constants in < which depend only on #. Since Andrews’ proof of
(1.8) was difficult, we will present another proof here. Whereas

2 In our proof, in order to avoid complications, we will suppose that £ has fourth
order partial derivatives.
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Andrews’ argument depended on “exterior angles” of polytopes, etc.,
our argument will use the Geometry of Numbers.

Given & as above, let 3 be the set of extremal points, 1. e. points in
§ which are not in the interior of a line segment contained in &. Then 3
is just the surface of 8 is strictly convex. In general, 3 is contained in
the surface of K, and R is the convex hull of 3.

Theorem 4. Let &, V, S be as above, and let A be a lattice of
determinant A. Suppose there are Z lattice points in 3, not all lying in a
linear manifold of dimension less than n. Then

7 < Sn/(n+1)A —(n—Dfn+1} , (19)
Z < YeD@+h ==+ (1.10)

Andrews formulated his theorems only for strictly convex bodies,
but his proofs work for any convex bodies if Z is defined as in our
theorem. Thus Andrews showed (1.10) when A = Z", the lattice of
integer points. Since any lattice is obtained from Z" by a suitable linear
transformation, (1.10) follows in general. Furthermore, (1.9) follows
from (1.10) by the isoperimetric inequality. Thus Theorem 4 is not
really more general than (1.7), (1.8), but the formulation in terms of
lattices will be convenient for our proof.

When n > 2, it is not clear whether the exponents in (1.9), (1.10)
are best possible.

Let f(x, ..., x,_,) be analytic (i. e. expandable into a power series
in a suitable neighborhood of each point) in an open domain D. Let
F (W) be the surface z = f(x,,...,%x,_;) with (x,...,x,_,) running
through some compact subset A of . Finally, let Zy be the number of
integer points on the blown up surface N #(N).

With every point of a differentiable hypersurface in R” one
associates n — 1 principal curvatures, which may be positive, negative
or zero.

Theorem 5. In addition to all the other properties, suppose that each
point of S(N) has at least r curvatures which are all positive or all
negative. Then for N = 1,

ZN g Clz(fa%) Nn—2+2/(r+2) )

Now when F(U) has nonvanishing Gaussian curvature, then
r 2 [n/2] (where [ | denotes integer parts), whence

Zy < ¢ (f, W) N7 =240 (L.1D)

4 Monatshefte fiir Mathematik, Bd.99/1
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Like Swinnerton-Dyer, we have to blow up a fixed manifold. For a
convex surface in a cube of side N, the surface area Sis < N*~!, and
(1.7) gives Z < N"~272@+D_ Presumably the same estimate holds for
Zy in the situation of (1.11).

Our proofs of Theorems 1 through 4 will be independent of each
other. Theorem 5 will be deduced from Theorem 4.

2. Swinnerton-Dyer’s Lemma. Consider triples of integer points
(1, W), (g, v4), (43, v3) With positive u;, u,, u;. Given such a triple, put

U, U Uy u U u
Ar=170  a=0 4= L @)
V, V3 Vi Vs Vi %
so that
uZAZ = ulAl + u3A3 . (2.2)
Put
A = 23] (u] + MZ)AI — U3 (U3 + Uz)A3 . (23)

Lemma 1. Given N > 0,4 = 1, B > 0, C > 0, the number of triples

with
<N (i=1,2,3), (2.4)
|vl'| < Aui (l = 1:27 3) s (25)
0<4,<B (i=1,23), (2.6)

and
41 C 2.7)

is

< N*B*(ABC+ ABY), (2.8)

with a constant in < depending only on ¢ > 0.
This is just an elaboration on Lemma 2 of [11].

Proof. Atfirst we keep 4, 4,, 4, fixed and we estimate the number
of triples with these values of A,, 4,, A4;. By reasons of symmetry we
may restrict ourselves to triples with u; < u,. Also, initially we will
restrict ourselves to triples with #, lying in a fixed interval of the type
X <u <2X, and with a given value d of (u;,u;) = g.c.d. (u;, u3).
Note that d divides 4,.

We suppose that a triple (u1, vi), (43, v3), (u3,v;) with all these
properties is given, and we consider all possible triples (u;, v,), (4, v»),



Integer Points on Curves and Surfaces 51

(13, v3). If we use (2.2) to eliminate u, from (2.7), we get
|4, (4y + ADui — A3(A3 + A)uz| < 4,C .
Since this is also true for the given triple, we may infer that
|41 (dy + A9 @ us? — ui?ud)| < 4, C (W + us?)

Moreover, since w3 <1y, us <u] and X <up,u{ <2X, we have
u? + uf® < 2(ujus + uy us), whence

) — wjus] <2471 C. (2.9)

From the validity of (2.2) for both triples we find that
Ay us — ujuz) = Ay (uyuz — Uz 3)

so that u; u3 — uj u5 is divisible by 4,/(4,, 4,). It is similarly divisible by
A,/(45, A,), hence is divisible by 4,/D where

D = (AlvAZaAB) .

So by (2.9), the number of possible values of u, u; — u;u; is at most

447457 DC+ 1. (2.10)

When u; u5 — uj u; and u], uj are given, then the pair u,, u; is given up
to adding multiples of d ' u], d ' u} (where d = (u}, u3)), but since we
also want that d = (u,,u;), the pair u;,u; is given up to adding
multiples of u{, u3. In view of X' < u;, u] < 2 X, the pair u;, u; 15 in fact
uniquely determined. But then u, is determined by (2.2). Now v, v,, v3
have to be chosen to satisfy (2.1). The only possible freedom for
Vi, V4, v consists in adding Au,, Au,, Au; where 4 is rational. But the
denominator of 4 must divide (¢, 4,, u3), hence must divide D. Thus
there are at most D possibilities for v; (modulo u;), so that by (2.5)
there are altogether < (2 4 + 2) D possibilities. In conjunction with
(2.10) we get
KADATYATIDC+ 1)

possible triples. Since the interval | < u#; < Nmay be covered by < N*
intervals of the type X < u#; < 2 X, and since the number of possible
divisors d of A, is < 45> < B**, we see that for given 4,, 4,, 4;, the
number of possible triples is

KN BPADUAT ' A;'DC+ ).

4%
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We have A; = E; D with 0 < E; < BD ' by (2.6). If for given D we
take the sum over E,, E,, E;, we obtain

< N°B?ABCD '+ B*D7? .
Summation over D < B yields

< N°B(ABC+ ABY) .

3. Theorem 1 under an additional hypothesis. We first will prove
Theorem 1 under the additional assumption that f"”’ exists and is
weakly monotonic throughout.

It clearly will cause no loss of generality if we restrict x to a
subinterval 7 in which, say, /"’ > 0, and in which f", f" are of given
sign. Suppose that /"' >0, /"> 0in I. Let

1(0) consist of xel with f'(x) <1,
and for natural « let
I(x) consist of xel with e* ™! < f'(x) < e*. (3.1

Then since f** > 0, each I(«) is an interval, possibly empty. 7 is the
union of the intervals I («) with « > 0. Since the range of f, as well as 7,
are contained in intervals of length < N, the length of 7(«) satisfies

wd(@)<e N (x=0). (3.2)

In fact the union of the intervals 7 («) with « > «, forms an interval of
length < ¢~* N, and when «, > log N, thisis < 1. Since an interval of
length < 1 givesrise to < 1 integer points, it will suffice to consider the
intervals /() with « < log N.

Next, let I(«,0) consist of xel(x) with f”(x) < N '. Given
natural g, let 7(«, B) consist of xe€/(x) with

TINT < f(x) < e N7H. (3.3)

Then 7 («) is the union of the intervals I («, §) with g = 0. Denoting the

end points of I(«x,f) by a < b, we have in the case > 0 that

F(B)>f(@+®—a)e! !N, and therefore b —a< Ne*F*+!,
The last relation is trivially true for g = 0, so that

pd(p) <e* "N («20,§20). (3.4)

By an argument as above we may restrict ourselves to f < a +
+ O(logN) <logN.
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Finally, let I(«, 8, 0) consist of xeI(x, f) with f""(x) < N2, and

let I(«,p,y) where y > 0 consist of xeI(«, ) with
e 'N2<f""(x)<e’N72. (3.5)

Since /"’ is monotonic, each I(«, 8,y) is again an interval—possibly
empty. In analogy to (3.4) we find that

/U'(I(‘xs B, y)) < e~' N (0(, By = O) > (36)

and we may restrict ourselves to y < log N.
Combining (3.2), (3.4), (3.6) we have

p(,8,7) <N (3.7

with
¢ =9(xp,y) =min(e e ") . (3.8)

Put
® =N, (3.9

Let Z («, 8, y) be the number of integer points on our curve y = f(x)
with xeI (e, 8,y). Since the number of possibilities for «, 8, which
we need consider is < (log N)?, it will suffice to show that Z («, 8,7) <
< NGA*e S0 Jet

P,P,..,P, (3.10)

with Z = Z(«,$,v) be the integer points in question, and ordered
according to their x-coordinates. When Z > 4 and when

Qo = (X0, 30), Q1= (x1,31), @2 = (x2,32), O3 = (x3,33) (3.11)
are any four consecutive points among (3.10), consider the triple
(uy, v1), (2, v2), (w3, v3) With 4, = X,y — x;, v; =y — 3; (1= 1,2,3).
We distinguish 4-tuples Qq, Q,, 0>, O; of two types, characterized by
and

U1+UZ+H3<(Z§. (313)

The number of 4-tuples with (3.12) is clearly
<O u(l (e 8,7) < N
by (3.7), (3.9).

The type (3.13) is more difficult. By the mean value theorem,
vi/u; = f(&) with & in x; < & < x,,. Hence by (3.1}, |v| < e*u;, and
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(2.5) holds with 4 = ¢ By applying the mean value theorem twice
one sees (as was explained in [11], formula (9)) that

A3 _ Wy

e
upy (i + w)  w i (g + uy) 270
where 7 lies in x; <% < x;. Thus 0 < A; < ®3e’ N~ by (3.3). The
same bound holds for 4,. It is also true for A4,, as seen from formula
(11) in [11]. Thus (2.6) holds with B = @3¢’ N~!. Finally, from
formula (10) of [11] we see that | 4| < @*e” N2 by (3.5), so that (2.7)
holds with C = ®%e? N 2. Substituting this into (2.8) we obtain

< N2£(®9ea+ﬂ+yN—3 + (D9ea+3ﬁN—3)
— N2€(D9N_3 (eo:+ﬂ+y + eoc+3/3)
— N(3/5)+2s(p9 (eot+ﬂ+y + eu+3ﬁ) .

But (p9<(p6<e~3ae2(m—ﬁ) eﬁ—yze—m—ﬂ—y and (P9<(p7<e—4a63(oc—ﬁ)=
= e >3 Since ¢ > 0 was arbitrary, we get < N®>¥¢ four-tuples
(3.11) with (3.13). Thus indeed Z («, 8, y) < NP *=,

4. Theorem 1 in general. We may well wonder if this is just an
exercise on pathological functions!

We need some facts from calculus. Given x; < x; and given a
function f(x) in x, < x < x1, let g(x) = ax + b be the linear function
with g(x) = f(x)(i=0,1). Then

a (e — x0) = f(n) — fxo) = | dF () .

Next, given x; < x; < X, let p(x) = w(xy, X, x3; x) be the function
in x; < x < x, with p(x) = (x — xp)/(x; — Xxp) In x; <x < x, but
p(x) = (x, — x)/(x;, — x;) in x; < x < x,. Given a function f(x) in
Xo < x < X, let g(x) = ax® + bx + ¢ be the quadratic polynomial
with g (x) = f(x;) (i = 0,1, 2). Then if f has a derivative f* of bounded
variation in x, < x < X,, we have

a(e— x0) = [ () df' () .

where the right hand side is a Stieltjes integral. We omit the proofsince
our real interest lies in formula (4.1) below.

Given x, < x; < X, < X3, we define w (x) = w (Xg, X1, X3, X33 X) 1n
Xp < x < x5, as follows.
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(x — xo)2 .
m Xy < X € X,
2(x; — xp) (x; — Xp)
1 (x — X1)2 (x, — x)2

o) = 2 205 -x)0n—x) 206 —X)(np - x)

nx <x<x,
(X3 — x)*
2(x; — x1) (x5 — xp)

Then w(x) has a continuous derivative, and w and its derivative vanish
at the end points x,, x5. It is easily checked that 0 < » (x) < 1 and that

iHX2<X<?C3‘

Fo@do=1(,—x).

Xg

Lemma 2. Let f(x) be defined in x, < x < x5 and have a second
derivative "' of finite total variation. Let g(x) = ax® + bx* +cx + d
be such that g(x;) = f(x) (i =0,1,2,3). Then

4t — xg) = |0 (W) df" () . @.1)

Proof. This is certainly true when f(x) = g (x), because then

X

[0 () = [o®@ e ()dx = 6a o) dr = alx — x;)

X0 Xq

Setting 4 (x) = f(x) — g(x), we see that it will suffice to verify that
fw@)dh”(x)=0
for functions 4 with A (x;) = 0 (i =0, 1,2, 3) and with 42" of bounded

variation. Applying partial integration twice and recalling that w, o’
vanish at the end points, we get

T w(xX)dh"(x) = — )j}w’(x)h”(x)dx = )jf]w"(x)h’(x)dx .

But since o’ is constant in each of the subintervals x; < x < x;,,, the
last integral is a linear combination of the values 4 (x;) (i = 0,1, 2, 3),
hence is zero.

Now in order to prove Theorem 1, we may without loss of
generality restrict x to an interval 7 where /' is weakly monotonic and
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where f" > 0, f” > 0. We define  («) and I («, §) as before. We consider
the points (3.10) on our curve with x e I («, 8); this time Z = Z («, p).
Again we consider the 4-tuples of consecutive points Q,,Q;, Q,, 0;
among (3.10), and we construct triples (u;, v,), (4, vy), (43, v;). Again
define A by (2.1), (2.3), and put

M = Al upus (g + ) (uy + ) (g + 1y + u3)) '

Now write T («,8,0) for the set of 4-tuples with M < N2, and
T («, B,y) where y > 0 for the set of four-tuples with

e I N 2< M<e? N2,

Since M < A < N*, the set T(x,f,y) is empty unless y < logN.
It will suffice to show that each T(«,8,7) has cardinality
< N(3/5)+8.

We define ¢, @ by (3.8), (3.9). Four-tuples with (3.13) again satisfy
(2.5),2.6), 2.7)with A =e*, B=®*e’ N~!, C = 9#%¢? N2, and the
argument goes through as before. There remain the four-tuples in
T («, B,y) with (3.12). The cubic polynomial g(x) = ax? + ... with
g(x) =f(x) (i=0,1,2,3) satisfies (4.1). On the other hand, a = M
({11], formula (10)). Thus for ¥ > 0 we have

[w@)df"(x)>e" " "N 2(x3—xp) > e’ "N .

X0
In the last inequality we used that x; — xo = u; + u, + u; > & by
(3.12). Since 0<w(x)<1/2, we may infer that f"'(x;)—
— /" (xo)> e” N~2®. Since f” is monotonic with |f" (x)] < e N~ 'in
I(a, B), the number of 4-tuples in question is <« N@ ~'ef~7,

As in §3, the number of 4-tuples with (3.12) is bounded by
< N® 'e *and by No~!e* . Hence the cardinality of T («, 8, y) is
< No~'¢ = N*:. This is true both when y > 0 and when y = 0.

5. Proof of Theorem 2. When & is an elementary piece, our
theorem is essentially Satz 1 of [10]. In the notation of that paper we
have 4 < N, B < N, and Hilfssatz 5 should become /(1;) < N. We are
making slightly weaker hypotheses than in [10] about the partial
derivatives on the boundary of D, but this has little effect on the proof.
It may happen that our elementary piece is not itself contained in the
cube of side N, which might necessitate some further easy modifica-
tions of the arguments in [10].



Integer Points on Curves and Surfaces 57

Rotation by #/2 transforms integer points into integer points. So if
&(7/2) is an elementary piece, the same conclusions may be drawn as
before. Rotation by =/4 or 3%/4 transforms the lattice Z? of integer

points into the union of two translates of \/5 77, Tt easily follows that
the number of integer points in our cube is again < N*? if #(n/4) or
F(3=/4) is an elementary piece.

When & is part of an elliptic or hyperbolic paraboloid, inter-
change the roles of x,z. We obtain a surface which is the union
of a bounded number of elementary pieces.

6. Surfaces with ¥ = 0. Given a curve z = g(y) in the (y, z)-plane,
it gives rise to surfaces of translation z = g (y — y, (x)) + z,(x). The
intersection of this surface with the plane x = ¢ is the original curve,
translated by (y;(c), z,(c)). Writing f(x,») =g — y1 (%) + z; (%)
and assuming suitable differentiability conditions we have f, = g’,
f;;y = g,,a .fyyy = g”’; f;)x = - g”yl,S ./;iyx = - g,”y{ (Wlth gl’ g”s g”[
evaluated at y — y,(x)), whence W = 0.

The surfaces z = a(x) y + b(x) whose intersection with any plane
X = c is a straight line are in general not surfaces of translation, but
f(x,y) =a(x)y + b(x) again has W = 0.

Now suppose conversely that fhas continuous third order partial
derivatives and has W = O on an openset ©.Iff,, = 0 on D and if, say,
D is convex, then = a(x)y + b(x). Suppose then that f,, does not
vanish identically on ®, so that in fact f,, # 0 in some nonempty
subset D, of ©. Thus

o(x, 1))
a(x, )
and the map (x, y) - (x,f,) is 1 — 1 on a nonempty open subset D, of

D,. The inverse map has 0x/0x = 1, 0y/0x = — f, /f,,, and therefore
(as a function of x, f))

0
({yy =fyyx +fyyy(‘fxy/fyy) = W/fyy =0.
X

=5y #0,

Thus f,, is a function of f, alone, say

fyy:B(fy) . 6.1

Now let x be fixed and set & = f,. Then dh/dy = f,, = B(h) +# 0,
hence dy/dh = B(h)~'. Thus y = B, () + y, where B, is an indefinite
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integral of B! and where y, is a constant. Since B, is monotonic, we
can solve for h to get f, = h = B,(y — y,), where B, is the inverse
function of B;. Finally f= g(y — y\) + z; where g is an indefinite
integral of B, and where z, is another constant. For varying x we have
1 = y; (x), z; = z;(x), so that z = f(x, y) is, at least locally, a surface
of translation.

7. Proof of Theorem 3. Let J be the Jacobian

L Wh) Ve Sy

00x,y)  fyx Jyy
We will see that when J =W =W, =0 on D, then z = f(x,y) is
locally a cylinder. On the other hand when J is not identically 0 on D
and when W= W, = W, =W, =0, then z = f(x,y) is locally a
paraboloid.

By definition, a Wronskian of functions p (x, ), g (x,y), r(x, ),
defined and twice differentiable in an open set, is a function

Dyp Dyp Dyp
W=W(x,y)= [Doq Diq Drgq| ,

Dyr Dyr Dyr
where D, is a partial differentiation operator of total order < i. When
p, ¢, r are linearly dependent (over R), then each Wronskian vanishes.
Conversely, when p, ¢, r have continuous second order partial deriva-
tives and when every Wronskian vanishes, then there is a nonempty
open set where p, g, r are linearly dependent. (See . g. [9, Lemma 1],
where this is shown for rational functions). Since Dj is the identity

operator, we may specify D;, D, to have positive order. We will apply
these facts to p = f,, ¢ = f,, r = 1. A typical Wronskian becomes

D\f. D,f,
D.f, D,f,

where for a function 4 we set grad 2 = (h,, h,).
0 0 o 0°
Now J = W = 0 gives I —,—)=%<—,—>=O
ow gives ( %’ 3y 3y’ 3y

For points where grad f, # 0, or points which are limits of points with

W(D,,D,) = = det (grad D, f, grad D,f) ,
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a 0°
this property, it follows that I ( p ) 0. But in open sets with
x 0y

o 02
gradf, =0, we have f,, = f,,, =0, hence again QB(@ " oy? > 0.

Differentiating the relation J =0 with respect to y we obtain

a(Z 2V (2, )0 s w2 0)
—_— —,—— =10, s0
oxdy’ dy ax' 0y T\ oxay oy

If we make the further assumption that W, =0, we may
interchange the roles of x, y and see that every Wronskian vanishes.
Thus there is an open subset € of © where f,,f,,1 are linearly
dependent. Say af, + bf, + ¢ = 0. When & = 0, then f, = ¢ (a con-
stant), so that f'= g(y) + ¢ x. Thus the piece of our surface with
(x,y)€ € belongs to a cylinder. The situation is similar when ¢ = 0.
When ab # 0, we may write f(x,y) =h(ax + by, bx — ay) with a
certain function & = h(u, v). Now

O=af,+bf,+c=a*h,+abh,+b*h,—abh, +c=
=@ +bHh,+c..

Therefore h,=¢ (a constant) and /4 (u,v) = g(v) + ¢u, whence
fG,y) = g(bx —ay)+C¢-(ax+ by). Thus z = f(x, y) with (x,y)e €
is part of a cylinder.

Suppose now that J is not identically zero on D and that W = W,
W, = W, = 00onD.Inview of J # 0 there is an open subset of €, of
D where the map (x, y)— (f,,f,) is 1 — 1. The argument given for (6.1)
shows that there is a nonempty open subset of €, where f,, = B(f)).
Since also W, = W,y = W;,4, = 0, we find further that £, = A(f)),

S+ 20+ 1, =CH + 1),
fxx - zfxy +f;1y = D(fx _fy)

for certain functions 4, C, D and for (x, y) in a certain open subset &,
of €,. It follows that

2A0)+2B()=C(f. +/)+D(f. — 1),

(7.1)

so that
2A@) +2Bn)=C(E+n) + D(E—n) (7.2)

for (¢, 7) in the image &, of €, under {x, y)— (f,, /). Since 4, B, C, D
are continuous, it may be deduced from (7.2) that they are quadratic
polynomials on every connected part of &,. To avoid technicalities, we
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will suppose here that f has fourth order partial derivatives, so that
A,B,C,D are twice differentiable. Taking second order partial
derivatives of (7.2) we find that

24" =C"¢E+n)+D"¢E—n),
2B"(n)=C"(E+n) +D"(¢—n).

We infer that A" (&) = B” () for (§,7) € §,, so that A”(&) = B"'(n) is
some constant, call is 2a. Thus

A@E)=as®+2bt+d, Bn)=an*+2¢cn+e,
say. Substituting this into (7.2) we find that
CE+n=aE+n)>+20b+o)E+n) +d,
DE+n)=aE—n)>+2(b—c)(E—ny) +e*.
From (7.1) we get 4f,, = C(f, + /) — D(f; — f,). Thus
fox=aft +2bf+d,
fy=af} +2cf, te, (7.3)
foy=aff, +bf, +cf. +(d* —e¥)/4.
Suppose at first that a # 0. Then (7.3) becomes
fox=alfi +a)’ + d,
Ly =alf,+b) +e, (7.4)
foy=alfy +a)(f, +b) +u,
with constants a;, by, dy, e, uy. Since f,,, = f5, ., we get
2a(fy + a)foy = a(fe + a)foy + alfy + b)) foss
(e + a)foy = (fy + b)) frs-
Substituting from (7.4) and simplifying we obtain
(fy + adu = (f, + b)d,,

whence the identity (¢ + a))u; = (y + b)) d,. Therefore u; = d, = 0.
Similarly e; = 0. The formulae (7.4) now yield J = 0, contrary to our
assumption.

Hence a =0 in (7.3). Noting again that f,,, = f,,., we have
2bfy, =bfy, + cfix, O bf,, = cfs,. Similarly, f,,, =/, gives



Integer Points on Curves and Surfaces 61

cfyy =bf,,. Since J # 0 on §,, we have b = ¢ =0. It now follows
from (7.3) that f; ., f, ,, fx, are constants. So for (x, y) € €, our function
fis a quadratic polynomial, and the surface z = f(x, y) with (x, y) e €,
is part of a paraboloid.

8. Proof of the Corollary. The constants in this section will depend
on d,n only. We begin with the case » = 3. The singular points of the
surface form an algebraic set of dimension < 1 and of degree < 1,1i.e.
defined by equations of degree < c¢(d). There are € N singular integer
points in a cube B(N) of side N > 1. The nonsingular points can be
covered by a bounded number of pieces, where each piece, possibly
after permutation of the variables, is of the form z = f(x, y) with f
analytic in some open set © < R~

Nowwhen W= W, = W, = W, = 0onD, then by Theorem 3,
the part of the surface z = f(x, y) with (x, y) in a certain nonempty
open subset of D belongs to a paraboloid or a cylinder. Since our
surface is an irreducible algebraic surface, it is then itself a paraboloid
or a cylinder. When it is a paraboloid, the number of its integer points
lying in B(N) is < N*? by Theorem 2. Cylinders are ruled out by our
hypothesis.

Suppose, then, that W % 0 on D. (The cases when one of W4, W, 5,
W, .4 1s not zero on D can easily be reduced to this.) Then also f,, # 0
on D. Since W and f,, are algebraic functions of bounded degrees,
there is a bounded number of open sets Dy, ..., Dysuch that Wand /),
have no zeros in any of them, and © = D, U ... U D,;. Each D may be
chosen to have as its boundary parts of algebraic curves of degree < 1,
and the same is now true of each ®,. Points in © which do not belong
to any D; are part of a bounded number of algebraic curves of
bounded degrees, and these give rise to < N integer points in B (N),
hence may be ignored. We shall say that D is “essentially” the union of
D1, ..., D In the same way, since their boundaries belong to algebra-
ic curves of bounded degrees, each D, B (N) is essentially the
union of a bounded number of proper domains D;;. If a typical
domain D, call it & for brevity, is given by a<x<b,
pi(x) <y <wy,(x), let €* be the subdomain a* < x < b*,
vix)<y<yi(x)witha*=a+ G —-a)yN ', b*=b—(b—a)N~,
wi =+ @@ —y) N, pf =y~ (py—p)N~". The number of
integer points with (x, y) in € but notin €* is < N and may be ignored.
Jis analytic in €* and on its boundary. The functions g; = f, (x, ¢} (x))
(i = 1,2)are algebraic of degree < 1 ina™ < x < b*. Thisinterval may
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be broken into a bounded number of subintervals, where g,, g, are
weakly monotonic. Thus €* is essentially the union of < 1 domains &}
such that f, is monotonic on the “upper” and “lower” boundaries of
a

The surface z = f(x, y) with (x, y) e €f is an elementary piece. By
Theorem 2 this surface contributes < N*? integer points.

We now turn to the case n > 3. Reasoning as for n = 3, we may
concentrate on a piece of the algebraic surface of the type x, =
= f(x,...,X,_1) where f is defined and analytic in some open set
D < R* 1 Write (x,...,%,_;1) = (x,7,X) =x with x’eR"™* and
xeR" 1

Suppose at first that not all the Wronskians of 1,f,,f, vanish
identically. Here by Wronskian I mean a special Wronskian which is a
determinant with rows (D;1,D.f,,D.f,) (i=0,1,2) where D; is a
partial differentiation operator of order < i involving only the
variables x,y. So the points x where all these special Wronskians
vanish lie in an algebraic set A = R"~' of dimension < n — 2 and of
degree < 1. These points contribute < N"~2 to Z (N). Hence it will
suffice to considerx’ for which the special Wronskians do not vanish
identically in x, y. For such x’, let & (x") be the surface in R? consisting
of (x, y, z) where z = f(x, y,x") with (x, y,x") e D. This surface is part
of an algebraic surface which is not a cylinder. By the case n = 3 it
contains < N*? integer points with |x|,|y|,|z| < N. Taking the sum
over x' we obtain a total of € N" > N¥? = N"~0/2 integer points.

We may thus suppose that all the special Wronskians of 1,1,,f,
vanish identically. Thus for given x’, there is a relation of linear
dependency

a+bf,+cf,=0 8.1)
where a,b,c depend on x’ only and are not all zero. Since a map
(X, Yy Xy ey Xy e ey Xy ) (G Y, X3, o X+ Yy X, ) givesal — 1

correspondence of integer points, we may further suppose that we still
have this property for the functions f(x, ¥, X3, ..., X; + Vs . s Xu_ 1),
and still on top of that after a permutation of the variables. We will
show that in this case our surface is a cylinder as defined in the
Corollary.

It will suffice to verify that at most two of the functions
1, fep» - - -» [, are linearly independent over R. We endeavour to show
that 1,f,,f, are linearly dependent, where x, y stand for any of the
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variables x|, ..., x,_,. More precisely, we wish to establish a relation
A+Bf.+Cf,=0

where, in contrast to (8.1), the coefficients 4, B, C should be independ-
ent of x = (x, y,x’). For this it will be enough to see that the general
Wronskians of 1,f,,f, vanish, where a general Wronskian is a
determinant

D,1 D1 D,l
Dof. Dif. Duf. =‘

Df, D.f, D.f,
where Dy = I, D, # I, D, # I and where D,, D, are partial differentia-

Difs Daofs
D.f, D.f,

tion operators involving any of the variables x,,...,x,_;.
When D,, D, are both of order 1, such a Wronskian is of the type
fou fo 62
Jyou S
where u, v are among x, . . ., x,_,. We know from the vanishing of the
special Wronskians that
f;cx f;cy =0 ’
| Jyx Soy
where x, y stand for any of xy, ..., x,_,. It follows that when f, , = 0,

then f,, =0 where y is any of x;,...,x, ;. Replacing f by
fOy, x5, .., v+ ,...,x,_,) where v = x; we find that

Jix Jey + S

fxy +fxv j;)y+2f;/v+ﬂv

f;cx f;cy fxx fxv fxx f;cv
= 2 =0,
A R T R
so that Jf(: Jj;: = (.

A similar relation holds with u in place of v. Therefore when f, ., # 0 we
see that (8.2) vanishes. But when £, = 0, then f,, = f,, = 0, and again
(8.2) vanishes.

When D, D, are of respective orders 1, 2, the Wronskian is of the

type
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eru _f;CVW (8.3)
Sou Jyow
where u, v, w are among x,, ..., x,_;. We know from the vanishing of

the special Wronskians that (8.3) is zero when u, v, w belong to the set
{x,y}. We may therefore suppose that the set

S={x,y,u,v,w} 8.9

contains at least three distinct variables. We may further suppose that
none of f,,,...,f,, 1s identically zero, for if, say, f,,,, = 0, then also
J,» = 0 and (8.3) vanishes. Taking partial derivatives in (8.1) we get

bfx+cfoy=0, bfy, +cf,,=0.

Thus neither b nor ¢ is identically zero. The function f /f., =
= filfxy = — bjc does not depend on x,y. Now if z is a variable in
S distinct from x, y, we see that f,,/f,, = f../f,. does not depend on
v,z, and f, . [f,, = f./f.. does not depend on x,z. We observe that

s Gl el )? = Gl Colfy) fedlfe) = 1,

and the three factors depend, respectively, on z, x, y, and on variables
other than x, y, z. It follows that actually f,,/f,, does not depend on
x,y or z. Clearly f; /f, , does not depend on any variables belonging to
S. So the quotients f,,/f., with a,b,c,d in S are independent of the
variables of S. It follows that f,, = g@? h, where g%, h are functions
such that g is independent of the variables of S. By the vanishing of

(8.2),
g(x, u) g(’" v)

g g =0.
We obtain
Seu Fovw| 18590 g%Vh, —o
Sou Soww g¥h go7h, '

9. Proof of Theorem 4. Whereas (1.7) does not imply (1.8), it turns
out that (1.9) doesimply (1.10). For by a theorem of Jordan, there is an
ellipsoid € with & = € and V(€) <€ V(R). Let v be a linear map of
determinant 1 such that ¢ € is a ball. We have

SR) S SEE) < V(E®)E D ¢ Py R)n-in
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The validity of (1.9) for = & and = 4 implies the validity of (1.10) for « &
and 7 A, hence the validity of (1.10) for & and A. Thus it will suffice to
prove (1.9).

Let P be the convex cover of 3 n 4. Then B is a convex polytope
contained in K!. The vertices of B are precisely the elements of 3 N 4,
so that 9P has Z vertices. Since S(P) < S, it will suffice to prove (1.9)
for polytopes. But at first we will prove that

F < SMe+D) g =a=1/e+1) 9.1

where F is the number of ((n — 1)-dimensional) faces of 5.

We may suppose without loss of generality that 4 =1. Let
21 < ... < 4, be the successive minima of A (with respect to the unit
ball), so that according to Minkowski, 1 € 4;...4, < 1. Leta,,...,a,
be a basis of A with Euclidean norm [a;] < 4,(i=1,...,n). Whenn = 2
and x = (X}, x,), put x* = (x,, — x;); in particular this defines a}, a¥.
When # > 2, define a¥, ..., a} by

af=a, A...A8, A, ) A ... Aa,,

1.e. as an exterior product. Then af, ..., a¥ are linearly independent
and (since 4 = 1) they generate the polar lattice A*. When A¥, ... i¥
are the successive minima of A%, then according to Mahler (seee. g. [3,
SVIILS], 1 €« 22,1, < 1(i=1,..,n)and ¥ < |a}| < 1¥. Write H
for the hyperplane spanned by a¥, .. .,a} .1t consists of points x with
inner product xa; = 0.

Lemma 3. The number z(r) of lattice points X of A* with |x| <r
which do not lie in H satisfies

z{r) <r".

Proof. In H there are the n — 1 linearly independent lattice points
af,...a’  with|a}| < iF(i=1,...,n — 1). Hence every lattice point
x notin A has [x| > 2*¥. Therefore z (r) = 0 unless » > 1*. In this case,
when 1 <j<nand 2} <r <%, then z(r) < r//(AF...2%) (see 5,
Lemma 1]), and thus z (r) < r"/(3¥ ... 1}) < r".

Given a face § of B, let vy, vy, ..., v,_, be vertices of & (hence of )
which do not lie in a linear manifold of dimension less than n — 1.
Then § contains the simplex with vertices vg,v,,...,v, ;. Therefore
& has ((n — 1)-dimensional) volume S(§) = S(S), where & is the
simplex with vertices 0,x; = v, — vg,...,X,_; =V,_; — v,. Sety = x}
when n=2 and y=x; A ... AX,_, when n>2. Then S(&)=

3 Monatshefle (ir Mathematik, Bd. 99/1
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= ((n — 1)!)"'|y|. Since the x, lie in A, the vectory = y(&) liesin A*. Tt
is perpendicular to the face §. Not more than two faces of 9 can be
parallel to each other, so that at most two faces can lead to the same
vectory. In fact, whenvy; . . ., v,_, are ordered properly, different faces
& will give rise to different vectors y(g).

Write F = 4 + B,andlet &, ..., &, be the faces of P which are not
parallel to a;, but ®,, .. ., ® the faces which are parallel to a;. Writing
y,=y(F)(i=1,..., A)wehavey;a; # 0,sothaty,doesnot liein H.If
we order in such a way that |y;| < ... <|y,|, then |y;| > i'" by the
Lemma. Thus

FAESE N AW L
On the other hand,

lyil+ ... Fyal <S@) + ...+ S@D S,
whence 4 < SO+

Let I7 be the orthogonal projection map into H. Then [7 = P’
is a polytope in (n — 1)-dimensional space with (# — 1)-dimension-
al volume V(P’) < S(B). Each face ®; (of P) projects down to a
((n — 2)-dimensional) face ®; = II &, of PB". The face ®/is perpendic-
ular to the vector y (®;) which also lies in H. Since the vectors y (®,)
have different directions, the faces ®1, ..., ® are distinct. Therefore
B’ has at least B faces.

Let A’=ITA be the projection of A on H. It is a lattice of
determinant 4’ = A/|a,| = 1/|a;| > 1. The vertices of P’ belong to A".
When n =2, so that B’ is a line segment, we have B <2 and
S(B) > V(P) = 4’ » 1, whence B < S"*D. When n > 2, we invoke
the case n — 1 of (1.10), which follows from the case n — 1 of (1.9), to
get B< V(P)r~2n < @I So when B+#0, then S>1 and
B < S"#+D_ This, together with the bound for A already given,
establishes (9.1). It remains for us to deduce (1.9) from (9.1).

10. Faces of arbitrary dimension. Andrews accomplished this
deduction with the following trick. Given an edge of ‘B with end points
u, v (which are then vertices of ), putz; = Qu+v),z, = $ (u+2v).
Let B’ be the convex cover of all these points z. Then the vertices of B
are among these points z, which clearly liein 4’ = 1 A. Furthermore, it
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may be seen that the number of faces F (') cannot be less than Z
= Z(‘P). Hence

Z<F(B) < Snfn+1) (3" A)~(n—1)/(n+i) ’

whence (1.9).
In fact we will prove rather more. For 0 < d < n — 1, let F, be the
number of d-dimensional faces of . Then we will prove that

1,21 < Sn/(n+1)A7(n~l)/(n+l) . (101)
In other words, we will prove the following

Theorem 6. Let P be a convex polytope in R" of positive volume and
of surface area S, whose vertices belong to a lattice A of determinant A.
Then (10.1) holds for d=0,1,...,n— 1.

Whenn = 3, then F; < F = F, (d = 0, 1, 2) for arbitrary polytopes
([6, §10.3]), but already for n = 4 we have in general neither £, < F
= Fynor F; <€ F([6,§10.4]). Hence for polytopes in general, (9.1) does
not yield (10.1).

We will say that a set S of points spans a linear manifold It if 9 is
the smallest linear manifold containing ©. We will say that points
zy,...,2, have affine dimension 4 if the linear manifold spanned by
them has dimension d; this happens when the vector space spanned by
the differences z; — z; has dimension d.

Lemma 4. Suppose that Xy, Xy, ...,x; as well as y,,¥,,...,¥4 have
affine dimension d, but X, . . ., Xy, Yo, - . .. Y, have affine dimension > d.
Pur

X=d+1D)"x+...+x), §=d+ D"y + ...+
and suppose that X, ¥ lie in the interior of a half space H. Then there are
elements vy, .. .,V;, V.| GMONg Xy, . . ., ¥, which are of affine dimension
d + 1, and there is a point z in the interior of H, of the type

z=q "(aVo+ ...+ ag vy ) withg=(d+ 1) (10.2)
and with natural a, . . .,a,,, having
a0+a]+...+ad+1=q. (103)

Proof. The hypothesis as well as the conclusion is invariant under
translations. Hence we may suppose that the origin lies on the
boundary of H, so that H may be defined by L(x) > 0 with a linear
form L. Let v, be one among x,, . . ., X4, ¥, - - ., ¥z for which the value of
5
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L is largest. Since L (Xy + ... + X, > 0, we have dL (vy) + L(x;) > 0,
and similarly dL(vy) + L(y) >0 (i=0,...,d). Choose v,,...,Vs,,
among Xy, - . ., Ygsuch that vy, v, ..., v, have affine dimension d + 1.

Define z by (10.2) with gy =d(d + 1), a; = ... =a,,; = 1. Then
qL(Z)=dd+ 1)L(z)) + L(z) + ... + L(zz,) =
d+1

= Z (dL(zg) + L(z)) > 0,

so that z lies in H.

Now let B be the polytope of Theorem 6. Let vy, ...,v,,, be any
vertices which together have affine dimension d + 1. Let z be any point
of the type (10.2), (10.3). We define P’ as the convex cover of all these
points z over all possible (d + 2)-tuples vy,...,v;, ;. Then P’ is a
convex polytope whose vertices are among the points z, and hence they
belongtoq ! A. Givenyvy, ..., V4,1, the points z with (10.2), (10.3) span
the linear manifold containing vy, . . ., v, . It follows that B’ “spans”
R" and therefore has positive volume. We leave it as an exercise to
show that every d-dimensional face &, of % lies in the complement of
B’ Since P’ < P we have S(B) < S. We know from (9.1) that

F(SB/) < S(glgr)n/(n+1)(q—lA)—(n~1)/(n+1) < Sn/(n+])A-(n—1)/(n+1) .

It will therefore be enough to show that

FE(PB) < F(P) . (10.4)
Let p be a fixed point in the interior of B’. On every d-dimensional
face ® of P choose d + 1 vertices x,, ..., x, of dimension d and let
X =(d+ 1)71(x4+ ...+ x,) be the center of the simplex associated
with them. By what we said above, X lies outside 3". The line segment
from p to X will intersect the boundary of B’ in some point x. There is
at least one (n — 1)-dimensional face &' of B’ containing x. Make
some choice and write §' = §'(®). Now (10.4) will follow once we can
show that the map G+ ' (®)is 1 — 1. Suppose to the contrary that
F(6) = F'(®,) = §', say. This face §' determines a hyperplane and
two open half spaces H,, H,. The polytope P’ lies in and on the
boundary of one of them, say H;, and is disjoint from H,. Let
Xg,...,X,; belong to ®; and y,,...,y; to ®, and define X,¥ in the
obvious way. Both X,¥ lie in H,. By Lemma 4 there are vertices
Yy, ..., Vg, Of affine dimension d + 1, and there is a point z of the type
(10.2), (10.3) in H,. By construction, z belongs to $’, so that B’ has
points in common with H,, contradicting what we said a few lines
above.
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11. Proof of Theorem 5.

Lemma 5. Suppose g(u) = g(u,,...,u,) is analytic® in the ball
lu| < R where |u| is the Euclidean norm and where R > 1. Suppose that
lg (a)| < AR throughout, with fixed A > 1, and that

g7 +w) <3 (gw) + g(w)) (1L.1)
for u, # w,. Given a lattice A = R of determinant 1, the number of
lattice points (uy, . . ., U,,z) = (U, z) on the surface z = g (w) with ju| < R

A
< ARr—l+(2/(r+2)) .
’

Proof. Let & be the convex cover of the surface z = g(u) with
|u] < R. Then & is compact and is easily seen by (11.1) to have positive
volume V. Since V < A R"*!, Theorem 4 yields

4 < Ar/(r+2)Rr—1+(2/(r+2)) .

It therefore will suffice to check that every point (uy, z;) on the given
surface is an extremal point of ]. But if the tangent hyperplane at
(uy, zo) has the equation z = M (u), then it is a consequence of (11.1)
that f(u) > M (u) for u # uy. Hence the surface, and therefore &, with
the exception of (uy, z,) itself, lies all on one side of the hyperplane.
Thus (u,, z,) is indeed an extremal point.

A quadratic polynomial is a function g(u) = a + L(un) + Q (u)
where a is constant, L is a linear form, Q is a quadratic form. Such a
polynomial is “positive definite” if Q is. In that case

Hgm) +g) — qG (u +wy)) =
= Q(% (U —wy)) =>cla; — Uz|2

with positive ¢, and hence ¢ satisfies (11.1).

(11.2)

Now let & be a surface in R” given by z = A(x) where x
= (x4, ..., X,_,) runs through some domain ® < R"~'. Given a subset
DD, let #(O) be the “subsurface” z = h(x) with xeO. Write
Zy(h, D) for the number of integer points on the blown up surface
N (D), i.e. the surface z = Ni(N~'x) with xe NO.

3 By this we mean that g(u) is expandable into a power series in a suitable
neighborhood of every point of its domain.
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Lemma 6. Suppose n =r + s + 1 where r > 0, and write h(x) =

= h(u,v) withx = (W, v) = (U, ..., 4, V,..., V). Suppose h is analytic
at the origin with an expansion
h(u,v) = gq(u) + h; (u,v) (11.3)

where q is a positive definite quadratic polynomial in w, and where h;
conmsists of terms which are at least of degree 3 or which involve v. Then
there is a neighborhood O of the origin such that

Zy(h, ) < ¢y3(h, D) N2+ C/C+D) (11.4)

Proof. The power series
3 (hy (), v) + Ay (W, ) — Ay (3 (0 + W), v) (11.5)

lies in the ideal generated by g,; = (uy; — 1) (uy; — 1)) (1 < i, j <),
in fact in the ideal generated by

ik, &ijthi, 8y (IS LLk<r1<I<5).

Thus (11.5) is < |u; — u,|? (Ju;| + |uy| + |v]). As a consequence, we see
that when (u;, v), (u,, v) lie in a sufficiently small neighborhood O of
the origin, say in |u|,]v| < g, then the expression (11.5) is of modulus
< 1 cla; — wy|% In conjunction with (11.2), (11.3) this shows that for
fixed v, the function 4 (u, v) has property (11.1). Also the function gy
= Nh(N'u, N~ 'v) has this property. We are concerned with integer
points x = (u,v)e NO. For fixed v, the point u runs through |u] < R
with R = Np <€ N, and gy has values |gy| < 4 Rwith 4 < 1. Thus for
fixed v, Lemma 5 applies and we get < N"~1*®+2) jnteger points
(u, z). Taking the sum over v we get an extra factor < N* = N"~" 1,
The assertion of the lemma follows.

We now zero in on Theorem 5. For each x,e ¥ we will construct a
neighborhood U such that

Zy(f, ) < eqq (, W) N"72HC0D) (11.6)

Since U, being compact, is covered by a finite number of these
neighborhoods, the theorem will follow. We may suppose that x, = 0.
By our hypothesis on the surface %, the quadratic form of curvature
associated with each point is of the type

+ L3+ ..+ L2+ LY+ 4, L) (LD



Integer Points on Curves and Surfaces 71

with independent linear forms L,,...,L,_,. The coordinates X,z in
z = f(x) are not intrinsic coordinates, but nevertheless the expansion
of f at the origin is

f=a+ L(x)+ Fx) + /, (11.8)

where L is a linear form, F'is a quadratic form of the type (11.7), and
f, contains terms of degree > 2. We may suppose that the + sign
holds in (11.7). After a suitable orthogonal change of variables
from x=(x,...%,_) to (W,v)={@,.. .u,v{,....,v) (where
r+s+1=n),

Fx)=au*+...+au’+b v’ +...+byv? (119

with ¢; > 0 (i = 1,...,r). There is only one problem: this change of
variables will change Z" ! into some other lattice, and hence Lemma 6
will not apply. (Never mind that Lemma 5 holds for any lattice of
determinant 1).

Suppose the coordinates u’,v’ belong to the orthonormal basis
k,,...,k,_;, i.e. suppose that

x=uk +...+uk +vik+...+vk .

Given large natural ¢, pick points1,,...,1,_,in Z" ' with ||, — tk;| <1
i=1,...,n—1). The points 1,,...,1,_, have a determinant of abso-
lute value T < "~'. Now write

x=T" 'l +...+ul+vl, +...+vL,). (11.10)

Thenu/= T~ '(tw; + O(lu] + |v])), v/= T~ '(¢tv; + O(la] + |v])), and
(11.9) becomes

F(x)=t*T *(ayu? + ...+ au? + byv} + ...+ bv?) + F(u,v)

where F, has coefficients < ¢ 72 Thus when ¢ is sufficiently large,
F(x) = Q (u) + F, (u, v) with positive definite Q and with every term of
F, involving v. Substitution into (11.8) gives f(x) = 4 (u, v) with 4 of the
type (11.3) of Lemma 6.

The definition of 7 and (11.10) show that when x is an integer
point, then so is (u, v). By Lemma 6 there is a neighborhood O of the
origin with (11.4). Now the transition (u, v) — x is effected by a certain
linear transformation 7. Setting U = 7 O we have indeed (11.6).
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