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HANKEL OPERATORS ON THE BERGMAN SPACES OF STRONGLY
PSEUDOCONVEX DOMAINS!

Huiping Li

We characterize functions f € L2(D) such that the Hankel operators Hs
are, respectively, bounded and compact on the Bergman spaces of bounded
strongly pseudoconvex domains.

1. INTRODUCTION Let D be a bounded strongly pseudoconvex domain
with smooth boundary in €0, n > 2. The Bergman space H2(D) , consisting of holomorphic
L2 functions, is a closed subspace of the Hilbert space L2(D). The Bergman projection P is

the orthogonal projection from L2(D) onto H2 D) defined by Pflz)= | K(zw)f (w)dww) .
Here K{zw) is the Bergman kernel of D, and dv the usual Lebesgue measure. For f¢
L% D), the Hankel operator H ffrom H(D) into L¥(D) is defined by H f(g)=(I -P)f9). H f
is densely defined on H2(D) . In (3], Bekolle, Berger, Coburn and Zhu give necessary and
sufficient conditions for the boundedness and compactness of both H, and H- with fe
L2(Q) on the bounded symmetric domains € . In [9], we proved that the conditions in [3]
are sufficient for the boundedness and compactness of both H, and H- on bounded
strongly pseudoconvex domains in €n . Recently, D. Luecking [12] characterized functions
fe LA A) such that H I are, respectively, bounded and compact on the unit disc A of the
complex plane € . At the end of the paper, Luecking pointed out the difficulties in
extending his results to the unit ball and to the so called Fock space in €n. In this paper,

we overcome those difficulties by using the integral representations of solutions to the 06—
equations. In fact, we characterize the functions f€ L2 D) such that H ¢ are, respectively,

1 Research partially supported by a grant of the National Science Foundation.
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bounded and compact on strongly pseudoconvex domains in €n . Since there is no non
trivial holomorphic automorphism for general strongly pseudoconvex domains in €=, our
theory is more subtle. To state our results more precisely, we need some definitions and
notations.

For z€ D and £ € Co | let FB(z,f) be the infinitesimal form of the
Bergman metric of D . Let f(zw) be the Bergman distance of two points z,w € D. Denote
by B(zr) the Bergman metric ball B(z,r) ={ we D: f(zw) < r}. For anyset ScC D,
let |S| denote the usual Lebesgue measure of S. For fe L2(D) and r> 0, write

F,r(z)2 = inf{ 1/| B(z7)| J |f~h|2 dv:he Hz(D) }
B(zr)
For a (p,q)—form H(z) = ¥ H T J(z) dzy A dz ;7 with locally integrable

’

coefficients HI’Jon D, where dz; = dzil/\ dzi2l\- <A dzip and dZJz dijll\ d2j2l\- --Adz,

n — — —
we denote |H(2)|=2X |HI,J(Z)| . Let '3H=§26HIJ/6z,dz.A dz; A dz y, where for

1<i<n, 6/6z =1/2- (6/63: -~ 6/6yz) 6/62 1/2. (B/Bz + =1 a/ayz) If H
are not dlfferentlable the derivatives should be understood in the sense of distributions.

Let p(z) € C™(€™) be a strictly plurisubharmonic defining function of D

such that D= {z€C™ p(z) <0} and V p(2)# 0 for z€ 8D, where V p is the gradient
of p.
For z¢€ 8D, the complex tangential space of 9D at z is defined by

f={tec*: 3 ()02 85=0}
j=
THEOREM A Let fe L2(D). Then the following are equivalent:
1) Hf is bounded from H}D) to L% D).
(2) For each r> 0, F (2) is bounded on D .
(8) For some r> 0, Fr(z) is bounded on D .
(4) fadmits a decomposition f= h+h with fie LY D), o € C{D)N LYD) such that
|21 /? 38y A 3ol + 10(2)]1 35| is bounded on. D,

and

G(z)—1/|B(zr| J |f1 2 dv is bounded on D for some r>0.

THEOREM B Let fe L2(D). Then the following are equivalen.
(1) Hf is compact from H ¥ D) into LYD).
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(2) Foreach r>0, F(2)-0 as p(2)-0.
(3) For some r>0, F(2)-0 as p(2)-0.
(4) f admils a decomposition f= H +fy with f € LY D), Jo € CYD) n LY D) such that

1
102112135, 8 Bl + 10(2)] 134y +0 as p(2) 0,
and Gr(z) -+0 as p(z) -0 forsome r> 0, where Gr(z) is the same as in Theorem A .

We also obtain LP— versions of Theorem A and Theorem B, establish
relations between the Bergman metric BMO (VMO) and the function spaces in Theorem
A (B), and prove the conjecture posed at the end of [3].

In section 2, we shall give some results about the geometry of a bounded

strongly pseudoconvex domain with smooth boundary in €™ . In section 3, we discuss the
Hankel operators H b with fe oa (D) by using the integral representations of solutions to

the J— equations. Section 4 is devoted to dealing with the Bergman space Carleson
measures. The main theorems are proved in section 5. In section 6, we establish the
relation between the Bergman metric BMO and the function space in Theorem A . In
section 7, we will discuss the Hankel operators on the Fock space H2(€n, dy) . Throughout
this paper, we shall use the letter C to denote constants, and they may change from line to
line.

The results in this paper were reported at the AMS special session on
"Multidimensional complex aralysis and operator theory" in 1991 at Fargo, North Dakota.

I wish to thank my supervisor Professor Lewis A. Coburn for his good advice
and encouragement.

2. Geometry of strongly pseudoconvex domains In this section, we give some
facts about the Bergman metric balls in a bounded strongly pseudoconvex domain D with

smooth boundary in €" From now on, we will fix a bounded strongly pseudoconvex
domain D with smooth boundary and let p(2) € C =(C) be a strictly plurisubharmonic
defining function of D. To simplify notations, we shall write pi(z) = p(z)/ 0z, , pij(z) =
2p(z)/ Bzz.c’izj, where 1< 4,j5< n. Let F(zw) denote the Levi polynomial

n n
F(zw) =i§1 phw)w;-z) - 1/2-i_§=)I pij(w)(wi—zi)(wfzj) .
It is well known [14] that if D is a bounded strongly pseudoconvex domain with smooth

boundary in €", then there exist constants § and C such that for z we D with |z — wl
< &, we have
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2
Re( F(zw) — p(w)) 2 C-(—p(2)-p(v) + |27~w|®) .
LEMMA 2.1 Let p and & be the same as above. There ezist functions

h{zw), 1< i< n, and ¥(zw) in C"™(DxD) such that
(1) for each fized we D, hz(z,'w) and ¥(z,w) are holomorphic in z€ D ;

(2) ¥(w,w) = —p(w) and there is a non—vanishing smooth function g(zw) in DxD such
that if |z-w| < §/2 , then V(zw) = ¢g(zw)-(Nzw) — p(w)) ; if |z—w| > 62, then
19(z)] > 1/C.

(3) ¥(zu) = 3 hfnv)(upz) - o).

Proof (1) and (2) are contained in {2, p.363]. An application of Proposition
3.3 in [14, p.285] to ¥(zw) yields (3). QED.

For each 6> 0, write D= {ze D: |p(2)] <6 }.Itis well known [8] that
when § is small, if z€ Dy, then there is an unique point 7{2) € 8D such that 7(z) is the
point on 8D closest to z. We will use P(z,rl,r2) to denote the polydisc centered at 2z
with radius 7, in the complex normal direction N at #(z) and radius Ty in each
complex tangential direction Ti ,2< i< nat m2), where { Ti :2<i<n} forman
orthonormal basis of the complex tangential space at (2) . If z¢ D\D 5+ we will simply

let {N, T;},2< 1< n, be the usual basis of ¢", and still call N the complex normal
direction and Tz' , 2<iKn, the complex tangential directions. For details of the complex
normal and complex tangential directions see [6, 8] .

LEMMA 2.2 For each r> 0, there are positive constants A, B and C only
depending on r such that

(1) P(z, A-10(2)], A-|p(2)|M%) ¢ B(z7) ¢ Pz, B-|p(2)], B+ |o(2)] /2.

(2) 161"/ < | Ban)] < 1o ™ for all zeD.
(3) If r < 1, then there is a constant ¢ > 0 independent of v and z€ D such that

B(x1) ¢ Pla 7 |a(2)], e 1o(2) ).
(4) There is a constant 1 > €, > 0 such that if r< €y and we B(zr) , then
lo(w)| > |p(2)| /2.

Proof. All those results were proved for the Kobayashi metric in [9] . Since
the Bergman metric and the Kobayashi metric are equivalent on a bounded strongly
pseudoconvex domain with smooth boundary, it follows that the results are true for the
Bergman metric.

LEMMA 23 Foreach 0 <r< eO/ 6 and each given integer L > 2, there
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i3 @ sequence {z} C D and an integer M(r) > 0 such that f(z z]) >rf(2L) if i# j, and {
B(z r/L )} form a cover of D. Moreover, for any point z € D, there are at most M(r) of the
balls {B(zz., 3r) } containing z.

Proof Fix a point p € D. Let S; = {weD: flp,w)=1-v/(20) }, i=1,
2, .-+ . We shall construct the sequence by taking finite points from each S as following:
For each 1> 1, take any one point z; il € S Then pick up a point z; 02 € S with
Az, 1% 9) = r/(2L) After we have ta.ken points’ Byt i from S, , if there is no
pomt wE S such that ﬂ(w, ) > r/(2L) for all k =1, -+-, 5, then stop this process.
Otherwise, take any one point Z’]+1 € S, with B(z ik % ) >rf(20) for k=1, 2,
j. We claim that this process will stop a.fter finitely ma.ny, say m, , steps. For otherw1se
there will be infinitely many disjoint balls { B(z Z i r/A4L))} , ]Z 1, contained in D =

B(p, (#+1)-r/(2L)) . Note that D- is a compact subset of D, then there is a constant s >

0 such that |p(2)| 2> s on D,.By Lemma 2.2, |B(z; ,r/(4L))| > sn+1/C where C is
a constant only depending on r and L . Thus, we get a contra.dlctlon

o=23 [B(zi’], r/(4L))] < IDi|< .

Now we prove that B(zi, /LYy, i21,1¢<5¢ m;, form an open cover of D.
In fact, for any z € D, since f(z,w) is a complete Riemannian metric on D, it follows that
there is an integer & such that k-r/(2L) < B(p,2) < (k+1)-r/(2L) , and there exists a
point w e S such that f(zw) < r/(2L) . By the construction of {Zk]} , we must have
Bw, 2, ]) < r/(2L) for some j< my, . An application of the triangle inequality yields that
ﬂ(zk] z)<r/L,ie z€B(z ;, r/L). If we rearrange {z 12 1,1<j<m,, then we
get a sequence {2z} C D such that Bz, , z]) > r/(2L) if z#] and B(z; , r/L) form a cover
of D.

Next, we prove that {z} has the last property in the Lemma . For any z€
D, let J be the index set such that je J implies z¢€ B(z 3r). Then U B(z 3r)c

B(z, 6r). Thus U B( , 7/(4L)) ¢ B(z, 67) . Note that B(z , r/(4L)) are dlS_]OlIlt Then

€J J
z ]B(zj, r/(4L))| |B(z6r)| Since 7 < /6 , by Lemma 2.2, we have Ip(zj)l >
eJ

|p(2)1/2, and | Bz, r/4E)] 2 1W2)I™/C, |B(a 60| S Cp- o)™ for je
where C| is a constant only depending on r and L . Let M(r)=[2n+1- Cf]+ 2, where
[2"‘+1 . Cf] is the biggest integer less than or equal to ontl, C‘% . It is obvious that M(r)
depends only on r and L , and there are at most M(r) integers contaired in J .

Therefore, {zz.} is the desired sequence. QED.
LEMMA 24 Foreach 0 < r< e0/6, there ezist an integer L > 2 and a
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constant R > 0 such that

B(z, /L) ¢ Pz R- | (3], B 10(2)|Y2) ¢ Pz, 2R10()], 2R1o(2)] V) cC B(z, 7[2) .
Proof: The result follows easily from Lemma 2.2 (1) and (3) . QED
LEMMA 2.5 Let r and L be the same as those in Lemma 2.4, and let {z}
be the same as those in Lemma 2.3 corresponding to the r and L . Then there is a sequence
of real valued smooth functions {71} such that for each i> 1, % has compact support in
B(zi, r/2) and %=1 on B(z, r/L) . Moreover,

1/2
()1 [ 87{2A Fp(2)| + |p(2)} | B1{2)| < C. 21
Proof Let v € C®(C™) be a real valued function which has compact support
in the polydisc D™(2) = { we €™ |w] <2,1<i¢n} ,and p(w) =1 for w in the
unit polydisc D™(1) ¢ €™ For each 53 1, define a mapping Fj= ( F} bty F’;) Y
by
P2 = (z-2)y /(R 1p(z)]), Fi2) = (z=2)m J(R-1p(z)|V?), 2< k<
WA= (= gy R1zD), D = =) [(R- o)l V), 2 ¢,
where (22 ]) y and (z—zj)T are components of (2—z J) in the complex normal direction
k
N and complex tangential directions Tlc’ 2<k<n, at 7r(z]) , respectively. By Lemma

24, it follows that  F; (B(z; , /L)) D™1) ¢ D(2) cc F(B(z; , 7/2)) - Let 7(2) =
(p(Fj(z)) . Then 7 has compact support in B(z., r/2) and 7= 1 on B(z., r/L). To
prove that 7, satisfy (2.1), it suffices to prove (72.1) for ze Dg. In this case, by Lemma
2.2 and the triangle inequality, it follows that for w € B(zj , N, |w— 7r(zj)| <

1/2 . n
. ; . h . h ) .
C |p(z])| Thus, the coefficients of '37] A Op are of the forms kil 070w €, +

O(Ip(zj)|1/2- [V 7,]), where V 7. is the gradient of 7;, {=(§, -, fn) are vectors in
the complex tangential space at ={z ]) and |£| < C. By using the chain rule and the very

definitions of 7; and F, one has |3y, (w)A Bp(u)] |p(zj)|1/2+ |37, (w)l 16(2)] < C. By
Lemma 2.2, |p(z])| > |p{w)]/2 for we B(zj, 7) . It follows that 7 satisfy (2.1). QED.
Remark: We have used the fact [8] that |p(2)]/C < d(2,8D) < C-|p(2)] in
the proof of Lemma 2.5 , where d(2,0D) is the usual distance from z€ D to 9D .
LEMMA 2.6 Let r, L, {z} and {71'} be the same as in Lemma 2.5. Then
¥, =7,/(E 'yi) is a partition of unity subordinate to the cover {B(z, / 2)}, and

1/2
| 99 w) A 8p(w)] - | p(w)] /24 lp(w) 8y w)] < C. (22)
Proof Since {B(zz. , r/L)} is an open cover of D, it follows that % v, s
bounded away from zero. Note that {B(z; , 3r)} is locally finite, so is { B(zj, r/2) }.
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Then {7} ¢ C” implies that {%;} ¢ C" . For any ze€ D, since there are at most M(7)
balls B(zj, 7/2) containing 2 and each 7 satisfies (2.1) , it follows that ¥,921,
satisfy (2.2) by a straightforward calculation. QED.

3. HANKEL OPERATORS WITH C! SYMBOLS In this section, we
discuss the boundedness and compactness of the Hankel operators H fi with fe CYD).

The main tool used here is the integral representations of solutions to the - equation.
LEMMA 3.1 Let D, p and F(zw) be the same as in section 2. There exist
constants § and c such that for any z€ D with |p(2)| < §, in the Euclidean ball Bn(z,
8) we can perform a smooth change of variables T = 1{w) with the properties
(1) 7y(8) = () = (2) , 7o) = Im F(z0)
(2) |z—w|/e< | (w)| S e |z—w] for we Bn(z,é) and 7(z)=0;
(3)1/c<|87/0dw| <c for we B (2,6) , where 0 7/0 w denotes the Jacobian of T .
Forany we D with |p(w)| < 6, in the ball Bn(w,é') we can perform a smooth change of
variables A = A(z) with /\l(z) =p(z) - p(w) and Ay =1Im F(z,w) such that (2) and (3)
hold for A(z).
Proof See [1, p. 125] or [14, p.208] .
LEMMA 3.2[1, 5] For ¢> 0, let

(47
_ (ty+ €)% dty--rdty,
= p)
[E1<T (144 gl e + [ 2195 4]
t1+€e>0
where «, k, s are real, and a > —1. Then
1-k .
(a) Ia,k,2n—1 = ¢ +a) ifk-a>1;
._.k .
() Iy k2n-ga = oS Y ifk-a>3;
(974 jang = o2kt itk o552
(DI o= 0 M)k _asnsr.

Write 31(2,10) = iwi—zii . It is obvious that |z—-w|2 =¥ sz(z,w)-('w[—zi) .
Let h(zw) be the functions given in Lemma 2.1.
We define

Ia, k, s( €)

s(z,w) = i:] sz(z,w) dw,;

h(z,w) = i:)hz(z,w) du, ;
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d20) = B, i50)/p(u) - B p(u) A hzu)/p(u)’

Kzu) = Cy "glak-[—p(w)/@(z,w)l’“”-s(z,w) Nz ) A (39" 120207,
where q, are the constants defined in the equation (20) of [4, p.102] by letting N = 2, and
¢, = ()" D2 (n) .

LEMMA 3.3 [4] If uis a 9—closed (0,1) form such that
|p-u| + |p|1/2-|ul\ dp| € LI(D), then
0 = () = | olw) A L) (32)
is a solution to the equation 0U= v and Ue Ll(D).

Remark: In [4], Berndtsson and Andersson only proved the results for the 0
closed (0,1)—forms with coefficients in CY(D) on bounded strongly convex domains D by
letting hz(z,w) = pz(w) in the definition of L(zw) . As indicated in [4, p.104] , an

application of the same process as in [4, p.101—103] yields our lemma for the 3 — closed

(0,1)—forms with coefficients in C‘l(D) on bounded strongly pseudoconvex domains D .
Finally, by the same arguments as those given in {5, p.4565—456] , one obtains the results in
the Lemma.

LEMMA 34 If fe Cl(D) and |3fA Bp| |p|1/‘2 + |p-3f] < C, then, for
0< e<1, it follows that

sup |p(z)|€-J |3 £ L(z0)| - | p(w)] "€ dw <, (3.3)
2D D
sup |p(w)| | |3 £4 Law)]-1p(d)] € dz <o, (3.4)
weD D

Proof Note that |¥(z,w)| > ({p(2)] + {p(w)| + |Im F (z,w)| + |z—w|2)/C.

By direct computation, it follows that the coefficient of f(w) A L(z,w) is dominated by a
linear combination of functions of the forms

Ay = lp(w)- 8 f(w)| /(1 ¥(zw)] |z-u 2" (3.5)

A= (1o(w)3F (W) + 13 £4 3p])- [o(w) | /(| ¥(50) ¥ | 2 XP0Ty
where 1 < k < n—1 . Again, from |[¥(zw)| > (1p(2)] + |p(w)] + |Im F (zw)| +

|z—w|2)/C it follows that

1/2 5/2 2n—-3
A< C-(1o(w)BF(w)] + 13 1A Bpl)| o) M 2/(19(a0) P2 2=l P73y,
where 1 ¢ k< n—1 . By using the estimates in Lemma 3.2 and the coordinate system in
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Lemma 3.1, one can easily check that 4, 0< i < n—1, satisfy (3.3) and (3.4). Consequently,
| 9f A L(z,w)| satisfies (3.3) and (3.4). QED.

THEOREM 3.5 Let fe L2(D)n Cl(D) satisfy the conditions in Lemma 3.4 .
Then the Hankel operator H t is bounded from Hz(D) to L2(D) .

Proof For ge g (D), considering the equation

Ju=2f-g) = 07, *)
It’s obvious that g¢-3f is 3 — closed and |g-f A dp] - |p|1/2 + |p-g-0f] € L2(D) . By
Lemma 3.3, u= T(g-8f) is a solution to (*). Let To(g) = T(g-8f) . By Lemma 3.4, an
application of Schur’s test [7] yields that T, is a bounded operator from H2(D) to
L2(D). Note that for ge H®(D), f-g¢€ L2(D) is a solution to (*). By the uniqueness of
the solution orthogonal to H2(D), we have H f( 9) = (F-P)(f-g) = (I-P)T(9g) - Since

H ®(D) is dense [14] in H2(D), it follows that the boundedness of T, implies the
boundedness of H ¢ - This finishes the proof. QED.

THEOREM 3.6 For fe C{(D)n LX(D), if |8 ABp-|p|*2 + |p 81 = 0
as |p(2)| = 0, then the Hankel operator H g is compact.
Proof By the same reasoning as in the proof of Theorem 3.5, it suffices to

prove the compactness of T, . Note that T, is an integral operator with the kernel Of (w)
AI(zw). Write @ ={z€D: |p(z)| 21/m}, m=1,2, ---,then {Q_}is a sequence
of compact subsets of D . Let X be the characteristic functions of §} m Note that for

each m, |x, - 0fA L(zw)| < C(m)/| z—w]zn—1 . It follows from the Theorem in [14, p.360]

that the operators T, ~ with the integral kernels x (w)-8f (w) A L(zw) , m > 1, are
compact. Note that

To() - T, (9) = jD (1= x,, ) 3 (u) A L(z0) 9.
Since |3fA Jp|- Ipll/2 + [p-3fl =0 as |p(2)| -0, it follows that V e > 0, there is an

integer M such that when m > M, (1 - xm)(l'BfA Op| - |p|1/2 + |p-9fl1) < €. By the
proof of Lemma, 3.4 , there is a constant C such thatfor 0 < a< 1,

JD |(1= X, ) Bf () A L(zw)| - [ p(w)| ™% dw ¢ C-e-|p(2)| %, (3.6)

[ 10 x,) 9 (0) A Lz )] - 103 ™% dz C-e- | o(w)| % (37)
D
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Again by using Schur’s test {7], we have the operator norm || Ty - Tm||2 < C-e. It follows

that T 'm T0 . Thus, the compactness of Tm implies the compactness of T0 .

Consequently, H = (I-P) T, is compact. QED.
Note that [13] the Bergman projection is bounded from LP(D) to HP(D)
consisting of holomorphic LP— functions in D, 1 < p < o . By the estimates in Lemma 3.4,

an application of the LP— version of Schur’s test (see [13, Lemma 5]) yields the following
theorem.

THEOREM 3.7 Let fe C{(D)n LP(D) . If f satisfies the conditions in
Theorem 3.5, then H g is bounded from HP(D) to LP(D) ; If f satisfies the conditions in
Theorem 3.6, then H fi is compact from HP(D) to LP(D).

Remark: By using the integral representations of solutions to the ¢ —
equations constructed by Dautov and Henkin in [5] , one can also obtain the results above.
For the Schatten class Hankel operators, we have the following result.

THEOREM 3.8 [10] For fe L%(D)n CY(D) and p > 2n, if both |BfA

pl - |p|1/2_(n+1)/p and |Bf}- }pll—(n+1)/p are in LP(D), then the Hankel operator

H ¢ 1is in the Schatten class Sp )

Remark: If T € H2(D) , then the conditions in Theorem 3.5, Theorem 3.6

and Theorem 3.8 are also necessary, and they are, respectively, equivalent to that f isin
the Bloch space, the little Bloch space and the Besov space. For details see [9] and [10] .

4. CARLESON MEASURES FOR THE BERGMAN SPACES HP(D)

DEFINITION: For 1 < p < o, we call a positive measure g on D an H -
Carleson measure if

(J 1P @) ce | 1717 an)?.
LEMMA 4.1 Let feLP(D) and r>0. If G,_(2) = |B(z,r)|—1J 1£17 dv
P B(z,7)

18 bounded on D, then the multiplication operator M b (9) = f-g is bounded from H Pt

L? , and the operator norm ||Mf||p5 C-|G ”nlo/p
Proof By Lemma 2.2, it is easy to check that G, __ is bounded on D implies
that Gsp is bounded on D for all s < 7. Without lose of generality, assume r < 50/3 .
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Following D.Luecking [11} , associate with each point z€ D an open set E(z) = B(zr/3).
Let E2(2) = U { K(y): (y) N E(2) # ¢ } . Then E %(2) = B(z,r). By Lemma 2.2, it follows
that |E %(z)| < C-|E(z)| , and for g€ Ho(D),

-1
I < 1B 1al” .
z
the last inequality holds because each E(z) = B(zr/3) contains a polydisc centered at z
and the volume of the polydisc is comparable with |E(z)| .

Let du = |f|? dv. By the assumption, u(E 2(z)) < lle”m- |E2(z)| . An
application of Luecking’s criterion {11, Lemma 1] yields that u is an H’— Carleson
measure. Thus, M ¢ is bounded from H” into LP. From the proof of Lemma 1 in [11] we

. /p
have ||Mf||pg C-|| Grp"m . QED.
LEMMA 42 Let fe LP(D). If G(2) » 0 as p(2) 5 O, then the

maltiplication operator M is compact from HP(D) into LP(D).
Proof Let K, ={ze€D:|p(z)| 21/m}, m>1.Then K,  are compact
subsets of D . Let X be the characteristic function of K. . It is easy to check that

MX -f are compact operators from H? to LP because each p f has compact support
m

in D. Note that Mf—M m'f:M(l—Xm)'f’ and Grp(z)—»O as p(z) » 0 implies that

X
sup { [B@n [ (1-xy) S 1P dv} 0 as moo.
zeD T
By Lemma 4.1, we have ||[M.- M |, =0 as m- . Therefore, M ,is compact. QED.
7= Myl i

5. MAIN THEOREMS In this section, we prove the main theorems.
THEOREM A Let fe LY D). Then the following are equivalent:
(1) Hf is bounded from HXD) to L¥D).
(2) For each r> 0, F (2) 18 bounded on D .
(3) For some r> 0, F (z) is bounded on D .
{4) f admits ¢ decomposition f= f+f with fieL? and fy¢€ CY{D)n L? such that
|p(z)|1/2| 9f, A Bp| + |p(2)|| Bfy| is bounded on D,
and
G (2) = 1/|B(z7)] { )|f1|2 dv is bounded for some r> 0 .
B(zr
Proof (1)=>(2) . Foreach ) ¢ D, let S)\(z) = |p(A)|("+1)/2/\P(z,A)n+1.
By Lemma 2.1, it follows that both §,(2) and 1/5,(2) are in H =(D) . By using Lemma
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2.1, Lemma 3.1 and Lemma 3.2, one can easily check that ||S,\||2 < C,where C isa
constant independent of A € D . (See also Lemma 7.3 in [14, p.310] ) . I Hf is bounded,
then

IHES Ny = 1| £:5) = PU-Syllg = I(F = S5 PU-8))- Syl € C- 1Al -

For each r > 0, by using the estimates in Lemma 2.1 and Lemma 2.2, one can easily
check that for z € B(A,n), |5,(2)12 2 O/|p(A)] ™! (For details see [3]) . Again by
Lemma 2.2, we have [S)‘(z)|2 > C/|B(A,r)| for ze B(), r). Thus,

{IB(A,r)rl-jB(A N s Pr5y) 12 a2

< Cy-I(f - 51 P 8)))- Syl < Cye Il -
Obviously, S;'-P(S,f) € H2(D). It follow that F (1) is bounded on D.

(2) => () is trivial .

Now we assume (3). By Lemma 2.2 (2), one can easily check that F (2) is
bounded in D implies that F s(z) is bounded in D for all s < r . Without lose of
generality, we can let r < 50/6 , Where ¢ is the same constant as in Lemma 2.2(4) . Let
L, {z]-} and {1/)].} be the same as those in Lemma 2.5 and Lemma 2.6. By (3), for each j

> 1, there is a function hje H2(D) such that
-1 2 2
| B(z,;, )| J 1f-h)2 dvcaF (2)?
J B(z;, 1) J r ])

We define f2 =3 hj' ¢j and f; = f- f2 . To verify that f; and f2 satisfy (4), we use the
arguments given by Luecking [12] . First of all, we show that if z¢€ B(zj, r/2)nB(zk, r/2),
then |hj (2) - hk(z)| is bounded. As we did in the proof of Lemma 4.1,

z) — hi(z T 1/2 . —h, |2 v 1/2
|h;(2) - (D) | Bzr/2)] s(ch(W)mJ b2 do)

) — 112 gnt/2 . _£12 go)1/2
S(CJB(zj,r)lhj £12 dv) +(CJ-B(Zk’r)|hkf| dv)

< C[ F(2)-1Blaj, NI ? + F(z- | Bz 2]
Since z;, 2, ¢ B(z7/2) , by Lemma 2.2 we have |B(zj, r)| < C-|B(zr/2)| and
IB(zk,r)f < C-|B(z7(2)| . Thus,
(-2l < C- sup  {F(u)}. (5.1)
weB(z,2r

Now we estimate f1 . To simplify notations, we write B(2) = B(z,) . Note
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that if B(2)nB(z;, r/2) # ¢, then z€ B(zj, 3r) . By our construction of {z;} , one can
eagily see that for each z¢€ D, there are at most M(r) balls B(zj, r/2) intersect B(z, 7).
Thus,

2 1/2 2 1/2
(JB(Z)Ifll any/ =(jB(z)|z(f—h,-)-¢j| i/

1212 anl/2 2 5 41/2
<2 190 8 <s(] 1f =yl do)

B(zj , 1/2)NB(2)

<CM(r) sup  {F(u)}|B(z3n)|"/*.
weB(2,27)
The last inequality is because B(zj , 7/2) ¢ B(z ]) € B(23r) and K z2) < 2r if B(z,, r/2)

N B(z) # ¢ , and there are at most M(r) of the B(zj, r/2) intersect B(2) . Since | B(z,37)|
< C-|B(z7)] , it follows that
-1 2 ..\1/2
(1B(zr)| 1% dw) < C- sup  {F(w)}. (5.2)
B(z) we B(2,27)
Thus, |G (2)] < C- ||F7J|§ . Note that {B(zj, r)} is an open cover of D and ¥ ng M(r),
where x ; are characteristic functions of B(z 0 7). Then

2 ® 2 b
f12dve 3 | 1£12dv< B G (2)-|B(z;, )|
JD 1 j=1 B(zj, ) 1 =1 T ]) J

2 3 2
CCF ,EIIB(ZJ-, Nl < C-|F N5 -M(r)- | D] <w.
J:

Consequently, we have f1 € L2(D) .
Now we estimate f2 . Fix a point z€ D andlet J be the set of integers j
such that z € B(zj, 7/2) . Then f(2)= X h’j (z)-tpj (%) . Let us suppose for convenience
JjedJ

that 1 € J and write

fz(z) = hl(z) + ]EJ (hj_ hl)' ¢J

Note that { A j} are holomorphic functions in D, then

Y2 41,30 = —h,)- B, Y2 4y, —h,)- B,
|95 (2)ABpl | o] ™% + 1p- 0S| I'EJ(hJ hy)-B9;ABpl o177 + 1o ng(hJ hy)- 994
< C-M(r)- sup { Fr(w) },
weB(2,2r)
because J contains at most M(r) integers, |h;~h.| < C- sup  { F(w)} from (5.1)
J weB(z2r) "

and y; satisfy the estimates in Lemma 26. Since fy = /—f; and f f € LA(D), it
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follows that f, € L%(D) . This finishes the proof of (3)=>(4).
Assume (4). By Theorem 3.5, H g is bounded. By Lemma 4.1, M 5 (9) =
2 1

f;+9 is bounded from H2(D) into L2(D). Therefore, H = (I-PM fi is bounded. Note
1 1
that H,=H, + H, ,then H_ is bounded. QED.
5t i

THEOREM B Let fe L2(D). Then the following are equivalent:
1) H fi is compact from H¥ D) into L2(D).
(2) Foreach r>0, F(2)-0 as p(2)-0.
(3) Forsome r>0, F(2)-0 as p(2)-0.
(4) f admits a decomposition f=f, + f, with fie L? and f, ¢ CY{D)n LY D) such that

Ip(z)|1/2I3f2A dp| + |p(2)|13fy| 20 as p(2) 0,

and G (2)+0 as p(2) 0 for some r> 0, where G (z) is the same as in Theorem A .

Proof Let the notations be the same as those in the proof of Theorem A.

Assume (1). Note that S)(z) - 0 at every point z€ D as [p(A)| -0 and
ISyl ¢ C. By a standard argument it follows that S, -0 weakly in HD) as |p(})| -
0. Thus, H f is compact implies that

1Hp(S))llg -0 as [p(A)] -+ 0.

By the estimates in the proof of Theorem A , we have Fr(z) -0 as p(2)-0.

(2) => (3) is trivial.

Assume (3). As we did before, without lose of generality, we can assume r <
€o/6 - Note that (by Lemma 2.2) sup { [p(w)] } -0 as p(z) » 0 . From the

z,27
estimates given in the proof of Theorem A , it follows that fl and f2 satisfy the
conditions in (4).
Finally, we prove (4)=>(1). By Theorem 3.6, H [ is compact. By lemma 4.2,
2
M
f

is compact, and then H = (I-P\M [ is compact. Therefore, H fi is compact. QED.
1 1 1

For 1 < p<o, wewrite
Fo (@ =inf{1Ban)| [ 1f-nPdv:he #(D)}.
B(z,1)
THEOREM C. Let fe LP(D). Then the following are equivalent:
(1) Hf is bounded from HP(D) to LP(D).
(2) For each >0, F_ p(z) is bounded on D .
(8) For some r> 0, F; p(z) s bounded on D .
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4) f admits a decomposition f=f, + f, with f, € LP(D) and f, € lou (D)n LP such that
1 2 1 2
o)1 /2185, A Bol + 16(9)] 1B, is bounded on D,
and
Grp(z) =1/|B(z7)| - f |f1|pdv i3 bounded for some r> 0.
zr

Proof (1) —>(2) For each A € D, let Sy p(z) =

p(A (1-1/p)-(n+1) g 2, "’+1.By Lemma 2.1, both S, (2) and STl (2) are in H
Ap Ap

®(D). By the same arguments as those in the proof of Theorem A, it follows that 15, p”p

< C and |S)‘ (2P 3 1/(C-|B(\7)|) for ze€ B(\r), where C is a constant
independent of z, A € D. Thus

-1, _g 1l p p 1/p< . < C-
UBONITY[ 1r- LS, JIP P (s, DI < ol
B(A,7)
It is known [13] that the Bergman projection is bounded from LP(D) to HP(D). Thus,

SX}PP( f S)\, p) € HP(D). Therefore, Fr, ? is bounded.
(2) => (8) is trivial.
Assume (3). The arguments in the proof of (3)=>(4) in Theorem A can be

carried over word by word, except that LP integrals appear everywhere in place of 2
integrals, to give assertion (4) .

Finally, assume (4). By Theorem 3.7, H fi is bounded from HP(D) to LP(D).
2

By Lemma 4.1 , one can easily show that M 7 is bounded from HP(D) into LP(D) and
50 i H = (I- P)M . This finishes the proof of the theorem. QED.
1 Snmla.rly, we have
THEOREM D Let fe LP(D). Then the following are equivalent:

(1) H, is compact from HP(D) to LP(D) .
(2) For each >0, F p(z) -0 as p(z)~0.
(3) For some r> 0, F (z)—fO as p(2)-0.

(4) f admits a decomposztwn f=H+f with f € LP(D) and f € on (D)n LP such that

12135, 7 ol + 162 | By 0 as p(2) =0
and Grp(z)—+0 as p(z) »0 forsome r>0.
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6. THE BERGMAN METRIC BMO AND VMO For fe L?(D)and r> 0,
write

MO = 1B\ 1= 1Ban T fae)?av.

B(z,r B(z,r

DEFINITION 6.1. We say that fe BMO(D) provided that MO7( f,2) is
bounded on D for some r > 0 ; we say that fe VMO(D) provided that MOT( f2) -0 as
z- 0D for some r> 0. It was proved in [9] that the definitions of BMO and VMO
don’t rely on the choice of 7.

Following D.Luecking, if fsatisfies the condition in Theorem A (3), then we

say that fe BDA ;if f satisfies the condition in Theorem B (3) , then we say that f¢
VDA .

THEOREM 6.1. BMO(D) = BDA(D)nBDA(D) ; VMO(D) = VDA(D)NVDA(D) .
Proof Tt is obvious that BMO(D) ¢ BDA(D)WBDA(D); VMO(D) c

VDA(D)nNVDA(D) . To prove other inclusions, it suffices to prove that if a real function f
€ BDA (VDA) , then fe BMO (VMO) . By Lemma 2.2, there are constants ¢, s, 7> 0
such that

B(z,3) ¢ P(z ¢ |p()], ¢ o(2)|?) ¢ B(zr) . (6.1)

To simplify notations, we shall write P(2) = P(z, c-|p(2)], c-|p(z)|1/2) . By the
definition of F,(z),for each ) € D, thereisa he H 2(D) such that

1BODITY (- b deg2 RO
B(\, 1)
By Lemma 2.2 and (6.1), one has

-1 2 2

PO 1w ave o R )7 (6.2)
P(})
Note that P()) is a polydisc centered at A and he H 2(D) , it follows that
PO = w2 ave POV mn®

P(}) P(A

where Im h is the imaginary part of h. Thus, for real valued f, we have
PO =) R aog [P im (b o 0 R0 (69

By Lemma 2.2, (6.1), (6.2) and (6.3), it follows that

B 1 a0 a2 copT i )2

B(\,s) P(3)

sC-[IP(/\)I_IIP(A)Ih—h(A)Izdv]I/2+C-[IP(A)I_IIP(A)If—hPdv]1/2
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<C-F ().
By a standard argument, we have MO(f, A) < C-F (X)? . Consequently, fe BDA (VDA)
implies that fe BMO (VMO). This finishes the proof of the theorem. QED.

COROLLARY For fe L2(D) , H b and H7 are bounded if and only if fe
BMO ; Hf and H—- are compact if and only if fe VMO .

Remark: Note that [3] H g and H7 are bounded (compact) if and only if the
commutator [M X P] is bounded (compact) on  L2(D). The Corollary gives us
function—theoretic characterizations of the boundedness and compactness of [M,, P] .

7. FURTHER DISCUSSION Let P be the orthogonal projection from
L2(€", dy) to the Fock space HA(C", dy) with du = (2m) "exp(—|2|2/2) dvand dvthe
usual Lebesgue measure on €™ For fe L2(C"’, du) , consider the Hankel operator H f(g) =
(I-P)(f-9) - If fe Cl(Cn) and |3f] € L°(C™) , for any polynomial g, consider the 3
equation

Bu=Bfg) =97, ()
By Proposition 10 in [4],

= 2 2 2yn—1
N —k 8] zw| “AN(8 3] w| ©)
w2) = N(g-8f) =C_- oz w=l vl )/2-g-5fA 5 ok Olzul N
) ) nJcn k<n K-lz - w|2n—2k

is a solution to (**) and u(z) is orthogonal to Hz(Cn, du) . Let To(g) = T(g-3f). Then
He(g) = v=T(3}9) = T(9).
Let (Xzw) denote the integral kernel of T, - By direct computation it follows that

— 2
|z < C- e Bez 0= lwlD/2 (g 1720 4oy~
Thus

2 2 2
T A R o L A (P R P s NN ()

2
Denote the right side of (7.1) by @Qy(zw) . Note that 14l /4(|z|1—2n+ |z|_1) is in
Ll(Cn, dv) . It follows that the integral operator with kernel Qp is a bounded convolution

operator on  L%(C", dv). Thus T, = H; is bounded from HHC™, dy) to L3, dy).

0
Similarly, we can prove that if df-+ 0 as |z| - o, then the Hankel operator H g is
compact.
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Finally, we note that our methods and results can be extended to the

weighted Bergman spaces HP(D, |p|®), a@ > —1, without essential difficulties on bounded
strongly pseudoconvex domains D with smooth boundary.
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