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HANKEL OPERATOILS ON THE BERGMAN SPACES OF STRONGLY 

PSEUDOCONVEX DOMAINS t 

Huiping Li 

We characterize functions f E L2(D) such that the Hankel operators Hf 
are, respectively, bounded and compact on the Bergman spaces of bounded 
strongly pseudoconvex domains. 

1. INTRODUCTION Let D be a bounded strongly pseudoconvex domain 

with smooth boundary in Cn n _> 2. The Bergman space H2(D) , consisting of holomorphic 

L2 functions, is a closed subspace of the Hilbert space L2(D). The Bergman projection P is 

orthogonal projection from L2(D) onto /-P(D) defined by Pj~z)= [ K( z, w) f ( w) dv( w) . the 

Here K(z,w) is the Bergman kernel of D ,  and dv the usual Lebesgue measure. For f E 

L2(D), the Hankel operator / - / : f rom/P(D) into L2(D)is defined by ,:(,)--(l-P)(:.#). 
is densely defined on /-P(D) . In [3], Bekolle, Berger, Coburn and Zhu give necessary and 

sufficient conditions for the boundedness and compactness of both Hf and H ]  with fE 

L2(fl) on the bounded symmetric domains fl . In [9], we proved that the conditions in [3] 

are sufficient for the boundedness and compactness of both Hf and H~ on bounded 

strongly pseudoconvex domains in ~:n . Recently, D. Luecking [12] characterized functions 

f e  L2(A) such that Hf are, respectively, bounded and compact on the unit disc A of the 

complex plane ~ . At the end of the paper, Luecking pointed out the difficulties in 

extending his results to the unit ball and to the so called Fock space in s n. In this paper, 

we overcome those difficulties by using the integral representations of solutions to the ~-- 

equations. In fact, we characterize the functions fE L2(D) such that Hf are, respectively, 

1 Research partially supported by a grant of the National Science Foundation. 
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bounded and compact on strongly pseudoconvex domains in Cn . Since there is no non 

trivial holomorphic automorphism for general strongly pseudoconvex domains in C n, our 

theory is more subtle. To state our results more precisely, we need some definitions and 

notations. 

For z E D and ~ E C a , let FB(Z,~) be the infinitesimal form of the 

Bergman metric of D.  Let [3(z,w) be the Bergman distance of two points z,w E D. Denote 

by B(z,r) the Bergman metric ball B(z,r) = { w e D: ~(z,w) < r }. For any set S c D, 

let I SI denote the usual Lebesgue measure of S. For fE L2(D) and r > 0 ,  write 

Fr(Z) 2 = inf{ 1/IS(z,r) l . I  [f_h [2 dr: h e It2(m) } .  
S(z,r) 

For a (p,q)- form H(z) = ~ Hi,9~z ) dz I a d~j with locally integrable 

coefficients Hi, j o n  D,  where dzi= dzila dz ia . . .h  dZip and d~j= a ~ ^  a~j2a...^ ~ jq ,  

I1 

wedenote IIt(z)l=~. IHi, j(z)] . Let ~ H= ~s  8Hi, j/O-zid-zi^ dzi^  d-zj ,  where for 

1 <_ i<_ n ,  o / o z i =  1 / 2 . ( o / o x i - r  o / o ~ i =  y /~ . (o /o~ i+r  i~ H~,j 
are not differentiable, the derivatives should be understood in the sense of distributions. 

Let p(z) e Cm(C n) be a strictly plurisubharmonic defining function of D 

such that D = { z e c n :  p(z) < O} and Vp(z)~Ofor ze  0/9, where Vp is the gradient 

o f p .  

For z e OD, the complex tangential space of 8D at z is defined by 

n 
= { ~ ~ i n :  s op(z)/o~j.~j = o }. 

j = l  
THEOREM A Let f e L2(D). Then the following are equivalent: 

(1) Hf is bounded from I-P(D) to L2(D) . 
(2) For each r > O, Fr(Z ) is bounded on D . 
(3) For some r > O, F(~)  is bounded on D . 
(4) f admits a decomposition f = fl + f2 with fl E L2(D), f2 e Ct(D)n L2(D) such that 

IP(Z)IU21Df2 ^ Dpl + Ip(z)llDf21 is bounded onD,  
and 

Gr(z ) = 1/IB(z,r)l.lz, "~ dv is bounded on O forsome r> O. 

TItEOKEM B Let f e L2(D). Then the following are equivalent. 
(1) H.f is compact from H 2(D) into L2(D). 
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(2) For each r > O ,  Fr(Z )-~0 as p ( z )~O.  

(3) For some r > O, Fr(z ) -4 0 as p(z) ~ O . 

(4) f admits a decomposition f = f l  + f2 with fl  E L2(D), f2 E CI(D) 0 L2(D) such that 

IP(z) l l /21~/2  ^ ~Pl + Ip ( z ) l l~ f2 l -~o  as p(z)-~o, 
a .d  ar(~) ~ 0 as p(~) ~ 0 fo~ some ~ > O, ~herc Or(z) is the same as i~ Theorem ~ . 

We also obtain L p -  versions of Theorem A and Theorem B, establish 

relations between the Bergman metric BMO (VMO) and the function spaces in Theorem 

A (B), and prove the conjecture posed at the end of [3]. 

In section 2, we shall give some results about the geometry of a bounded 

strongly pseudoconvex domain with smooth boundary in C n . In section 3, we discuss the 

ttankel operators Hf  with f e CI(D) by using the integral representations of solutions to 

the ~ -  equations. Section 4 is devoted to dealing with the Bergman space Carleson 

measures. The main theorems are proved in section 5. In section 6, we establish the 

relation between the Bergman metric BMO and the function space in Theorem A . In 

section 7, we will discuss the Hankel operators on the Fock space /-p(~n, d#) . Throughout 

this paper, we shall use the letter C to denote constants, and they may change from line to 

line. 

The results in this paper were reported at the AMS special session on 

"Multidimensional complex analysis and operator theory" in 1991 at Fargo, North Dakota. 

I wish to thank my supervisor Professor Lewis A. Coburn for his good advice 

and encouragement. 

2. Geometry of strongly pseudoconvex domains In this section, we give some 

facts about the Bergman metric balls in a bounded strongly pseudoconvex domain D with 

smooth boundary in •n. From now on, we will fix a bounded strongly pseudoconvex 

domain D with smooth boundary and let p(z) E C =(C n) be a strictly plurisubharmonic 

defining function of D. To simplify notations, we shall write pi(z) = ~p(z)/Ozi, pij(z) = 
~2p(z)/OziOzj, where 1 _< i,j <_ n. Let F (z,w) denote the Levi polynomial 

n n 

F (z,~) =~1 P~W)(wi-zi) - 1/2"~~i Pij (w)(w~-z~)(~j-zj). 
= . ] :  

It is welt known [14] that if D is a bounded strongly pseudoconvex domain with smooth 

boundary in ~:n, then there exist constants 5 and C such that for z, w E ~0 with ] z -  w[ 

< ~, we have 
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Re( F ( , ,~ ) -  pC=)) >_ C.(-pC~)-p(=) + I~-=12 ). 
LEMMA 2.1 Let p and 6 be the same as above. There exist functions 

hi(z,w), 1 <_ i (_ n, and ~(z,w) in C| such that 

(1) for each fixed w e D, h~z,w) and ~(z,w) are holomorphic in z e D ; 

(2) ~l(w,w) = -p(w)  and there is a non-vanishing smooth function g(z,w) in DxD such 

that i f  ]z -w I <_ 6/2 , then ~(z,w) = g(z,w).(I~z,w) - p(w)) ; i f  Iz-w] >_ 6/2 , then 

I v(z,  to) l >_ 1/c. 
n 

(3) ~(z,  to) = i~=, h (z, to)(to~z i) - p(to). 
Proof. (1) and (2) are contained in [2, p.363]. An application of Proposition 

3.3 in [14, p.285] to ~(z, to) yields (3). QED. 

For each 6 > 0 ,  write D 6 = { z E D :  ]p(z) l < 6 } . It is well known [8] that 

when 6 is small, if z e D 6 , then there is an unique point r(z) E OD such that ~z) is the 

point on OD closest to z .  We will use P(Z, rl,r2) to denote the polydisc centered at z 

with radius r 1 in the complex normal direction N st ~z) and radius r 2 in each 

complex tangential direction T i , 2 < i <  n, at ~ z ) ,  where { T / : 2 <  i<  n}  form an 

orthonormal basis of the complex tangential space at ~z) . If z E D \D  6 , we will simply 

let { N ,  Ti} , 2 _< i <_ n, be the usual basis of C n , and still call N the complex normal 

direction and T i , 2<i<n, the complex tangential directions. For details of the complex 

normal and complex tangential directions see [6, 8]. 

LEMMA 2.2 For each r > O, there are positive constants A, B and C only 

depending on r such that 

(1) P(z, A.  IP(~)I, A.  Ip(z)l 1]2) c B(z,r) C P(z, B. IP(~)I, S .  I p ( z ) l i / 2 )  . 

(2) Ip(~)ln+l/c_< IB(z,r)l <_ C. Ip(~)l n+l for all ~ D .  

(3) I f  r < 1, then there is a constant c > 0 independent of r and z E D such that 

B(z,r) C P(z, c.r.  Ip(z)l, c.r. Ip(z)l 1/2 ) .  
(4) There is a constant 1 > e 0 > 0 such that i f  r < e 0 and to E B(z,r) , then 

Ip(to)l-> Ip(z)l  l2  . 
Proof. All those results were proved for the Kobayashi metric in [9] . Since 

the Bergman metric and the Kobayashi metric are equivalent on a bounded strongly 

pseudoconvex domain with smooth boundary, it follows that the results are true for the 

Bergman metric. 

LEMMA2.3 For each 0 < r <  e0/6 and each given integer L > 2 , there 
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is a sequence {zi} C D and an i~eger M(r~ > 0 such that ~(zi, z ~ >_ r/(2L) if i ~ j, and { 
B(zi, r/ L )} form a cover of D. Moreover, for any point z E D, there are at most M(r) of the 
balls {B(zi, 3r) } containing z. 

Proof. F i x a p o i n t  pE D. Let S i=  { wE D: l~(p, w ) = i ' r / ( 2 n )  } ,  i=  1, 
2, . .  �9 . We shall construct the sequence by taking finite points from each S i as following: 

For each i > 1 ,  take any one point zi, 1 E S/ .  Then pick up a point zi, 2 E S i with 

/~(zi,1, zi,2) = r/(2L) . After we have taken points  zi,1, . . .  , zi, j from S / ,  if there is no 

point w E S i such that  /~(w, zi, k) > r/(2L) for all k =1, . . . ,  j ,  then stop this process. 

Otherwise, take any one point zi, j+  1 E S/ with l~(Zi, k,  zi, j+l) > r/(2L) for k = 1, 2, . . . ,  

3'. We claim that this process will stop after finitely many, say m i , steps. For otherwise, 

there will be infinitely many disjoint balls { B(zi, j ,  r//(4L))} , j _> 1 , contained in Di= 

B(p, ( i+l) .r / (2L)) .  Note that :Diis a compact subset of D ,  then there is a constant s > 

0 such that  Ip(z)l _> s on :D i .  By Lemma2.2,  IB(zi, j ,  r / (4L))  I _> sn+l /C,where  C is 

a constant only depending on r and L .  Thus, we get a contradiction 

| = s IB(zi, ] r](4L))l  _< IDil< | 
Now we prove that  B(zi, j ,  r//L) , i >_ 1 , 1 <_ j <_ mi , form an open cover of D. 

In fact, for any z E D, since O(z,w) is a complete Riemannian metric on D, it follows that 

there is an integer k such that k. r/(2L) < l~(p,z) < (k+ l ) .  r/(2L) , and there exists a 

point w E S k such that  l?(z,w) < r/(2L) . By the construction of {Zk, ~ , we must have 

fl(w, Zk, ~ < r//(2L) for some j < m k . An application of the triangle inequality yields that 

l~Zk, j ,  z) < r /L ,  i.e. z E S(Zk, j ,  r /L) .  If we rearrange {zi,~, i )_ 1, 1 < j < mi ,  then we 

get a sequence {zi} C D such that ~(zi, z~ > r/(2L) if /r and B(zi,  r/L) form a cover 

of D. 

Next, we prove that {zi} has the last property in the Lemma.  For any z E 

D, let J be the index set such tha t  j E  J implies ze  B(z j ,3r ) .Then  U B ( z j , 3 r ) r  

S(z, 6r). Thus U B(zj,  r/(4L)) c B(z, 6r ) .  Note that B(zj ,  r//(4L)) are disjoint. Then 
j e J  j 

IB(zj ,  r/(4L)) I < IB(z,6r) l. Since r < e0/6 , by Lemma 2.2, we have I P(zj)] > 
EJ 

]p(z)I/2, and IB(~ ,  r /(4L)) I > Ip(z~[n§ , IS(z, 6r)l < Cl. lp(z)[ n+l for jE  J, 

where C 1 is a constant only depending on r and L . Let M(r)=[2 n+l. C~I]+ 2 , where 

[2n+l .  C~I] is the biggest integer less than or equal to 2 n + l .  C~I. It is obvious that M(r) 

depends only on r and L , and there are at most M(r) integers contained in J 

Therefore, {zi} is the desired sequence. QED. 

L E M M A 2 . 4  For each 0 < r <  e0//6 , there exist an integer L > 2 and a 
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constant R > 0 such that 

s(z, r/L) c P(z, R. IP(z)l, a. Ip(z)l ,/2) c e(z, 2RIp(z)l, 2alp(z)l ,/2) cc SO, #2 ) .  
Proof. The result follows easily from Lemma 2.2 (1) and (3). QED 
LEMMA 2.5 Let r and L be the same as those in Lemma 2.4, and let {zi} 

be the same as those in Lemma 2.3 corresponding to the r and L .  Then there is a sequence 

of real valued smooth functions {7i} such that for each i )_ 1, 7i has compact support in 

B(zi,  r/2) and 7 i = 1 on B(z, r i l l .  Moreover, 

Ip(z)l l /2{ ~)%.(z)A Op(z){ + Ip(z)l l O7z(z)l <_ c .  (,2.1) 

Proof. Let ~o 6 C| n) be a real valued function which has compact support 

in thepolydisc Dn(2) = { w e  Cn: I wi[ < 2 ,  1_< i<_ n}  ,and ~ w ) =  1 for w in the 

unit polydisc Dn(1) C cn. For each j > 1, define a mapping F j =  ( i ~ j , . . . ,  ~jj ) :  C n -4 Cn 

by 

where ( z - z ) N  and ( z - z ) T  k are components of ( z - z )  in the complex normal direction 

N and complex tangential directions T k , 2 < k <_ n, at ~ 2 )  , respectively. By Lemma 

2.4, it follows that F. (B(z . ,  r/L)) c Dn(1) r on(2) r F(B(z` . ,  r/2)) . Let %(z) = 
J J J J J 

~(Fj(z)). Then 7j has compact support in B(z;, r/2) and 7 j =  1 on B(5  , riLl. To 
prove that 7i satisfy (2.1), it suffices to prove (2.1) for z E D , .  In this case, by Lemma 

2.2 and the triangle inequality, it follows that for w E B(z j ,  r), I w - n(z){ < 

n 

C. Ip(z~l 1/2 . Thus, the coefficients of O'),j ^ 9p are of the forms 5]' OT/OWk" *k + 
k=l 

O(]P(z)l 1/2" ] v 7j]) ,  where V 7j is the gradient of 7j,  ~ = (~1' "" "' ~n ) are vectors in 

the complex tangential space at ~ z )  and I~1 <- C. By using the chain rule and the very 

definitions of 7,' and f z ,  one has 1~7,.(w)^ ~p(w) l I p(z.~l 1/2+ I ~7`. (w) l {P(z.~l <_ C. By 
Lemma 2.2, Ip(z)l > {plw)l/2 for wE B(zj, r ) .  It follor that 7js~ttisfy (2.1) j. QED. 

Remark: We have used the fact [8] that Ip(z)t /C< d(z, OD) < C. Ip(z)l in 

the proof of Lemma 2.5, where d(z, OD) is the usual distance from z E D to OD. 

LEMMA 2.6 Let r, L ,  {zi} and {7i} be the same as in Lemma 2.5. Then 

r = 7i/(X 7i) is a partition of unity subordinate to the cover {S(zi, r/2)}, and 

{ ~r A Dp(w)l. lp(w){ I/2 + lp(w);~r _< C. (2.2) 
Proof. Since {B(z i , r iLl} is an open cover of D, it follows that E 7i is 

bounded away from zero. Note that {B(z i , 3r)} is locally finite, so is { B ( ~ ,  r/2) } . 
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Then {Tj} c ~ implies that  {0i} r C m . For any z E D, since there are at most M(r) 

balls B(z j ,  r/2) containing z and each 7. satisfies (2.1) , it follows that  r ' i > 1 , 3 
satisfy (2.2) by a straightforward calculation. QED. 

3. HANKEL OPERATORS WITH C 1 SYMBOLS In this section, we 

discuss the boundedness and compactness of the Hankel operators Hf with f E CI(D). 

The main tool used here is the integral representations of solutions to the ~-- equation. 

LEMMA 3.1 Let 1:), p and I'~z,w) be the same as in section 2. There exist 

constants 5 and c such t ha t fo rany  z E D with [p(z) I_  6,  in the Euclidean ball Bn(z, 

6) we can perform a smooth change of variables r = r(w) with the properties 

(1) r l(W ) = p(w) - p(z) , r2(w) = I.~ ~ z , w )  : 

(2) I z - w l / c < _  Ir(w)l <_ c. l z - w l  for WE Bn(Z,6) and r ( z ) = O  ; 

(3) l / c  < I 8 r / 8  w I <_ c for w E Bn(z,6) , where O 7-/0 w denotes the Jacobian of r . 

For any w E D with Ip(w)I (_ 5,  in the ball Bn(w,6  ) we can perform a smooth change of 

~a,~ables ~ = ~(~) with ~l(Z) = p(z) - p(w) and ~2 = I m  ~ , w )  s~ch that (2) and (3) 
hold for )~(z). 

Proof. See [1, p. 125] or [14, p.208]. 

LEMMA 3.2 [1, 5] For e > O, let 

( t l +  e) a d t l . . . d t 2 n  

I ' k ' s ( e ) =  I _(1 ( I t l l + 1 � 8 9  + I t l2)k.  ltl s 
t l + e > 0  

where a, k, s are real, and a > -1.  Then 

(a) Io~,k,2n_ 1 = O(e 1 - k + a )  /f  k - a > 1 ; 

(b) Ia, k,2n_4 = O(e 3 - k + a )  /f  k - a > 3 ; 

(c) Ia, k,2n_3 = O(e 5 / 2 - k + a )  i f  k - a > 5 / 2 .  

(d) ~ ,k ,o  = O ( ~ - k + n + l )  i / k  - ~ > n + 1.  

Write sz(z,w ) = ~ .  It is obvious that 

Let hi(z,w ) be the functions given in Lemma 2.1. 

We define 

, (3.1) 

Iz-wl 2 = ~ sz~z,w).(wC--zi) . 

s(z,w) = ~ s ,(~,w) dwi ; 
1 

h(~,w) = ~ hz(z,w) dwi ; 
1 
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q(z,w) = ~whCz,~)/pCw) - ~ p(~) ^ hCz,~)/p(w)2; 
n-1 

L(z,~) = C n. ~0 %. [-PC~l/~Cz'~l]k+2" 8(~,w) ^ q(z,~) ~ ^ (~s ln-k-1 / I  z-~l 2(n-k), 

where a k are the constants defined in the equation (20) of [4, p.102] by letting N = 2, and 

c = (-llnCn-ll/2/(n-l)!. 

LEMMA 3.3 [4] If  u is a R-closed C0,1) form such that 

{p.u{ + {pll/2.  luA ~p[ ELl(D), then 

U(z) = ~u)(z) = JD u(w) ^ n(z,w) (3.2) 

is a solution to the equation ~ U = u and U E LI(D). 

Remarl~. In [4], Berndtsson and Andersson only proved the results for the ~ -  

closed (0,1)-forms with coefficients in C~(D) on bounded strongly convex domains D by 

letting h(z,w) = p~(w) in the definition of L(z,w) . As indicated in [4, p.104] , an 

application of the same process as in [4, p.101-103] yields our lemma for the ~ - closed 

(0,1)-forms with coefficients in CI(:D) on bounded strongly pseudoconvex domains D . 

Finally, by the same arguments as those given in [5, p.455--456] , one obtains the results in 

the Lemma. 

LEMMA 3.4 / f  fE CI(D) and I ~ f ^  ~pllp]l ' /2 + Ip.~)~ <_ C,  then, for 

0 < e < 1, it follows that 

Ip(z)l~'[ I D fA L(z,w)l. Ip(w)[-c dw < =, (3.3) sup 
zED JD 

~.[ I ~ f ^  L(z,w)l. Ip(z)l-e dz < | (3.4) Ip(~)l sup  
wED JD 

Proof. Note that I~(z,w)l >_ (Ip(z)l + Ip(~)l + IIm f(z,w)l  + Iz-wl2)/C. 
By direct computation, it follows that the coefficient of ~f(w) ^ L(z,w) is dominated by a 

linear combination of functions of the forms 

A 0 = Ip(w). ~ fCw)l/(lVCz, w)l Iz-wl2n-1) ; (3.5) 

Ak = (Ip(w)Df(w)l + I ~ f ^  ~p]). IP(w)l /(l~(z,w)l k+2. Iz-wl2(n-k)-l) , 
where 1 < k < n-1 . Again, from I~(z,w)l _> (Ip(z)l + Ip(~)l + lira F (z,~)l + 

Iz-wl2)/c  it follows that 

A k < C. (I p(w) Df(w) l + I D f ^  ~P])l p(w) l l /2/( l~(z,w) 15/2" I z-wl 2n-3) , 

where 1 < k < n-1 . By using the estimates in Lemma 3.2 and the coordinate system in 
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Lemma 3.1, one can easily check t h a t ~ ,  0 < i < ~-1, satisfy (3.3) and (3.4). Consequently, 

IOf^ L(z,w)l satisfies (3.3) and (3.4). QED. 

THEOREM 3.5 Let f E L2(D)n 64(D) s a t ~  the conditions in Lemma 3.4. 

Then the Hankel operator Hf  is bounded from H2(D) to L2(D) . 

Proof For g e /-/2(D), considering the equation 

o u = = g . o /  (*) 

It's obvious that g.Of is Y-c losed  and Ig.Of^ Opl.lpl 1/2 + I p . g . ~  e L2(D) . By 

Lemma 3.3, u = T(g.Of) is a solution to (*). Let To(g ) = T(g.Of) .  By Lemma 3.4, an 

application of Schur's test [7] yields that T O is a bounded operator from /-/2(D) to 

L2(D). Note that for g e H| f .g e L2(D) is a solution to (*). By the uniqueness of 

the solution orthogonal to /-/2(D), we have Hf(g) = (I-P)(f.g) = (I-P)To(g) . Since 

H | is dense [14] in /42(D), it follows that the boundedness of T O implies the 

boundedness of H f .  This finishes the proof. QED. 

THEOREM 3.6 For f e  CI(D)fl L2(D), i f  lO fh~p  [ �9 Ip[ 1"/2 + IP ~J~ -~ 0 

as Ip(z) l -~ 0,  then the Hankel operator Hf  is compact. 
Proof By the same reasoning as in the proof of Theorem 3.5, it suffices to 

prove the compactness of T O . Note that T O is an integral operator with the kernel Of(w) 
^ i(z,w) . Write t im = { zE D: Ip(z)l >_ 1 / m } ,  m =  1, 2, . - - ,  then {tim} is a sequence 

of compact subsets of D.  Let Xm be the characteristic functions of 12 m . Note that for 

each m ,  I Xm.Of^ L(z,w)] <_ C(m)/Iz-w ] 2n-1 . It follows from the Theorem in [14, p.360] 

that the operators T m with the integral kernels Xm(W).O f (w) ^ L(z,w) , m > 1 , are 

compact. Note that 

To(g) - Tin(g) = I n  (1- Xm ) ~f(w) ^ L(z,w).g. 

Since IOf ^ Opl . ]pl 1/2 + [p.O]l -~ 0 as Ip(z)l -~ 0 , it follows that V e > 0, there is an 

integer M such that when m> M,  ( 1 - X m ) ( l ~ f h 0 p l . l p l  1 /2+  Ip.0j~) < e.  Bythe  

proof of Lemma 3.4, there is a constant C such that for 0 < a < 1, 

I I(1- Xm ) Of(w) ^ L(z,w)l. Ip(w)l - a  dw( C.e. Ip(z)l -~ , (3.6) 
D 

I I(1-Xm) 0f(w) ^ L(z,w)l. Ip(z)l dz< Ip( )l (3.7) 
D 
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Again by using Schur's test [7], we have the operator norm II T O - Troll 2 <- C. e. It follows 

that T m -~ T O . Thus, the compactness of T m implies the compactness of T O . 

Consequently, Hf = (I-P) T O is compact. QED. 

Note that [13] the Bergman projection is bounded from LP(D) to HP(D) 

consisting of holomorphic L p-  functions in D ,  1 < p < | By the estimates in Lemma 3.4, 

an application of the L p -  version of Schur's test  (see [13, Lemma 5]) yields the following 

theorem. 

THEOREM 3.7 Let f e CI(D)n LP(D) . If  f satisfies the conditions in 

Theorem 3.5, then Hf is bounded from I'IP(D) to LP(D) ; I f  f satisfies the conditions in 

Theorem 3.6, then Hf is compact from I-IP(D) to LP(D) . 

Remark:. By using the integral representations of solutions to the ~ - 

equations constructed by Dautov and Henkin in [5], one can also obtain the results above. 

For the Schatten class Hankel operators, we have the following result. 

THEOREM 3.8 [10] For f e L2(D)n CI(D) and p > 2n , if both I ~f  h 

~PI " IPl 1//2--(n§ and I ~]]. tP] 1-(n§ l)//P are in LP(D), then the gankel operator 

H f is in the Schatten class Sp . 

Remarkr. If 7 E H2(D) , then the conditions in Theorem 3.5, Theorem 3.6 

and Theorem 3.8 are also necessary, and they are, respectively, equivalent to that 7 is in 

the Bloch space, the little Bloch space and the Besov space. For details see [9] and [10]. 

4. CARLESON MEASURES FOR THE BERGMAN SPACES HP(D) 

DEFINITION: For 1 < p < | we call a positive measure # on D an H p -  

Carleson measure if 

( ID [f[P d# )l/P <_ C.( JD [f lp  dv )l/P . 

LEMMA 4.1 net feLP(D) and r>0. If  Grp(Z ) = [B(z,r)1-1 IS(z,r) l f  I p dv 

is bounded on D, then the multiplication operator Mf (g) = f. g is bounded from H p to 

n p , and the operator norm IIMfHp < C.IIGrpHI| ]p. 
Proof. By Lemma 2.2, it is easy to check that Grp is bounded on D implies 

that Gsp is bounded on D for all s < r. Without lose of generality, assume r < e0/3 . 
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Following D.Luecking [11] , associate with each point z E D an open set E(z) = B(z,r/3). 
Let E2(z) = U { E(y): E(y) N E(z) ~ r } . Then E 2(z) = B(z,r). By Lemma 2.2, it follows 

that I E 2(z) l < C. IE(z) l , and for gE Hp(D), 

l#(z)lP <_ c .  Ig(z)l-l.IE(z)_ Igl p dr, 

the last inequality holds because each ~-~z) = B(z,r/3) contains a polydisc centered at z 

and the volume of the polydisc is comparable with I E(z)[ . 

Let d# = If  I p dr. By the assumption, p~E 2(z)) _( IIGrp]]~v-IE2(z)l . An 

application of Luecking's criterion [11, Lemma 1] yields that # is an H p-  Carleson 

measure. Thus, Mf is bounded from /-/P into L p. From the proof of Lemma 1 in [11] we 

have IIMfllp <_ C. II Grp]l l ip.  QED. 

LEMMA 4.2 Let f E  LP(D). If  Grp(Z )-~ 0 as p(z) ~ 0 , then the 

multiplication operator M/  is compact from HP(D) into LP(D). 

Proof Let K m = {  zE D: I p(z)] _> 1//m}, m> 1.  Then K m are compact 

subsets of D .  Let Xm be the characteristic function of K m . It is easy to check that 

M x m . f  are compact operators from H p to L p because each Xm. f has compact support 

in D. Note that M r -  M x m . f =  M(l_Xm) . f  , and Grp(Z ) ~ 0 as p(z) -4 0 implies that 

sup { IB(zx) , - l [  I(1-Xm)./IP d , } ~ 0  as m ~ .  
zED J B(z,r) 

By Lemma 4.1, we have IIM/- M~m./llp~ 0 as m-~ |  T h e r e f o r e ,  Mfis compact. QED. 

5. MAIN THEOREMS In this section, we prove the main theorems. 

TItEOREM A Let f E L2( D). Then the following are equivalent: 
(1) HI is bounded from I-P(D) to L2(D) . 
(2) For each r > O, Fr(z ) is bounded on D.  
(3) For some r > O, Fr(Z ) is bounded on D . 

(4)/admits a decomposition/=/1 +/2 with /1 ~ L~ and/2 ~ C~(D)n L~ ~uch that 

IP(Z)[1/2l ~f2 ^ ~P[ § IP(z)l l ~f21 is bounded on n ,  
and 

at(z) = 1/IB(z,r)I.RIz, d, is bounded /orsome r>  0 

Proof (1)=>(2) .  For each A e D, let SA(z ) = Ip(A)l(n+l)121~(z,A) n+l 
By Lemma 2.1, it follows that both SA(z ) and 1/SA(z ) are in H ~(D) . By using Lemma 
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2.1, Lemma 3.1 and Lemma 3.2, one can easily check that  Ils~ll2 <- o,  where C is a 

constant independent of ~ E D .  (See also Lemma 7.3 in [14, p.310] ) . If HI is bounded, 

then 

IIH/(S~)II2 = II f.S~ - P(/'S~)II2 = II(/- ~I"P(/'S~))'S~II2 <- C'IIH/II2 �9 
For each r > 0, by using the estimates in Lemma 2.1 and Lemma 2.2, one can easily 

check that  for z E B(X,r), ISx(z)] 2 > C]Ip(X)I n§  (For details see [9]) . Again by 

Lemma 2.2, we have [S)~(z)l 2 > C]] B(X,r) I for z e B(~, r ) .  Thus, 

{I B(~,~) I-I.IB(~:) I/- ~1. p(/. s~)12 d~ }1/2 

_< G I . I I U ,  ~I.P(Y.S~)).s~II2 <_ O2.11H/II 2 . 

Obviously, ~ I .  p( s~. / )  ~ H 2( D). It foUow that F ( ~ ) is bounded on D . 
(2) = >  (3)is  t r ivial .  

Now we assume (3). By Lemma 2.2 (2), one can easily check that  Fr(Z ) is 

bounded in D implies that  Fs(z ) is bounded in D for all s < r . Without lose of 

generality, we can let r < e016, where e 0 is the same constant as in Lemma 2.2(4) . Let 

L, {zj} and {r be the same as those in Lemma 2.5 and Lemma 2.6. By (3), for each j 

> 1 , there is a function hj e / /2( /9)  such that  

I B( ~ ' r) l - l  " I B( zj , r) ]/- hj[2 dr_< 4Fr(Zj)2. 

We define /2 = ~hj.r and /i =/-/2" To verify that /I and /2 satisfy (4), we use the 
arguments given by Luecking [12]. First of all, we show that  if z e B(zj ,  r/2)flB(Zk, r /2) ,  
then I hj (z) - hk(Z) l is bounded. As we did in the proof of Lemma 4.1,  

I ~ ( z )  - hkCz)l IBCz, rl2)1112 <_ (C.IB(~,#2)I hj-hkl2 ~v)1/2 

Since z. 

I B(Zk, r)f 

~- (O'IB(zj, r) lhj-  $12 dr) 112 + (C'IB(Zk, r) I hk-/12 dv )'/2 

_~ C.[ Fr(zC). IB(~, r)l 1/2 + F~(zk)" IB(zer)lll2]. 
, z k c B(z,r/2) , by Lemma 2.2 we have I B ( z j ,  r) l <_ c .  I B(z,r/2)] and 

<_ C. I B(z, rl2) l �9 Thus, 

Ihj(~)-h~(z)l _~ C. 8~,p { Fr(W ) }.  (5.1) 
Now we estimate f l  �9 To simplify notations, we write S(z) = B(z,r) . Note 
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that if B(z)flB(zj, r/2) r r  then z E B(zj, 3r) . By our construction of {zi} , one can 
easily see that for each z E D ,  there are at most M(r) balls B(zj, r/2) intersect B(z, r) .  
Thus, 

(IB(,) Ifl12 d')1/2= (IB(z) [ Z( f  -hJ)'r 12 dv)l/2 

<_s (~BCz))f-hfl 2. [r 2 dr) 1/2 (_ E ( IB(~ ' r//2)flBCz) )f - hj]2 dv )1/2 

< M(r). sup { Fr(W ) }. IB(z, 3r)l 1/2 . 
- ~ B ( z , 2 r )  

The last inequality is because B(zj, r/2) C B(zj) c B(z,3r) and fl(z,@ < 2r if B(~, r/2) 
n B(z) ~ r  and there are at most M(r) of the S(zj,  r/2) intersect B(z). Since IB(z,3r) l 
< C. ]B(z,r) l , it follows that 

(IS(z,r)l-l.IB(z)lfll2 dr) 1/2 < C. wEB(z,2r)SUp { fr(W ) }.  (5.2) 

Thus, IGr(Z)l <_ C. IIFrJl2| {S(zj ,r)}isanopencoverofDand ~ M(r) 
where Xj are characteristic functions of B( zj, r) . Then Xj <- , 

I | J j~-I Gr( O Ifll2dv<- jl~ B(~,r) Ifll2dv<- - zJ)' lB(9'r)l  

Consequently, we have fl E L2(D) . 
Now we estimate f2 " Fix a point z E D and let J be the set of integers j 

such that z ~ B(zj, # 2 ) .  Then f2(z) j j 5" (')'r ( ' )  Let us suppose for convenience 

that 1 E J and write 

i2(z) = ~1(.) + r. (~ ._  hl ) .r  jEJ 3 
Note that { hj } are holomorphic functions in D, then 

I'Of2(z)A'pllpl 1/2 + IP'~f21 = Ij~g(~-hl)'~r 1/2 + IP'j:j(hj-hi)'OCjl 

<_ c.Nr), sup { Fr(W) }, 
~ B ( . , 2 . )  

because J contains at most M(r) integers , [h.-h.[ < C. sup { Er(W ) } from (5.1) 
l 3 -  u~B(z,2r) 

and Cj satisfy the estimates in Lemma 2.6. Since f2 = f -  fl and f, fl E L2(D), it 
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follows that f2 e L2(D). This finishes the proof of (3)=>(4). 

Assume (4). By Theorem 3.5, Hf2 is bounded. By Lemma 4.1, Mfl(g ) = 

f l .g  is bounded from//2(/)) into L2(D). Therefore, Hfl= (I-P)Mfl  is bounded. Note 

that Hf= Hfl + Hf2 , then Hf is bounded. QED. 

THEOREM B Let f E L2(D). Then the following are equivalent: 
(I) Hf is compact from I-P(D) into L~(D). 
(2) For each r > O, FJz) ~ 0 as p(~) ~ O . 

(3) For some r > O, F(~) ~ 0 as p(z) ~ O. 

(4) f admits a decomposition f = fl + f2 with fl E L2 and f2 E Ct(D)fl L~(D) such that 

Ip(z)lV21~/2 ^ ~pl + Ip(z)ll~f21-~o as p(z)-~o, 

and G r( Z ) -~ 0 as p( z) .~ 0 for some r > O, where G r( Z ) is the same as in Theorem A . 
Proof. Let the notations be the same as those in the proof of Theorem A. 

Assume (1). Note that S)~(z) ~ 0 at every point z e D as Ip(/~)l ~ 0 and 

IIS~II <_ C. By a standard argument it follows that S~ -4 0 weakly in /P(D) as Ip(~)l -~ 

0.  Thus, Hf is compact implies that 

IIgf(S~)ll2 ~ 0 as Ip(~)l ~ 0.  
By the estimates in the proof of Theorem A,  we have Fr(Z ) -* 0 as p(z) .4 0. 

(2) =>  (3)is trivial. 

Assume (3). As we did before, without lose of generality, we can assume r < 

col6 . Note that (by Lemma 2.2) sup . { Ip(w)l }-~ 0 as p(z)-~ 0 . From the 
~B(z,2r) 

estimates given in the proof of Theorem A , it follows that f l  and f2 satisfy the 

conditions in (4). 

Finally, we prove (4)=>(1). By Theorem 3.6, Hf2 is compact. By lemma 4.2, 

Mfl is compact, and then Hfl= (I-P)Mfl  is compact. Therefore, Hf is compact. QED. 

For l < p < |  we write 

Fr, p(Z)=inf{ lB(z,r)l-l'f lf-hlP dv:hel-IP(D) }. 
B(z,r) 

THEOREM C. Let f e LP( D). Then the following are equivalent: 

(1) Hf is bounded from ItP(D) to LP(D). 
(2) For each r > O, Fr, p(Z ) is bounded on 0 .  
(3) For some r > O, Fr, p(Z ) is bounded on D . 



472 Li 

(4) f admits a decomposition f = fl + f2 with fl e LP(D) and f2 E C1(D)n L p such that 

IP(z)ll/2l ~f2 ^ ~P[ + ]P(Z)l i ~f21 is bounded on D, 
and 

Gr, p(Z ) = 1/IB(z,r)l .~. If11p dv is bounded for some r > O. 

E D, SA,p(Z ) = 

Ip(A)l(1-1/P)'(n+l)/9(z,A) n+l . By Lemma2.1, both SA,p(Z)and S-~l,p(Z) are in H 

| By the same arguments as those in the proof of Theorem A, it follows that IISA,pllp 

< C and ISA,p(Z)l p >_ 1/(C. IB(A,r)I) for z 6 B(A,r) , where C is a constant 

independent of z, A E D.  Thus 

{ I B(A,r) I - I"I  If- S~'I p }l ip A,p.P(f.SA,p) I dv <_ C.IIHf(SA,p)llp<_ C. llHfllp. 
n(a,r) 

It is known [13] that the Bergman projection is bounded from LP(D) to HP(D). Thus, 

~lp.  P(I. SA,p) e HP(/9). Therefore, Fr, p is bounded. 

(2) = >  (3) is trivial. 

Assume (3). The arguments in the proof of (3)=>(4) in Theorem A can be 

carried over word by word, except that L p integrals appear everywhere in place of L 2 

integrals, to give assertion (4).  

Finally, assume (4). By Theorem 3.7, Hf2 is bounded from HP(D) to LP(D). 

By Lemma 4.1 , one can easily show that Mr1 is bounded from //P(D) into LP(D) and 

so is Hfl= ( I -P)Mf l .  This finishes the proof of the theorem. QED. 

Similarly, we have 

THEOREM D Let fE LP(D). Then the following are equivalent: 

(1) Hf is compact from HP(D) to LP(D). 
(2) For each r > O, Fr, p(Z ) -~ 0 as p(z) ~ O . 
(3) For some r>O, Fr, p(Z )~0  as p(z)-~O. 

(4) f admits a decomposition f =  fl + f2 with fl e LP(D) and f2 6 CI(D)n L p such that 

Ip(z)lX/21Df2 ^ Dpl + Ip(z)llDf21-~o as p(z)~O, 
and ar ,  p(z  ) ~ o as p(z) ~ o for some ~ > O. 
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write 

6. THE BERGMAN METRIC BMO AND VMO For fE L2(D) and r > 0 ,  

MO,.ff, z) = IBC~,,')l-lIBCz, r ) l / - I  BCz'")l-l[ .' BCz, r)fdv 12 d,,. 
DEFINITION 8.1. We say that f E BMO(D) provided that MO~f,z) is 

bounded on D for some r > 0 ; we say that fE VMO(D) provided that MOr(f,z ) -~ 0 as 

z -~ aD for some r > 0 . It was proved in [9] that the definitions of BMO and VMO 
don't rely on the choice of r. 

Following D.Luecking, if fsatisfies the condition in Theorem A (3), then we 

say that f E BDA ; if f satisfies the condition in Theorem B (3) , then we say that f E 

VDA . 

THEOREM S.1. BMO( D) = BDA( D)N:~D-'~ ; VMO( D) = VDA( D)N'VD-A'~ . 

Proof. It is obvious that BMO(D) r BDA(D)N:B'IT-A~; VMO(D) c 

VDA(D)N'TD-A-(-~. To prove other inclusions, it suffices to prove that if a real function f 

E BDA (VDA) , then f E BMO (VMO) . By Lemma 2.2, there are constants c, s ,  r > 0 

such that 

B(z,s) C P(z, c. Ip(z)l, e. Ip(z)1112) c B(z,r). (8.1) 

To simplify notations, we shall write P(z) = P(z, c. I P(Z)I, c. I P(Z)I U2) . By the 

definition of Fr(Z ) , for each A E D, there is a h E H 2(D) such that 

-11 If- hi 2 dr< 2.Fr(A)2 IB(A,r) I B ( A , r )  - " 
By Lemma 2.2 and (6.1), one has 

I P(~)l-lIp(~)lf- hi 2 d ,  ~_ C.F~(A) 2 . (6.2) 

Note that P(A) is a polydisc centered at A and h E H2(D) ,  it follows that 

'P(A)[- l Ip(A)Jh-h(A)[2;V~'hP(AIi~iIp(~) i Imhi2dv '  

where Imh is the imaginary part of . us, o ea alued f ,  we have 

IP(A)I-1I Ih - h()~)l 2 dr< IP(,X)I-11 I Im(h- f ) l  2 dr< C.Fr()~)2. (6.3) 
P(~) P(A) 

By Lemma 2.2, (6.1), (6.2) and (6.3), it follows that 

[I B()~,s)]--lIB(A,s)if - h()') ] 2 dv ]1]2 ~ C. [] P()~) [ - l ip ( , \ )  I f - h()~) 12 dv ]1/2 

_< c.[I P() , ) l - l l  Ih - h(,X)l 2 dr] 1/2 + C.[IP(A)I-1I I f -  hi 2 dr] 1/2 
P(,X) P(,X) 
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_< 

By a standard argument, we have MOs(f, A) < C.Fr(A)2 . Consequently, fe  BDA (VDA) 
implies that fE BMO (VMO). This finishes the proof of the theorem. QED. 

COROLLARY For fe  L2(D) , Hf and H~ are bounded if and only if fE 
BMO ; Hf and H~ are compact if and only if fe  VMO. 

Remark. Note that [3] Hf and H~ are bounded (compact) if and only if the 

commutator [Mr,  P] is bounded (compact) on L2(D). The Corollary gives us 

function-theoretic characterizations of the boundedness and compactness of [Mf, P] . 

7. FURTHER DISCUSSION Let P be the orthogonal projection from 

L2(C n, d#) to the Fock space //2(cn, d#) with d# = (21r)-nexp(-Iz12/2) dv and dv the 

usual Lebesgue measure on C n. For fE L2(f n, d~) , consider the Hankel operator Hf(g) = 

( x - P ) ( f . g )  . If fe  ~(r and I~]l e L| n) , for any polynomial 
equation 

~u = ~(f. g) = g. ~f. 
By Proposition 10 in [4], 

~(z) = T(g. af )  -- c .  I e(z" ~- I  cn ~12)/2"g �9 a/^ 

g ,  consider the ~ -  

(**) 

2 -k al z-wl2^(~al wl 2) n-1 
k<n k!. [z - wl 2n-2k 

is a solution to (**) and u(z) is orthogonal to //2(Cn, d#) . Let To(g ) = T(g.~]). Then 

H i ( g )  = ~ = T ( ~ / . g )  = ro(g ). 
Let q(z,~v) denote the integral kernel of T o . B y  direct computation it fonows that 

I Q(z,w) l <- C. e (Rez" ~-I wl 2)/2. (I z-wl 1-2n + i z_w ]-1 ). 

Thus 

e -lzl2/4" I Q(z,~)l "e I~vl2/4 <_ c'e-lz-wl214(lz-wll-2n+ Iz-wl-1). (7.1) 

Denote the right side of (7.1) by Q o ( z , w )  . Note that e-lz12/4(Iz11-2~+ Iz1-1) is in 

LI(c n, dr) . It follows that the integral operator with kernel Q0 is a bounded convolution 

operator on L2(C n, dr). Thus T O = Hf is bounded from /./2({:n, d#) to L2(r n, d#). 

Similarly, we can prove that if Df-~ 0 as I z] ~ | then the Hankel operator Hf is 
compact. 
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Finally, we note that our methods and results can be extended to the 

weighted Bergman spaces / f (D,  I Pl a), a > -1, without essential difficulties on bounded 

strongly pseudoconvex domains D with smooth boundary. 
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