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Abstract. An atomic commit protocol can ensure that all participants in a distributed transaction reach consistent 
states, whether or not system or network failures occur. The atomic commit protocol used in industry and academia 
is the well-known two-phase commit (2PC) protocol, which has been the subject of considerable work and technical 
literature for some years. 

Much of the literature focuses on improving performance in failure cases by providing a non-blocking 2PC that 
streamlines recovery processing at the expense of extra processing in the normal case. We focus on improving 
performance in the normal case based on two assumptions: first, that networks and systems are becoming increas- 
ingly reliable, and second, that the need to support high-volume transactions requires a streamlined protocol for 
the normal case. 

In this paper, various optimlzations are presented and analyzed in terms of reliability, savings in log writes and 
network traffic, and reduction in resource lock time. The paper's unique contributions include the description of 
some optimizations not described elsewhere in the literature and a systematic comparison of the optimizations and 
the environments where they cause the most benefit. Furthermore, it analyzes the feasibility and performance of 
several optimization combinations, identifying situations where they are effective. 

Keywords: agreement protocols, distributed systems, transaction management, SNA LU 6.2, communication 
protocols, commit protocols, recovery, fault tolerance 

1. Introduction 

A distributed transaction is the execution of one or more statements that access data dis- 
tributed on different systems. A distributed commit protocol is required to ensure that the 
effects of  a distributed transaction are atomic, that is, either all the effects of the transaction 
persist or none persist, whether or not failures occur. 

A well-known commit protocol is the two-phase commit (2PC) protocol [9, 17]. This 
protocol ensures that all participants commit if and only if all can commit successfully. 
The two phases are the voting phase and the decision phase. During the voting phase, one 

*Disclaimer: Some of the optimizations described in this paper may never be shipped in an IBM product. 
Others may change before they are shipped. 
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Figure 1. Commit performance optimization for different environments. 

participant in the transaction, known as the coordinator of the commit protocol, asks all the 
other participants to prepare to commit. A participant votes YES if it can guarantee that 
it can perform the outcome requested by the coordinator, either commit or abort, whether 
or not system or network failures occur. If a participant is unable to prepare to commit for 
any reason, it votes NO. During the decision phase the coordinator propagates the outcome 
of the transaction to all participants: if all participants voted YES, the commit outcome is 
propagated; if any participant voted NO, the abort outcome is propagated. Each participant 
in the transaction commits or aborts the effects of the transaction based on the outcome. It 
can then release locks on local resources, such as databases or files, making them available 
to other transactions. 

The performance of a commit protocol substantially affects the transaction volume that a 
system can support. As pointed out in [29], for transaction processing applications such as 
hotel reservations, airline reservations, stock market transactions, banking applications, or 
credit card systems, the commit processing takes up a substantial portion of the transaction 
time. For example, it was shown in [29] that the commit processing part of a transaction 
updating one record of a general-purpose database typically represdnts about a third of 
the transaction duration. For distributed systems where network messages and delays are 
involved, the relative commit cost is, on average, much higher. 

A faster commit protocol can improve transaction throughput in two ways: first, by 
reducing the commit duration for each transaction, and second, by causing locks to be 
released sooner, reducing the wait time of other transactions. 

The problem of improving 2PC performance can be met using two different approaches 
(see Fig. 1). The first approach concentrates on reducing recovery time, and therefore lock 
time, for failure cases. In an environment prone to failures, transactions can be blocked 
indefinitely waiting for the recovery of a failed site. Since it is unknown whether the 
transaction will commit or abort, resource locks cannot be released. Thus, other transactions 
can also be blocked waiting for the locked resources to become available. Much research 
[5, 27] has concentrated on providing a (nearly) non-blocking 2PC variation, i.e., one that 
adds extra messages to the basic 2PC protocol in order to reduce the blocking delay required 
to resolve the transaction outcome following a failure. Thus, the normal non-failure case 
is slowed down to prevent intolerable delays following failures. 

The tradeoff of reducing recovery time at the expense of increasing the duration of normal 
commit operations may not be acceptable in a highly reliable environment characterized 
by high-volume transactions. The second approach focuses on optimizing the basic 2PC 
protocol for this environment. The rest of this paper describes several optimizations that 
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reduce the number of messages and/or local processing required for the non-failure case, 
sometimes at the expense of greater recovery processing and delay for the failure case. 
These optimizations take advantage of properties that are common in real-world distributed 
transactions. 

For the failure cases (hopefully, rare) where the protocol outcome is blocked, certain par- 
ticipants might choose not to wait for recovery processing to discover the outcome because 
of valuable locks being held [23, 20]. Rather than waiting, these participants unilaterally 
commit or abort the transaction. This heuristic decision may damage the consistency of 
the transaction. Heuristic decisions and their effect on 2PC reliability have been, to our 
knowledge, little addressed in the literature, but they are considered a practical necessity 
in the commercial environment. Heuristic decisions are discussed in Section 3. A com- 
mit protocol and its optimizations should be able to cope with these heuristic decisions: 
recognize them and report them reliably. The need for heuristic decisions cannot be entirely 
avoided even with a "so-called" non-blocking 2PC protocol, although the window in which 
they might occur is reduced. 

This paper presents several 2PC optimizations, and analyzes them in terms of reliability 
(potential for heuristic decisions), number of log writes, network traffic, resource lock 
time, and other tradeoffs. Its unique contributions include a description of IBM's Presumed 
Nothing protocols and several new optimizations, particularly ones that affect peer-to-peer 
transactions (i.e., Leaving Inactive Partners Out, Last Agent), and ones dealing with heuristic 
decisions (i.e., Wait For Outcome, Vote Reliable). It also shows how resource managers 
can use their specific characteristics to further improve the performance of the commit 
processing (i.e., Vote Reliable optimization). An interesting optimization (Long Locks) 
that uses network capabilities to further improve the 2PC performance is also described. 
Finally, the paper presents how certain combinations affect the performance, correctness, 
and reliability of the 2PC processing. Some of these optimizations have been designed 
on top of IBM's LU6.2 communication protocol. However, their presentation here is 
independent of any communication protocol. LU6.2 implementation specifics for some of 
these optimizations can be found in [31] and [21]. 

Section 2 presents the distributed transaction model used in this paper to describe trans- 
actions and commit processing. Section 3 discusses the aspects of commit processing that 
most affect 2PC performance. Section 4 introduces a 2PC protocol that is used as a baseline 
for comparing the 2PC variations introduced in the rest of the paper. Section 5 presents 
the Presumed Abort (PA) and IBM's Presumed Nothing (PN) protocols and their use- 
fulness within the commercial sector. Section 6 discusses several optimizations that are 
refinements of PN or PA or both, along with their advantages and tradeoffs in different 
environments. Section 7 describes the effects of combining these optimizations. Section 8 
provides a performance analysis of the presented optimizations. Section 9 reviews related 
work, and Section 10 concludes the paper. 

2. Distributed transaction execution 

A distributed system consists of a set of computing nodes linked by a communications net- 
work. The nodes of the system cooperate with each other in order to process distributed com- 
putations. For the purpose of cooperation, the nodes communicate by exchanging messages 
via the communications network. 
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Figure 2. A process tree within the client/server model. 

A user's application program initiates or participates in a distributed computation which 
consists of  a set of  transactions executed in a serial fashion. A transaction (or logical unit of  
work, LUW) consists of a set of operations that are executed to perform a particular logical 
task, generally making changes to data resources such as databases or files. The changes to 
these resources must be committed or aborted before the next transaction in the series can 
be initiated. 

A distributed computation is associated with a tree of processes 1 that is created as the 
application executes. The process tree links the processes that perform the transactions of 
the distributed computation. Processes may be created at remote nodes (and even locally) 
in response to the data access requirements imposed by the application program. Conse- 
quently, there exists a creator-createe relationship between the processes. The tree may grow 
as new sites are accessed by the transactions. Subtrees may disappear either in response to 
application logic or because of site and communication link failures. 

Figure 2 shows a process tree together with the associated distributed computation 
t = {tl, t2, t3, t4, t5, t6, t7} as it is executed within a hierarchical model, such as that usu- 
ally associated with client/server computing. In this model all the transactions t 1 . . . . .  t6, t7 
constituting the computation t are initiated by the root process representing the client. The 
server processes are participating in the computation by executing requests from the client. 
They neither initiate work independently nor issue requests to the client. Servers can is- 
sue requests to additional servers on behalf of the client; the subordinate servers therefore 
treat them as client processes. All requests flow in one direction, from client to server to 
subordinate servers. Thus, in this model the process tree has a fixed hierarchical structure 
that grows in only one direction (downstream). In addition, the client process at the root 
is the overall initiator of  the commit protocol (2PC). Consequently the commit protocol 
tree is exactly the same as the process tree so that creator-createe relationship implies the 
coordinator-subordinate relationship for the purpose of executing the commit protocol. 

Figure 3 shows the distributed computation t within an alternative, peer-to-peer model 
[31]. In the peer environment each process has the same privileges and rights as any other 
process in the process tree. Any program can initiate a transaction. Two programs can 
initiate work independently with or without any communication between them. This is in 
contrast to the hierarchical model, where the client starts the transaction and the servers wait 
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Figure 3. A process tree within the peer-peer model. 

until they get requests from clients or other servers. For example, in Fig. 3, transactions 
tl ,  t2, t3 are initiated by the root process pl ,  transaction t4, t5 by process p7, transaction 
t6 by process p4, and transaction t7 by both p3 and p2. Any participant in the transaction 
can initiate the commit protocol and thus become the root of the transaction commit tree. 
Therefore, the member of the process tree that serves as the coordinator can change from 
one transaction to another. The coordinator-subordinate relationship is established at the 
beginning of commit processing and endures only for the current transaction. This ability 
to allow any participant to coordinate the commit procedure can be particularly useful if the 
request that starts a particular distributed transaction comes from an unreliable node, such 
as a workstation that is frequently turned on and off. In this case, it may be advantageous 
to have more reliable hosts coordinate the commit procedure [4, 25], since they are more 
likely to continue to be available when failures and recoveries cause substantial delays in a 
commit procedure. 

As shown in Fig. 4, a process participating in a transaction accesses local resources such 
as databases and files. A remote request is sent via the communication network 2 to a remote 
process, which can access either local resources or additional remote resources. 

Once the computations of a transaction are completed, the application instructs the trans- 
action manager (TM) of its site to initiate and coordinate the commit protocol. Two types 
of components participate in 2PC protocol: local resource managers (LRMs), such as 
database and file managers, which have responsibility for the state of their resources only, 
and transaction managers (TMs), which manage multiple participants, including both local 
resource managers and other remote transaction managers. 

The TMs and LRMs that participate in 2PC include one coordinator and one or more 
subordinates. The coordinator is the TM acting on behalf of the process that initiates a 
commit operation; a subordinate is either an LRM or a remote TM that is acting on behalf 
of another process in the distributed transaction. Remote TMs may also have subordinate 
LRMs and TMs. The coordinator is the one that coordinates the final outcome of the 
commit processing. The coordinator must arrive at a COMMIT or ABORT decision and 
propagate that decision to all subordinates. Subordinate TMs propagate the decision to their 
subordinate TMs or LRMs. Thus, the subordinates defer to the coordinator for the result of 
the commit decision. 
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Figure 4. Components involved in a transaction and transaction commit tree. 

3. Two-phase commit performance considerations 

This section describes aspects of a distributed 2PC protocol that have the greatest impact 
on performance and reliability: network traffic, logging, and heuristic decisions. 

Network traffic 

The 2PC protocol involves network traffic to convey instructions from the coordinator TM to 
subordinate TMs and to convey the responses from the subordinates back to the coordinator. 

Any message that is sent over the network slows down the commit protocols since 
it adds network transit delays. Several of the 2PC optimizations described later in this 
paper reduce commit time by reducing the number of messages sent. Sending messages 
to different participants in parallel also reduces the delay caused by network traffic. In 
some cases, reducing the number of messages and parallelism are in conflict (see last-agent 
optimization). 

Logging 

Participant TMs and LRMs log information about intermediate states of a commit operation 
in order to be able to recreate the state of the transaction after a system failure. Logged 
information is data written in non-volatile storage that can be used to figure out how to 
return distributed resources to consistent states following the loss of working memory of 
the transaction state. 

During forced log writes, the 2PC operation is suspended; the TM does nothing until 
the record is guaranteed to be in stable storage. Non-forced log writes do not suspend the 
2PC operation but are not guaranteed to survive a system failure. A non-forced log write is 
written to nonvolatile storage when the next forced log write occurs, or when some other 
log manager event occurs, such as log buffer overflow. Since non-forced log writes are 
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not guaranteed, information that is vital for correct processing after a system failure must 
be forced. However, forced writes are not required when the logged information can be 
recreated after a failure by recovery processing. 

A 2PC performance goal is to minimize the number of times a log write is forced. A 
forced log entry slows down commit protocols because the system waits until the entry is 
written to nonvolatile storage. Minimizing forced log writes and conducting extra recovery 
processing to regain the lost information is one way to optimize the normal, non-failure 
case rather than the failure case. 

Heuristic decisions 

If one or more of the systems involved in a transaction fails during a two-phase commit 
operation, there can be substantial delays before the operation completes and the affected 
resources are available for use by other transactions. Because these delays can cause 
business to be lost, most commercial systems give an operator a way to force a blocked 
transaction to complete. In the process, the operator must decide whether to commit or abort 
the changes to affected data resources. Once a two-phase commit operation has started, 
either choice runs the risk of causing heuristic damage, that is, of making the local resources 
abort when the rest of the transaction commits, or vice versa. 

Consider an airline reservation database with the records for a particular set of planes 
locked waiting for a transaction to complete. The operator starts getting calls from irate 
travel agents, who want to sell tickets on those airplanes. On investigation, the system 
operator learns that the system coordinating the transaction has failed, with an expected fix 
time of two hours. To free the data records for use by other transactions, the operator forces 
the transaction to complete locally, making a heuristic decision to commit the local changes. 
Later it turns out the operator made the wrong choice, since the rest of the transaction aborted. 
Finding and fixing inconsistencies can be time-consuming and expensive. A business may 
find it necessary to risk heuristic damage and database inconsistency for one transaction 
in order to make the database available for other transactions. Whether to allow heuristic 
decisions involves business tradeoffs between the cost of fixing database inconsistencies 
and the cost of missed opportunities. 

A heuristic decision is usually taken by a system operator (or programmed operator) in 
the absence of a direct command from the commit coordinator. If a heuristic decision is 
required, it should be done in consultation with the system operators of the other systems 
that were part of the distributed transaction. A two-phase commit protocol that detects and 
reports damage at least simplifies the task of identifying problems that must be fixed. 

A simple case of heuristic damage reporting is shown in Fig. 8. More complex cases are 
shown in Figs. 23 and 24. 

4. Baseline two-phase commit 

This section illustrates the effects of network messages and required log writes [22, 23] on 
the performance of a basic distributed 2PC protocol [9, 17] that is used as a comparison 
baseline for the optimizations that follow. 

In the first, or voting phase of two-phase commit, the coordinator issues prepare messages 
in parallel to all subordinates to determine whether they are willing to commit. Subordinates 
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may be LRMs or remote TMs. Each subordinate votes YES or NO indicating its willingness 
to commit or abort the transaction. BeforevotingYES,asubordinateforce-writesaprepared 
log record that ensures that it can successfully commit or abort the transaction, even if a 
system failure causes it to lose working memory of the transaction. Thus, a database 
manager acting as a subordinate forces enough information so that it can either recreate or 
undo the changes made during the transaction. A TM force-writes enough information so 
that it can initiate recovery processing following a failure, information including the identity 
of the coordinator, the identities of subordinates, and the state of the 2PC operation. 

A YES vote places the subordinate in an in-doubt state, implying that it will neither 
commit nor abort the transaction without an explicit order from the coordinator. If  a 
subordinate decides to abort the transaction, it force-writes an abort log record and sends 
a NO vote to the coordinator. Since a NO vote defines the outcome of the transaction, the 
subordinate does not need to wait for the coordinator decision any more. Therefore, the 
subordinate aborts the transaction, releases all its locks, and then forgets the transaction. 

The second, or decision, phase begins after the coordinator receives all expected votes. 
If all subordinates voted YES, the coordinator decides to commit; otherwise it decides 
to abort. The coordinator propagates the decision to all subordinates as either an order to 
commit or an order to abort. Subordinates that voted to abort during phase one are not 
included in the second phase since they already know the outcome. 

Because the coordinator's decision needs to survive failures, a commit or abort log record 
is force logged before the decision is propagated to all its subordinates. The completion 
of the force-write takes the transaction to its committing or aborting state. Each subordi- 
nate, after receiving the commit/abort order from the coordinator, moves into the commit- 
ring/aborting state, force-writes a commit/abort log record to ensure that the transaction 
will be committed/aborted, and then sends an acknowledgment (Ack) message back to the 
coordinator indicating that the subordinate will commit/abort as the coordinator requested. 
The subordinate then commits/aborts, and forgets about the transaction. The coordinator, 
after collecting acknowledgment messages from all subordinates that voted YES, writes a 
non-forced END log record and forgets the transaction. The END log record indicates that 
all subordinates have successfully completed the commit processing and thus, no recovery 
processing is required if a failure occurs. 

Figure 5 shows a time sequence of the 2PC protocol for a coordinator with one subordinate. 

Coordinator Subordinate 

Prepare 
o- -  mo 

*leg Prepared 
Vote YES 

o 4 o 

*log Committed 
Commit 

*log Committed 
Ack 

o ,  o 

log END 

Log record is #orce-written. 

Figure 5. Simple two-phase commit processing. 
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Coordinator Cascaded Subordinate 
Coordinator 

Prepare Prepare 
~o 

Vote YES 
04 
*log Committed 

Commit 

Ack 
o~ 
log END 

Log record is force-wr i t ten.  

Vote YES 
o4 

*log Prepared 

~o 
*log Committed 

Commit 
o 

o4 
log END 

~o 
*log Committed 

Ack 
-o 

~o 

*log Prepared 

Figure 6. Two-phase commit processing with intermediate coordinator. 

A subordinate agent may also function as a cascaded (intermediate) coordinator to down- 
stream subordinates. The coordinator, cascaded coordinators, and remaining subordinates 
form a transaction commit tree. The cascaded coordinator propagates messages from the 
coordinator downstream and collects responses from its subordinates to send back upstream 
to the coordinator. Figure 6 shows a time sequence of the 2PC protocol with a cascaded 
coordinator. A participant in the tree does not generally know whether its coordinator is 
the root of the commit tree or a cascaded coordinator, just as a coordinator does not know 
whether its subordinates are cascaded coordinators or leaf subordinates. 

Basel ine  s u m m a r y  

The overall cost of the baseline 2PC protocol for the commit case is: each subordinate 
writes three log records (one prepared record, one committed/abort record and one END 3 
record--the prepared and the committed records are forced) and sends two messages. The 
coordinator sends two messages to each immediate subordinate and writes two log records 
(one committed record and one END record--the committed record is forced). For a 
transaction commit tree with n participants the cost is 4(n-l)  messages, 2n-1 forced writes 
and n non-forced writes. 

The basic 2PC protocol survives failures and derives a consistent single outcome for 
a transaction. However, many commercial products minimize the number of message 
exchanges and forced writes to optimize for high-volume, performance-sensitive distributed 
transactions. The next section describes two variants of the basic 2PC protocol and discusses 
the impact of heuristic decisions and heuristic damage notification. 
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5. Two-phase commit variations 

Presumed Nothing (PN) 

Presumed Nothing was developed in the mid 1970's for the peer-to-peer environment that 
is supported by LU 6.2 (also known as APPC) [31, 32] and initially by LU6.1 [24]. The 
PN design effort was done independently from the 2PC effort [34]. PN was designed 
and developed for the commercial environment and, so far, IBM has implemented it in 
CICS/MVS 4 [6], and VM/ESA [20]. 

The peer-to-peer environment has led to the following unusual feature of PN. Any par- 
ticipant in the transaction can decide to initiate a commit operation and thus become the 
root of the transaction commit tree (the coordinator). Thus, the member of a collection of 
cooperating processes that serves as the coordinator can change from one transaction to 
the next. Since the communicating processes are considered peers, there is no hierarchi- 
cal relationship among them that determines the best place to initiate commit processing; 
therefore it is left to application design to determine which process should be the commit 
coordinator for a particular transaction. It is an error for two participants to initiate commit 
processing independently for the same transaction, since that would mean two TMs owning 
the commit decision; if this occurs, the transaction aborts. 

As a result, the coordinator of a particular commit operation is not known in advance; it 
is only known once 2PC processing starts. 

Since it was designed for a real-world environment with intense demands on data re- 
sources, the PN protocol explicitly accommodates heuristic decisions resulting from intol- 
erable delays. Since there are situations where heuristic decisions need to be made, the 
PN designers felt it was important for the root coordinator to be informed of any heuris- 
tic damage that occurred, i.e., any heuristic decision inconsistent with the outcome of the 
transaction. 

The primary impact of these design decisions on the PN protocols is that the coordinator 
(or cascaded-coordinator) must log a commit-pending record before sending the prepare 
message to subordinates. This is necessary because the coordinator must remember that 
there are subordinates. The subordinates may be waiting for the outcome or may have 
made heuristic decisions. The coordinator is responsible for initiating recovery processing 
both to allow the subordinates to complete commit processing and to find out whether they 
made heuristic decisions. 

In Fig. 7, the changes from Fig. 6 are highlighted. The need for accurate reporting causes 
the application at the root of the transaction commit tree to be kept in suspense about the 
outcome of the 2PC operation until all acknowledgments are collected. If the application 
were informed earlier, it could proceed on the assumption that the entire transaction were 
committed or aborted, when actually heuristic damage might have occurred. Figure 8 
illustrates PN heuristic damage reporting. 

Thus, PN protocols provide reliable reporting of damage at the expense of an extra log 
force and collecting acknowledgments from all subordinates. However, to offset these 
performance penalties, PN, as implemented in LU 6.2, includes a number of other opti- 
mizations described in the next section: last agent, long locks, vote read only, and wait for 
outcome. 
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Coordinator Cascaded 
Coordinator 

*log Commit- 
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Prepare 
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* log Commit-Pending 

Prepare 
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Vote YES 
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*log Committed 

Commit 
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Subordinate 

*log Prepared 

Ack 
oI 
log END 

Log record is force-wr i t ten.  

Vote YES 
oI  

*lag Prepared 

~o 
*log Committed 

Commit 
o - -  

oq 
log END 

,o 
*]og Committed 

Ack 
o 

Figure 7. Presumed nothing commit processing with intermediate coordinator. 

Presumed Abort (PA) 

Presumed Abort [22, 23] is an extension of the basic 2PC protocol that has been widely 
studied in academia and industry. 5 It has been implemented by a number of commercial 
products, 4 i.e, Tandem's TMF [33], DEC's VAX/VMS [1, 16], Transarc's Encina Product 
Suite [28], and Unix System Laboratories' TUXEDO [14], and is now part of the ISO-OSI 
[35] and X/Open 4 [3] distributed transaction processing standards. PA was developed for 
the R* distributed database project [18, 19]. In the R* client-server model, the participants 
have fixed requester-server roles. Servers initiate no work unless the requester asks for it. 
Servers never ask their clients to act in the role of server. The coordinator is the TM of the 
client, and the subordinates are the servers. 

Like the baseline 2PC, PA does not log before sending the Prepare message. Since the 
PA processing involved in successfully committing a transaction is the same as that shown 
for basic 2PC in Figs. 5 and 6, no flow diagram is shown here for the commit case. 

Unlike the baseline 2PC, a subordinate does not have to force write an abort record before 
acknowledging an abort command. If a prepared record is found on its log after a crash, the 
subordinate initiates recovery processing with its coordinator. Similarly, the coordinator 
does not have to force write the abort record. If the coordinator has no information about 
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Coordinator Subordinate 

Log Cornnit pending 

Prepare 
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Heuristic Damage 

04 

Log EHD 

Damage reported 
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heuristic damage 

Heuristic decision 
to commit~ 
*log heuristic commit 

~o 
Damage detected and 
reported to operator 
THreturns control to 
TP with the indication of 
heuristic damage 

-0 

Log END 

Figure 8. Heuristic damage example. 

Coordinator Subordinate 

Prepare 

*log Prepared 
Vote YES 

o4 o 
NO LOGGING 

Abort 
o- -~o 

Crash] 

Recovery: In doubt 
o4 --o 
Recovery reply: abort 

o- -~o 
Log End 

*: Log record is force-written. 

Figure 9. Presumed abort with an aborted transaction. 

the transaction on its log, it presumes that the transaction aborted and tells the subordinate 
to abort; hence the name presumed abort. 

The subordinate (server) initiates recovery processing when it finds itself in doubt after 
a failure. This is necessary since the coordinator may have no memory of  the transaction if 
it also failed. 

Differences between presumed abort and the baseline 2PC protocol are highlighted in 
Fig. 9 for a transaction that aborts, followed by a subordinate failure. This in contrast to 
the baseline 2PC coordinator, which is responsible for initiating recovery and therefore 
must force an abort log record before sending the abort message to the subordinate. The 
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presumed abort coordinator performs no logging at all in this case, since the subordinate 
can initiate recovery. 

The PA protocol incorporates the read-only and leave-inactive-partners-out optimizations 
described in the next section. 

In R*, heuristic decisions that caused database inconsistencies were only reportedto the 
immediate coordinator, which is not necessarily the root of the tree, and to the subordinate 
system's operator. This meant that the root coordinator might be told the transaction 
committed successfully when it had not. This was considered acceptable because heuristic 
decisions did not happen frequently. 

The optimizations developed by PA for the client-server environment have been gener- 
alized to be incorporated in the peer-to-peer model [21]. 

6. 2PC optimizations 

This section describes several optimizations to the PA or PN protocols or both, some of 
which have been previously published [22, 23, 9, 31]. These optimizations are tuned 
toward the normal non-failure case. See [21] for a description of the way some of these 
optimizations fit with LU 6.2's half-duplex conversational model. 

Our analysis assumes that we are dealing with a transaction tree with n participants unless 
otherwise noted. 

Read only 

A partner that has participated in a transaction, but has not performed any updates, is allowed 
to vote read-only. This vote implies that the effects of commit and abort outcomes would 
be identical for that subordinate. That partner is left out of the second phase of the commit 
processing and avoids any log writes [22, 23]. 

A cascaded coordinator is allowed to vote "read-only" if and only if all its subordinates 
have voted read-only; otherwise it needs to learn the outcome in order to propagate it to the 
subordinates that did not vote read-only. 

For an environment that is dominated by read-only transactions this optimization pro- 
vides enormous savings, since it reduces the commit operation to a one-phase commit 
operation. 

This optimization is used in both the PA and PN protocols. The PA protocol is especially 
optimized for this type of transaction: PA performs no logging at all if all subordinates vote 
read-only. Figure 10 illustrates the read-only optimization with the PA protocol. PN still 
has the coordinator log a Commit-pending record, but the subordinate performs no logging. 

However, this optimization has some drawbacks. First, the read-only partners are not 
informed of the final outcome of the transaction, which could cause undesirable side effects 
if the applications are written to use this information in any way. Second, the read-only 
optimization can cause serialization problems. A subordinate can receive a prepare message 
before it is finished with its part of the transaction. In the peer-to-peer environment it is 
allowed to finish before it votes. Consider the case where participants Pa and Pb are 
subordinates to a common coordinator. Both receive prepare messages. Pa votes read- 
only and releases locks before Pb has finished with the transaction. Pb needs to access a 
resource that Pa unlocked, but another unrelated transaction has locked the resource and 
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Figure 10. Partial read-only commit processing. 
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Figure 11. Equivalent read-only trees in terms of messages and log writes. The participants that vote read-only 
(or vote ok-to-leave-out) are marked "(RO)." 

changed it. When Pb gains access to the resource, the resource is not the same as it was 
when Pa unlocked it. Thus, use of the read-only optimization prior to global termination 
of a transaction may violate two-phase locking and serialization rules, and may cause the 
transaction to behave incorrectly. 

However, these serialization problems do not occur in a requester/server environment, 
since the servers do not initiate independent work and the requester does not initiate commit 
processing until the transaction work is complete. 

The tree topology can affect whether or not a participant in the tree can vote read-only 
because a participant cannot vote read-only if any of its subordinates voted YES or NO. 
Figure 11 shows two different tree topologies. In the right tree, all participants make the vote 
read-only decision independently. In the left tree, Pc's ability to vote read-only is affected 
by the votes of Pd, Pe, and Pf. However, if the two trees have the same set of participants 
voting read-only, the savings in messages and log writes are identical. 

This equivalence simplifies the performance analysis for complex transaction commit 
trees with read-only partners, since the savings are associated only with the partners voting 
read-only. For a transaction commit tree of n members and m participants that vote read- 
only, the savings amount to 2m forced-writes and 2m messages over the basic 2PC protocol. 
Thus the performance of the optimization is affected only by the number of  participants 
that exercise the optimization, not by the total number of commit tree members. 
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Figure 12. Transaction tree partitioned because of left our partners. Both programs Pd and Pe are accessing the 

same database, DBx. 

Leaving inactive partners out (OK-TO-LEAVE-OUT) 

In a model where servers respond only to requests and do not initiate any work of their 
own, commit processing may be optimized if subordinates that have not participated in a 
transaction are left out of the 2PC protocol. A form of this optimization was originally im- 
plemented in R* [ 18]. In this section we briefly described the adaptation of this optimization 
for PN. Greater detail is presented in [21]. 

During a normal 2PC operation, the coordinator includes all partners as subordinates, 
whether or not it has exchanged data with them during this transaction. With the OK- 
TO-LEAVE-OUT optimization, a coordinator leaves out any partners with which it has 
exchanged no data during the transaction, based on the assumption that they have therefore 
not participated in the transaction. When a partner is left out, the coordinator does not send 
it the Prepare or Commit messages; nor does it have to wait for the Vote and Ack replies. 
Any intermediate coordinator in the tree can leave out its inactive subordinates as well. 

This optimization is easy to include in PA, since PA is based on a requester-server model. 
It is more difficult to include in PN, since PN assumes a model of independent peers. In PN, 
the more general case where any partner can be left out if it has not exchanged data with the 
commit coordinator does not work, since the partner may have started work independently. 
The configuration in Fig. 12 illustrates this situation: assume programs Pd and Pe both 
initiate a commit operation, and Pa has been left out of the current transaction by both 
Pb and Pc. The two commit operations would occur independently, and might come to 
different results. If  a program from one subtree touched the same resources as a program 
from the disjoint subtree, damage could occur, since the changes from both programs would 
appear to belong to the same transaction. This can be illustrated with programs Pd and Pe 
in Fig. 12 both writing records in the same database, DBx. Both Pd and Pe belong to the 
same transaction tree, and therefore use the same transaction identifier in their interactions 
with DBx. If  Pd and Pe participate in independent commit operations that achieve different 
outcomes, damage has been caused, since the first commit operation to complete involving 
DBx caused all of the changes associated with the transaction identifier to either commit or 
abort. This makes the state of changes in DBx inconsistent with the state of changes made 
by either Pb or Pc. 

Further analysis indicated that the full generality is not required. Most of the advantage 
of leaving partners out can be gained by leaving out server subtrees that only operate in 
response to requests from the coordinator. 

The PN model includes a way for a subordinate to indicate that it operates only in response 
to requests from the coordinator. A subordinate may vote "OK to leave out" only if it will 
be suspended until its services are needed again. No member in the left-out subtree can 
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initiate another commit operation or perform any independent work, since it is suspended 
until the coordinator process includes it in another transaction. 

Whether a subordinate process is a server that only responds to requests is known by the 
application developer. LU 6.2, for example, provides a parameter on the SET_SYNCPT 
_OPTIONS verb for the local transaction program to indicate whether it may be suspended 
until it receives a request from its coordinator. If so, the subordinate communicates this 
information to its coordinator on the YES vote. The value returned on the YES vote is 
considered a protected variable, i.e., it takes effect only if the transaction commits. The LU 
6.2 default is "not OK to leave out." 

The following requirements must be met before a coordinator can leave another partner 
out of the 2PC for the next transaction: 

• No data has been exchanged with that partner during the current transaction. 
• The partner indicated in the previous successful commit operation that it would be okay 

to leave it out of subsequent transactions. For this to occur, three things must have 
happened: 

- -  All resources subordinate to the subordinate indicated that they may be left out. 

- -  The subordinate is suspended in the commit operation. Control will be returned to 
its program only when it has been sent data for a subsequent transaction. 

- -  All resources subordinate to the partner are similarly suspended waiting for the 
beginning of a new transaction. 

Just because a subordinate indicates that it can be left out does not mean that it will be 
left out. The decision to leave a subordinate out is based on the work that is carried out 
during the next transaction. If there is reason for a requester to include its server in the next 
transaction, it will do so regardless of the OK_TO_LEAVE_OUT value specified. 

For a transaction tree of n members out of which m voted OK-TO-LEAVE-OUT, this 
optimization saves 2m forced-writes and 4m messages over the basic 2PC protocol. Again, 
the number of messages does not depend on the position of the OK-TO-LEAVE-OUT 
participants in the transaction tree, nor on the total size of the tree. The explanation is 
similar to the one given in the read-only section (see Fig. 11). 

Last agent 

Experience with CICS/MVS and IBM's DB2 [ 15] has shown that a transaction often contains 
a single remote partner. This particular situation allows a highly optimized commit path. 
The coordinator prepares itself to commit and gives the subordinate the commit decision, 
i.e., it is up to the subordinate to decide the outcome of the transaction. The coordinator 
that uses this optimization prepares all of its other subordinates and itself to go either way, 
force-writes a prepared record and sends a YES vote to the last agent, so called because it 
is the last subordinate contacted during the voting phase. 

Unlike the normal 2PC case, the coordinator is not required to send an explicit acknowl- 
edgment when it receives a commit message. The last agent is not blocked waiting for 
acknowledgment; as soon as it sends the Commit message, it can proceed with the next 
transaction. The next data sent to the subordinate serves as an implied acknowledgment, 
since it implies that the coordinator received the earlier Commit message. Receipt of the 
implied acknowledgment allows the last agent TM to write the End log message and forget 
the outcome of the transaction. This optimization is illustrated in Fig. 13. 



TWOIpHASE COMMIT OPTIMIZATIONS 341 

Coord inator  

* log Prepared 
Vote YES 

o - -  • 

Commit 
~IF - - - -  o 

* ]og Committed 
log END impl ied ACK 

o 

Subordinate 

* log Committed 

log END 

Figure 13. Last-agent commit processing, 

This optimization yields the greatest benefit when the coordinator has no other remote 
subordinates. If it has other subordinates, they must all vote YES before the coordinator 
can send its YES vote to the last agent. The prepare message can be sent in parallel to 
multiple subordinates so that their phase-one processing can occur concurrently. Commu- 
nication with a last agent cannot overlap any other commit processing. Thus, the last-agent 
optimization that reduces messages to one agent conflicts with the optimization inherent in 
preparing multiple agents concurrently. However, if messages to one of the remote partners 
involve long network delays (e.g., connection through satellite), the last-agent optimization 
provides significant savings. It is, for example, preferable to prepare the close-by partners 
(fast first phase) and reduce the communication required with the faraway partner to one 
slow round-trip message exchange. 

The last-agent optimization is most useful with PN, since the coordinator always logs 
before it sends a message to any subordinate. With PA, the savings in messages conflicts 
with the need for a possibly extra log force. Thus, the last-agent optimization requires that 
the initiator force-write a prepared record before it sends its YES vote to the last agent. If 
the subordinate is not a last agent, the coordinator does not force any log record before the 
Committed record. 

For a transaction tree of n members and m last agents, this optimization offers savings 
of 2m messages over the basic 2PC protocol, but no savings in forced-writes. It is possible 
to have multiple last agents, since each last agent may choose one of its subordinates to be 
a last agent. 

Unsolicited vote 

If a participant is a server that is designed to know when it has finished its part of a 
transaction, it can prepare itself to commit and vote YES without waiting for the prepare 
request from the coordinator. Thus, the server can remove the need for the first message 
flow of 2PC by preparing itself on its own initiative, force-writing a prepared record, and 
sending an unsolicited YES vote to its coordinator. If used in conjunction with the last-agent 
optimization, a bit in the YES vote can distinguish this optimization from the last-agent 
one. An unsolicited YES vote does not initiate any commit processing in the receiver, but 
does indicate that the subordinate is already prepared. 

For servers associated with relatively high network delays, the unsolicited-vote opti- 
mization provides significant performance improvement. A form of this optimization was 
originally proposed in the context of distributed INGRES [30] and IBM's IMS/VS [24]. 
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For a transaction tree of n members and m unsolicited-vote participants, this optimization 
saves m messages over the basic 2PC protocol 

Flattening the transaction tree 

The typical 2PC protocol treats the distributed transaction as a tree. Each participant 
cascades the 2PC protocol to its own descendents. This is illustrated in Fig. 14 and in 
Fig. 6. The cascading of the protocol means that TPb must receive and process the 
Prepare message before TPc can be sent the cascaded Prepare from TPb. This serializa- 
tion of the 2PC messages increases the duration of the 2PC processing as the tree depth 
grows. 

An alternative to this is feasible in communication protocols where a round trip is required 
before commit processing. Remote Procedure Calls (RPC) or message-based protocols 
where each request must receive a reply, are examples of protocols where round trips must 
occur before commit processing is initiated. 

With these protocols, the identity of all cascaded subordinate TPs can be returned to the 
transaction coordinator when the child replies to its parent. This is illustrated in Fig. 15 
part a. 

In Fig. 15 part b the TM for TPa sends the 2PC messages directly to TPb, TPc, and 
TPd. These messages are sent in parallel. This avoids the propagation delays and can be a 
big performance winner in distributed transactions that contain deep trees. 

Coordinator Subordinate Subordinate Subordinate 
(TPa) (TPb) (TPc) (TPd) 

Prepare Prepare Prepare 
0 bo O - -  ~O 0 ~ 0  

Figure 14. A commit tree of depth 3. 
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Figure 15. Commit tree of depth 3 flattened down to depth 1. 
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A limitation of this optimization is that in some distributed transactions, security poli- 
cies of the nodes running the TPs may not permit the computer that is running TPa to 
communicate directly to TPc or TPd. Protocols that support security features that prohibit 
any-to-any connectivity cannot use this optimization without additional protocols to handle 
the case where a partner cannot connect directly to the commit coordinator. 

Another limitation is that a reply message is required so the identity of all the partners is 
known to the coordinator prior to phase 1 of the 2PC protocols. Protocols that do not require 
replies, such as conversational protocols, may not know the identities of all the agents prior 
to phase one. These protocols save time by not requiring a reply to every request. For those 
protocols it is possible to flatten the tree during phase 2, if the identity of each subordinate 
is returned to the coordinator during the reply to the Prepare message. 

Sharing the log 

A local resource manager uses a log to keep track of updates so that it can either abort or 
commit a transaction. Before an LRM votes YES, it ensures that this information has been 
forced to non-volatile storage. When it learns of a commit outcome, it also force-writes a 
commit record. 

The LRM can share the same log as the coordinator transaction manager [23]. With this 
optimization, the LRM takes advantage of the knowledge that the TM will force-write a 
commit record. The LRM does not force-write the prepared record because the TM's force- 
write of the commit record causes the local LRM's earlier non-forced write to be written to 
the log. If  the transaction successfully commits, the TM's commit record and the LRM's 
prepared record will both be on the log. This ensures successful recovery processing. If  
the system fails before the commit is forced, the prepared record may be lost. This does 
not change the outcome of the transaction, since the TM aborts the transaction if it does 
not find a commit record on the log, Similarly, the LRM does not need to force-write the 
commit record. If the system fails and the non-forced commit record is lost, since TM's 
commit record and the LRM's prepared record are both on the log, the recovery process 
will successfully commit the transaction. 

This optimization saves two forced-writes per LRM that shared the log. The more LRMs 
that share the log with the TM, the more savings per transaction. 

Group commits 

There are certain points during 2PC where logging must complete before the commit 
processing can continue. This blocks the commit processing until the log I/O completes. 

In systems where there are many disk I/Os, I/O requests can queue up waiting for a 
previous I/O request to complete. This queueing can decrease the overall throughput of the 
transaction processing system. 

Where transaction rates are high, the group commit optimization is practical. With this 
optimization the log manager delays performing a force-write request until one of two things 
occurs: either a defined number of force-write requests arrive, or a timer expires indicating 
that the force-write request(s) should be processed even though the expected number of 
requests has not arrived. This optimization was originally proposed and implemented in 
IMS/VS 5 Fast-Path [8]. 
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By processing a group of force-write requests at once, the logger can do all the requests 
with one large I/O operation instead of many small ones. Since there is overhead involved 
with starting I/O requests, the overall system throughput is maximized at the expense of 
delaying individual commit procedures. 

Group commits are a form of log sharing. However, the log sharing is done among 
different transactions as opposed to the previous case where the sharing was done among 
the different components of the same transaction. 

For n transactions and a group commit of size m, this optimization provides an average 
of 3n/2m savings in force-writes. In this simple analysis we assumed that only one member 
of each transaction resides at each node. 

A detailed analysis of the group commit optimization is quite complicated since several 
parameters are involved: I/O rate, group size, number of participants, response time, and 
time to allow the commit group to build up. Such analysis can be found in [13, 29]. 

Long locks 

LU 6.2 2PC protocols allow an application program to trade offpackets sent against duration 
of the commit operation, and therefore the length of time that resource locks are held 
(long locks). In the usual case, the subordinate sends the commit acknowledgment to the 
coordinator as soon as it has ensured that it has finished committing the transaction. If the 
coordinator enables the long-locks variation, the subordinate delays sending the commit 
acknowledgment until it sends the message beginning the next transaction. Since the 
commit acknowledgment can be packaged in the same packet as the next transaction data, 
this reduces the network traffic by one at the cost of keeping the resources at the coordinator 
locked for a longer period. 

LU 6.2 half duplex protocols ensure that only side of a conversation can send at a time. 
The other side is in RECEIVE state, meaning that it can only receive data. The sending 
partner can relinquish the permission to send, causing the direction of data flow on the 
conversation to turn around. LU 6.2 allows the long-locks variation only if the coordinator 
will be in RECEIVE state at the end of the commit operation, waiting for the subordinate 
to begin the next transaction. The coordinator controls the state of a conversation at the end 
of a 2PC operation, informing the subordinate in the Prepare message, as shown in Fig. 16. 

Figure 16 shows the long-locks variation of the basic LU 6.2 2PC protocol. The LU 
6.2 Prepare message to a subordinate agent includes instructions about the conversation 
state expected after a successful commit. It also informs the subordinate whether or not 
the coordinator wants the long-locks variation. The Commit acknowledgment message is 
placed in the outgoing send buffer, but is not actually sent until data for the next transaction 
is sent. 

Long locks are advantageous where network resources are expensive and delays between 
transactions are small. A good application of this particular optimization was presented 
in [12]. The application involved banks that needed to reconcile their log accounts at 
the end of the day. In the simplest form of this application, one bank (bank A), takes 
the money out of an account and deposits it in the account of a second bank (bank B). 
The withdrawal/deposit must be done as an atomic action in order to make sure that no 
money is lost. Banks typically batch these sorts of transactions until the end of the day. 
At that time, all the withdrawals and deposits that occurred during banking hours are 
reconciled. 
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Figure 16. Example of long locks committing one transaction. 

One alternative is to do all deposit/withdrawal requests as one large transaction. This 
amortizes the cost of the 2PC protocol, with its four messages, over all the deposit/withdrawal 
requests. The drawback is the amount of work that must be redone in the event of a failure 
during the one large transaction. 

An alternative is to perform and commit several requests at a time, repeating the process 
until there is no further reconciliation work to be done. To take advantage of the long- 
locks optimization, two banks take turns initiating a transaction. This reduces the average 
number of individually transmitted 2PC messages per transaction to three, since the commit 
acknowledgment is piggybacked on the request that starts the next transaction, as shown in 
Fig. 16. 

Commit acknowledgment 

One of the ways that different 2PC protocols vary is in the timing of the commit acknowledg- 
ment. Some have early acknowledgment [34, 23]: an intermediate system acknowledges 
a commit received as soon as it has logged; others have late acknowledgment [31]: an 
intermediate system waits to acknowledge the commit received from its coordinator until 
it has collected acknowledgments from all its subordinates. Early acknowledgment means 
"I have committed and am in the middle of propagation;" late acknowledgment means "I 
and all members of my subordinate subtree have committed successfully." Early acknowl- 
edgment has the advantage that the commit operation completes earlier for the root and 
intermediate systems, allowing them to begin useful work earlier. Late acknowledgment 
has the advantage that there is no uncertainty at the root of the commit tree when it starts the 
next transaction that it is building on the solid basis of a previously committed transaction; 
if any heuristic damage has occurred, it has heard about it. Thus, there is a tradeoff between 
wait time and confidence in the outcome of the transaction. Of course, any intermediate 
only knows about the commit outcome in its own subtree, so this confidence is limited in a 
true peer-to-peer environment where any program in the tree can start further work. 

One acknowledgment pattern may not make sense for all applications and resource types. 
Thus, if the chance of a heuristic decision is vanishingly small for all resources involved in 
a transaction, late acknowledgment does not add any value. Similarly, interactive programs 
may choose to reduce wait time, even if doing so involves a reduction in confidence, in order 
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not to keep a human at a terminal waiting longer than absolutely necessary. Some variations 
to the late acknowledgment pattern based on these considerations are described below. 

Voting reliable 

Late acknowledgment is based on the assumption that any node in a transaction tree may 
make a heuristic decision that disagrees with the decision taken by the rest of the tree, and that 
the root of the commit tree should be informed if damage of this nature occurs. It is possible 
however to have nodes in the tree that make heuristic decisions only in drastic circumstances. 
For example, a database system may be built on the assumption that correcting heuristic 
damage is so difficult that heuristic decisions should be utterly discouraged. The probability 
of heuristic decisions can be made so small that early acknowledgment is acceptable, even 
for applications that rely on the semantics of late acknowledgment. 

The vote reliable optimization uses information gathered from LRMs to gain the early 
completion advantages of early-acknowledgment protocols while maintaining the semantics 
of late-acknowledgment protocols. When a LRM votes YES, it indicates whether it is a 
reliable resource, i.e., one for which heuristic decisions are very unlikely. An intermediate 
TM collects the reliability indicators from all its subordinates. If all vote reliable, then 
it can use early (or implied)-acknowledgment protocols with its coordinator during the 
commit phase (see Fig. 17). If any LRM votes "not reliable," the intermediate uses late- 
acknowledgment protocols. Generally speaking, the "reliability" characteristic is a static 
one that will not vary from transaction to transaction. Thus, a database system either is or 
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Prepare Prepare 

*log Prepared 
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04 0 
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Commit 

*log Committed 
Commit 

Implied Ack o- )o 
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Implied Ack 
04 0 

log END 

Figure 17. Two-phase commit processing, all resources voted reliable. 
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is not reliable. 6 However, since the resources involved can vary from transaction to trans- 
action, the intermediates collect the reliability information during every first phase. 

The default value of this characteristic is "not reliable." Thus, LRMs that can provide 
this information may achieve a performance advantage in overall commit processing, but 
LRMs that are either not reliable or do not understand the parameter still receive full 2PC 
coverage. 

With implied acknowledgment, a transaction tree of n members and m vote-reliable 
participants, this optimization saves m messages over the basic 2PC protocol. 

Wait for Outcome 

Late acknowledgment implies that the intermediate does not respond to its coordinator 
until it has collected acknowledgments from its subordinates, even if failures occur that 
require recovery processing. For major system failures, waiting for recovery processing 
may involve considerable delay. An intermediate may make multiple attempts to contact a 
subordinate before it succeeds. 

When implementing the PN protocols for APPC in VM/ESA, usability evaluations uncov- 
ered a problem with this aspect of late acknowledgment: a human waiting for the outcome 
of a transaction gets very impatient waiting for recovery processing to complete. Some 
people would rather get control back earlier, even if they could not be guaranteed certainty 
that the transaction completed without heuristic damage. 

A feature was added to the IBM PN protocols and the APPC interface [31, 32] to allow 
the application program to specify whether it requires all recovery processing to complete 
before it is told the outcome of the commit operation. If yes, then late acknowledgment 
occurs as usual; the coordinator application is blocked, awaiting all acknowledgments and 
recovery processing to occur. If  no, one attempt to contact a failed partner is attempted. 
If  the first attempt fails, the system attempts to complete the recovery processing in the 
background, but allows the commit or abort operation to complete with an indication to the 
application program that the outcome of the entire transaction is not yet known. Similarly, 
an intermediate system will attempt to contact a failed subordinate only once before sending 
an acknowledgment to its coordinator indicating that "recovery is in progress." The commit 
or abort operation completes at the coordinator with the "outcome pending" indication (see 
Fig. 18). 

One recovery attempt is always attempted so that the program only hears "outcome 
pending" for long-term failures. It is considered preferable for a program to wait a short 
time for one attempted recovery than to get an "outcome pending" indication for every 
failure. 

In the original versions of this feature, the decision was made independently at each node 
in the transaction tree. In a later version we decided to allow the coordinator to inform its 
subordinates whether it wants to wait for the outcome during phase one, allowing the root 
of the commit tree to control the way the rest of the tree responds to failures [26]. An 
additional benefit of this decision is described in the section titled "Wait for Outcome and 
Presumed Abort." 

This feature allows the application developer to decide the relative merits of shorter wait 
time and confidence in outcome. Unlike early acknowledgment protocols, the normal case 
is complete confidence in outcome, and the application program is informed when that 
cannot be achieved. 
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Figure 18. Two-phase commit processing, all participants choose Wait-for-Outcome (NO). 

7. Combining 2PC optimizations 

We have so far described each 2PC optimization independently of  other optimizations. It 
is possible to use more than one optimization in the same 2PC operation. This section 
describes certain combinations of 2PC optimizations and how they affect the performance, 
correctness, and reliability of  2PC processing. Unless otherwise stated, these combinations 
are described in the context of Presumed Abort. The list is not exhaustive; the combinations 
presented here are the ones with the most interesting effects. 

Last agent and read only 

The last-agent optimization allows the commit coordinator to transfer the commit decision 
to a remote partner at the expense of force-writing a Prepared log record that is superfluous if 
the coordinator votes read-only. This is true because the behavior of a read-only coordinator 
is not changed by the outcome of transaction, Therefore the coordinator does not need any 
recovery processing if it fails after giving the decision to the last agent. 

In order to maintain the advantages of  both the last-agent and read-only optimizations, 
the combined optimization gives the coordinator the ability to vote read-only to a last agent 
without forcing any log records at all. If the last agent also votes read only, the commit 
operation can complete without any log records being forced anywhere. 
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Figure 19. Read-only coordinator with committing last agent. 
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Figure 20. Read-only coordinator with read-only last agent. 

This combination of optimizations is illustrated in Fig. 19, where the coordinator votes 
read-only and the last agent commits, and Fig. 20, where both vote read-only. The last agent 
does not owe any recovery processing to the coordinator if the coordinator fails during the 
commit processing. 

Both figures show that a coordinator must collect read-only votes from all other subor- 
dinates before it can vote read-only to a last agent. Thus it cannot vote read-only if any of 
its other subordinates needs to know the outcome of the transaction. 

Since 80% of distributed transactions are read only with one or two remote partners, 
this combined optimization provides tremendous savings. For a transaction tree with n 
members and m cascaded last agents that vote read-only, this combination of optimizations 
saves 2m messages and 2m forced log writes. 

There is, however, an interesting interaction of this combination with the Wait-for- 
Outcome optimization: If the TP that is executing at the coordinator side indicates that it 
wants to learn the outcome of the transaction then the last agents will have to force write the 
Prepared log record. This is so, because the remote partner's lack of logging could cause un- 
detected damage of  the transaction. For example, a read-only transaction will appear to have 
backed out upon recovery and heuristic damage could be lost because of the lack of logging 
at a subordinate. For more details see the "Wait for Outcome and Presumed Abort" section. 

Such a bizarre combination is very unlikely to happen since the semantics of  the read- 
only optimization (don't care about the final outcome) conflict with those of the Wait-for- 
Outcome (YES) optimization. Thus, if the initiator is interested in the final outcome of the 
transaction, it should vote YES instead of Read-Only. 
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SITE A 
(BANK A) 

SITE B 
(BANK B) 

Data(t l)  
Vote YES ( t l )  

Subordinate is a last agent 
Subordinate to be in  send state 
Long locks 

,o 
performs t l  
commits t l  locally 
buffers C o . i t  ( t l )  message 
starts t2 
decides to commit t2 

Commit (tl) 
Data (t2) 
Vote YES (t2) 

Subordinate is a last agent 
Subordinate tD be in send state 
Long locks 

o~ -o 
unlocks for t l  
performs tB 
commits locally for t2 
buffers Commit (t2) message 
starts t3 

Commit (t2), data (t3) 
serves as implied forget ( t l )  

wo o 

Figure 21. Long locks (last agent commits). 

Long locks and last agent 

Both the long-locks and the last-agent optimizations reduce network traffic. The long-locks 
optimization does so at the expense of longer resource lock time. If used together, these 
two optimizations can make the amount of extra network traffic for 2PC vanishingly small 
for an alternating application such as the bank reconciliation application described in the 
early section on Long Locks. 

Figure 21 shows the long-locks variation combined with the last-agent optimization 
to perform and commit two transactions (and start on a third) in three separate packets. 
The LU 6.2 Vote YES to a last agent, like the prepare message to a not-last agent, includes 
instructions about the conversation state the subordinate is expected to be in after a successful 
commit and whether the coordinator wants the long-locks variation. 

In Fig. 21, three sequential transactions are referred to as t 1, t2, and t3. Thus Data(tl), 
Vote YES (t 1), and Commit(t 1) in the figure refer respectively to the transaction data, Vote 
message, and Commit message for the first transaction. 

Taking this approach, applying 2 optimizations, long locks and last-agent and using the 
conversational model, the banking application described previously can commit frequently, 
minimizing the number of requests that have to be re-run if there is a failure, without adding 
any extra packets exchanged just for 2PC. 

See Fig. 21 for an example of these two optimizations working together. Bank A starts 
a conversation with bank B. Bank A then requests that 'n' updates be made, invokes the 
Long-Locks optimization, and initiates a commit operation. This sends all 'n' transactions, 
the vote YES message, and the command that indicates "Bank B is in SEND state after 
the transaction, and please buffer the commit message until Bank B sends application data 
back." Only one message flow has occurred so far. Bank B, after receiving the incoming 
request, making the updates, committing the updates, is now in SEND state. It does the same 
thing that Bank A did: it requests 'n' updates, invokes the Long-Locks optimization, and 
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initiates the commit processing. Since the last-agent optimization uses implied forget, the 
message that begins one transaction acts as an implied forget for the previous transaction. 
Bank A and B can repeat this alternating process until there is no further reconciliation 
work to do. This results in 2 committed transactions for 3 messages. 

For r transactions that overlap data transfer and commit processing in this way, this 
optimization combination saves 5r/2 messages. 

Last agent and unsolicited vote 

With the peer-to-peer model, a subordinate can be selected as the last agent by multiple 
coordinators. Unlike the normal case, where the existence of multiple coordinators causes 
an abort, this can occur legally, since there is still only one participant responsible for 
making the commit decision. As shown in Fig. 22, this case looks very much like the 
unsolicited-vote optimization. 

This optimization provides extra savings over the unsolicited-vote optimization since 
the coordinators can use implied acknowledgment instead of sending explicit acknowledg- 
ments. For a transaction tree with n members and m participants that send unsolicited ready 
messages to the same last agent, this optimization combination saves 2m messages. 

This optimization is relatively easy to implement for a system that implemented the last- 
agent optimization; CICS [6] implemented the unsolicited-vote optimization by disabling 
the error check for multiple coordinators in last agents. 

However, the commercial requirement to report heuristic damage becomes more difficult 
when a subordinate does not have a single coordinator. With protocols such as LU 6.2 sync 
point that allow only one answer to the "Vote YES" message, a last-agent subordinate that 
detects heuristic damage among its subordinates sends the "Heuristic Damage" message to 
the coordinator in place of the "Commit" or "Abort" message, leaving the coordinator to 
make a heuristic decision for its local resources. As illustrated in Fig. 23, if this is done 
with multiple coordinators, the damage may be extended unless appropriate administrative 
controls are in place to make sure both sites make the same heuristic decision. 

A simpler alternative is illustrated in Fig. 24. Only one partner is identified as the 
coordinator that must be informed of heuristic damage. For example, LU 6.2 sync point 
has the following rules for determining which partner is the official coordinator: 

• If  only one partner sends a YES vote, it is considered the coordinator and the local server 
is a last agent. 

Coordinator Subordinate Coordinator 

Vote YES Vote YES 
o ~o~ o 

* log Con~itted 

Commit Cor~ait 
o ~ o- ~o 

* log Con~nitted ~log CoiTmitted 

Impl ied Ack Impl ied Aek 
o. ~o -II- o 

log END 

Figure 22. Last agent and unsolicited vote: successful. 



352 SAMARAS ET AL. 

Coordinator S u b o r d i n a t e  Coordinator 
(Allocator) 

Vote YES VoLe YES 
o ~o~ o 

Heuristic Damage 
detected in subordinates 

*log CoT~nitted 
(local action) 

Heuristic Damage Heuristic Damage 
0 4 o- -o 

*log Damage *log Damage 

Make heuristic decision Make heuristic decision 
to commit local changes to abort local changes 

Implied Ack Implied Ack 
o ,o~ o 

log END 

Figure 23. Last agent and unsolicited vote: damage problem. 

Coordinator S u b o r d i n a t e  Coordinator 
(Allocator) 

Vote YES Vote YES 
o ~oi -o 

Heuristic Damage 
detected in subordinates 

*log Conmlitted 
(local action) 

Heuri sti c Damage Corrmi t 
o, o-- -o 

*log Damage *log Committed 
Make heuristic decision 
for local resources 

Implied Ack Implied Ack 
o Po4 -o 

log END 

Figure 24. Last agent and unsolicited vote: damage reduced. 

• If multiple partners send YES votes, only the program that started the local program 
(allocated the conversation to it) can be treated as a coordinator; all others are treated as 
unsolicited-ready subordinates. This may mean that no coordinator is selected for the 
purposes of reporting heuristic damage. 

Although these rules may not yield the answer that matches a specific application, they 
yield the right answer in most cases. Where they do not, damage reports will be misrouted, 
but the outcome of  the transaction should not be changed. 

Wait for Outcome and Presumed Abort 

The Wait-for-Outcome optimization was originally designed for the Presumed Nothing 
protocol. When used with Presumed Abort, Wait-for-Outcome(YES) causes extra logging 
at intermediates. 

The reason for this can be shown with the following configuration: 

TPa -----+ TPb > TPc 
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Coordinator Subord inate  Subordinate 
(intermidiate) 

Prepare, W-f-O(YES) 
o I m, o 

*log CommitPending 

Prepare, W-f-O (YES) 
o q~o 

Crash!  * l o g  p repa red  
vo te  YES 
X q  o 

Recovery - abo r t  
o - -  t o  

L. Recovery - abort  
,o  

Recovery a c k -  a l l  abo r ted  
Recovery ack  - o4 o 
a l  1 a b o r t e d  I 

J o ~  

Figure 25. Wait-for-Outcome (YES) and presumed abort. 

Participants TPa and TPb both indicate they want to wait for the outcome. Participant TPa 
sends prepare to TPb. TPb sends prepare to TPc. With presumed abort, the TMs at TPa 
and TPb have not logged anything. Thus if the TPb site crashes, its TM has no memory of 
the 2PC operation in progress. 

Since TPa specified Wait-for-Outcome(YES), its TM will expect to learn the outcome 
of the 2PC in the entire subtree. It will therefore initiate recovery processing. The TPb 
TM, having no memory of the transaction, assumes it aborted successfully. Since it passes 
this information to its coordinator, TPa will think that the entire transaction aborted. Un- 
fortunately this may not be true. Since TPc is in doubt, there is potential for a heuristic 
commit decision to occur there. Therefore TPa has not gotten what it requested with 
Wait-for-Outcome (YES). 

The solution to this problem is for the coordinator to indicate in the Prepare message (not- 
last agent) or YES vote (last agent) whether any program between it and the root of the tree 
has specified Wait-for-Outcome(YES). If so, the intermediate coordinators must force write 
Commit-Pending (or Prepared if last agents) log records before propagating Prepare (or YES 
vote) to their subordinates. Therefore they cannot lose memory of subordinate participants 
when they owe complete information to their coordinators. This is not necessary at root 
coordinators since a crash that destroys the TM's memory also destroys the TP that requested 
Wait-for-Outcome(YES), removing the obligation to give it complete outcome information. 
This solution trades off extra logging against reliable reporting. 

Figure 25 shows the Wait-for-Outcome optimization used with presumed abort. 
The full benefit of PA logging is received only if all coordinators specify that they don't 

want to wait for the outcome of the transaction. 
Even if all subordinates in the tree vote reliable indicating they do not make heuristic deci- 

sions, the extra Commit-Pending log writes cannot be avoided for Wait-for-Outcome(YES). 
The reason for this is that the intermediate coordinators do not know that the subordinates 
vote reliable until the votes return, after the log write has already been done. 

For a transaction tree with n members and m intermediate coordinators, reliable reporting 
is achieved at the cost of m extra forced log writes. 
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8. Performance evaluation and discussion 

Two-phase commit optimizations can be evaluated in terms of reduction in network traffic, 
reduction in the number of forced writes, and decreased resource lock time. Since these 
optimizations can also affect reliability, an evaluation is affected by whether these optimiza- 
tions reliably report the outcome of the transaction and whether they increase the chances 
of heuristic damage. 

A single optimization does not provide improvements across all performance metrics, and 
often an optimization might trade off one metric for another. In some cases, performance can 
be improved by combining different optimizations. In other cases, combined optimizations 
reduce the reliability of the commit processing. 

In the tables that follow, optimizations are analyzed in terms of the absolute number of 
messages exchanged with subordinates. Further analysis would break down the messages 

Table 1. Advantages and disadvantages of 2PC optimizations. 

Optimization Advantages Disadvantages 

Read Only Fewer messages 

Last Agent 

Unsolicited 
Vote 

OK to leave 
Out 

Vote Reliable 

Wait for 
Outcome 

Long Locks 

Fewer log writes 
Early release of locks 

Fewer messages 
Early release of locks 

Fewer messages 
Earlier release of locks 

No log writes 
No messages 

Fewer messages 
Next transaction can begin earlier 

2PC doesn't block for 
most network partitions 

Next transaction can begin 
earlier 

Fewer packets per transaction 

Shared Logs Fewer forced writes 

Group Fewer forced writes 
Commit System throughput maximized 

Flattening the Reduced commit processing time 
Transaction Earlier release of locks 
Tree System throughput maximized 

Vote Reliable No extra advantage 
& Wait for 
Outcome 
(Yes) 

No knowledge of the outcome of a transaction 
Potential serializability problems 

One extra forced write possible 

Application specific 

N/A 

Damage reporting to root coordinator lost 
if reliable resource does take 
a heuristic decision 

Complete outcome of transaction may not be 
known by coordinator 

Locks held longer 
Commit decision may be delayed if 

combined with last-agent optimization 
Interdependence of resource manager 

and transaction manager 
Longer lock times for individual transactions 

Extra overhead in reply messages 
Intermediate systems do not learn 

outcome at subordinates 

May have unnecessary forced log writes 
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Table 2. Logging and network traffic of 2PC optimizations. 

2PC type Coordinator Coordinator Subordinate Subordinate 
messages logs messages logs 

Basic 2PC 2 2, 1 forced 2 3, 2 forced 1 
PN 2 3, 2 forced 2 4, 3 forced 1 
PA, Commit case 2 2, 1 forced 2 3, 2 forced 1 
PA, Abort case 2 0, 0 forced 1 0, 0 forced 
PA, Read-Only case 1 0 1 0 
PA & Unsolicited Vote 1 2, 1 forced 2 3, 2 forced 1 
PA & Last-Agent 1 3, 2 forced 1 12 2, 1 forced 
PA & Last-Agent & 1 0 1 2, 1 forced 1 

Coordinator Read-Only 3 

PA & Last-Agent & All 1 0 1 0 
Read-Only 3 

PA & Last-Agent as 1 3, 2 forced l 2, 1 forced 
Unsolicited Vote 

PA & ok-to-leave-out 0 0 0 0 
PA & Vote Reliable 2 2, 1 forced 12 2, 2 forced 
PA & Wait-for-Outcome 2 2, 1 forced 2 3, 2 forced 1 

(No) 
PA & Wait-for-Outcome 2 2, t forced 2 3, 2 forced I 

(Yes) 4 3, 2 forced 5 
PA & Long Locks (not 2 2, 1 forced 1 3, 2 forced 1 

last-agent) 
PA & LongLocks & I 3, 2 forced 1 2, 1 forced 1 

Last-Agent 
PA & shared logs 2 2, 1 forced 2 3, 0 forced 

Note: 1 The Prepared and Committed records are force-logged; the END record is not forced. It 
is possible to combine the Committed and END into one forced log for leaf subordinates. 2In this 
optimization an implied-Ack is used, saving a link flow. 3In this combination only the coordinator 
is read only. The pair (x, y forced) means that x log writes are performed, of which y are forced. 
4To learn the outcome in the entire tree, a PA coordinator must behave as a PN coordinator. 5This 
is the value for intermediate coordinators. 

into those to L R M s  and those to remote  TMs,  which in general  involve greater  delays. Since  

there are no exact  weights  that can be associated with those two type o f  messages  we  did 

not  carry the analysis this far. 

Table 1 summar izes  the advantages and disadvantages o f  the various optimizations.  

Table 2 descr ibes  number  o f  messages  and log writes of  the opt imizat ion and compares  

them with  the basic two-phase  commit ,  presumed abort, and presume nothing protocols .  

For  compar i son  purposes,  each opt imizat ion is evaluated within presumed abort. The  

calculat ions are done  within the context  o f  a transaction with 2 participants. 

Table 3 provides  a higher  level  of  compar ison  by descr ibing the number  of  messages  and 

log writes needed  to c o m m i t  a transaction with n members .  Each row in the table describes 

the benefits gained i f  m participants use a particular optimization.  Each entry in the table is 

i l lustrated with a real  case shown in Fig. 26, consist ing of  11 participants,  4 o f  which fo l low 

the same opt imizat ion.  Whi l e  the numbers  11 and 4 have no special  significance, a specific 

practical  example  makes  the relat ive benefits of  the different  opt imizat ions easier to perceive.  

The  intent ion o f  Table 3 is to contrast  these opt imizat ions with the basic 2PC protocol ,  

rather than to compare  them to each other. Compar ing  the different  opt imizat ions does 
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Table 3. Logging and message costs for optimizations. Each transaction consists of n partners where m members 
are following a particular optimization. 

2PC type Messages Log writes n = 11, m = 4 

/ f , w ,  w f  

Basic 2PC 4(n - 1) 3n - 1, 2n - l forced 40, 32, 21 
(no optimizations present) 

PA & Read Only 4(n - 1) - 2m 3(n - m) - 1, 2(n - m) - 1 32, 20, 13 

forced 

PA & Last Agent 4(n - 1) - 2m 3n - 1, 2n - 1 forced 32, 32, 21 

PA & LastAgent & 4(n - 1) - 2m 3(n - m) - I, 2(n - m) - 1 32, 20, 13 

Read-Only forced 

PA & Unsolicited Vote 4(n - 1) - m 3n - 1, 2n - 1 forced 36, 32, 21 

PA & Last-Agent as 4(n - 1) - 2m 3n - 1, 2n - 1 forced 32, 32, 21 

Unsolicited Vote 
PA & 4(n - 1) - 4m 3(n - m) - 1, 2(n - m) - 1 24, 20, 13 

Ok-To-Leave-Out forced 

PA & Vote Reliable 4(n - 1) - m 3n - 1, 2n - 1 forced 36, 32, 21 

PA & Wait-For- 4(n - 1) 3n - 1, 2n - 1 forced 40, 32, 21 
Outcome (No) 

PA & Wait-For- 4(n - 1) 3n - 1 + m - 1, 2n - 1+ 40, 35, 24 

Outcome (Yes) m - 1 forced 

PA & Share Logs 4(n - 1) 3n - 1, 2(n - m) - 1 forced 40, 32, 13 

PA & Long Locks 4(n - i )  - m 3n - 1, 2n - 1 forced 36, 32, 21 

Note: The triplet (f, w, w f )  refers to (# of messages, # of log writes, # of forced 

writes.) 

Table 4. Logging and message costs for long-locks optimization, r transactions occur, each consisting of 2 

members.  

2PC type Messages Log writes r = 12If, w, w f  

Basic 2PC 4r 5r, 3r forced 48, 60, 36 

PA & Long Locks (not 3r 5r, 3r forced 36, 60, 36 

last agenO 
PA & Long Locks (last 3r/2 5r, 3r forced 18, 60, 36 

agents) 

Note: The triplet (f,  w, w f )  refers to (# of messages, # of long writes, # of forced 

writes). 

n o t  m a k e  s e n s e  s i n c e  t h e y  a r e  u s e d  w i t h i n  d i f f e r e n t  c o n t e x t s ,  a n d  t h e r e f o r e  c a n n o t  b e  u s e d  

i n t e r c h a n g e a b l y .  

T a b l e  4 s h o w s  t h e  b e n e f i t s  o f  t h e  l o n g - l o c k s  o p t i m i z a t i o n  w h e n  i t  i s  u s e d  b y  r t r a n s a c t i o n s  

w i t h  s m a l l  d e l a y s  b e t w e e n  t h e m .  

9. Related work 

T h i s  s e c t i o n  d i s c u s s e s  a d d i t i o n a l  2 P C  o p t i m i z a t i o n s  t h a t  w e r e  n o t  a n a l y z e d  e a r l i e r  e i t h e r  

b e c a u s e  t h e y  a r e  v a r i a t i o n s  o f  t h e  o n e s  a l r e a d y  p r e s e n t e d  o r  b e c a u s e  t h e y  t a k e  a d v a n t a g e  o f  

s p e c i f i c  m a c h i n e  a r c h i t e c t u r e s .  
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Ps 

Pa 

I 

Pf 

Pn Pm Pg 

Pb 
I 

Pc 

I 
Pd 

I 
Pe 

Figure 26. Transaction tree used for analysis. 11 participants, where 4 of them (Pb, Pc, Pd, Pe) follow a particular 
optimization. 

DEC's DECdtm services [16] takes advantage of the VAXcluster architecture to reduce 
the number of required forced log writes and to achieve a nonblocking 2PC protocol within 
VAXcluster transactions without the extra messages described in [27]. Any subordinates 
within the coordinator's VAXcluster can access the coordinator's log. Therefore the subor- 
dinates are not blocked if the coordinator fails in the middle of a 2PC operation since they 
can access the log to determine the transaction outcome. The resulting log reductions are 
similar to those of the sharing-the-log optimization described in Section 6. Based on the as- 
sumption that most transactions commit, the DEC optimization further reduces the commit 
latency by allowing intermediate coordinators to force write the prepared log record while 
waiting for votes from subordinates to arrive. This allows the intermediate coordinator to 
respond immediately to its coordinator as soon as the last subordinate vote arrives, without 
having to wait for a log write to complete. 

Transarc's Encina [7] uses a variation of the unsolicited vote optimization. Each server 
prepares itself before responding to each and every remote procedure call (RPC), indicating 
its prepared status on the return message. If the client decides to initiate the commit protocol, 
phase one can be skipped. The main differences from the unsolicited-vote optimization are 
that the subordinate is always prepared and that it can still accept new work. In the case 
where a single transaction involves multiple RPCs to a server, the Transarc optimization 
results in more force writes in the server. 

An optimization known as coordinator migration [7, 11] improves reliability by trans- 
ferring the commit decision to more reliable partners. With the last-agent optimization, the 
original commit coordinator can unilaterally transfer the commit decision to an immediate 
subordinate, which can further transfer the decision to one of its subordinates, and so on. 
Coordinator migration, however, provides a formal way to negotiate which member of the 
transaction tree will serve as the coordinator. The current coordinator on the prepare mes- 
sage indicates to the subordinates the potential coordinator. If  all subordinates agree, the 
potential coordinator becomes the official coordinator. Unlike the last-agent optimization, 
this flexibility is at the expense of always including the first phase of the 2PC protocol. 
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10. Conclusions 

Two-phase commit protocols have been studied extensively by the research community. 
While some of the research has concentrated on improving performance in the failure case, 
we find it is more advantageous to optimize for the normal, non-failure case in today's 
commercial environment. This paper describes several 2PC variations and their combina- 
tions that optimize towards the normal case, comparing them to a baseline 2PC protocol 
and describing environments where they are most effective. The variations are compared 
and contrasted in terms of number of messages, number of log writes (both forced and 
non-forced), probability of heuristic damage, how damage is reported, and other tradeoffs. 

Although most of these optimizations have been incorporated in IBM's LU 6.2 sync point 
protocols, they were presented in this paper independently of the underlying communica- 
tions protocol to avoid implementation details. A description of some of these optimization 
as they might be incorporated in IBM's LU6.2 is presented in [31, 21]. 
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Notes 

1. Whenever we refer to a process, we are not necessarily referring to a process as defined by the operating 
system. A process may in fact be a lightweight thread, a piece of context, or a thread of control (XOPEN 
model). 

2. The communication network is actually accessed through appropriate communication resource managers 
(CRM). Such CRMs can be conversational (LU 6.2 or OSI/TP), RPC based, or message based. These CRMs 
do not effect the performance of the 2PC processing but merely utilize the underlying communication network. 
Thus, they are not shown in Fig. 4. 

3. The END log record at a leaf subordinate (LRM) is not strictly needed. Since it is included in some 2PC 
implementations, we included it here to simplify the analysis. 

4. IBM, CICS/MVS, DB2, IMS/VS and VM/ESA are trademarks of International Business Machines Corp. 
TMF and Tandem are trademarks of Tandem Computers, Inc. DEC, VAX and VMS are trademarks of Digital 
Equipment Corp. Transarc is a registered trademark of Transarc Corp. Encina is a trademark of Transarc 
Corp. Tuxedo and Unix are registered trademarks of Unix System Laboratories, Inc. X/Open is a trademark 
of X/OPEN Company Ltd. 

5. Presumed Commit protocols [22] are not described in this paper because they have not been implemented in 
commercial products. 

6. There can be specific resources within an overall DB system (e.g. a specific set of tables, or a specific set 
of IMS/ESA DL1 databases) that are not allowed to be heuristically changed. For example, in CICS/MVS, 
protected transient data can sometimes have this property, while all other resources are subject to heuristic 
damage. 
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