
Distributed and Parallel Databases, 3,325-360 (1995)
@ 1995 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Two-Phase Commit Optimizations in a Commercial
Distributed Environment*

GEORGE SAMARAS cssamara @zeus.cc.ucy.ac.cy
IBM Distributed Systems Architecture, IBM Corporation, PO. Box 12195, Research Triangle Park, NC 27709,
USA and Department of Computer Science, University of Cyprus, Nicosia, Cyprus

KATHRYN BRITTON AND ANDREW CITRON {brittonk, citron} @ vnet.ibm.com
IBM Distributed Systems Architecture, IBM Corporation, PO. Box 12195, Research Triangle Park, NC 27709,
USA

C. MOHAN mohan @ almaden.ibm.com
Database Technology Institute, 1BM Almaden Research Center, San Jose, CA 95120, USA

Received February 23, 1993; Revised November 30, 1994

Recommended by: Amit Sheth

Abstract. An atomic commit protocol can ensure that all participants in a distributed transaction reach consistent
states, whether or not system or network failures occur. The atomic commit protocol used in industry and academia
is the well-known two-phase commit (2PC) protocol, which has been the subject of considerable work and technical
literature for some years.

Much of the literature focuses on improving performance in failure cases by providing a non-blocking 2PC that
streamlines recovery processing at the expense of extra processing in the normal case. We focus on improving
performance in the normal case based on two assumptions: first, that networks and systems are becoming increas-
ingly reliable, and second, that the need to support high-volume transactions requires a streamlined protocol for
the normal case.

In this paper, various optimlzations are presented and analyzed in terms of reliability, savings in log writes and
network traffic, and reduction in resource lock time. The paper's unique contributions include the description of
some optimizations not described elsewhere in the literature and a systematic comparison of the optimizations and
the environments where they cause the most benefit. Furthermore, it analyzes the feasibility and performance of
several optimization combinations, identifying situations where they are effective.

Keywords: agreement protocols, distributed systems, transaction management, SNA LU 6.2, communication
protocols, commit protocols, recovery, fault tolerance

1. Introduction

A distributed transaction is the execution of one or more statements that access data dis-
tributed on different systems. A distributed commit protocol is required to ensure that the
effects of a distributed transaction are atomic, that is, either all the effects of the transaction
persist or none persist, whether or not failures occur.

A well-known commit protocol is the two-phase commit (2PC) protocol [9, 17]. This
protocol ensures that all participants commit if and only if all can commit successfully.
The two phases are the voting phase and the decision phase. During the voting phase, one

*Disclaimer: Some of the optimizations described in this paper may never be shipped in an IBM product.
Others may change before they are shipped.

326 SAMARAS ET AL.

Optimize Commit Process
fer Normal Case

* High-Rel iab i l i ty Environment
* High-Volume Transactions

Optimize Commit Process
for Failure Case

* Low-Rel iabi l i ty EnvironmenL
* Low-Volume Transactions

Figure 1. Commit performance optimization for different environments.

participant in the transaction, known as the coordinator of the commit protocol, asks all the
other participants to prepare to commit. A participant votes YES if it can guarantee that
it can perform the outcome requested by the coordinator, either commit or abort, whether
or not system or network failures occur. If a participant is unable to prepare to commit for
any reason, it votes NO. During the decision phase the coordinator propagates the outcome
of the transaction to all participants: if all participants voted YES, the commit outcome is
propagated; if any participant voted NO, the abort outcome is propagated. Each participant
in the transaction commits or aborts the effects of the transaction based on the outcome. It
can then release locks on local resources, such as databases or files, making them available
to other transactions.

The performance of a commit protocol substantially affects the transaction volume that a
system can support. As pointed out in [29], for transaction processing applications such as
hotel reservations, airline reservations, stock market transactions, banking applications, or
credit card systems, the commit processing takes up a substantial portion of the transaction
time. For example, it was shown in [29] that the commit processing part of a transaction
updating one record of a general-purpose database typically represdnts about a third of
the transaction duration. For distributed systems where network messages and delays are
involved, the relative commit cost is, on average, much higher.

A faster commit protocol can improve transaction throughput in two ways: first, by
reducing the commit duration for each transaction, and second, by causing locks to be
released sooner, reducing the wait time of other transactions.

The problem of improving 2PC performance can be met using two different approaches
(see Fig. 1). The first approach concentrates on reducing recovery time, and therefore lock
time, for failure cases. In an environment prone to failures, transactions can be blocked
indefinitely waiting for the recovery of a failed site. Since it is unknown whether the
transaction will commit or abort, resource locks cannot be released. Thus, other transactions
can also be blocked waiting for the locked resources to become available. Much research
[5, 27] has concentrated on providing a (nearly) non-blocking 2PC variation, i.e., one that
adds extra messages to the basic 2PC protocol in order to reduce the blocking delay required
to resolve the transaction outcome following a failure. Thus, the normal non-failure case
is slowed down to prevent intolerable delays following failures.

The tradeoff of reducing recovery time at the expense of increasing the duration of normal
commit operations may not be acceptable in a highly reliable environment characterized
by high-volume transactions. The second approach focuses on optimizing the basic 2PC
protocol for this environment. The rest of this paper describes several optimizations that

TWO-PHASE COMMIT OPTIMIZATIONS 327

reduce the number of messages and/or local processing required for the non-failure case,
sometimes at the expense of greater recovery processing and delay for the failure case.
These optimizations take advantage of properties that are common in real-world distributed
transactions.

For the failure cases (hopefully, rare) where the protocol outcome is blocked, certain par-
ticipants might choose not to wait for recovery processing to discover the outcome because
of valuable locks being held [23, 20]. Rather than waiting, these participants unilaterally
commit or abort the transaction. This heuristic decision may damage the consistency of
the transaction. Heuristic decisions and their effect on 2PC reliability have been, to our
knowledge, little addressed in the literature, but they are considered a practical necessity
in the commercial environment. Heuristic decisions are discussed in Section 3. A com-
mit protocol and its optimizations should be able to cope with these heuristic decisions:
recognize them and report them reliably. The need for heuristic decisions cannot be entirely
avoided even with a "so-called" non-blocking 2PC protocol, although the window in which
they might occur is reduced.

This paper presents several 2PC optimizations, and analyzes them in terms of reliability
(potential for heuristic decisions), number of log writes, network traffic, resource lock
time, and other tradeoffs. Its unique contributions include a description of IBM's Presumed
Nothing protocols and several new optimizations, particularly ones that affect peer-to-peer
transactions (i.e., Leaving Inactive Partners Out, Last Agent), and ones dealing with heuristic
decisions (i.e., Wait For Outcome, Vote Reliable). It also shows how resource managers
can use their specific characteristics to further improve the performance of the commit
processing (i.e., Vote Reliable optimization). An interesting optimization (Long Locks)
that uses network capabilities to further improve the 2PC performance is also described.
Finally, the paper presents how certain combinations affect the performance, correctness,
and reliability of the 2PC processing. Some of these optimizations have been designed
on top of IBM's LU6.2 communication protocol. However, their presentation here is
independent of any communication protocol. LU6.2 implementation specifics for some of
these optimizations can be found in [31] and [21].

Section 2 presents the distributed transaction model used in this paper to describe trans-
actions and commit processing. Section 3 discusses the aspects of commit processing that
most affect 2PC performance. Section 4 introduces a 2PC protocol that is used as a baseline
for comparing the 2PC variations introduced in the rest of the paper. Section 5 presents
the Presumed Abort (PA) and IBM's Presumed Nothing (PN) protocols and their use-
fulness within the commercial sector. Section 6 discusses several optimizations that are
refinements of PN or PA or both, along with their advantages and tradeoffs in different
environments. Section 7 describes the effects of combining these optimizations. Section 8
provides a performance analysis of the presented optimizations. Section 9 reviews related
work, and Section 10 concludes the paper.

2. Distributed transaction execution

A distributed system consists of a set of computing nodes linked by a communications net-
work. The nodes of the system cooperate with each other in order to process distributed com-
putations. For the purpose of cooperation, the nodes communicate by exchanging messages
via the communications network.

328 SAMARAS ET AL.

itl t 2
t 3
t 4 = t

t 5

t 6

t

I - - !

Figure 2. A process tree within the client/server model.

A user's application program initiates or participates in a distributed computation which
consists of a set of transactions executed in a serial fashion. A transaction (or logical unit of
work, LUW) consists of a set of operations that are executed to perform a particular logical
task, generally making changes to data resources such as databases or files. The changes to
these resources must be committed or aborted before the next transaction in the series can
be initiated.

A distributed computation is associated with a tree of processes 1 that is created as the
application executes. The process tree links the processes that perform the transactions of
the distributed computation. Processes may be created at remote nodes (and even locally)
in response to the data access requirements imposed by the application program. Conse-
quently, there exists a creator-createe relationship between the processes. The tree may grow
as new sites are accessed by the transactions. Subtrees may disappear either in response to
application logic or because of site and communication link failures.

Figure 2 shows a process tree together with the associated distributed computation
t = {tl, t2, t3, t4, t5, t6, t7} as it is executed within a hierarchical model, such as that usu-
ally associated with client/server computing. In this model all the transactions t 1 t6, t7
constituting the computation t are initiated by the root process representing the client. The
server processes are participating in the computation by executing requests from the client.
They neither initiate work independently nor issue requests to the client. Servers can is-
sue requests to additional servers on behalf of the client; the subordinate servers therefore
treat them as client processes. All requests flow in one direction, from client to server to
subordinate servers. Thus, in this model the process tree has a fixed hierarchical structure
that grows in only one direction (downstream). In addition, the client process at the root
is the overall initiator of the commit protocol (2PC). Consequently the commit protocol
tree is exactly the same as the process tree so that creator-createe relationship implies the
coordinator-subordinate relationship for the purpose of executing the commit protocol.

Figure 3 shows the distributed computation t within an alternative, peer-to-peer model
[31]. In the peer environment each process has the same privileges and rights as any other
process in the process tree. Any program can initiate a transaction. Two programs can
initiate work independently with or without any communication between them. This is in
contrast to the hierarchical model, where the client starts the transaction and the servers wait

TWO-PHASE COMMIT OPTIMIZATIONS 329

J~
" * ~ t 7

t 6
L_A

Figure 3. A process tree within the peer-peer model.

until they get requests from clients or other servers. For example, in Fig. 3, transactions
tl , t2, t3 are initiated by the root process pl , transaction t4, t5 by process p7, transaction
t6 by process p4, and transaction t7 by both p3 and p2. Any participant in the transaction
can initiate the commit protocol and thus become the root of the transaction commit tree.
Therefore, the member of the process tree that serves as the coordinator can change from
one transaction to another. The coordinator-subordinate relationship is established at the
beginning of commit processing and endures only for the current transaction. This ability
to allow any participant to coordinate the commit procedure can be particularly useful if the
request that starts a particular distributed transaction comes from an unreliable node, such
as a workstation that is frequently turned on and off. In this case, it may be advantageous
to have more reliable hosts coordinate the commit procedure [4, 25], since they are more
likely to continue to be available when failures and recoveries cause substantial delays in a
commit procedure.

As shown in Fig. 4, a process participating in a transaction accesses local resources such
as databases and files. A remote request is sent via the communication network 2 to a remote
process, which can access either local resources or additional remote resources.

Once the computations of a transaction are completed, the application instructs the trans-
action manager (TM) of its site to initiate and coordinate the commit protocol. Two types
of components participate in 2PC protocol: local resource managers (LRMs), such as
database and file managers, which have responsibility for the state of their resources only,
and transaction managers (TMs), which manage multiple participants, including both local
resource managers and other remote transaction managers.

The TMs and LRMs that participate in 2PC include one coordinator and one or more
subordinates. The coordinator is the TM acting on behalf of the process that initiates a
commit operation; a subordinate is either an LRM or a remote TM that is acting on behalf
of another process in the distributed transaction. Remote TMs may also have subordinate
LRMs and TMs. The coordinator is the one that coordinates the final outcome of the
commit processing. The coordinator must arrive at a COMMIT or ABORT decision and
propagate that decision to all subordinates. Subordinate TMs propagate the decision to their
subordinate TMs or LRMs. Thus, the subordinates defer to the coordinator for the result of
the commit decision.

330 SAMARAS ET AL.

Application ' I
Resource CONNIT
Verbs{ ~ TM ABORT

-- TM/LRM
Interface

k R N - - F~les
LRM--

Ap~llcation/Server

I ONNIT ABORT

TM/LRM - - I
Interface

Figure 4. Components involved in a transaction and transaction commit tree.

3. Two-phase commit performance considerations

This section describes aspects of a distributed 2PC protocol that have the greatest impact
on performance and reliability: network traffic, logging, and heuristic decisions.

Network traffic

The 2PC protocol involves network traffic to convey instructions from the coordinator TM to
subordinate TMs and to convey the responses from the subordinates back to the coordinator.

Any message that is sent over the network slows down the commit protocols since
it adds network transit delays. Several of the 2PC optimizations described later in this
paper reduce commit time by reducing the number of messages sent. Sending messages
to different participants in parallel also reduces the delay caused by network traffic. In
some cases, reducing the number of messages and parallelism are in conflict (see last-agent
optimization).

Logging

Participant TMs and LRMs log information about intermediate states of a commit operation
in order to be able to recreate the state of the transaction after a system failure. Logged
information is data written in non-volatile storage that can be used to figure out how to
return distributed resources to consistent states following the loss of working memory of
the transaction state.

During forced log writes, the 2PC operation is suspended; the TM does nothing until
the record is guaranteed to be in stable storage. Non-forced log writes do not suspend the
2PC operation but are not guaranteed to survive a system failure. A non-forced log write is
written to nonvolatile storage when the next forced log write occurs, or when some other
log manager event occurs, such as log buffer overflow. Since non-forced log writes are

TWO-PHASE COMMIT OPTIMIZATIONS 331

not guaranteed, information that is vital for correct processing after a system failure must
be forced. However, forced writes are not required when the logged information can be
recreated after a failure by recovery processing.

A 2PC performance goal is to minimize the number of times a log write is forced. A
forced log entry slows down commit protocols because the system waits until the entry is
written to nonvolatile storage. Minimizing forced log writes and conducting extra recovery
processing to regain the lost information is one way to optimize the normal, non-failure
case rather than the failure case.

Heuristic decisions

If one or more of the systems involved in a transaction fails during a two-phase commit
operation, there can be substantial delays before the operation completes and the affected
resources are available for use by other transactions. Because these delays can cause
business to be lost, most commercial systems give an operator a way to force a blocked
transaction to complete. In the process, the operator must decide whether to commit or abort
the changes to affected data resources. Once a two-phase commit operation has started,
either choice runs the risk of causing heuristic damage, that is, of making the local resources
abort when the rest of the transaction commits, or vice versa.

Consider an airline reservation database with the records for a particular set of planes
locked waiting for a transaction to complete. The operator starts getting calls from irate
travel agents, who want to sell tickets on those airplanes. On investigation, the system
operator learns that the system coordinating the transaction has failed, with an expected fix
time of two hours. To free the data records for use by other transactions, the operator forces
the transaction to complete locally, making a heuristic decision to commit the local changes.
Later it turns out the operator made the wrong choice, since the rest of the transaction aborted.
Finding and fixing inconsistencies can be time-consuming and expensive. A business may
find it necessary to risk heuristic damage and database inconsistency for one transaction
in order to make the database available for other transactions. Whether to allow heuristic
decisions involves business tradeoffs between the cost of fixing database inconsistencies
and the cost of missed opportunities.

A heuristic decision is usually taken by a system operator (or programmed operator) in
the absence of a direct command from the commit coordinator. If a heuristic decision is
required, it should be done in consultation with the system operators of the other systems
that were part of the distributed transaction. A two-phase commit protocol that detects and
reports damage at least simplifies the task of identifying problems that must be fixed.

A simple case of heuristic damage reporting is shown in Fig. 8. More complex cases are
shown in Figs. 23 and 24.

4. Baseline two-phase commit

This section illustrates the effects of network messages and required log writes [22, 23] on
the performance of a basic distributed 2PC protocol [9, 17] that is used as a comparison
baseline for the optimizations that follow.

In the first, or voting phase of two-phase commit, the coordinator issues prepare messages
in parallel to all subordinates to determine whether they are willing to commit. Subordinates

332 SAMARAS ET AL

may be LRMs or remote TMs. Each subordinate votes YES or NO indicating its willingness
to commit or abort the transaction. BeforevotingYES,asubordinateforce-writesaprepared
log record that ensures that it can successfully commit or abort the transaction, even if a
system failure causes it to lose working memory of the transaction. Thus, a database
manager acting as a subordinate forces enough information so that it can either recreate or
undo the changes made during the transaction. A TM force-writes enough information so
that it can initiate recovery processing following a failure, information including the identity
of the coordinator, the identities of subordinates, and the state of the 2PC operation.

A YES vote places the subordinate in an in-doubt state, implying that it will neither
commit nor abort the transaction without an explicit order from the coordinator. If a
subordinate decides to abort the transaction, it force-writes an abort log record and sends
a NO vote to the coordinator. Since a NO vote defines the outcome of the transaction, the
subordinate does not need to wait for the coordinator decision any more. Therefore, the
subordinate aborts the transaction, releases all its locks, and then forgets the transaction.

The second, or decision, phase begins after the coordinator receives all expected votes.
If all subordinates voted YES, the coordinator decides to commit; otherwise it decides
to abort. The coordinator propagates the decision to all subordinates as either an order to
commit or an order to abort. Subordinates that voted to abort during phase one are not
included in the second phase since they already know the outcome.

Because the coordinator's decision needs to survive failures, a commit or abort log record
is force logged before the decision is propagated to all its subordinates. The completion
of the force-write takes the transaction to its committing or aborting state. Each subordi-
nate, after receiving the commit/abort order from the coordinator, moves into the commit-
ring/aborting state, force-writes a commit/abort log record to ensure that the transaction
will be committed/aborted, and then sends an acknowledgment (Ack) message back to the
coordinator indicating that the subordinate will commit/abort as the coordinator requested.
The subordinate then commits/aborts, and forgets about the transaction. The coordinator,
after collecting acknowledgment messages from all subordinates that voted YES, writes a
non-forced END log record and forgets the transaction. The END log record indicates that
all subordinates have successfully completed the commit processing and thus, no recovery
processing is required if a failure occurs.

Figure 5 shows a time sequence of the 2PC protocol for a coordinator with one subordinate.

Coordinator Subordinate

Prepare
o- - mo

*leg Prepared
Vote YES

o 4 o

*log Committed
Commit

*log Committed
Ack

o , o

log END

Log record is #orce-written.

Figure 5. Simple two-phase commit processing.

TWO-PHASE COMMIT OPTIMIZATIONS 333

Coordinator Cascaded Subordinate
Coordinator

Prepare Prepare
~o

Vote YES
04
*log Committed

Commit

Ack
o~
log END

Log record is force-wr i t ten.

Vote YES
o4

*log Prepared

~o
*log Committed

Commit
o

o4
log END

~o
*log Committed

Ack
-o

~o

*log Prepared

Figure 6. Two-phase commit processing with intermediate coordinator.

A subordinate agent may also function as a cascaded (intermediate) coordinator to down-
stream subordinates. The coordinator, cascaded coordinators, and remaining subordinates
form a transaction commit tree. The cascaded coordinator propagates messages from the
coordinator downstream and collects responses from its subordinates to send back upstream
to the coordinator. Figure 6 shows a time sequence of the 2PC protocol with a cascaded
coordinator. A participant in the tree does not generally know whether its coordinator is
the root of the commit tree or a cascaded coordinator, just as a coordinator does not know
whether its subordinates are cascaded coordinators or leaf subordinates.

Basel ine s u m m a r y

The overall cost of the baseline 2PC protocol for the commit case is: each subordinate
writes three log records (one prepared record, one committed/abort record and one END 3
record--the prepared and the committed records are forced) and sends two messages. The
coordinator sends two messages to each immediate subordinate and writes two log records
(one committed record and one END record--the committed record is forced). For a
transaction commit tree with n participants the cost is 4(n-l) messages, 2n-1 forced writes
and n non-forced writes.

The basic 2PC protocol survives failures and derives a consistent single outcome for
a transaction. However, many commercial products minimize the number of message
exchanges and forced writes to optimize for high-volume, performance-sensitive distributed
transactions. The next section describes two variants of the basic 2PC protocol and discusses
the impact of heuristic decisions and heuristic damage notification.

334 SAMARAS ET AL.

5. Two-phase commit variations

Presumed Nothing (PN)

Presumed Nothing was developed in the mid 1970's for the peer-to-peer environment that
is supported by LU 6.2 (also known as APPC) [31, 32] and initially by LU6.1 [24]. The
PN design effort was done independently from the 2PC effort [34]. PN was designed
and developed for the commercial environment and, so far, IBM has implemented it in
CICS/MVS 4 [6], and VM/ESA [20].

The peer-to-peer environment has led to the following unusual feature of PN. Any par-
ticipant in the transaction can decide to initiate a commit operation and thus become the
root of the transaction commit tree (the coordinator). Thus, the member of a collection of
cooperating processes that serves as the coordinator can change from one transaction to
the next. Since the communicating processes are considered peers, there is no hierarchi-
cal relationship among them that determines the best place to initiate commit processing;
therefore it is left to application design to determine which process should be the commit
coordinator for a particular transaction. It is an error for two participants to initiate commit
processing independently for the same transaction, since that would mean two TMs owning
the commit decision; if this occurs, the transaction aborts.

As a result, the coordinator of a particular commit operation is not known in advance; it
is only known once 2PC processing starts.

Since it was designed for a real-world environment with intense demands on data re-
sources, the PN protocol explicitly accommodates heuristic decisions resulting from intol-
erable delays. Since there are situations where heuristic decisions need to be made, the
PN designers felt it was important for the root coordinator to be informed of any heuris-
tic damage that occurred, i.e., any heuristic decision inconsistent with the outcome of the
transaction.

The primary impact of these design decisions on the PN protocols is that the coordinator
(or cascaded-coordinator) must log a commit-pending record before sending the prepare
message to subordinates. This is necessary because the coordinator must remember that
there are subordinates. The subordinates may be waiting for the outcome or may have
made heuristic decisions. The coordinator is responsible for initiating recovery processing
both to allow the subordinates to complete commit processing and to find out whether they
made heuristic decisions.

In Fig. 7, the changes from Fig. 6 are highlighted. The need for accurate reporting causes
the application at the root of the transaction commit tree to be kept in suspense about the
outcome of the 2PC operation until all acknowledgments are collected. If the application
were informed earlier, it could proceed on the assumption that the entire transaction were
committed or aborted, when actually heuristic damage might have occurred. Figure 8
illustrates PN heuristic damage reporting.

Thus, PN protocols provide reliable reporting of damage at the expense of an extra log
force and collecting acknowledgments from all subordinates. However, to offset these
performance penalties, PN, as implemented in LU 6.2, includes a number of other opti-
mizations described in the next section: last agent, long locks, vote read only, and wait for
outcome.

TWO-PHASE COMMIT OPTIMIZATIONS 335

Coordinator Cascaded
Coordinator

*log Commit-
Pending

Prepare
o ~o

* log Commit-Pending

Prepare
o

Vote YES
oI

*log Committed

Commit
o

Subordinate

*log Prepared

Ack
oI
log END

Log record is force-wr i t ten.

Vote YES
oI

*lag Prepared

~o
*log Committed

Commit
o - -

oq
log END

,o
*]og Committed

Ack
o

Figure 7. Presumed nothing commit processing with intermediate coordinator.

Presumed Abort (PA)

Presumed Abort [22, 23] is an extension of the basic 2PC protocol that has been widely
studied in academia and industry. 5 It has been implemented by a number of commercial
products, 4 i.e, Tandem's TMF [33], DEC's VAX/VMS [1, 16], Transarc's Encina Product
Suite [28], and Unix System Laboratories' TUXEDO [14], and is now part of the ISO-OSI
[35] and X/Open 4 [3] distributed transaction processing standards. PA was developed for
the R* distributed database project [18, 19]. In the R* client-server model, the participants
have fixed requester-server roles. Servers initiate no work unless the requester asks for it.
Servers never ask their clients to act in the role of server. The coordinator is the TM of the
client, and the subordinates are the servers.

Like the baseline 2PC, PA does not log before sending the Prepare message. Since the
PA processing involved in successfully committing a transaction is the same as that shown
for basic 2PC in Figs. 5 and 6, no flow diagram is shown here for the commit case.

Unlike the baseline 2PC, a subordinate does not have to force write an abort record before
acknowledging an abort command. If a prepared record is found on its log after a crash, the
subordinate initiates recovery processing with its coordinator. Similarly, the coordinator
does not have to force write the abort record. If the coordinator has no information about

336 SAMARAS ET AL.

Coordinator Subordinate

Log Cornnit pending

Prepare
o ~

*log prepared
V o t e Yes

o * o

C r a s h !

Long Delay

Recovery: Abort
o-

Recovery Reply:
Heuristic Damage

04

Log EHD

Damage reported
to operator
TH returns control to
TP with the indication of
heuristic damage

Heuristic decision
to commit~
*log heuristic commit

~o
Damage detected and
reported to operator
THreturns control to
TP with the indication of
heuristic damage

-0

Log END

Figure 8. Heuristic damage example.

Coordinator Subordinate

Prepare

*log Prepared
Vote YES

o4 o
NO LOGGING

Abort
o- -~o

Crash]

Recovery: In doubt
o4 --o
Recovery reply: abort

o- -~o
Log End

*: Log record is force-written.

Figure 9. Presumed abort with an aborted transaction.

the transaction on its log, it presumes that the transaction aborted and tells the subordinate
to abort; hence the name presumed abort.

The subordinate (server) initiates recovery processing when it finds itself in doubt after
a failure. This is necessary since the coordinator may have no memory of the transaction if
it also failed.

Differences between presumed abort and the baseline 2PC protocol are highlighted in
Fig. 9 for a transaction that aborts, followed by a subordinate failure. This in contrast to
the baseline 2PC coordinator, which is responsible for initiating recovery and therefore
must force an abort log record before sending the abort message to the subordinate. The

TWO-PHASE COMMIT OPTIMIZATIONS 337

presumed abort coordinator performs no logging at all in this case, since the subordinate
can initiate recovery.

The PA protocol incorporates the read-only and leave-inactive-partners-out optimizations
described in the next section.

In R*, heuristic decisions that caused database inconsistencies were only reportedto the
immediate coordinator, which is not necessarily the root of the tree, and to the subordinate
system's operator. This meant that the root coordinator might be told the transaction
committed successfully when it had not. This was considered acceptable because heuristic
decisions did not happen frequently.

The optimizations developed by PA for the client-server environment have been gener-
alized to be incorporated in the peer-to-peer model [21].

6. 2PC optimizations

This section describes several optimizations to the PA or PN protocols or both, some of
which have been previously published [22, 23, 9, 31]. These optimizations are tuned
toward the normal non-failure case. See [21] for a description of the way some of these
optimizations fit with LU 6.2's half-duplex conversational model.

Our analysis assumes that we are dealing with a transaction tree with n participants unless
otherwise noted.

Read only

A partner that has participated in a transaction, but has not performed any updates, is allowed
to vote read-only. This vote implies that the effects of commit and abort outcomes would
be identical for that subordinate. That partner is left out of the second phase of the commit
processing and avoids any log writes [22, 23].

A cascaded coordinator is allowed to vote "read-only" if and only if all its subordinates
have voted read-only; otherwise it needs to learn the outcome in order to propagate it to the
subordinates that did not vote read-only.

For an environment that is dominated by read-only transactions this optimization pro-
vides enormous savings, since it reduces the commit operation to a one-phase commit
operation.

This optimization is used in both the PA and PN protocols. The PA protocol is especially
optimized for this type of transaction: PA performs no logging at all if all subordinates vote
read-only. Figure 10 illustrates the read-only optimization with the PA protocol. PN still
has the coordinator log a Commit-pending record, but the subordinate performs no logging.

However, this optimization has some drawbacks. First, the read-only partners are not
informed of the final outcome of the transaction, which could cause undesirable side effects
if the applications are written to use this information in any way. Second, the read-only
optimization can cause serialization problems. A subordinate can receive a prepare message
before it is finished with its part of the transaction. In the peer-to-peer environment it is
allowed to finish before it votes. Consider the case where participants Pa and Pb are
subordinates to a common coordinator. Both receive prepare messages. Pa votes read-
only and releases locks before Pb has finished with the transaction. Pb needs to access a
resource that Pa unlocked, but another unrelated transaction has locked the resource and

338 SAMARAS ET AL.

Subordinate Coordinator Subordinate

Prepare Prepare

Vote Read-Only
oq o

*log prepared
Vote YES

o ,o
*log Committed

Coi~nit
o4 -o

*log Conlni tted
log END Ack

o bo
log END

Figure 10. Partial read-only commit processing.

Pb

Pa

Pc Pb

Pd Pa Pf
(RO) (RO) (aO)

Pc Pd Pe Pf
(RO) (RO) (RO) (RO)

Figure 11. Equivalent read-only trees in terms of messages and log writes. The participants that vote read-only
(or vote ok-to-leave-out) are marked "(RO)."

changed it. When Pb gains access to the resource, the resource is not the same as it was
when Pa unlocked it. Thus, use of the read-only optimization prior to global termination
of a transaction may violate two-phase locking and serialization rules, and may cause the
transaction to behave incorrectly.

However, these serialization problems do not occur in a requester/server environment,
since the servers do not initiate independent work and the requester does not initiate commit
processing until the transaction work is complete.

The tree topology can affect whether or not a participant in the tree can vote read-only
because a participant cannot vote read-only if any of its subordinates voted YES or NO.
Figure 11 shows two different tree topologies. In the right tree, all participants make the vote
read-only decision independently. In the left tree, Pc's ability to vote read-only is affected
by the votes of Pd, Pe, and Pf. However, if the two trees have the same set of participants
voting read-only, the savings in messages and log writes are identical.

This equivalence simplifies the performance analysis for complex transaction commit
trees with read-only partners, since the savings are associated only with the partners voting
read-only. For a transaction commit tree of n members and m participants that vote read-
only, the savings amount to 2m forced-writes and 2m messages over the basic 2PC protocol.
Thus the performance of the optimization is affected only by the number of participants
that exercise the optimization, not by the total number of commit tree members.

TWO-PHASE COMMIT OPTIMIZATIONS 339

Left out • Pa
partl 'cipant / \

Pb Pc
/ \

P d ~ D B x ~ P e

Figure 12. Transaction tree partitioned because of left our partners. Both programs Pd and Pe are accessing the

same database, DBx.

Leaving inactive partners out (OK-TO-LEAVE-OUT)

In a model where servers respond only to requests and do not initiate any work of their
own, commit processing may be optimized if subordinates that have not participated in a
transaction are left out of the 2PC protocol. A form of this optimization was originally im-
plemented in R* [18]. In this section we briefly described the adaptation of this optimization
for PN. Greater detail is presented in [21].

During a normal 2PC operation, the coordinator includes all partners as subordinates,
whether or not it has exchanged data with them during this transaction. With the OK-
TO-LEAVE-OUT optimization, a coordinator leaves out any partners with which it has
exchanged no data during the transaction, based on the assumption that they have therefore
not participated in the transaction. When a partner is left out, the coordinator does not send
it the Prepare or Commit messages; nor does it have to wait for the Vote and Ack replies.
Any intermediate coordinator in the tree can leave out its inactive subordinates as well.

This optimization is easy to include in PA, since PA is based on a requester-server model.
It is more difficult to include in PN, since PN assumes a model of independent peers. In PN,
the more general case where any partner can be left out if it has not exchanged data with the
commit coordinator does not work, since the partner may have started work independently.
The configuration in Fig. 12 illustrates this situation: assume programs Pd and Pe both
initiate a commit operation, and Pa has been left out of the current transaction by both
Pb and Pc. The two commit operations would occur independently, and might come to
different results. If a program from one subtree touched the same resources as a program
from the disjoint subtree, damage could occur, since the changes from both programs would
appear to belong to the same transaction. This can be illustrated with programs Pd and Pe
in Fig. 12 both writing records in the same database, DBx. Both Pd and Pe belong to the
same transaction tree, and therefore use the same transaction identifier in their interactions
with DBx. If Pd and Pe participate in independent commit operations that achieve different
outcomes, damage has been caused, since the first commit operation to complete involving
DBx caused all of the changes associated with the transaction identifier to either commit or
abort. This makes the state of changes in DBx inconsistent with the state of changes made
by either Pb or Pc.

Further analysis indicated that the full generality is not required. Most of the advantage
of leaving partners out can be gained by leaving out server subtrees that only operate in
response to requests from the coordinator.

The PN model includes a way for a subordinate to indicate that it operates only in response
to requests from the coordinator. A subordinate may vote "OK to leave out" only if it will
be suspended until its services are needed again. No member in the left-out subtree can

340 SAMARAS ET AL.

initiate another commit operation or perform any independent work, since it is suspended
until the coordinator process includes it in another transaction.

Whether a subordinate process is a server that only responds to requests is known by the
application developer. LU 6.2, for example, provides a parameter on the SET_SYNCPT
_OPTIONS verb for the local transaction program to indicate whether it may be suspended
until it receives a request from its coordinator. If so, the subordinate communicates this
information to its coordinator on the YES vote. The value returned on the YES vote is
considered a protected variable, i.e., it takes effect only if the transaction commits. The LU
6.2 default is "not OK to leave out."

The following requirements must be met before a coordinator can leave another partner
out of the 2PC for the next transaction:

• No data has been exchanged with that partner during the current transaction.
• The partner indicated in the previous successful commit operation that it would be okay

to leave it out of subsequent transactions. For this to occur, three things must have
happened:

- - All resources subordinate to the subordinate indicated that they may be left out.

- - The subordinate is suspended in the commit operation. Control will be returned to
its program only when it has been sent data for a subsequent transaction.

- - All resources subordinate to the partner are similarly suspended waiting for the
beginning of a new transaction.

Just because a subordinate indicates that it can be left out does not mean that it will be
left out. The decision to leave a subordinate out is based on the work that is carried out
during the next transaction. If there is reason for a requester to include its server in the next
transaction, it will do so regardless of the OK_TO_LEAVE_OUT value specified.

For a transaction tree of n members out of which m voted OK-TO-LEAVE-OUT, this
optimization saves 2m forced-writes and 4m messages over the basic 2PC protocol. Again,
the number of messages does not depend on the position of the OK-TO-LEAVE-OUT
participants in the transaction tree, nor on the total size of the tree. The explanation is
similar to the one given in the read-only section (see Fig. 11).

Last agent

Experience with CICS/MVS and IBM's DB2 [15] has shown that a transaction often contains
a single remote partner. This particular situation allows a highly optimized commit path.
The coordinator prepares itself to commit and gives the subordinate the commit decision,
i.e., it is up to the subordinate to decide the outcome of the transaction. The coordinator
that uses this optimization prepares all of its other subordinates and itself to go either way,
force-writes a prepared record and sends a YES vote to the last agent, so called because it
is the last subordinate contacted during the voting phase.

Unlike the normal 2PC case, the coordinator is not required to send an explicit acknowl-
edgment when it receives a commit message. The last agent is not blocked waiting for
acknowledgment; as soon as it sends the Commit message, it can proceed with the next
transaction. The next data sent to the subordinate serves as an implied acknowledgment,
since it implies that the coordinator received the earlier Commit message. Receipt of the
implied acknowledgment allows the last agent TM to write the End log message and forget
the outcome of the transaction. This optimization is illustrated in Fig. 13.

TWOIpHASE COMMIT OPTIMIZATIONS 341

Coord inator

* log Prepared
Vote YES

o - - •

Commit
~IF - - - - o

*]og Committed
log END impl ied ACK

o

Subordinate

* log Committed

log END

Figure 13. Last-agent commit processing,

This optimization yields the greatest benefit when the coordinator has no other remote
subordinates. If it has other subordinates, they must all vote YES before the coordinator
can send its YES vote to the last agent. The prepare message can be sent in parallel to
multiple subordinates so that their phase-one processing can occur concurrently. Commu-
nication with a last agent cannot overlap any other commit processing. Thus, the last-agent
optimization that reduces messages to one agent conflicts with the optimization inherent in
preparing multiple agents concurrently. However, if messages to one of the remote partners
involve long network delays (e.g., connection through satellite), the last-agent optimization
provides significant savings. It is, for example, preferable to prepare the close-by partners
(fast first phase) and reduce the communication required with the faraway partner to one
slow round-trip message exchange.

The last-agent optimization is most useful with PN, since the coordinator always logs
before it sends a message to any subordinate. With PA, the savings in messages conflicts
with the need for a possibly extra log force. Thus, the last-agent optimization requires that
the initiator force-write a prepared record before it sends its YES vote to the last agent. If
the subordinate is not a last agent, the coordinator does not force any log record before the
Committed record.

For a transaction tree of n members and m last agents, this optimization offers savings
of 2m messages over the basic 2PC protocol, but no savings in forced-writes. It is possible
to have multiple last agents, since each last agent may choose one of its subordinates to be
a last agent.

Unsolicited vote

If a participant is a server that is designed to know when it has finished its part of a
transaction, it can prepare itself to commit and vote YES without waiting for the prepare
request from the coordinator. Thus, the server can remove the need for the first message
flow of 2PC by preparing itself on its own initiative, force-writing a prepared record, and
sending an unsolicited YES vote to its coordinator. If used in conjunction with the last-agent
optimization, a bit in the YES vote can distinguish this optimization from the last-agent
one. An unsolicited YES vote does not initiate any commit processing in the receiver, but
does indicate that the subordinate is already prepared.

For servers associated with relatively high network delays, the unsolicited-vote opti-
mization provides significant performance improvement. A form of this optimization was
originally proposed in the context of distributed INGRES [30] and IBM's IMS/VS [24].

342 SAMARAS ET AL.

For a transaction tree of n members and m unsolicited-vote participants, this optimization
saves m messages over the basic 2PC protocol

Flattening the transaction tree

The typical 2PC protocol treats the distributed transaction as a tree. Each participant
cascades the 2PC protocol to its own descendents. This is illustrated in Fig. 14 and in
Fig. 6. The cascading of the protocol means that TPb must receive and process the
Prepare message before TPc can be sent the cascaded Prepare from TPb. This serializa-
tion of the 2PC messages increases the duration of the 2PC processing as the tree depth
grows.

An alternative to this is feasible in communication protocols where a round trip is required
before commit processing. Remote Procedure Calls (RPC) or message-based protocols
where each request must receive a reply, are examples of protocols where round trips must
occur before commit processing is initiated.

With these protocols, the identity of all cascaded subordinate TPs can be returned to the
transaction coordinator when the child replies to its parent. This is illustrated in Fig. 15
part a.

In Fig. 15 part b the TM for TPa sends the 2PC messages directly to TPb, TPc, and
TPd. These messages are sent in parallel. This avoids the propagation delays and can be a
big performance winner in distributed transactions that contain deep trees.

Coordinator Subordinate Subordinate Subordinate
(TPa) (TPb) (TPc) (TPd)

Prepare Prepare Prepare
0 bo O - - ~O 0 ~ 0

Figure 14. A commit tree of depth 3.

Coordinator Subordinate Subordinate Subordinate
(TPa) (TPb) (TPc) (TPd)

a)

request~sg request~nlsg request-msg
o to o- ~o o ~o

repl y-msg reply~msg repl y~isg
TPc, IPd TPd

04 - - 0 0 ~ 0 0 4 - - 0

b)

Commit Operation Begins

Prepare
o ~o Prepare
o to Prepare

tO

Figure 15. Commit tree of depth 3 flattened down to depth 1.

TWO-PHASE COMMIT OPTIMIZATIONS 343

A limitation of this optimization is that in some distributed transactions, security poli-
cies of the nodes running the TPs may not permit the computer that is running TPa to
communicate directly to TPc or TPd. Protocols that support security features that prohibit
any-to-any connectivity cannot use this optimization without additional protocols to handle
the case where a partner cannot connect directly to the commit coordinator.

Another limitation is that a reply message is required so the identity of all the partners is
known to the coordinator prior to phase 1 of the 2PC protocols. Protocols that do not require
replies, such as conversational protocols, may not know the identities of all the agents prior
to phase one. These protocols save time by not requiring a reply to every request. For those
protocols it is possible to flatten the tree during phase 2, if the identity of each subordinate
is returned to the coordinator during the reply to the Prepare message.

Sharing the log

A local resource manager uses a log to keep track of updates so that it can either abort or
commit a transaction. Before an LRM votes YES, it ensures that this information has been
forced to non-volatile storage. When it learns of a commit outcome, it also force-writes a
commit record.

The LRM can share the same log as the coordinator transaction manager [23]. With this
optimization, the LRM takes advantage of the knowledge that the TM will force-write a
commit record. The LRM does not force-write the prepared record because the TM's force-
write of the commit record causes the local LRM's earlier non-forced write to be written to
the log. If the transaction successfully commits, the TM's commit record and the LRM's
prepared record will both be on the log. This ensures successful recovery processing. If
the system fails before the commit is forced, the prepared record may be lost. This does
not change the outcome of the transaction, since the TM aborts the transaction if it does
not find a commit record on the log, Similarly, the LRM does not need to force-write the
commit record. If the system fails and the non-forced commit record is lost, since TM's
commit record and the LRM's prepared record are both on the log, the recovery process
will successfully commit the transaction.

This optimization saves two forced-writes per LRM that shared the log. The more LRMs
that share the log with the TM, the more savings per transaction.

Group commits

There are certain points during 2PC where logging must complete before the commit
processing can continue. This blocks the commit processing until the log I/O completes.

In systems where there are many disk I/Os, I/O requests can queue up waiting for a
previous I/O request to complete. This queueing can decrease the overall throughput of the
transaction processing system.

Where transaction rates are high, the group commit optimization is practical. With this
optimization the log manager delays performing a force-write request until one of two things
occurs: either a defined number of force-write requests arrive, or a timer expires indicating
that the force-write request(s) should be processed even though the expected number of
requests has not arrived. This optimization was originally proposed and implemented in
IMS/VS 5 Fast-Path [8].

344 SAMARAS ET AL.

By processing a group of force-write requests at once, the logger can do all the requests
with one large I/O operation instead of many small ones. Since there is overhead involved
with starting I/O requests, the overall system throughput is maximized at the expense of
delaying individual commit procedures.

Group commits are a form of log sharing. However, the log sharing is done among
different transactions as opposed to the previous case where the sharing was done among
the different components of the same transaction.

For n transactions and a group commit of size m, this optimization provides an average
of 3n/2m savings in force-writes. In this simple analysis we assumed that only one member
of each transaction resides at each node.

A detailed analysis of the group commit optimization is quite complicated since several
parameters are involved: I/O rate, group size, number of participants, response time, and
time to allow the commit group to build up. Such analysis can be found in [13, 29].

Long locks

LU 6.2 2PC protocols allow an application program to trade offpackets sent against duration
of the commit operation, and therefore the length of time that resource locks are held
(long locks). In the usual case, the subordinate sends the commit acknowledgment to the
coordinator as soon as it has ensured that it has finished committing the transaction. If the
coordinator enables the long-locks variation, the subordinate delays sending the commit
acknowledgment until it sends the message beginning the next transaction. Since the
commit acknowledgment can be packaged in the same packet as the next transaction data,
this reduces the network traffic by one at the cost of keeping the resources at the coordinator
locked for a longer period.

LU 6.2 half duplex protocols ensure that only side of a conversation can send at a time.
The other side is in RECEIVE state, meaning that it can only receive data. The sending
partner can relinquish the permission to send, causing the direction of data flow on the
conversation to turn around. LU 6.2 allows the long-locks variation only if the coordinator
will be in RECEIVE state at the end of the commit operation, waiting for the subordinate
to begin the next transaction. The coordinator controls the state of a conversation at the end
of a 2PC operation, informing the subordinate in the Prepare message, as shown in Fig. 16.

Figure 16 shows the long-locks variation of the basic LU 6.2 2PC protocol. The LU
6.2 Prepare message to a subordinate agent includes instructions about the conversation
state expected after a successful commit. It also informs the subordinate whether or not
the coordinator wants the long-locks variation. The Commit acknowledgment message is
placed in the outgoing send buffer, but is not actually sent until data for the next transaction
is sent.

Long locks are advantageous where network resources are expensive and delays between
transactions are small. A good application of this particular optimization was presented
in [12]. The application involved banks that needed to reconcile their log accounts at
the end of the day. In the simplest form of this application, one bank (bank A), takes
the money out of an account and deposits it in the account of a second bank (bank B).
The withdrawal/deposit must be done as an atomic action in order to make sure that no
money is lost. Banks typically batch these sorts of transactions until the end of the day.
At that time, all the withdrawals and deposits that occurred during banking hours are
reconciled.

TWO-PHASE COMMIT OPTIMIZATIONS 345

Coordinator Subordinate

Prepare
Subordinate to be in send state
Long locks

o ~>o
Vote Yes

o ~ o

C o n ~ i t

o ->o
commits locally
buffers Commit ack message
starts next transaction

unl ocks

Commit ack, data

Figure 16. Example of long locks committing one transaction.

One alternative is to do all deposit/withdrawal requests as one large transaction. This
amortizes the cost of the 2PC protocol, with its four messages, over all the deposit/withdrawal
requests. The drawback is the amount of work that must be redone in the event of a failure
during the one large transaction.

An alternative is to perform and commit several requests at a time, repeating the process
until there is no further reconciliation work to be done. To take advantage of the long-
locks optimization, two banks take turns initiating a transaction. This reduces the average
number of individually transmitted 2PC messages per transaction to three, since the commit
acknowledgment is piggybacked on the request that starts the next transaction, as shown in
Fig. 16.

Commit acknowledgment

One of the ways that different 2PC protocols vary is in the timing of the commit acknowledg-
ment. Some have early acknowledgment [34, 23]: an intermediate system acknowledges
a commit received as soon as it has logged; others have late acknowledgment [31]: an
intermediate system waits to acknowledge the commit received from its coordinator until
it has collected acknowledgments from all its subordinates. Early acknowledgment means
"I have committed and am in the middle of propagation;" late acknowledgment means "I
and all members of my subordinate subtree have committed successfully." Early acknowl-
edgment has the advantage that the commit operation completes earlier for the root and
intermediate systems, allowing them to begin useful work earlier. Late acknowledgment
has the advantage that there is no uncertainty at the root of the commit tree when it starts the
next transaction that it is building on the solid basis of a previously committed transaction;
if any heuristic damage has occurred, it has heard about it. Thus, there is a tradeoff between
wait time and confidence in the outcome of the transaction. Of course, any intermediate
only knows about the commit outcome in its own subtree, so this confidence is limited in a
true peer-to-peer environment where any program in the tree can start further work.

One acknowledgment pattern may not make sense for all applications and resource types.
Thus, if the chance of a heuristic decision is vanishingly small for all resources involved in
a transaction, late acknowledgment does not add any value. Similarly, interactive programs
may choose to reduce wait time, even if doing so involves a reduction in confidence, in order

346 SAMARAS ET AL.

not to keep a human at a terminal waiting longer than absolutely necessary. Some variations
to the late acknowledgment pattern based on these considerations are described below.

Voting reliable

Late acknowledgment is based on the assumption that any node in a transaction tree may
make a heuristic decision that disagrees with the decision taken by the rest of the tree, and that
the root of the commit tree should be informed if damage of this nature occurs. It is possible
however to have nodes in the tree that make heuristic decisions only in drastic circumstances.
For example, a database system may be built on the assumption that correcting heuristic
damage is so difficult that heuristic decisions should be utterly discouraged. The probability
of heuristic decisions can be made so small that early acknowledgment is acceptable, even
for applications that rely on the semantics of late acknowledgment.

The vote reliable optimization uses information gathered from LRMs to gain the early
completion advantages of early-acknowledgment protocols while maintaining the semantics
of late-acknowledgment protocols. When a LRM votes YES, it indicates whether it is a
reliable resource, i.e., one for which heuristic decisions are very unlikely. An intermediate
TM collects the reliability indicators from all its subordinates. If all vote reliable, then
it can use early (or implied)-acknowledgment protocols with its coordinator during the
commit phase (see Fig. 17). If any LRM votes "not reliable," the intermediate uses late-
acknowledgment protocols. Generally speaking, the "reliability" characteristic is a static
one that will not vary from transaction to transaction. Thus, a database system either is or

Coordinator Cascaded Subordinate
Coordinator

Prepare Prepare

*log Prepared

Vote YES, Reliable(YES)
04 0

*log Prepared

Vote YES, Reliable(YES)
O ~ "0

*log Committed

Commit

*log Committed
Commit

Implied Ack o-)o
04 o *log Committed
log END

*: Log record is force-written.

Implied Ack
04 0

log END

Figure 17. Two-phase commit processing, all resources voted reliable.

TWO-PHASE COMMIT OPTIMIZATIONS 347

is not reliable. 6 However, since the resources involved can vary from transaction to trans-
action, the intermediates collect the reliability information during every first phase.

The default value of this characteristic is "not reliable." Thus, LRMs that can provide
this information may achieve a performance advantage in overall commit processing, but
LRMs that are either not reliable or do not understand the parameter still receive full 2PC
coverage.

With implied acknowledgment, a transaction tree of n members and m vote-reliable
participants, this optimization saves m messages over the basic 2PC protocol.

Wait for Outcome

Late acknowledgment implies that the intermediate does not respond to its coordinator
until it has collected acknowledgments from its subordinates, even if failures occur that
require recovery processing. For major system failures, waiting for recovery processing
may involve considerable delay. An intermediate may make multiple attempts to contact a
subordinate before it succeeds.

When implementing the PN protocols for APPC in VM/ESA, usability evaluations uncov-
ered a problem with this aspect of late acknowledgment: a human waiting for the outcome
of a transaction gets very impatient waiting for recovery processing to complete. Some
people would rather get control back earlier, even if they could not be guaranteed certainty
that the transaction completed without heuristic damage.

A feature was added to the IBM PN protocols and the APPC interface [31, 32] to allow
the application program to specify whether it requires all recovery processing to complete
before it is told the outcome of the commit operation. If yes, then late acknowledgment
occurs as usual; the coordinator application is blocked, awaiting all acknowledgments and
recovery processing to occur. If no, one attempt to contact a failed partner is attempted.
If the first attempt fails, the system attempts to complete the recovery processing in the
background, but allows the commit or abort operation to complete with an indication to the
application program that the outcome of the entire transaction is not yet known. Similarly,
an intermediate system will attempt to contact a failed subordinate only once before sending
an acknowledgment to its coordinator indicating that "recovery is in progress." The commit
or abort operation completes at the coordinator with the "outcome pending" indication (see
Fig. 18).

One recovery attempt is always attempted so that the program only hears "outcome
pending" for long-term failures. It is considered preferable for a program to wait a short
time for one attempted recovery than to get an "outcome pending" indication for every
failure.

In the original versions of this feature, the decision was made independently at each node
in the transaction tree. In a later version we decided to allow the coordinator to inform its
subordinates whether it wants to wait for the outcome during phase one, allowing the root
of the commit tree to control the way the rest of the tree responds to failures [26]. An
additional benefit of this decision is described in the section titled "Wait for Outcome and
Presumed Abort."

This feature allows the application developer to decide the relative merits of shorter wait
time and confidence in outcome. Unlike early acknowledgment protocols, the normal case
is complete confidence in outcome, and the application program is informed when that
cannot be achieved.

348 SAMARAS ET AL.

Coordinator Cascaded Subordinate
Coordinator

Prepare, W-f-D(NO) Prepare, W-f-O(NO)
O - - ~O "0

Vote YES
oq
*log Committed

Commit
o

o,
*log Prepared

*log Prepared

Vote YES
o

-~o X
*log Committed CRASH!

Commit

Recovery (fai led)
o ~X

Commit, Outcome-Pending
O~ - - ' 0

TM returns control to
the TP with the indicat ion
of "outcome pending".

*: Log record is force-wr i t ten.

Figure 18. Two-phase commit processing, all participants choose Wait-for-Outcome (NO).

7. Combining 2PC optimizations

We have so far described each 2PC optimization independently of other optimizations. It
is possible to use more than one optimization in the same 2PC operation. This section
describes certain combinations of 2PC optimizations and how they affect the performance,
correctness, and reliability of 2PC processing. Unless otherwise stated, these combinations
are described in the context of Presumed Abort. The list is not exhaustive; the combinations
presented here are the ones with the most interesting effects.

Last agent and read only

The last-agent optimization allows the commit coordinator to transfer the commit decision
to a remote partner at the expense of force-writing a Prepared log record that is superfluous if
the coordinator votes read-only. This is true because the behavior of a read-only coordinator
is not changed by the outcome of transaction, Therefore the coordinator does not need any
recovery processing if it fails after giving the decision to the last agent.

In order to maintain the advantages of both the last-agent and read-only optimizations,
the combined optimization gives the coordinator the ability to vote read-only to a last agent
without forcing any log records at all. If the last agent also votes read only, the commit
operation can complete without any log records being forced anywhere.

TWO-PHASE COMMIT OPTIMIZATIONS 349

Subordinate

Prepare
oq

Coordinator

o

Subordinate
(las t agent)

Vote Read-Only
,o

Vote Read-Only
o ,o

*log Conmitted
Commit

Conmitted

Implied Forget
o ~o

Figure 19. Read-only coordinator with committing last agent.

Subordinate Coordinator

Prepare
o, a

Subordinate
(l as t agent)

Vote Read-Only
,o

Vote Read-Only
o I ~o

Vote Read-Only
o~ -o

Figure 20. Read-only coordinator with read-only last agent.

This combination of optimizations is illustrated in Fig. 19, where the coordinator votes
read-only and the last agent commits, and Fig. 20, where both vote read-only. The last agent
does not owe any recovery processing to the coordinator if the coordinator fails during the
commit processing.

Both figures show that a coordinator must collect read-only votes from all other subor-
dinates before it can vote read-only to a last agent. Thus it cannot vote read-only if any of
its other subordinates needs to know the outcome of the transaction.

Since 80% of distributed transactions are read only with one or two remote partners,
this combined optimization provides tremendous savings. For a transaction tree with n
members and m cascaded last agents that vote read-only, this combination of optimizations
saves 2m messages and 2m forced log writes.

There is, however, an interesting interaction of this combination with the Wait-for-
Outcome optimization: If the TP that is executing at the coordinator side indicates that it
wants to learn the outcome of the transaction then the last agents will have to force write the
Prepared log record. This is so, because the remote partner's lack of logging could cause un-
detected damage of the transaction. For example, a read-only transaction will appear to have
backed out upon recovery and heuristic damage could be lost because of the lack of logging
at a subordinate. For more details see the "Wait for Outcome and Presumed Abort" section.

Such a bizarre combination is very unlikely to happen since the semantics of the read-
only optimization (don't care about the final outcome) conflict with those of the Wait-for-
Outcome (YES) optimization. Thus, if the initiator is interested in the final outcome of the
transaction, it should vote YES instead of Read-Only.

350 SAMARAS ET AL.

SITE A
(BANK A)

SITE B
(BANK B)

Data(t l)
Vote YES (t l)

Subordinate is a last agent
Subordinate to be in send state
Long locks

,o
performs t l
commits t l locally
buffers C o . i t (t l) message
starts t2
decides to commit t2

Commit (tl)
Data (t2)
Vote YES (t2)

Subordinate is a last agent
Subordinate tD be in send state
Long locks

o~ -o
unlocks for t l
performs tB
commits locally for t2
buffers Commit (t2) message
starts t3

Commit (t2), data (t3)
serves as implied forget (t l)

wo o

Figure 21. Long locks (last agent commits).

Long locks and last agent

Both the long-locks and the last-agent optimizations reduce network traffic. The long-locks
optimization does so at the expense of longer resource lock time. If used together, these
two optimizations can make the amount of extra network traffic for 2PC vanishingly small
for an alternating application such as the bank reconciliation application described in the
early section on Long Locks.

Figure 21 shows the long-locks variation combined with the last-agent optimization
to perform and commit two transactions (and start on a third) in three separate packets.
The LU 6.2 Vote YES to a last agent, like the prepare message to a not-last agent, includes
instructions about the conversation state the subordinate is expected to be in after a successful
commit and whether the coordinator wants the long-locks variation.

In Fig. 21, three sequential transactions are referred to as t 1, t2, and t3. Thus Data(tl),
Vote YES (t 1), and Commit(t 1) in the figure refer respectively to the transaction data, Vote
message, and Commit message for the first transaction.

Taking this approach, applying 2 optimizations, long locks and last-agent and using the
conversational model, the banking application described previously can commit frequently,
minimizing the number of requests that have to be re-run if there is a failure, without adding
any extra packets exchanged just for 2PC.

See Fig. 21 for an example of these two optimizations working together. Bank A starts
a conversation with bank B. Bank A then requests that 'n' updates be made, invokes the
Long-Locks optimization, and initiates a commit operation. This sends all 'n' transactions,
the vote YES message, and the command that indicates "Bank B is in SEND state after
the transaction, and please buffer the commit message until Bank B sends application data
back." Only one message flow has occurred so far. Bank B, after receiving the incoming
request, making the updates, committing the updates, is now in SEND state. It does the same
thing that Bank A did: it requests 'n' updates, invokes the Long-Locks optimization, and

TWO-PHASE COMMIT OPTIMIZATIONS 351

initiates the commit processing. Since the last-agent optimization uses implied forget, the
message that begins one transaction acts as an implied forget for the previous transaction.
Bank A and B can repeat this alternating process until there is no further reconciliation
work to do. This results in 2 committed transactions for 3 messages.

For r transactions that overlap data transfer and commit processing in this way, this
optimization combination saves 5r/2 messages.

Last agent and unsolicited vote

With the peer-to-peer model, a subordinate can be selected as the last agent by multiple
coordinators. Unlike the normal case, where the existence of multiple coordinators causes
an abort, this can occur legally, since there is still only one participant responsible for
making the commit decision. As shown in Fig. 22, this case looks very much like the
unsolicited-vote optimization.

This optimization provides extra savings over the unsolicited-vote optimization since
the coordinators can use implied acknowledgment instead of sending explicit acknowledg-
ments. For a transaction tree with n members and m participants that send unsolicited ready
messages to the same last agent, this optimization combination saves 2m messages.

This optimization is relatively easy to implement for a system that implemented the last-
agent optimization; CICS [6] implemented the unsolicited-vote optimization by disabling
the error check for multiple coordinators in last agents.

However, the commercial requirement to report heuristic damage becomes more difficult
when a subordinate does not have a single coordinator. With protocols such as LU 6.2 sync
point that allow only one answer to the "Vote YES" message, a last-agent subordinate that
detects heuristic damage among its subordinates sends the "Heuristic Damage" message to
the coordinator in place of the "Commit" or "Abort" message, leaving the coordinator to
make a heuristic decision for its local resources. As illustrated in Fig. 23, if this is done
with multiple coordinators, the damage may be extended unless appropriate administrative
controls are in place to make sure both sites make the same heuristic decision.

A simpler alternative is illustrated in Fig. 24. Only one partner is identified as the
coordinator that must be informed of heuristic damage. For example, LU 6.2 sync point
has the following rules for determining which partner is the official coordinator:

• If only one partner sends a YES vote, it is considered the coordinator and the local server
is a last agent.

Coordinator Subordinate Coordinator

Vote YES Vote YES
o ~o~ o

* log Con~itted

Commit Cor~ait
o ~ o- ~o

* log Con~nitted ~log CoiTmitted

Impl ied Ack Impl ied Aek
o. ~o -II- o

log END

Figure 22. Last agent and unsolicited vote: successful.

352 SAMARAS ET AL.

Coordinator S u b o r d i n a t e Coordinator
(Allocator)

Vote YES VoLe YES
o ~o~ o

Heuristic Damage
detected in subordinates

*log CoT~nitted
(local action)

Heuristic Damage Heuristic Damage
0 4 o- -o

*log Damage *log Damage

Make heuristic decision Make heuristic decision
to commit local changes to abort local changes

Implied Ack Implied Ack
o ,o~ o

log END

Figure 23. Last agent and unsolicited vote: damage problem.

Coordinator S u b o r d i n a t e Coordinator
(Allocator)

Vote YES Vote YES
o ~oi -o

Heuristic Damage
detected in subordinates

*log Conmlitted
(local action)

Heuri sti c Damage Corrmi t
o, o-- -o

*log Damage *log Committed
Make heuristic decision
for local resources

Implied Ack Implied Ack
o Po4 -o

log END

Figure 24. Last agent and unsolicited vote: damage reduced.

• If multiple partners send YES votes, only the program that started the local program
(allocated the conversation to it) can be treated as a coordinator; all others are treated as
unsolicited-ready subordinates. This may mean that no coordinator is selected for the
purposes of reporting heuristic damage.

Although these rules may not yield the answer that matches a specific application, they
yield the right answer in most cases. Where they do not, damage reports will be misrouted,
but the outcome of the transaction should not be changed.

Wait for Outcome and Presumed Abort

The Wait-for-Outcome optimization was originally designed for the Presumed Nothing
protocol. When used with Presumed Abort, Wait-for-Outcome(YES) causes extra logging
at intermediates.

The reason for this can be shown with the following configuration:

TPa -----+ TPb > TPc

TWO-PHASE COMMIT OPTIMIZATIONS 353

Coordinator Subord inate Subordinate
(intermidiate)

Prepare, W-f-O(YES)
o I m, o

*log CommitPending

Prepare, W-f-O (YES)
o q~o

Crash! * l o g p repa red
vo te YES
X q o

Recovery - abo r t
o - - t o

L. Recovery - abort
,o

Recovery a c k - a l l abo r ted
Recovery ack - o4 o
a l 1 a b o r t e d I

J o ~

Figure 25. Wait-for-Outcome (YES) and presumed abort.

Participants TPa and TPb both indicate they want to wait for the outcome. Participant TPa
sends prepare to TPb. TPb sends prepare to TPc. With presumed abort, the TMs at TPa
and TPb have not logged anything. Thus if the TPb site crashes, its TM has no memory of
the 2PC operation in progress.

Since TPa specified Wait-for-Outcome(YES), its TM will expect to learn the outcome
of the 2PC in the entire subtree. It will therefore initiate recovery processing. The TPb
TM, having no memory of the transaction, assumes it aborted successfully. Since it passes
this information to its coordinator, TPa will think that the entire transaction aborted. Un-
fortunately this may not be true. Since TPc is in doubt, there is potential for a heuristic
commit decision to occur there. Therefore TPa has not gotten what it requested with
Wait-for-Outcome (YES).

The solution to this problem is for the coordinator to indicate in the Prepare message (not-
last agent) or YES vote (last agent) whether any program between it and the root of the tree
has specified Wait-for-Outcome(YES). If so, the intermediate coordinators must force write
Commit-Pending (or Prepared if last agents) log records before propagating Prepare (or YES
vote) to their subordinates. Therefore they cannot lose memory of subordinate participants
when they owe complete information to their coordinators. This is not necessary at root
coordinators since a crash that destroys the TM's memory also destroys the TP that requested
Wait-for-Outcome(YES), removing the obligation to give it complete outcome information.
This solution trades off extra logging against reliable reporting.

Figure 25 shows the Wait-for-Outcome optimization used with presumed abort.
The full benefit of PA logging is received only if all coordinators specify that they don't

want to wait for the outcome of the transaction.
Even if all subordinates in the tree vote reliable indicating they do not make heuristic deci-

sions, the extra Commit-Pending log writes cannot be avoided for Wait-for-Outcome(YES).
The reason for this is that the intermediate coordinators do not know that the subordinates
vote reliable until the votes return, after the log write has already been done.

For a transaction tree with n members and m intermediate coordinators, reliable reporting
is achieved at the cost of m extra forced log writes.

354 SAMARAS ET AL.

8. Performance evaluation and discussion

Two-phase commit optimizations can be evaluated in terms of reduction in network traffic,
reduction in the number of forced writes, and decreased resource lock time. Since these
optimizations can also affect reliability, an evaluation is affected by whether these optimiza-
tions reliably report the outcome of the transaction and whether they increase the chances
of heuristic damage.

A single optimization does not provide improvements across all performance metrics, and
often an optimization might trade off one metric for another. In some cases, performance can
be improved by combining different optimizations. In other cases, combined optimizations
reduce the reliability of the commit processing.

In the tables that follow, optimizations are analyzed in terms of the absolute number of
messages exchanged with subordinates. Further analysis would break down the messages

Table 1. Advantages and disadvantages of 2PC optimizations.

Optimization Advantages Disadvantages

Read Only Fewer messages

Last Agent

Unsolicited
Vote

OK to leave
Out

Vote Reliable

Wait for
Outcome

Long Locks

Fewer log writes
Early release of locks

Fewer messages
Early release of locks

Fewer messages
Earlier release of locks

No log writes
No messages

Fewer messages
Next transaction can begin earlier

2PC doesn't block for
most network partitions

Next transaction can begin
earlier

Fewer packets per transaction

Shared Logs Fewer forced writes

Group Fewer forced writes
Commit System throughput maximized

Flattening the Reduced commit processing time
Transaction Earlier release of locks
Tree System throughput maximized

Vote Reliable No extra advantage
& Wait for
Outcome
(Yes)

No knowledge of the outcome of a transaction
Potential serializability problems

One extra forced write possible

Application specific

N/A

Damage reporting to root coordinator lost
if reliable resource does take
a heuristic decision

Complete outcome of transaction may not be
known by coordinator

Locks held longer
Commit decision may be delayed if

combined with last-agent optimization
Interdependence of resource manager

and transaction manager
Longer lock times for individual transactions

Extra overhead in reply messages
Intermediate systems do not learn

outcome at subordinates

May have unnecessary forced log writes

TWO-PHASE COMMIT OPTIMIZATIONS 355

Table 2. Logging and network traffic of 2PC optimizations.

2PC type Coordinator Coordinator Subordinate Subordinate
messages logs messages logs

Basic 2PC 2 2, 1 forced 2 3, 2 forced 1
PN 2 3, 2 forced 2 4, 3 forced 1
PA, Commit case 2 2, 1 forced 2 3, 2 forced 1
PA, Abort case 2 0, 0 forced 1 0, 0 forced
PA, Read-Only case 1 0 1 0
PA & Unsolicited Vote 1 2, 1 forced 2 3, 2 forced 1
PA & Last-Agent 1 3, 2 forced 1 12 2, 1 forced
PA & Last-Agent & 1 0 1 2, 1 forced 1

Coordinator Read-Only 3

PA & Last-Agent & All 1 0 1 0
Read-Only 3

PA & Last-Agent as 1 3, 2 forced l 2, 1 forced
Unsolicited Vote

PA & ok-to-leave-out 0 0 0 0
PA & Vote Reliable 2 2, 1 forced 12 2, 2 forced
PA & Wait-for-Outcome 2 2, 1 forced 2 3, 2 forced 1

(No)
PA & Wait-for-Outcome 2 2, t forced 2 3, 2 forced I

(Yes) 4 3, 2 forced 5
PA & Long Locks (not 2 2, 1 forced 1 3, 2 forced 1

last-agent)
PA & LongLocks & I 3, 2 forced 1 2, 1 forced 1

Last-Agent
PA & shared logs 2 2, 1 forced 2 3, 0 forced

Note: 1 The Prepared and Committed records are force-logged; the END record is not forced. It
is possible to combine the Committed and END into one forced log for leaf subordinates. 2In this
optimization an implied-Ack is used, saving a link flow. 3In this combination only the coordinator
is read only. The pair (x, y forced) means that x log writes are performed, of which y are forced.
4To learn the outcome in the entire tree, a PA coordinator must behave as a PN coordinator. 5This
is the value for intermediate coordinators.

into those to L R M s and those to remote TMs, which in general involve greater delays. Since

there are no exact weights that can be associated with those two type o f messages we did

not carry the analysis this far.

Table 1 summar izes the advantages and disadvantages o f the various optimizations.

Table 2 descr ibes number o f messages and log writes of the opt imizat ion and compares

them with the basic two-phase commit , presumed abort, and presume nothing protocols .

For compar i son purposes, each opt imizat ion is evaluated within presumed abort. The

calculat ions are done within the context o f a transaction with 2 participants.

Table 3 provides a higher level of compar ison by descr ibing the number of messages and

log writes needed to c o m m i t a transaction with n members . Each row in the table describes

the benefits gained i f m participants use a particular optimization. Each entry in the table is

i l lustrated with a real case shown in Fig. 26, consist ing of 11 participants, 4 o f which fo l low

the same opt imizat ion. Whi l e the numbers 11 and 4 have no special significance, a specific

practical example makes the relat ive benefits of the different opt imizat ions easier to perceive.

The intent ion o f Table 3 is to contrast these opt imizat ions with the basic 2PC protocol ,

rather than to compare them to each other. Compar ing the different opt imizat ions does

356 SAMARAS ET AL.

Table 3. Logging and message costs for optimizations. Each transaction consists of n partners where m members
are following a particular optimization.

2PC type Messages Log writes n = 11, m = 4

/ f , w , w f

Basic 2PC 4(n - 1) 3n - 1, 2n - l forced 40, 32, 21
(no optimizations present)

PA & Read Only 4(n - 1) - 2m 3(n - m) - 1, 2(n - m) - 1 32, 20, 13

forced

PA & Last Agent 4(n - 1) - 2m 3n - 1, 2n - 1 forced 32, 32, 21

PA & LastAgent & 4(n - 1) - 2m 3(n - m) - I, 2(n - m) - 1 32, 20, 13

Read-Only forced

PA & Unsolicited Vote 4(n - 1) - m 3n - 1, 2n - 1 forced 36, 32, 21

PA & Last-Agent as 4(n - 1) - 2m 3n - 1, 2n - 1 forced 32, 32, 21

Unsolicited Vote
PA & 4(n - 1) - 4m 3(n - m) - 1, 2(n - m) - 1 24, 20, 13

Ok-To-Leave-Out forced

PA & Vote Reliable 4(n - 1) - m 3n - 1, 2n - 1 forced 36, 32, 21

PA & Wait-For- 4(n - 1) 3n - 1, 2n - 1 forced 40, 32, 21
Outcome (No)

PA & Wait-For- 4(n - 1) 3n - 1 + m - 1, 2n - 1+ 40, 35, 24

Outcome (Yes) m - 1 forced

PA & Share Logs 4(n - 1) 3n - 1, 2(n - m) - 1 forced 40, 32, 13

PA & Long Locks 4(n - i) - m 3n - 1, 2n - 1 forced 36, 32, 21

Note: The triplet (f, w, w f) refers to (# of messages, # of log writes, # of forced

writes.)

Table 4. Logging and message costs for long-locks optimization, r transactions occur, each consisting of 2

members.

2PC type Messages Log writes r = 12If, w, w f

Basic 2PC 4r 5r, 3r forced 48, 60, 36

PA & Long Locks (not 3r 5r, 3r forced 36, 60, 36

last agenO
PA & Long Locks (last 3r/2 5r, 3r forced 18, 60, 36

agents)

Note: The triplet (f, w, w f) refers to (# of messages, # of long writes, # of forced

writes).

n o t m a k e s e n s e s i n c e t h e y a r e u s e d w i t h i n d i f f e r e n t c o n t e x t s , a n d t h e r e f o r e c a n n o t b e u s e d

i n t e r c h a n g e a b l y .

T a b l e 4 s h o w s t h e b e n e f i t s o f t h e l o n g - l o c k s o p t i m i z a t i o n w h e n i t i s u s e d b y r t r a n s a c t i o n s

w i t h s m a l l d e l a y s b e t w e e n t h e m .

9. Related work

T h i s s e c t i o n d i s c u s s e s a d d i t i o n a l 2 P C o p t i m i z a t i o n s t h a t w e r e n o t a n a l y z e d e a r l i e r e i t h e r

b e c a u s e t h e y a r e v a r i a t i o n s o f t h e o n e s a l r e a d y p r e s e n t e d o r b e c a u s e t h e y t a k e a d v a n t a g e o f

s p e c i f i c m a c h i n e a r c h i t e c t u r e s .

TWO-PHASE COMMIT OPTIMIZATIONS 357

Ps

Pa

I

Pf

Pn Pm Pg

Pb
I

Pc

I
Pd

I
Pe

Figure 26. Transaction tree used for analysis. 11 participants, where 4 of them (Pb, Pc, Pd, Pe) follow a particular
optimization.

DEC's DECdtm services [16] takes advantage of the VAXcluster architecture to reduce
the number of required forced log writes and to achieve a nonblocking 2PC protocol within
VAXcluster transactions without the extra messages described in [27]. Any subordinates
within the coordinator's VAXcluster can access the coordinator's log. Therefore the subor-
dinates are not blocked if the coordinator fails in the middle of a 2PC operation since they
can access the log to determine the transaction outcome. The resulting log reductions are
similar to those of the sharing-the-log optimization described in Section 6. Based on the as-
sumption that most transactions commit, the DEC optimization further reduces the commit
latency by allowing intermediate coordinators to force write the prepared log record while
waiting for votes from subordinates to arrive. This allows the intermediate coordinator to
respond immediately to its coordinator as soon as the last subordinate vote arrives, without
having to wait for a log write to complete.

Transarc's Encina [7] uses a variation of the unsolicited vote optimization. Each server
prepares itself before responding to each and every remote procedure call (RPC), indicating
its prepared status on the return message. If the client decides to initiate the commit protocol,
phase one can be skipped. The main differences from the unsolicited-vote optimization are
that the subordinate is always prepared and that it can still accept new work. In the case
where a single transaction involves multiple RPCs to a server, the Transarc optimization
results in more force writes in the server.

An optimization known as coordinator migration [7, 11] improves reliability by trans-
ferring the commit decision to more reliable partners. With the last-agent optimization, the
original commit coordinator can unilaterally transfer the commit decision to an immediate
subordinate, which can further transfer the decision to one of its subordinates, and so on.
Coordinator migration, however, provides a formal way to negotiate which member of the
transaction tree will serve as the coordinator. The current coordinator on the prepare mes-
sage indicates to the subordinates the potential coordinator. If all subordinates agree, the
potential coordinator becomes the official coordinator. Unlike the last-agent optimization,
this flexibility is at the expense of always including the first phase of the 2PC protocol.

358 SAMARAS ET AL.

10. Conclusions

Two-phase commit protocols have been studied extensively by the research community.
While some of the research has concentrated on improving performance in the failure case,
we find it is more advantageous to optimize for the normal, non-failure case in today's
commercial environment. This paper describes several 2PC variations and their combina-
tions that optimize towards the normal case, comparing them to a baseline 2PC protocol
and describing environments where they are most effective. The variations are compared
and contrasted in terms of number of messages, number of log writes (both forced and
non-forced), probability of heuristic damage, how damage is reported, and other tradeoffs.

Although most of these optimizations have been incorporated in IBM's LU 6.2 sync point
protocols, they were presented in this paper independently of the underlying communica-
tions protocol to avoid implementation details. A description of some of these optimization
as they might be incorporated in IBM's LU6.2 is presented in [31, 21].

Acknowledgments

We would like to acknowledge contributions of our colleague at Almaden Research Center,
Bruce Lindsay, and valuable feedback from Ajay Kshemkalyani, Gary Schultz, and James
P. Gray.

Notes

1. Whenever we refer to a process, we are not necessarily referring to a process as defined by the operating
system. A process may in fact be a lightweight thread, a piece of context, or a thread of control (XOPEN
model).

2. The communication network is actually accessed through appropriate communication resource managers
(CRM). Such CRMs can be conversational (LU 6.2 or OSI/TP), RPC based, or message based. These CRMs
do not effect the performance of the 2PC processing but merely utilize the underlying communication network.
Thus, they are not shown in Fig. 4.

3. The END log record at a leaf subordinate (LRM) is not strictly needed. Since it is included in some 2PC
implementations, we included it here to simplify the analysis.

4. IBM, CICS/MVS, DB2, IMS/VS and VM/ESA are trademarks of International Business Machines Corp.
TMF and Tandem are trademarks of Tandem Computers, Inc. DEC, VAX and VMS are trademarks of Digital
Equipment Corp. Transarc is a registered trademark of Transarc Corp. Encina is a trademark of Transarc
Corp. Tuxedo and Unix are registered trademarks of Unix System Laboratories, Inc. X/Open is a trademark
of X/OPEN Company Ltd.

5. Presumed Commit protocols [22] are not described in this paper because they have not been implemented in
commercial products.

6. There can be specific resources within an overall DB system (e.g. a specific set of tables, or a specific set
of IMS/ESA DL1 databases) that are not allowed to be heuristically changed. For example, in CICS/MVS,
protected transient data can sometimes have this property, while all other resources are subject to heuristic
damage.

TWO-PHASE COMMIT OPTIMIZATIONS 359

References

1. E Bemstein, W. Emberton, and V. Trehan, "DECdta--Digital's Distributed Transaction Processing Architec-
ture," Digital Technical Journal, Vol. 3, No. 1, Winter 1991.

2. E Bernstein, "Transaction Processing Monitors," Communications of the ACM, Vol. 33, No. 11, November
1990.

3. E. Braginsky, "The X/Open DTP Effort," Proc. 4th International Workshop on High Performance Transaction
Systems, Asilomar, September 1991.

4. U. Buerger, "A Flexible Two-Phase Commit Protocol," Computer Networks and ISDN Systems, Vol. 17,
No. 3, September 1989.

5. C.-L. Huang and V.O.K. Li, "A Quorum-Based Commit and Termination Protocol for Distributed Database
Systems," Fourth International Conference on Data Engineering, Los Angeles, California, February 1-5,
1988.

6. CICS General Information, Document Number GC33-0155-4, IBM, October 1990.
7. J. Eppinger and M. Yung, Transarc's Encina Environment, USENIX, 1990.
8. D. Gawlick and D. Kinkade, "Varieties of Concurrency Control in IMS/VS Fast Path," IBEE Database

Engineering, Vol. 8, No. 2, June 1985.
9. J.N. Gray, "Notes on Data Base Operating Systems," in Operating Systems--An Advanced Course, R. Bayer,

R. Graham, and G. Seegmuller (Eds.), Lecture Notes in Computer Science, Vol. 60, Springer-Verlag, 1978.
Also available as IBM Research Report RJ2188, IBM Almaden Research Center, February 1978.

10. J.N. Gray, "The Transaction Concept: Virtues and Limitations," Proc. 7th International Conference on Very
Large Data Bases, October 1981.

11. J.N. Gray and A. Reuter, Transaction Processing: Concepts and Techniques, Morgan Kanfmann series, 1993.
12. E Helland, "The LU 6.2 Protocol Boundary: The 'U Stands for 'Lightweight'," Proc. 3rd International

Workshop on High Performance Transaction Systems, September 1989.
13. E Helland, H. Sammer, J. Lyon, R. Can', E Garrett, and A. Reuter, "Group Commit Timers and High

Volume Transaction Processing Systems," Proc. 2nd International Workshop on High Performance Transaction
Systems, September 1987.

14. M. Hesselgrave, "Considerations for Building Distributed Transaction Processing Systems on UNIX System
V," Proc. UNIFORUM, Washington, January 1990.

15. IBM Database System DB2, Document Number GG24-3400-0, IBM, 1988.
16. W. Laing, J. Johnson, and R. Landau, "Transaction Management Support in the VMS Operating System

Kernel," Digital Technical Journal, Vol. 3, No. 1, Winter 1991.
17. B.W. Lampson, "Atomic Transactions," in Distributed Systems: Architecture and Implementation--An Ad-

vanced Course, B.W. Lampson (Ed.), Lecture Notes in Computer Science, Vol. 105, Springer-Verlag, 198l,
pp. 246-265.

18. B. Lindsay, L. Haas, C. Mohan, E Wilms, and R. Yost, "Computation and Communication in R*: A Distributed
Database Manager," ACM Transactions on Computer Systems, Vol. 2, No. 1, February 1984. Also available
as IBM Research Report RJ3740, IBM Almaden Research Center, January 1983.

19. G. Lohman, C. Mohan, L. Haas, D. Daniels, B. Lindsay, E Selinger, and E Wilms, "Query Processing in R*,"
in Query Processing in Database Systems, W. Kim, D. Reiner, and D. Batory (Eds.), Springer-Verlag, 1985.
Also availahle as IBM Research Report RJ4272, IBM Almaden Research Center, April 1984.

20. B. Maslak, J. Showalter, and T. Szczygielski, "Coordinated Resource Recovery in VM/ESA," IBM Systems
Journal, Vol. 30, No. l, 1991.

21. C. Mohan, K. Britton, A. Citron, and G. Samaras, Generalized Presumed Abort: Marrying Presumed Abort and
SNA's LU 6.2 Commit Protocols, IBM Research Report RJ8684, IBM Almaden Research Center, November
1991.

22. C. Mohan and B. Lindsay, "Efficient Commit Protocols for the Tree of Processes Model of Distributed Trans-
actions," Proc. 2rid ACM SIGACT/SIGOPS Symposium on Principles of Distributed Computing, Montreal,
Canada, August 1983. Also available as IBM Research Report RJ3881, IBM Almaden Research Center, June
1983.

23. C. Mohan, B. Lindsay, and R. Obermarck, "Transaction Management in the R* Distributed Data Base
Management System," ACM Transactions on Database Systems, Vol. 11, No. 4, December 1986. Also
available as IBM Research Report RJ5037, IBM Almaden Research Center, February 1986.

24. An Overview of Information Management System/Virtual Storage (IMS/VS) Intersystem Communications
(ISC), Document Number G320-5856, IBM, July 1980.

360 SAMARAS ET AL.

25. K.RothermelandS.Pappe,"OpenCommitProtocolsfortheTreeofProcessesModel,"Proc. 10thlnternational
Conference on Distributed Computing Systems, Paris, May-June 1990.

26. G. Samaras, K. Britton, A. Citron, and C. Mohan, Enhancing SNA's LU6.2 Sync Point to Include Presumed
Abort Protocol, IBM Techical Report TR29.1751, IBM Research Triangle Park, December 1992.

27. D. Skeen, "Nonblocking Commit Protocols," Proc. ACM/SIGMOD International Conference on Management
of Data, Ann Arbor, Michigan, 1981, pp. 133-142.

28. A. Spector, "Open Distributed Transaction Processing with Eneina," Proc. 4th International Workshop on
High Performance Transaction Systems, Asilomar, September 1991.

29. P. Spiro, A. Joshi, and T.K. Rengarajan, "Designing an Optimized Transaction Commit Protocol" Digital
Technical Journal, Vol. 3, No. 1, Winter 1991.

30. M. Stonebraker, "Concurrency Control and Consistency of Multiple Copies of Data in Distributed INGRES,"
IEEE Transactions on Software Engineering, Vol. 5, No. 3, May 1979.

31. Systems Network Architecture LU 6.2 Reference: Peer Protocols, Document Number SC31-6808-1, IBM,
September 1990. Chapter 8 is the one that introduces and describes in detail the Presumed Nothing commit
protocol.

32. Systems Network Architecture Transaction Programmer's Reference Manual for LU Type 6.2, Document
Number GC30-3084-4, IBM, September 1991.

33. The Tandem Database Group, "NonStop SQL: A Distributed, High-Performance, High-Availability Imple-
mentation of SQL," Proc. 2nd International Workshop on High Performance Transaction Systems, Asilomar,
September 1987. Also in Lecture Notes in Computer Science, Vol. 359, D. Gawlick, M. Haynie and A. Renter
(Eds.), Springer-Verlag, 1989.

34. Transaction Processing and Sync Points, IBM Document, Document Number AWP-0055-6, IBM/RTP,
October, 1977.

35. F. Upton IV, "OSI Distributed Transaction Processing, An Overview," Proc. 4th International Workshop on
High Performance Transaction Systems, Asilomar, September 1991.

