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Abstract. This paper considers an infinite horizon investment-consumption model in which a single 
agent consumes and distributes his wealth between two assets, a bond and a stock. The problem of 
maximization of the total utility from consumption is treated, when state (amount allocated in assets) 
and control (consumption, rates of trading) constraints are present. The value function is characterized 
as the unique viscosity solution of the Hamilton-Jacobi-Bellman equation which, actually, is a 
Variational Inequality with gradient constraints. Numerical schemes are then constructed in order 
to compute the value function and the location of the free boundaries of the so-called transaction 
regions. These schemes are a combination of implicit and explicit schemes; their convergence is 
obtained from the uniqueness of viscosity solutions to the HJB equation. 

1. In troduct ion  

In this paper we examine a general investment and consumption decision problem 
for a single agent. The investor consumes at a nonnegative rate and he distributes 
his current wealth between two assets. One asset is a bond, i.e. a riskless security 
with instantaneous rate of  return r.  The other asset is a stock,  whose price is driven 
by a Wiener process. 

When the investor makes a transaction, he pays transaction fees which are 
assumed to be proportional to the amount transacted. More specifically, let x, 
and Yt be the investor 's  holdings in the riskless and the risky security prior to a 
transaction at t ime t. If  the investor increases (or decreases) the amount invested 
in the risky asset to Yt + ht (or Yt - ht), the holding of  the riskless asset decreases 
(increases) to xt - ht - Aht (or xt + ht - #ht) .  The numbers A and # are assumed to 
be nonnegative and one o f  them must always be positive. The control objective is to 
maximize,  in an infinite horizon, the expected discounted utility which comes only 
from consumption.  Due to the presence of  the transaction fees, this is a singular 
control problem. 

Our goals are to derive the Hamilton-Jacobi-Bellman (HJB) equation that the 
value function solves and to characterize the latter as its unique weak solution, to 
come up with numerical schemes which converge to the value function as well 
as the optimal investment and consumption rules and to perform actual numerical 
computat ions and compare  some of  the results to the ones obtained in closed form 
by Davis and Norman. 
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We continue with the description of the model. The price pO of the bond is 
given by 

dP = rP  ~  ( t )  0), 
(1.1) 

p O =  Po, 

where r > 0 is the interest rate. The price Pt of the stock satisfies 

dPt = bPt dt + aPt dWt (t >1 0), 
Po = p,  

(1.2) 

where b is the mean rate of  return, ~r is the dispersion coefficient and the process W~, 
which represents the source of uncertainty in the market, is a standard Brownian 
motion defined on the underlying probability space (f~, F, P) .  As usual, Ft is the 
augmentation under P of Ft ~ = a(W~ : 0  < s ~< t ) f o r  t > 0. The market 
coefficients r, b and a are assumed to be constant with a r 0 and b > r > 0. 

The amounts xt and Yt, invested at time t in bond and stock, respectively, are 
the state variables and they evolve according to the equations 

dxt = (rxt - Ct) dt - (1 + A) dMt + (1 - #) dNt, 
dyt = byt + ayt dwt q- dMt - dNt, 
xo = x, YO = Y, 

ft.3) 

where (x, y) is the endowment of the investor. For simplicity, we assume here that 
all financial charges are paid from the holdings in the bond. 

The control processes are the consumption rate C. and the processes Mo and 
No which represent, respectively, the cumulative purchases and sales of  stock. We 
say that the controls (Co, Mo, .hr.) are admissible if: 

(i) Ct is Ft-measurable and Ct ) 0 a.s. and rt e - r s p  ds < +ec  a.s., Vt ) 0. dO '-Js 
(ii) Mr, Nt are Ft-measurable, right continuous and non-decreasing processes. 

(iii) If xt, y~ are the state trajectories given by (1.3), when controls Mr, Nt are 
used, then, for all t >/0, 

xt + (t  + A)yt >/0 a.s. i fyt  ~ O, 
xt + (1 - #)Yt >>- 0 a.s. i fyt  >. O, 

(1.4) 

and we denote by ~4(x, y) the set of admissible policies. 
The total expected discounted utility J from consumption, is given by 

J ( x , y , C , M , N ) =  E e - Z t u ( c t ) d t  

with (C, M, N)  e .A(x, y) and (x, y) E ~ where 

f~ = {(x, y) ~ ~ x T e : x  + (1 + A)y > o if y < 0 

andx  + (1 - #)y > Oi fy />  0}. 

(1.5) 
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The utility function U : [0, +oo)  --+ [0, +oo)  is assumed to have the following 
properties: 

(i) u e 02((0, o~)) and is strictly increasing, nonnegafiveand concave in [0, +oo).  

(ii) There exists/s  > 0 and ,~ E (0, 1) such that, for all c > /0 ,  U(c) ~ K(1  + c) "r. 

(iii) limc--o U'(c) = +oo and l imc_+oo U' (c)  = 0. 

The discount factor/3 > 0 weights consumption now versus consumption later. 
Note that the controls Mo and _hr. are acting implicitly through the state constraints 
given by (1.4). 

The value function u is given by 

u(x , y )  = sup J ( x , y , C , M , N )  
(C,M,N)EA(x,y) 

= sup E e-~tU(Ct)dt.  (1.6) 

To guarantee that the value function is well defined when U is unbounded, we 
assume that 

/3 > r 7 + ( 7 ( b -  r ) / a 2 ( 1 -  7 ) ) .  (1.7) 

This condition yields that the value function which corresponds to )~ = # = 0 
and U(c) = K(1 + c) ~/, and thereby all value functions for 0 < A, # < l, are finite 
(see Karatzas et al. (1987) or Zariphopoulou (in press)). 

Our goal is first to derive the Hamilton-Jacobi-Bellman equation associated 
with the above singular stochastic control problem and to characterize u as its 
unique weak solution. It turns out that the Bellman equation here is a Variational 
Inequality with gradient constraints. 

Due to the nature of our goals, in the Introduction we only state our result 
regarding the characterization of the value function. The rest of our results are far 
more complicated to state here. We hence choose to present them in the main body 
of the paper. 

THEOREM. 

lo'2- 2u - max[-CUx + U(c)], min flu - ~ y uy - by% - rxux c>0 

(1 + A)uz - u y , - ( 1  - #)ux + %] = 0 in  ft, 

in the class of  concave and uniformly continuous functions. 

The value function u is the unique constrained viscosity solution of  

(1.8) 

The fact that the value function turns out to be the unique viscosity solution of (1.8) 
plays a very crucial role for the convergence of the numerical schemes proposed 
in Section 5. 
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We continue with a short discussion about the history of the model: Transaction 
costs are an essential feature of some economic theories and many times are 
incorporated in the two-asset portfolio selection model. Constantinides (1979, 
1986) assumes that the transaction costs deplete only the riskless asset and that the 
stock price is a logarithmic Brownian motion. In the continuous time framework, 
Taksar, Klass and Assaf (1986) assume that the investor does not consume but 
maximizes the long term expected rate of growth of wealth. In the same framework, 
but under more general assumptions, Fleming, Grossman, Vila and Zariphopoulou 
(preprint) study the finite horizon problem, the average cost per unit time problem 
and an asymptotic growth problem. 

Davis and Norman (1990) relax the assumption that the transaction costs are 
charged only to the nonrisky asset. They consider a particular class of utility 
functions of the form U(c)  = cP(O < p < 1) and they get an explicit form for the 
value function. They also prove that the optimal strategy confines the investor's 
portfolio to a certain wedge-shaped region in the portfolio plane. Their results 
discussed are presented in detail in Section 5. In a paper which appeared after 
a preliminary version of this paper was circulated, Shreve and Soner (preprint) 
examine the above class of utility functions and they relax some assumptions on 
the market parameters in order for the value function to be finite. Moreover, they 
prove that the value function is a smooth solution of the HJB equation and that the 
boundary of the aforementioned wedge-shaped region is also smooth. 

Finally, there are several directions in which the two-asset problem with trans- 
action costs can be extended. Firstly, more than one risky asset can be allowed. 
Although this extension is straightforward, the computational requirements are 
enormous. Secondly, fixed transaction costs can be introduced. Some single-period 
models with fixed transaction costs are discussed in Leland (1985), Brennan (1975) 
and Goldsmith (1976). Kandel and Ross (1983) introduce quasi-fixed transaction 
costs and portfolio management fees. In a different direction, a model with propor- 
tional fees when the rate of return of the risky asset is a continuous time Markov 
chain is examined by Zariphopoulou (in press). 

The paper is organized as follows: Section 2 is about some basic properties of 
the value function. In Section 3, we study the solutions of the Variational Inequality 
(1.8) and we characterize the value function as its unique solution. Section 4 reviews 
the results of Davis and Norman for the H.A.R.A. utility functions. In Section 5, 
we present the numerical algorithms and we study the behavior of the transaction 
regions. Finally, in section 6, we summarize the main conclusions of the paper. 

2. Basic properties of the value function 

In this section we derive some basic properties of the value function. 

PROPOSITION 2.1. The value function u is jointly concave in x and y, strictly 
increasing in x and increasing in y. 



NUMERICAL SCHEMES FOR INVESTMENT MODELS WITH SINGULAR TRANSACTIONS 291 

Sketch of  the proof. The joint concavity of the value function comes from 
the concavity of the utility function and the linearity of the dynamics. Indeed, 
if (C1, L1, Ma) and (C2, L2, Mz) are optimal policies for the points (xl, Yl) and 
(x2, Y2), then (AC1 + (1 - A)C2, AM1 + (1 - A)M2, AN1 + (1 - A)N2) is admissible 
for (AXl + (1 - A)x2, Ayl + (1 - A)y2). 

The monotonicity of u follows from the same monotonicity of the utility function 
and the linear dynamics of the state trajectories. The strict monotonicity in x, comes 
from the fact that u is also concave. (For a detailed proof of a similar question, see 
Proposition 2.1 in Zariphopoulou (in press).) 

PROPOSITION 2.2. The value function u is uniformly continuous on (2. 
Proof. Since u is concave, it is obviously continuous in ft. 
We next show that u is continuous on the boundary. The continuity at the point 

(0, 0) follows as in Proposition 2.2 in Zariphopoulou (in press). 
We now show that 

where 

lim U(X~,yn) = u(xo, Yo) 
(xn,y,~)-4x0,y0) 

or  

(xo,  Yo) �9 ll ~- { ( x , y )  �9 T~ + X n -  " x + (1 + ) ~ ) y  ~- O) 

(xo, Yo) E 12 = {(x, y) E 74- x 7C+:x  + (1 - #)y = 0}. 

We only examine the case (xo, Yo) E 11 since the other is treated similarly. To this 
end, consider a point (xo, Yo) E ll and a sequence 

(x~,yn)  �9 l + = {(x,y)  �9 n + • T / -"  x + (1 + A)y > O) 

such that 

l im (x ,~ ,y~)  = (xo, Yo). 
n--+ -~-00 

Since u is locally Lipschitz, by concavity, it suffices to show that 

lim lu(xo, Yn) - u(xo, Yo)l = O. 
n---+ "-~- o 0  

Finally, since u is increasing, we only need to show that 

u(xo, < u(xo, yo) + 

for any e > 0 and n sufficiently large. 
Let (C n, M n, N ~) be an e-optimal policy at (xo, y~). Then 

u(xo, y~) <~ E e-~ tU(C~)dt  + e. 
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/ 
= [xo + 

Therefore, 

Moreover the control (C ~, M s, Nn),  where 

dM~ = dM~ ~ + (1 - #)(y~ _ yo)Oo(t) 

is admissible for 

(1 - #)(1 + A) 
[27;  (y.- yo),yo (1 - u ) ( y .  _ u0)) e 11. 

A + #  

E f + ~  e -Z tu (c~)  dt ~ u(g-g,~Z) + e. 
ao 

Combining the last two inequalities and using that u is continuous on ll - {0, 0} 
we conclude. 

Finally, since u is uniformly continuous on compact subsets of fi, we remark 
that its uniform continuity on ~ follows from the fact that, by concavity, u is 
Lipschitz continuous in Ix, +ee)  • [y, + ~ )  with Lipschitz constant 1/l(x, y)l for 
every (x, y) E fL 

We conclude this section by stating (for a proof see, for example, Lions (1983)) 
a fundamental property of the value function known as the Dynamic Programming 
Principle. 

PROPOSITION 2.3. If  0 is a stopping time (i.e. a nonnegative, F-measurable 
random variable), then 

{/o ~ } u(x, y) = sup E e-~tV(Ct) dt + e-9~ yo) �9 (2.1) 
A(x,u) 

3. Viscosity solutions 

In this section we characterize the value function as the unique constrained viscosity 
solution of the (HJB) equatien (1.8). The characterization ef u as a constrained 
solution is natural because of the presence of state constraints given by (1.4). 

The notion of viscosity solutions was introduced by Crandall and Lions (1984) 
for first-order and by Lions (1983) for second order equations. For a general 
overview of the theory we refer to the "User's Guide" by Crandall, Ishii and Lions 
(1992). 

Next, we recall the notion of constrained viscosity solutions, which was intro- 
duced by Soner (1986) and Capuzzo-Dolcetta and Lions (forthcoming) for first- 
order equations and by Lions for second-order equations (see also Ishii and Lions 
(1990) and Katsoulakis ((1991)). To this end, we consider a non-linear second 
order partial differential equation of the form 

F(X ,  v, Dv, D2v) = 0 in f~, (3.1) 
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where Dv and D2v stand respectively for the gradient vector and the second 
derivative matrix of v; F is continuous in all its arguments and degenerate elliptic, 
meaning that 

F ( X , p , q , A  + B) <. F ( X , p , q , A ) i f  B >10. (3.2) 

DEFINITION 3.1. A continuous function u : ~ --+ R is a constrained viscosity 
solution of (3.1) if 

i) u is a viscosity subsolution of (3.1) on (~, that is for any r E C2((~) and any 
local maximum point X0 E ~ of u - r 

F(Xo, u(Xo), DO(Xo), D2r ~< 0 
and 

ii) u is a viscosity supersolution of (3.1) in f~, that is for any r E C2((~) and 
any local minimum point Xo E f~ of u - r 

F(Xo, u(Xo), Dr D2r 0. 

THEOREM 3.2. The value function u is a constrained viscosity solution of(1.8) 
on  (-~. 

Proof. i) We first show that v is a viscosity subsolution of (1.8) on (L Let 
r E C2((~) and X0 = (x0, Y0) E ~) be a maximum of u - r without loss of 
generality we may assume that 

v(Xo) = r and u ~< r  (3.3) 

We need to show that 

r 1 2 2  min [/3r - ~a yoCyy(Xo) - byoCy(Xo) - rxor 

-m>adx(-cO~(Xo ) + U(c)), (1 -t- A)C~(Xo)-  Cy(Xo), 

-(1 - #)r q- Cy(Xo)] ~< 0. 

We argue by contradiction and we assume that 

(3.4) 

(1 + A)r - Cy(Xo) > O, (3.5) 

- ( 1  - + Cy(Xo) > o, (3.6) 

and 

1 2 2  
/3r - ~ a  YoCyy(Xo) - byoCy(Xo) - rxoCx(Xo) 

-m (-cCx(Xo) + U(c)) > o (3.7) 

for some 0 > 0. 
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From the fact that r is smooth, the above inequalities become 

(1 + A) r  Cv(X) > O, (3.8) 

- ( 1  - u ) r  + r  > o, (3.9) 

and 

/3r 1 2 2 E~ y r  - byes (X)  - rxr 

-max(-cr + U(c)) > O 
c)O 

(3.10) 

for some 0 > 0 where X = (x, y) E 13(Xo) a neighborhood of X0. 
We now consider the optimal trajectory X~(t) = (x;(t), y~(t)) where X~(0) = 

(xo, Y0) with optimal policies (C~', Mr*, Nt* ) begin used. (The existence of optimal 
policies was shown in (Th. (iv) 2).) We will need the following lemma which shows 
that X~ has no jumps a.s. at t = 0 + . 

LEMMA 3.1. Assume that inequality (3.5) (resp. (3.6)) holds and let A be the 
event that the optimal trajectory X~( t ) has a jump at least of size e at t = 0 + along 
the direction ( - (1  + A), 1)(resp. ((1 - #) , -1) ) .  If  

( x o - ( l +  k)e, yo+e) E 13(X) 

(resp. (xo+ ( 1 -  #)e, y o - e )  E 13(Xo)) 

then P( A ) = O. 

Since the proof is similar to the one ofLemma 1 in Davis, Panas and Zariphopoulou 
(1993), it is not presented here. 

We now continue the proof of the Theorem. We define the random time 7- to 
be r (~)  = inf{t /> 0 : X~(t) ~ B(X0)}. Notice that by the preceding Lemma, 
7-(a~) > 0 a.s. Combining (3.8), (3.9) and (3.10) we get 

f f 1 2 * 2  * 

- ~ x : r  - {-c;r + u(c;)}] d~ 
,r(~) 

+ E  Jo e-e*[(1 + A)r - Cv(X;)] dM~ 

~(~) 
+ E  Jo e-~*[-(1 - #)r - Cy(X2)] dN, 

E(Zl(r)) - E .~  r e-f~sU(C2) ds 

+E(I2(r ) )  + E(I3(r)). (3.11) 
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Applying Itr 's formula to e-~Tr gives 

E{e-13~r = r - [E( I I (7 - ) )  + E([2(7-)) + E3(7-))]. (3.12) 

Combining (3.3), (3.11) and (3.12) we get 

[ Ee-Z.~ 
+ 

L dO 
, (3.13) 

which violates the dynamic programming principle, together with the optimality of 
(C~, Mr*, Nt*). Therefore, at least one of the arguments of the minimum operator in 
(3.4) must be non-positive and hence the value function is a viscosity subsolution 
of (1.8). 

ii) In the second part of the proof, we show that u is a viscosity supersolution 
of (1.8) in ~2; for this we must show that, for all smooth functions ~ (X) ,  such that 
u - ~ has a local minimum at X0 Ef t ,  the following holds: 

1(72 2 min[/3~(X0)  - ~ yo~vy(Xo) - byo~v(Xo) -  rxo~x(Xo) 

- m ~ ( - ~ ( X o )  + U(@, (1 + ~ )~(Xo) -  ~(Xo), 

- ~)~x(x0) + ~y(x0)] ~> o, 

where, without loss of generality, u(Xo) = ~y(Xo) and u >1 ~ on (L In this case, 
we prove that each argument of the above minimum operator is nonnegative. 

Consider the trading strategy L(t)  = Lo > 0 and M( t )  = 0 for t >/0. By the 
Dynamic Programming Principle, 

u(xo, Yo) >1 u(xo - (1 + A)Lo, Yo). 

This inequality holds for q~ as well, and, by taking the left-hand side to the right- 
hand side, dividing by Lo and sending L0 --+ 0, we get 

(1 + A)~:(X0) - q~y(X0)/> 0. 

Similarly, by using the trading strategy L(t)  = 0 and M( t )  = M0 > 0, for 
t/> 0, we obtain 

- ( 1  - # ) ~ ( X o )  + r O. 

Finally consider the case where the investor does not trade but consumes at a 
constant rate Ct = C for 0 < t ~< 7- where 7- = n A 71 A 7"2 with n E N 

7-1 = inf{t :xt  + (1 + )~)Yt >- Oa.s. i fy t  <~ 0}, 

7-2 = inf{t : xt + (1 - #)Yt >10a.s. i fyt  >. O} 
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and xt, Yt are the state trajectories, given by (1.3), under policy (C, 0, 0). The 
Dynamic Programming Principle yields 

u(xo, Yo) <~ E [fo~e-~sU(C)ds + e -~u(x , , y~)]  . 

The same inequality holds for ~ which, in turn, combined with the It6's rule applied 
to e - Z ~ ( x , ,  y~) gives 

lo.2 2 E fore-f ls[ - f lu(Xs)  -{- ~ y s~yy (Xs ) -  bys~y(Xs) -  rXs~x(Xs) 

- U(C)Jd8 <. +C g~x( X~ ) 0. 

Dividing by n, and sending n ~ +ec  we get 

l a2  2 
yo ,.(Xo) - byo , (Xo) - rxo  (Xo) 

+ o 

(for a detailed argument, see Zariphopoulou (in press)). This completes the proof. 

We conclude this section by presenting a comparison result for constrained 
viscosity solutions of (1.8). This result will be used later in Section 5 to obtain 
convergence of the numerical schemes employed for the value function and the 
optimal policies. 

THEOREM 3.3. Let u be an upper semi-continuous viscosity subsolution of (1.8) 
on (2 with sublinear growth and v be a bounded from below uniformly continuous 
viscosity supersolution of(1.8) in ft. Then, u <<. v on ~. 

Sketch oftheproof We first construct a positive strict supersolution of (1.8) ion 
ft. To this end, let w(x, y) be the value function defined as in (1.6) with U replaced 
by some U1 such that UI(c) > U(c) forc  > 0, UI(0) = U(0) ) 0and A = # = 0. 
This value function is the solution to the classical Merton consumption-portfolio 
problem in the absence of transaction costs and satisfies w(x, y) = v(z), where 
z = x + y and v solves 

{/% (b_~)2 ~,2 
= - 2~z 7 + rzv' + maxc)o{-cv '  + UI(C)} (z > O) 

v > 0 ,  v I > 0 a n d v ' < 0 ,  ( z > 0 ) .  
(3.14) 

We now let 

V(x ,y )  = v(x + ky) with 1 - # < k < 1 + A((x , y )e  ~) 

and claim that V is a positive supersolution of (1.8). 
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The choice of k implies 

x + ky > 0 whenever (x, y) E (~ 

which combined with (3.14) yields 

v > Oandv ~ > 0 o n ( L  

It then follows that 

(1 + ~)V~(x, y) - Vy(x, y) = (1 + ~ - k)v'(x + kv) 
f l(x,  y) > 0 

- (1  - ~ ) V ~ ( x , y ) + v y ( x , y )  (- l+~+k)v'(x+ky) (3.15) 
= f2(x, y) > O. 

Moreover, using (3.14), we obtain 

1 2 2  ~V(x,y)-U y y ~ y ( x , y ) - b y v & , y ) - , x V x ( x , y )  

- m a x { - c V x ( x , y ) +  U(e)} 
c~>0 

= /~V(Z)  -- 2~r2(]gy )2v t l (Z )  -- b ( k y ) v l ( z )  - r x v t ( z )  

- max{-cv'(z)  + U(c)} 
c)O 

= [ (b-r)22(r 2 (V'(Z))2vt'(z) ~ a2(ky )2v t t ( z ) - (b -  r)kyvt(z)] 

[(max(cv'(z) + Ul(r max(-cv'(z) + U(c))] + 
[ c)O c)O / 

: g l ( z , y )  § g2(z). 

We now observe that the first term gl in the above sum is nonnegative, since 
the maximum value of the quadratic/)(gl)  = 1 2 2 , ~a q v + ( b -  r)qv' is - [ ( b -  
r)2/2a2](v')2/v '', where q = ky. Moreover 

g2(z) = g2(x + ky) = max{-cv'(x § ky) + Ul(c)} 
c>~O 

- max{-cv'(x + ky) + U(c)} > 0 (3.16) 
c)O 

due to the choice of U1. 
Let 

H(X,  V, DV, D2V) minI ~V _ 1 2 2T, ~a y Vyy - byV v - rxVx 
k 

- max{-cVx + U(c)}, (1 + A)V~ - Vy, 
c)O 

-(1 - ~)vx + vy}. 
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Combining (3.15) and (3.16) yields 

H ( X ,  V, DV, Dav)  >>. min{f l (x ,  y), fe(x, y), g(x, y)} = h(x, y) > 0 in ft. 

To conclude the proof of the theorem we will need the following lemma. Its proof 
follows along the lines of Theorem VI.5 in tshii and Lions (1990) and therefore it 
is omitted. 

LEMMA 3.2. Let u be upper semi-continuous with sublinear growth viscosity 
subsolution of (1.8) on (~ and v be bounded from below uniformly continuous 
viscosity supersolution of  H ( X ,  u, Du,  DZu) - h(X) ,  where h > 0 in ft. Then 
~t~ von~. 

We now conclude the proof of the theorem. We define the function w ~ = 
Ov + (1 - O)V where 0 < 0 < i and we observe that w ~ is a viscosity supersolution 
of H - h = 0. (See also Davis et al. (1993), Th. 2, for a similar argument.) Applying 
the above Lemma to u and w e we get 

u <~ w ~ on fi; 

sending 0 to 1 concludes the proof. 

4. The case of H.A.R.A. utilities 

Davis and Norman (1990) solve explicitly the problem in the case of Hyperbolic 
Absolute Risk Aversion utility functions U(c) = (1/7)c~, 0 < ? < 1 and U(c) = 
log c for 7 = 0. 

They first remark that the solvability region has to be depleted into three regions: 
the so-called sell and buy regions (sales and purchases respectively take place 
instantaneously), and the non-transaction region. 

In order to find the location of the free boundaries, they use the homothetic 
property of the value function and they reduce the problem to a one dimensional 
one. More precisely, they set v(x,  y) = g'Y~P(z/y) where the function kv satisfies: 

{ ~(x )  = �89 + (1 - #)y)'Y (x ~ x,) ,  

~ l ~ ( x )  + ~ 2 x ~ ' ( x )  + / ~ 3 x 2 ~ " ( x )  + ~ - ~ V ' ( x ) ~  : 0 (Xl < x < x2), 

�9 (x) = �88 + (1 + A)y) "y ( x )  x2), 

where Z, = - 1~2"r(1 - "r) + b'y - 9 ,  Z2 = ~2(1 - "r) + r - Z, Z3 = �89 and the 
points Xl, x2 and the coefficients A and B are explicitly determined. 

They prove that the existence of such a function �9 provides a sufficient condition 
for the optimality of a policy (C, M, N)  such that the corresponding process (xt, Yt) 
is a reflecting diffusion in the non-transaction region and M and N are the local 
times at the lower and upper boundaries respectively. Besides, they prove the 
existence of such a solution ~. 

Finally, they propose an algorithm that solves the above algorithm by integrating 
backwards a system of differential equations. 
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5. Numerical  scheme 

This section is devoted to the construction of a finite difference scheme in order 
to computer the unique viscosity solution of the Variational Inequality (1.8). The 
approach which relies on the theory of viscosity solutions and the Dynamic Pro- 
gramming Principle yields monotone, stable and consistent schemes. The conver- 
gence of such schemes was originally proved in some situations by Crandall and 
Lions (1984), Barles and Souganidis (1991) and Souganidis (1985). More recently, 
it was proved for parabolic equations, arising in problems of option pricing, by 
Barles, Daher and Romano (1991) and by Davis, Panas and Zariphopoulou (1993). 

In the scheme constructed here, the first-order operators are approximated by 
a monotone finite difference scheme. As far as the second-order operator is con- 
cerned, the first-order part is approximated by a monotone explicit scheme based on 
the Dynamic Programming Principle whereas the second-order term is approximat- 
ed by an implicit Cranck-Nickolson scheme. Thus splitting into two half iterations 
allows one to choose a time step of the same order as the mesh size. This method 
is known as the time splitting method or method of fractional steps. 

We next present the numerical scheme we developed. To this end, we first write 
(1.8) in the concise form 

min{L0(x, y, u, ux, Uy, Uyy), Ll(Ux, Uy), L2(ux, Uy)} -- 0 (5.1) 

where 

l a 2 -  2 u 
L o ( x , y , u , u ~ , u y ,  uyy) = ~ u -  ~ y yy 

-byuy  - rxu~ - max{-cu~: + U(c)} 
c~>0 

and 

Ll(Ux, Uy) = (1 + A ) u x -  Uy, L2(ux,Uy) : - ( 1  - #)ux + uy. 

To simplify, we restrict ourselves to the rectangular domain D C R 2 

79 = [ 0 , ( M -  1)Ax] • [ 0 , ( L -  1)Ay] 

of ~2, where M and L denote the number of grid points on the x and y axis and 
Ax, Ay  > 0 are the mesh sizes. The value of our numerical approximation at the 
point ((i - 1) A x, ( j  - l) A y), for i = 1 , . . . ,  M and j = 1 , . . . ,  L, will be denoted 
by ~ j .  

We then define the first-order differences 

D+xVij _ Vi+l,j - ~ j  + .. Vi,j+l - Vii 
Ax , Dy ~a - Ay ' 

and 

D~ Vii - Vii - V i _  1,j  D~ V i i  - -  Y i j  - Y i , j -  1 
A x  ' Ay  ' 
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Inside the domain, the first-order operators L1 and L2 are approximated in a 
monotone way using the appropriate backward and forward finite differences 

g l ( D ~ V i j ,  D+Vi j )  = (1 + A)D-~Vij - D+Vij  (5.2) 

g2(D+Vij ,  D~-V~j) = - (1  - p )D+Vi j  + D~Vi j .  (5.3) 

Next, we consider the first-order operator L~ obtained by eliminating the second- 
order term from L0, i.e. 

f fo(x,  y, u, ux, uy) = flu - byux - r xux  - max{-cu~:  + U(c)}. 
c ) 0  

The solution of the equation fro(X, y, u, ux, Uy) = 0 can be characterized (see, for 
example Lions (1983)) as the value function of the deterministic control problem 

(/o } g(x, y) = max e - ~ t U ( C t )  dt (5.4) 
c ) 0  

where the state trajectories xt and Yt solve 

dxt  = ( rx t  - C t ) d t -  (1 + s  + (1 - # ) d N e  
dye = bye dt + dMe - dNe 
xo = x,  yo = y. 

We are going to construct a monotone scheme to approximate the value function 
~. To this end, we apply the Dynamic Programming Principle to (5.4) (see more 
details, Alziary de Roquefort (1991), Capuzzo-Dolcetta (1983), Falcone 0985, 
1987) and Rouy and Tourin (1992)), to get 

(/0 } ~(x, y) = max e -eeU(Ce)d t  + e-~Tf t (XT,  YT) �9 
c)O 

We choose T = Av arbitrarily small and assume that the control remains constant 
in the time interval [0, T]. The above equality then yields 

sup; ~ u(~) + ~(~ + ~x~-(rx - ~),y + zx~-bv)- ~(x ,y)  e--flA~ 
c>.O ~ A r  

e -~A'~ - 1 ) 
+~(x, y) ~ ~ = 0 .  

In order to approximate the operator L~, one has to find an explicit formulation for 
the following optimum: 

max( sup (U(c)  - /~V i j  + D + V i j ( r ( i  - 1)Ax - c) 
k O<~ c<~ r(i--1)Ax 

+ n + V i j b ( j  - 1)Ay), sup (U(c)  - / 3 V i j  
O)r(i--1)Ax 

+D-~V~j(r( i  - 1)/Xx - c) + D+V~jb(j  - 1)Ay)~. 
) 
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Finally, inside the rectangular domain, a numerical approximation V of the 
solution ~ of the equation Uo(X, y, u, ux, up) = 0 will satisfy, for all 1 < i < M 
a n d l  < j < L ,  

g(D-~Vij, D+V~j, D+V#) = O. 

Below and only to simplify the presentation, we restrict ourselves to the case 
of the H.A.R.A. utility functions. We note, however, that all our arguments can be 
easily extended to general utilities. 

When U is a H.A.R.A. utility function, given by U(c) = (1 /7)c  7 with 7 r 
(0, 1), g takes the following form: 

1 1 
(i) i f ( D + v i j ) ~  :~-~ < r(i - 1)Ax and (DzVij )~ -~-~ < r(i - 1)Ax 

then 
g(D-~VIj, + + 1 -  D x Vii, 0 N Vii) = -13Vii + 7 (D+VIj)~-~_ a 

7 
+ r ( i -  1)AxD+Vij 

+ ~ ( j -  1)~yD+~ vij, 
1 1 

(ii) i f ( D + v i j ) ~  :-T-1 < r ( i -  1)Ax and (D~-VIj)~-:~-~ > r ( i -  1)2xx 
then 

_ + + 1 -  
g(D  Vii, Vii, Vb) = -/ vij + (D;VIj)  -4-r-, 

7 
+ r ( i -  1 )AxD[Vi i  
+b(j + - 1)AyDy V~j, 

1 l 

(iii) if (D+vij)  -~-T-~ > r(i - 1)Ax and (D;VIj)~:~-~ > r(i - l )Ax  
then 

_ + + 1 -  
g( D x Vii, Dx Vii, Dy Vii) = - f lVi j  + ~ ( D+x vij ) ~-~-~-~ ? 

+ V ( i -  1)~xD+~ VIj 

+ b ( j -  1)~XyD+~ VIj, 
1 l 

(iv) if (D+z Vij)-~ :T-~ > r(i - 1)Ax and (D;Vi j )~  :~-~ < r(i - 1)Ax 
then 

_ + . .  + . .  1 -  _ a _  
g(D~ Vij ,D~VI , ,Dy VO) - ~ v i j  + 7 (r(i = - 1)Ax) -i 

7 
+ b ( j -  1 )AyD+vi j .  

In addition to the above approximations one has to construct an approximation 
for the points located on the boundary of the discretized domain 7). We first consider 
the x and y-axis and we assume that the non-transaction region lies entirely in the 
first quadrant. Under this assumption, the x- and y-axis belong respectively to the 
sell and buy region and therefore, the value function solves Ll(~x,  ~y) = 0, on the 
x-axis and L2(~tx, fly) = 0, on the y-axis. 

Let us remark that this is not always the case. Indeed, Shreve and Soner (preprint) 
recently examined the location of the free boundaries in the H.A.R.A. case and 



302 AGNISS TOURIN AND THALEIA ZARIPHOPOULOU 

they showed that for a certain range of the market parameters the x and y-axis may 
be included in the non-transaction region. Although, in this case, the scheme we 
propose might work under appropriate modifications, we do not examine this case 
herein. 

At the points located on the x-axis, Vil satisfies 

g l ( D ~ l ,  D+V/1) = 0 for 1 < i ~< M 

where gl is given by (5.2). At the points located on the y-axis, the function V U 
satisfies 

g2(D+Vlj, D~V1j) = 0 for 1 < j <~ L 

where #2 is given by (5.3). 
One may notice that this method could not be applied to the real boundaries 

x + (1 - #)y  = 0 (y >/0) and x + (1 + A)y = 0 (y ~< 0). Indeed, the monotone 
approximation of L2 requires the backward finite difference along the y-axis and 
the approximation of L2 requires the backward finite difference on the x-axis and 
these values are not available at the boundaries of ft due to the presence of the state 
constraint (1.4). 

Next, at the point i = 1, j = 1, we impose the Dirichlet condition Vll = 0. 
Actually this value follows directly from the Variational Inequalities themselves 
evaluated at the origin. 

Finally, we impose Neumann conditions at the points located on x = ( M -  1)Ax 
and y = (L - 1)Ay. We have to assign given values to the normal derivatives but 
the results may vary strongly with the prescribed values, especially the location of 
the free boundaries. 

First, it seems rather natural since the value function is unique only in the 
class of concave functions. Indeed, the following fact may happen: if we impose 
over-estimated conditions that allow the approximation to loose its concavity, the 
scheme may converge to another solution of the Variational Inequality instead of 
the value function. 

Secondly, from the numerical experiments, it turns out that even if normal 
derivatives are set to reasonable values, the location of the free boundaries is 
still sensitive to the given values. Actually, it appears that the error is essentially 
concentrated near the boundary. 

Such a phenomenon has been already noticed by Barles, Daher and Romano 
for the heat equation and the Black and Scholes formula (1991) and by Fitzpatrick 
and Fleming for an Investment-Consumption model in (1991). Finally, we impose 
some reasonable values on the boundary of a sufficiently large domain and compute 
the corresponding value function and the free boundaries. Then, we only take into 
account the results obtained inside the domain. 

In the second half iteration, we solve the monodimensional heat equation using 
a Cranck Nickolson scheme. Such a scheme requires boundary conditions which 
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are chosen as follows: on the x-axis, we impose Dirichlet conditions whose values 
are provided by the formula: 

g l ( D -~ Vij , D ~ Vij ) = O. 

At the points located on y = (L - 1)Ay, we have already imposed Neumann 
conditions. Thus the second half-iteration consists of inverting a tridiagonal matrix. 

Let us recall that we have to choose the time step in order that the scheme be 
monotone. At each step, we may add a sufficient condition for the monotonicity. 
Finally, at each step, we choose the greatest value among those which preserve the 
monotonicity of the scheme. Actually, it yields a time step which is not far from 
being constant but may evolve a little during the convergence. 

Finally, we compute the approximation using the following algorithm: 

A l g o r i t h m  
1st s tep 

- V i ~  l < ~ i < M , l < ~ j < L  
- C given 

( n  + 1 ) s t  s tep 
- V ~ is given 
- Construction of V1: 

y n+l  n 1,ij = Vi j  - min(gl, 92) • At, 1 < i < M, 1 < j < L. 
- Construction of V on the boundaries x = (M - 1)Ax and y = (L - 1)Ay: 

= - m xt, 1 < i .< M ,  

VI~ +l = Vl~ - g2At, 

- Construction of V2. 
First  ha l f - i t era t ion  

I < j ~ L ,  

~ + 1 : 0 .  

v n + l / 2  - n + n + n Dy Vij ) 1 i M,  "2,ij = Vi j  + Atg(D~ Vii , D~ Vii , < < 

S e c o n d  ha l f - i t era t ion  

vn+U2 
V27/~ 1 - "2,ij 

At 

I < j < L .  

r l rv,~+ll2 v~+l/2 = I (Ay)Z(J  - 1)2[~( 2,ij+l + "2 , i j - I  

91/-n+1/2~ l ( v n + l  v n + l  1)],  
- " ' 2 , i i  J + 2 ~ ":,ij+l + "2,ij-1 - 2V:~, + 

given that V~ +1 = v2n/+LL 1 + C for 1 < i < M, 1 < j < L. 

- Construction of V '~+1 from V~ +1 and V2~+l: 
V/~ +1 = max(Vln,/~ 1 , V2n,/~ 1 ) l < i < M, 1 < j < L, 

Vi~ +1 = V i ~ + l l + C  1 < i ~ < M ,  

V~t+l = V~+]j + C 1 < j <~ L. 
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- If supi j [V/~ - I < E then stop, where e is a tolerance bound prescribed 
by the user. 

- After the convergence is established, find the non-transaction region: 

( N T )  = { ( ( i -  1 ) A x , ( j -  1)Ay) where min{Lo, L1,L2}  : Lo} .  

The algorithm has been implemented on a HP 735 workstation. In order to 
obtain satisfactory free boundaries, one has to let the algorithm converge for a 
few hours, the time depending highly on the choice of the utility function and the 
initial condition. To improve the efficiency of the algorithm, we tried second-order 
schemes for Hamilton-Jacobi equations based on ideas developed by Osher for 
problems of Conservation Laws (see Harten, Engquist, Osher and Chakravarthy 
(1986)). Moreover, we also plan to use adaptive mesh size techniques to make 
the algorithm more efficient. Finally, the precision near the origin has been real- 
ly improved but the approximation of the free boundaries for large values is not 
yet satisfactory; actually, for some utility functions, the free boundaries almost 
desegregate. In the future, we plan to use ideas based on second-order filtered 
schemes whose convergence has been recently proved by Lions and Souganidis 
(forthcoming). 

Numer ica l  experiments  

Next, we present numerical experiments corresponding to three different classes 
of utility functions 

i) U ( c ) =  (1/7)c~ 7 < 1 
ii) U ( c ) =  (1/71)c "Y1 + (1/72)c "~2, with 0 < 3'1,72 < 1 

iii) U(c) = M - c -'~ o~ > O. 
Figures 1-3 show the computed non-transactional regions corresponding to the 

utility functions UI(c) = 2x/7, U2(c) = 3c 1/3 + 3c2/3 and U3(c) = 1 0 0 -  (1/x/~). 
In Figure 1 we also plot the location of the transaction regions obtained by the 

algorithm of Davis and Norman. 

6. Conclus ions  

In this paper, we presented a class of numerical schemes for the value function 
and the optimal policies of an optimal investment and consumption model which 
was formulated as a singular stochastic control problem. Although, due to the 
presence of singular policies, the value function is not, in general, smooth, the 
convergence of the scheme is guaranteed by the uniqueness of viscosity solutions 
of the Hamilton-Jacobi-Bellman equation. The numerical scheme developed here 
can be applied to a number of control problems with singular policies as well as 
problems in which some state dynamics are governed by stochastic processes and 
some others by deterministic ones; the latter problems give rise to degenerate HJB 
equations which are, in general, very hard to solve. 
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