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Abstract. In this paper we broadly generalize the assignment auction algorithm to solve linear 
minimum cost network flow problems. We introduce a generic algorithm, which contains as special 
cases a number of known algorithms, including the e-relaxation method, and the auction algorithm 
for assignment and for transportation problems. The generic algorithm can serve as a broadly useful 
framework for the development and the complexity analysis of specialized auction algorithms that 
exploit the structure of particular network problems. Using this framework, we develop and analyze 
two new algorithms, an algorithm for general minimum cost flow problems, called network auction, 
and an algorithm for the k node-disjoint shortest path problem. 
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1. Introduction 

In this paper we discuss algorithms for solution of the classical minimum cost 
network flow problem involving a directed graph with node set A; and arc set 
A. Each arc (i, j )  has a cost coefficient a~j. Letting x~j be the flow of the arc 
(i, j ) ,  the problem is 

minimize ~ aijxij 
(i,j)eA 

subject to 

(LNF) 

x i j -  ~ x j i=s i ,  V i E N ,  (1) 
{jl(i,j)e.A} {j](j,i)e~4} 
bij <_ xij <_ clj, V (i, j) e A, (2) 

where aij, blj, cij, and 8i are given integers. 
We denote by x the vector with elements x~i, (i, j )  E .A. We refer to b~j and 

cij, and the interval [blj, cij] as theflow bounds and the feasible flow range of arc 
(i, j ) ,  respectively. We refer to si as the supply of node i. The constraints (1) 
and (2) are called the conservation of flow constraints and the capacity constraints, 
respectively. A flow vector satisfying both of these constraints is called feasible, 
and if it satisfies just the capacity constraints, it is called capacity-feasible. If 
there exists at least one feasible flow vector, problem (LNF) is called feasible 
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and otherwise it is called infeasible. For a given flow vector x, the divergence 
of node i is defined to be the total flow coming out of i minus the total flow 
coming into i, 

yi = ~ x i i -  ~ xj~. 
{jl(i,j)eA} {Jl(J,i)eA] 

The surplus of node i is defined as the difference between the supply and the 
divergence of i, 

g~ = s~ - y~. ( 3 )  

We assume that there exists at most one arc in each direction between any 
pair of nodes, but this assumption is made for notational convenience and can 
be easily dispensed with. We denote the numbers of nodes and arcs by N and 
A, respectively. We also denote by C the maximum absolute value of the cost 
coefficients, 

C = max la~jl. (4 )  
(i,j)sA 

We use the following well-known dual problem to (LNF), which involves a 
price variable pi for each node i: 

maximize q(p) 

subject to no constraint on p, 

where p is the vector with elements p~, and the dual function q given by 

(5) 

where 

qlj(pl - p j )  = min{(a~j + pj -pl)xq[bii < xij <_ cij}. (7) 
xij 

We henceforth refer to (LNF) as the primal problem, and note that standard 
duality results (see e.g., [6, 15, 23, 25]) relate primal-optimal and dual-optimal 
solutions via the complementary slackness conditions, and imply that the optimal 
primal cost equals the optimal dual cost. 

The special structure of the dual cost (6) motivates solution by Gauss-Seidel 
relaxation (or coordinate ascent methods). The idea is to choose a single 
node i and change its price p~ in a direction of improvement of the dual cost, 
while keeping the other prices unchanged. Unfortunately there is a fundamental 
problem; the dual cost q is nondifferentiable (piecewise linear), and the relaxation 
idea may encounter difficulty at some "corner points," where the dual cost cannot 
be improved by changing any single node price. 

q(p) = F_, q'J(P' - + Z (6) 
(i,j)EA iEAf 
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One way to overcome this difficulty is used in the E-relaxation algorithm first 
proposed in [2, 3] (see also [6, 7, 13, 15, 18, 19]). The main idea in the 
E-relaxation method is to allow a single price pl to change even if this worsens 
the dual cost. When pi is changed, however, it is set to within a given e > 0 
of the price that maximizes the dual cost along the ith coordinate. For e small 
enough, it can be shown that the algorithm approaches the optimal dual cost 
sufficiently accurately to yield a primal-optimal solution. 

A similar concept is used in the auction algorithm for assignment problems 
([1, 4, 6, 15]). However, while in the e-relaxation algorithm there is at most 
one node price change per iteration, the auction algorithm can raise two node 
prices simultaneously. In particular, the price of an unassigned person is raised 
implicitly through a "bid" as this person is assigned to a "preferred" object, and 
then the price of this object is also raised. This simultaneous price rise is an 
important feature that, we believe, accounts for the practical effectiveness of the 
auction algorithm. Experiments show that the E-relaxation method applied to 
the assignment problem, is on the average far slower than the auction algorithm. 

The main contribution of this paper is the development and analysis of a general 
algorithm which extends the concept of the auction algorithm for assignment 
problems by combining a price increase of a node with price increases of several 
neighboring nodes. This general algorithm can form the basis for a broad 
variety of auction algorithms tailored to the structure of particular problems. 
We investigate the termination properties of the generic algorithm for both 
feasible and infeasible problems, and we discuss some of the associated worst- 
case complexity issues. 

As special cases of the generic algorithm, we develop two new algorithms: 
one for the general minimum cost flow problem (LNF), called network auction, 
and another for the k node-disjoint shortest path problem. The latter problem 
contains as special cases the classical assignment and the shortest path problems. 
The new algorithm is similar in structure to the recently proposed auction 
algorithm for shortest paths [5, 6], in that it maintains paths that are contracted 
or extended at each iteration. However, it requires a positive e, in contrast with 
the algorithm of [5, 6], which corresponds to c = 0. We provide computational 
results showing that our new k node-disjoint shortest path algorithm outperforms 
existing algorithms by a broad margin. This algorithm is also well-suited for 
parallelization (see [24] for a related algorithm). 

We also develop worst-case complexity bounds for the performance of the 
network auction algorithm. The complexity analysis differs significantly from 
previous analyses of coordinate ascent methods such as [13, 18, 19] in that 
the network auction algorithm includes new classes of iterations (the irregular 
nonsaturating 6-pushes discussed in Section 5) which must be bounded. We 
also develop a variation of the sweep implementation ([2, 13]). Combined with 
appropriate scaling techniques such as cost scaling or E-scaling ([1, 12, 13, 
18, 19]) our complexity analysis yields a complexity bound of O(N ~ log(NC')) 
running time for the network auction algorithm when implemented using simple 
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data structures. Although improved polynomial complexity bounds are possible 
(the best such bound for the e-relaxation method is O ( N A  log(N) log(NC)) for an 
implementation that uses dynamic trees [19]), the more complex data structures 
required are often detrimental to practical performance. 

As a special case of our complexity analysis, we obtain the O ( N  3 log(NC)) 
bound for our earlier auction algorithm for transportation problems [9]; no 
polynomial complexity analysis was available for this transportation algorithm. 
Furthermore, under the assumption that the feasible flow range of all arcs is [0, 
1], we can show that the generic algorithm has an O ( N A l o g ( N C ) )  running time, 
where A is the number of arcs. This bound applies in particular to the new k 
node-disjoint shortest path algorithm. 

The rest of this paper is organized as follows: in the next section we formulate 
the generic auction algorithm and establish its validity. In Section 3, we develop 
the network auction algorithm for problem (LNF) based on the generic algorithm. 
In Section 4, we give the auction algorithm for the k node-disjoint shortest path 
problem, and we show that it is a special case of the network auction algorithm. 
Section 5 contains our complexity analysis. Finally, in Section 6 we present 
computational results for the k node-disjoint shortest path problem. 

2. Basic operations and the generic algorithm 

The algorithms of this paper maintain a price vector p, and a capacity-feasible 
flow vector x, such that x and p jointly satisfy a relaxed form of the usual 
complementary slackness conditions known as e-complementary slackness (e-CS 
for short). We say that (x, p) satisfies e-CS if x is capacity-feasible and 

xij < cij ~ pi - pj <_ aij + e V (i, j )  E fit, 

bji < x~i ~ p ~ - p i  <_ -a j i  + e V (j, i) C A. 

(8a) 
(8b) 

The usefulness of e-CS is due in large measure to the following proposition. A 
proof may be found in [2, 6, 13, 15]. Note that the proposition relies on our 
assumption that the problem data are integer. 

PROPOSITION 1. 1re < 1/N,  x is feasible, and (x, p) satisfies e-CS, then x is optimal 
for (LNF). 

We now define some terminology and computational operations that play a 
significant role in our algorithms. Each of these definitions assumes that (x, p) 
is a flow-price pair satisfying e-CS, and will be used only in that context. 

Definition 1. An arc (i, j )  is said to be e+-unblocked if 

Pi = Pj  -1- aij  -I- e, x i j  < cij. (9)  
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An arc (j, i) is said to be e - - u n b l o c k e d  if 

Pi = P j - a j i  + e, bji < xjl .  (10) 

The p u s h  list of a node i, denoted Pi, is the (possibly empty) set of arcs (i, j )  
that are e+-unblocked, denoted Pi +, and the arcs (j, i) that are c -unb locked ,  
denoted P/-. 

In all our algorithms, flow is allowed to increase only along e+-unblocked arcs 
and is allowed to decrease only along e--unblocked arcs. The next definition 
specifies the type of flow changes considered. 

Defini t ion  2. For an arc (i, j )  [or arc (j, i)] of the push list P~ of node i, let 5 
be a scalar such that 0 < 5 <_ eij - xij  (0 < 5 <_ xji  - bji, respectively). A 5-push 
at n o d e  i on  arc (i, j )  [(j, i), respectively] consists of increasing the flow xij  by 6 
(decreasing the flow xj i  by 6, respectively), while leaving all other flows, as well 
as the price vector unchanged. A saturating p u s h  of node i on arc (/, j )  [arc 
(j, i), respectively] is a &push with 6 = ei~ - xij  (6 = xji  - bji, respectively). 

The next operation consists of raising the prices of a subset of nodes by the 
maximum common increment -y that will not violate e-CS. 

Defini t ion 3. A price rise of a nonempty, strict subset of nodes I (i.e., I ~ 0, I 
N'), consists of leaving unchanged the flow vector x and the prices of nodes not 
belonging to I, and of increasing the prices of the nodes in I by the amount  3' 
given by 

Imin{S US-}, if S + US- ~- 0, 
(11) 

7 =  [0,  if s +  u s  - ---O, 

where S + and S -  are the sets of scalars given by 

S + = {pj  + alj + e - pi[(i, j )  E A such that i E I, j ~ I, x;j < cij},  (12) 

S -  = {pj  - aj~ + e - Pd(J, i) e A such that i e 1, j r I, x~ > b~}. (13) 

In the case where the subset I consists of a single node {, a price rise of the 
singleton set {/} is also referred to as a price rise o f  node  i. If the price increment 
7 of (11) is positive, the price rise is said to be substantive and if 7 = 0, the price 
rise is said to be trivial. Every scalar in the sets S + and S -  of (12) and (13) 
is nonnegative by the e-CS conditions (8a) and (8b), respectively, so we have 
"7 _> 0. A trivial price rise changes neither the flow vector nor the price vector; 
it is introduced to facilitate the presentation. Note  that a price rise of a single 
node i is substantive if and only if the set S + U S -  is nonempty but the push list 
of i is empty. 
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The generic algorithm to be described shortly consists of a sequence of 5-push, 
and price rise operations. The following lemma lists some properties of these 
operations that are important in the context of the algorithm. 

LEMMA 1. Let (x, p) be a flow-price pair satisfying e-CS. 

(a) The flow-price pair obtained following a 6-push or a price rise operation satisfies 
e-CS. 

(b) Let I be a subset of  nodes with positive total surplus, that is, ~ e I  g~ > O. Then 
if the sets o f  scalars S + and S -  of  (12) and (13) are empty, problem (LNF) is 
infeasible. 

Proof. (a) By the definition of e-CS, the flow of an e+-unblocked and an e-- 
unblocked arc can have any value within the feasible flow range. Since a 5-push 
only changes the flow of an e+-unblocked or e--unblocked arc, it cannot result 
in violation of e-CS. If p and p~ are the price vectors before and after a price 
rise operation of a set I, respectively, we have that for all arcs (i, j)  with i E I, 
and j E I or with i f / I  and j r I, the e-CS condition (8) is satisfied by (x, pl) 
since it is satisfied by (x, p) and we have pl - pj = p~ - p~. For arcs (i, j )  with 
i E I, j ~ I and xij < clj we have, using (11) and (12), 

so condition (Sa) is satisfied. Similarly, using (11) and (13), it is seen that for 
all arcs (j, i) with i E I, j r I and xji > bji, condition (8b) is satisfied. 

(b) Since the sets S + and S- are empty, 

xij = c~j, V ( i , j )  E . A w i t h i E I ,  j ~ I ,  

xji  = bji, V (i, j )  E .4 with i E I, j ~ i. 

Using the definition (3) of surplus, we have 

0 < Z g , = Z  s , -  Z x , j+  
i c l  iEI {(i, j)CAliCI, jf[l} 

and by combining (14)-(16), it follows that 

o < E s ~ -  E c ~ +  E 

(14) 

(15) 

E xji, (16) 
{(j, i)E AIiEI, jf[I) 

bji. 
~I {(i,j)e.4I~eI, jer) {(j,0eAt~e~,jex) 

For a feasible vector, si is equal to the divergence of i, so the above relation 
implies that the sum of the divergences of nodes in I exceeds the capacity of the 
cut [I, Af - I], which is a contradiction. Therefore, the problem is infeasible. [] 

The generic algorithm 

Suppose that problem (LNF) is feasible, and consider a pair (x, p) satisfying 
e-CS. Suppose that for some node i we have g~ > 0. There are two possibilities: 
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(a) The push list of i is nonempty, in which case a 6-push at node i is possible. 
(b) The push list of i is empty, in which case the set S + U S-  corresponding to 

the set I = {i} via (12) and (13) is nonempty, since the problem is feasible 
[cf. Lemma l(b)]. Therefore, from (11)-(13), a price rise of node i will be 
substantive. 

Thus, if 9i > 0 for some i and the problem is feasible, then either a 6-push or a 
substantive price rise is possible at node i. Furthermore, since following a price 
rise at a node i, the push list of i will be nonempty [cf. (11)-(13)], for a feasible 
problem a 6-push is always possible at a node i with yi > 0, possibly following a 
price rise at i. 

The preceding observations motivate a method, called generic algorithm, which 
uses a fixed positive value of e, and starts with a pair (x, p) satisfying e-CS. 
The algorithm terminates when 91 < 0 for all nodes i; otherwise it continues to 
perform iterations. Each iteration consists of a sequence of 6-pushes and price 
rises, including at least one 6-push, as described below. 

~pical iteration of the generic algorithm 

Perform in sequence and in any order a finite number of 6-pushes and price 
rises; there should be at least one 6-push but not necessarily at least one price 
rise. Furthermore: 

(1) Each 6-push should be performed at some node i with gi > 0, and the flow 
increment 6 must satisfy 6 < g/. 

(2) Each price rise should be performed on a set I with 9~ >- 0 for all i E I. 

The price rise operations of the generic algorithm may involve several nodes; 
however, in the special case where only one node is involved in each price rise, 
the generic algorithm can be further specified to obtain the e-relaxation method, 
as shown in [8]. Similarly, for assignment and transportation problems, the 
auction algorithms of [1, 4, 9] are also special cases of the generic algorithm; for 
a detailed discussion of these equivalences, the reader is referred to [8]. Note 
that the generic algorithm can be further specified to obtain many new variations 
of auction algorithms for different classes of LNF problems, as discussed in 
subsequent sections. 

The following proposition establishes the validity of the generic algorithm. 

PROPOSITION 2. Assume that the minimum cost flow problem (LNF) is feasible. I f  
the increment 6 o f  each 3-push is integer, then the generic algorithm terminates with 
a pair (z, p) satisfying c-CS. The flow vector x is feasible, and is optimal if ~ < 1/N. 

Proof. We first make the fol!owing observations. 
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(a) The algorithm preserves e-CS; this is a consequence of Lemma 1. 
(b) The prices of all nodes are monotonically nondecreasing during the algorithm. 
(c) Once a node has nonnegative surplus, its surplus stays nonnegative thereafter. 

The reason is that a g-push at a node i cannot drive the surplus of i below 
zero (since g < gi), and cannot decrease the surplus of neighboring nodes. 

(d) If at some time a node has negative surplus, its price must have never been 
increased up to that time, and must be equal to its initial price. This is 
a consequence of (e) above and of the assumption that only nodes with 
nonnegative surplus can be involved in a price rise. 

Suppose, to arrive at a contradiction, that the algorithm does not terminate. 
Then, since there is at least one g-push per iteration, an infinite number of 
&pushes must be performed at some node m on some arc (m, n) or some arc 
(n, m). For concreteness, assume it is arc ( m ,  n); a similar argument applies 
if the arc is (n, m). Since for each g-push, g is integer, an infinite number of 
&pushes must also be performed at the opposite end node n of the arc (m, n). 
This means that arc (m, n) becomes alternately e+-unblocked with gm> 0 and 
e--unblocked with 9,~ > 0 an infinite number of times, which implies that pm and 
pn must increase by amounts of at least 2e an infinite number of times. Thus 
we have p,,~ ---* cc and p~ ~ ec, while either g m >  0 or gn > 0 at the start of an 
infinite number of 6-pushes. 

Let N ~ be the set of nodes whose prices increase to e~; this set includes the 
nodes m and n. To preserve e-CS, we must have, after a sufficient number of 
iterations, 

xi j  = c~j for all (i, j )  E A with i E Af ~, j ~ A/"~~ (17) 

xj~ = bjl for all (j, i) e A with i E A f~, j r A f~. (18) 

After some iteration, by (d) above, every node in Af ~ must have nonnegative 
surplus, so the sum of surpluses of the nodes in Af ~ must be positive at the start 
of the g-pushes where either g,,~ > 0 or g,~ > 0. It follows using the argument of 
the proof of Lemma l(b) [cf. (14)-(16)] that 

0 < ~ s ~ -  ~ c~j + ~ bj~. 
ie .h[  ~~ { ( i , j ) e A l i E A f ~ , j C A f  ~ } { ( j , i ) e A l i E A f ~ , j f A f  ~ } 

For any feasible vector, the above relation implies that the sum of the divergences 
of nodes in Af ~ exceeds the capacity of the cut [A/"r162 Af-Af~], which is impossible. 
It follows that there is no feasible flow vector, contradicting the hypothesis. Thus 
the algorithm must terminate. Since upon termination we have gi _< 0 for all i 
and the problem is assumed feasible, it follows that g~ = 0 for all i. Hence the 
final flow vector x is feasible and by (a) above it satisfies e-CS together with the 
final p. By Proposition 1, if e < 1 / N ,  x is optimal. [] 

The example of Figure 1 shows how the generic algorithm may never terminate 
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S 1= 0 S2= 0 
( ~  Cost =0 :>f : -~_  Cost =0 

s 3 =1 

C/~~st =0 ~ 

S 4 = -1 

Flow range: [0,1] 

Figure I. Example of a feasible problem where the generic algorithm does not terminate, if it does 
not perform at least one 6-push per iteration. Initially, all flows and prices are zero. Here, the first 
iteration raises the price of node 1 by E. Subsequent iterations consist of a price rise of node 2 by 
an increment of 2e followed by a price rise of node 1 by an increment of 2e. 

even for a feasible problem, if we do not require that it performs at least one 
6-push per iteration. 

Dealing with infeasibility 

Let us consider now what happens when the problem is infeasible. Assume that 
the generic algorithm is operated so that for each 6-push, 6 is integer. Then 
there are three possibilities: 

(a) The algorithm terminates with 9~ < 0 for all i and 9~ < 0 for at least one i, 
in which case infeasibility is detected. 

(b) The algorithm finds a subset of nodes I such that ~ e ~  9i > 0, and the sets 
of scalars S + and S-  of (12) and (13) are empty [cf. Lemma l(b)], in which 
case infeasibility is again detected. 

(c) The algorithm performs an infinite number of iterations and, consequently, 
an infinite number of 5-pushes. 

In case (c), from the proof of Proposition 2 it can be seen that the prices of 
the nodes involved in an infinite number of 6-pushes will diverge to infinity. The 
following proposition gives a bound on the total price change of a node for a 
feasible problem. When this bound is violated, infeasibility is established. 

PROPOSITION 3. Suppose that the generic algorithm is applied to a feasible minimum 
cost f low problem with initial prices p~ i. Then in the course of  the algorithm, the 
price pi o f  any node i with 9i > 0 satisfies 

Pi - p~ < ( N  - 1)(C + e) + maxp ~ - minp ~ (19) 
-- jeAf "/ j~Af a 

where C = max(i,j)~ A [aij]. 
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Proof. Let x ~ be a feasible flow vector and let (x, p) be a flow-price pair 
generated by the algorithm prior to its termination. Suppose that gi > 0 for 
some i. Then by using the conformal realization theorem (see e.g. [6, 25]) on 
the flow vector x - x ~ we conclude that there exists a node s such that g, < 0, 

0 and a simple path H starting at 8 and ending at i such that z~j - x~ > 0 for all 
0 (i, j )  E H + and xi~ - xij < 0 for all (i, j )  E H - ,  where H + and H -  are the sets 

of forward and backward arcs of H, respectively. By e-CS we have 

p j  "1- aij <_ p~ + e, V (i, j )  E H +, 

P i < P j + a l j + e ,  V ( i , j )  E H - .  

Adding these conditions along H, we obtain 

p, - p8  _< ( g  - 1)(C + e). 

Since s has negative surplus, its price has not yet changed (p~ = pO), so by 
subtracting p0 from both sides of the above relation, we conclude that 

p , _ p O < ( N _ l ) ( C + e ) + p 0 _ p 0 < ( y _ l ) ( C + e ) + m ~ p  ~  ~ [] 
- -  - -  j e . N  j eAf  J 

The conclusion is that when the problem is feasible, the generic algorithm will 
terminate with a feasible x and a pair (x, p) satisfying ~-CS, as per Proposition 2, 
and when the problem is infeasible, the generic algorithm will detect infeasibility 
via one of the three tests (a)-(c) above, combined with the bound of (19). 

An alternative way to deal with infeasibility is to introduce some artificial arcs 
to guarantee that the problem is feasible. Each artificial arc should have zero 
lower flow bound and high cost coefficient. The cost coefficient of each artificial 
arc should be high enough so that, for a feasible problem, its flow starts and 
stays at zero in the course of the algorithm. By using the bound of the preceding 
proposition, we can select the cost coefficients to be high enough so that in 
the case where the original problem is feasible, the artificial arcs never become 
e+-unblocked, and their flow stays at zero. 

3. The network auction algorithm 

The network auction algorithm described in this section is a particular variation 
of the generic algorithm. The algorithm starts an iteration from a node i with 
positive surplus and tries to exhaust the push list of i in preparation for a price 
rise. However, as it does so, it collects information from neighboring nodes that 
can be used to effect a price rise involving i and some of its neighbor nodes. 
The potential advantage here is that the corresponding price increment may be 
larger, thereby saving some iterations; furthermore, a price rise can be performed 
before the push list of i is exhausted. 

To describe the typical iteration of the network auction algorithm, we need 
some definitions and a new operation. The reject capacity r~ of node i is defined as 
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0, 

({J I(~, j)er? } {Jl(J, Oee,- } 

if the push list P~ is empty, 

otherwise. (20) 

Thus, r~ is the sum of the residual capacities of the arcs of the push list P~. 

Definition 4. A reject operation at node i consists of performing a saturating push 
on each of the arcs in the push list of i. 

Note that in a reject operation at node i, the push list of i is emptied and the 
total amount  of flow "pushed away" from i is equal to the reject capacity ri. 

The network auction iteration uses a subset L of neighbor nodes of i, which 
is empty at the start of the iteration. The nodes in L are the ones whose push 
list is emptied during the iteration through a reject operation. As a result, the 
prices of all nodes in L can be increased at the end of the iteration. This will 
occur regardless of whether the price of i is also increased. The price increase 
of the nodes in L, however, often has the beneficial effect of allowing a larger 
price increase for i than would otherwise be possible. 

Typical iteration of  the network auction algorithm 

Step 0: (Select node) Select a node i with gi > 0. If no such node exists, 
terminate the algorithm; else set L = 0 and go to Step 1. 
Step 1: (Select push list arc) Let P '  be the set of arcs of the push list of 
i whose end node opposite to i does not belong to L. If P '  is empty go to 
Step 3; else select an arc a from P '  and go to Step 2. 
Step 2: (&push) Let j be the end node of arc a, which is opposite to i. If 
rj < gj, perform a reject operation at node j ,  set L := L u {j}, and go to 
Step 1. Else let 

/ m i n { r j  - gi, - xid} if a = (i, j ) ,  g j, c4j 

6 = ( mi n{ r j  gj, gi, x j i -  bji} if a (j, i). 
(21) 

If 6 = r d - g j ,  perform a &push of i on arc a, perform a reject operation at 
node j ,  and set L := L U {j}; else just perform a &push of i on arc a. If as a 
result of these operations we obtain g; = 0 go to Step 3; else go to Step 1. 
Step 3: (Price rise) Perform a price rise of the set {i} u L. Then, if L ~a 0, 
perform a price rise of L. Then, i f g i  = 0 stop; else set L = 0 and go to 
Step 1. 
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An alternative form of Step 3 is the following: Perform a price rise of the set 
{i} U L. Then, if L ~ 0, sequentially perform a price rise of each of the nodes 
in L. Then, if 9i = 0 stop; else set L = ~ and go to Step 1. 

It can be shown that the above alternative form of Step 3 leads to larger 
price rises for transportation problems than the first form, because for bipartite 
graphs, there is no arc joining any pair of nodes in L. Therefore, the alternative 
form of Step 3 is preferable for bipartite problems, or more generally, in cases 
where for most iterations there is no arc connecting any two nodes of L. 

We can show that the network auction algorithm is a special case of the generic 
algorithm. Indeed each iteration consists of g-pushes, reject operations, and price 
rises, and the 6 increments of all 6-pushes are positive integers. From (21) it is 
seen that g < 9i, while we have rj < 9j whenever a node j enters the set L and a 
reject operation is performed at j; this means that following a 6-push or a reject 
operation, the surplus of the corresponding node is nonnegative, so condition (1) 
of the generic algorithm is satisfied. Note also that the argument of the proof of 
Proposition 2 can be adapted to show that the number of 6-pushes per iteration 
is finite. Furthermore, since we have 91 > 0 at the start and 9~ = 0 at the end of 
an iteration, it follows that at least one g-push must occur before the iteration 
can stop. 

Regarding price rises, we note that they involve nodes with nonnegative surplus, 
thereby satisfying condition (2) of the generic algorithm. To show that the number 
of substantive price rises per iteration is finite, note that with each substantive 
price rise, the reject capacity of either node i or a neighbor node of i (belonging 
to L) is increased by an integer amount. It follows that the number of substantive 
price rises per iteration cannot be infinite, since the reject capacity of each node 
is bounded and the number of g-pushes per iteration is finite. Finally, regarding 
the number of trivial price rises per iteration, we note that the first price rise in 
Step 3 involving the set {i} U L will be trivial only if the modified push list P' 
(cf. Step 1) is nonempty (the push lists of all nodes in L are empty following 
the reject operation in Step 2), in which case we must have 9~ = 0 and the 
iteration will stop at that visit to Step 3. Therefore with each visit to Step 3 
except at most one, there will be at least one substantive price rise. Since the 
number of substantive price rises is finite, it follows that the number of visits to 
Step 3 is finite, implying that the number of trivial price rises is also finite. Thus, 
the network auction algorithm is a special case of the generic algorithm and 
performs at least one g-push per iteration. Therefore, Proposition 2 guarantees 
the termination of the algorithm with an optimal flow vector obtained if e < 1/N. 

Note that if the first price rise involving the set {i} u L in Step 3 is trivial and L 
is nonempty, the subsequent price rise in Step 3 (or price rises, if the alternative 
form of Step 3 is used) involving the set L will be substantive, since following 
the reject operation in Step 2, the push lists of all the nodes in L are empty. 
Thus, with each visit to Step 3 for which the set L nonempty, there is a price 
increase of all the nodes of L. Practical experience, as well as the complexity 
analysis of the next section, suggest that high frequency and large size of price 
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rises is a good performance indicator, so the extra work needed to compute  the 
set L may be compensated by the associated extra price rises. 

4. An algorithm for the k node-disjoint shortest path problem 

In this section we consider a generalization of the single origin/single destination 
shortest path problem, where instead of  a single path, we seek k node-disjoint 
paths that minimize a linear cost. An example is a three-dimensional assignment 
problem, involving the optimal choice of k disjoint ordered triplets, where the cost 
of a triplet (i, j ,  m) is separable of the form aij + ajra. We derive a specialized 
version of  the network auction algorithm for this problem. Note that in the 
literature the term k shortest path problem has been used somewhat differently; 
it refers to finding the shortest, second shortest, etc., up to kth shortest path 
between an origin and a destination [17]. 

Suppose that we are given a graph with node set N', arc set A, and integer 
arc costs a~. In this section, by a path P we mean either a single node i 
(in which case we say that P is a trivial path), or else a sequence of arcs 
( i l ,  i2),  (i2, i3),  . . . ,  (ira-l, ira). If the nodes i l ,  . . . .  im are distinct we say that 
the path is simple. We refer to il as the starting node of P and to im as the 
terminal node of P;  if P is trivial, its unique node is viewed as both the starting 
and the terminal node of P. The cost ofa nontrivialpath P is the sum of the costs 
of its arcs. By a cycle we mean a sequence of arcs (h,  i2), (i2, i3), . . . ,  (ira-l, q) .  
If the nodes is, . . .  im_~ are distinct we say that the cycle is simple. 

Let s and t be given nodes called the origin and the destination, respectively. 
We assume that: 

(a) 8 has no incoming arcs, t has no outgoing arcs, and (s, t) is not an arc. 
Furthermore,  each node except for t has at least one outgoing arc. (These 
assumptions are convenient for stating the algorithm but do not involve a 
loss of generality.) 

(b) The cost of each cycle is positive. 

For a given positive integer k, we want to find k nontrivial simple paths 
P1, P2, . . . ,  Pk that start at a, terminate at t, and satisfy the following conditions: 

(a) The paths are node-disjoint, that is, any pair of paths from the set {P1, P2 . . . .  , 
Pk} shares no node other than 8 and t. 

(b) The sum of the costs of P1, Pz,. . . ,  Pk is minimal. 

It is possible to view this problem as a special case of the minimum cost flow 
problem (LNF) by replacing each node i other than s and t with two nodes 
i § and i- ,  which are connected with a zero cost arc (i+, i -) ,  and by replacing 
each arc (i, j )  with the arc ( i - ,  j+ )  of cost ai~, as shown in Figure 2. All arcs 
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C o s t  a i ]1 

Figure Z Converting the k node-disjoint shortest path problem to a minimum cost flow problem with 
all arcs having feasible flow range [0, 1]. Each node i is split into the two nodes i + and i - ,  which 
are connected with a unit capacity and zero cost arc. Each arc (i, j )  is replaced by an arc ( i - ,  j + )  
of cost aij. 

have feasible flow range [0, 1]. The supply of the origin is k, the supply of the 
destination is -k ,  and the supply of every other node is zero. 

The following algorithm can be obtained by applying in a particular way 
the network auction algorithm to the above minimum cost flow problem. In 
particular, there will be price rises of pairs or triplets of nodes [either i + and 
i-,  or i-  and j+ where (i, j )  is an arc, or i +, i- ,  and j+ where (i, j )  is an arc]. 
These two-node or three-node price rises are almost as easy as single node price 
rises, and the algorithm is far more efficient than what would be obtained by 
straightforward use of the e-relaxation method. 

To simplify the presentation, we will describe the algorithm from first principles, 
and we will indicate more precisely the connections with the network auction 
algorithm later. We first introduce a price and flow vector structure, and 
a corresponding definition of e-CS, which are adapted to the k node-disjoint 
shortest path problem. This form of e-CS is somewhat more restrictive than the 
form given in Section 2. 

e-CS for the k node-disjoint shortest path problem 

The subsequent k node-disjoint shortest path algorithm maintains the following: 

(a) Two prices p+ and p~- for each node i ~ s, t, which satisfy 

p[ <_p+, V i e s ,  t; (22) 

these prices correspond to the constituent nodes i + and i-  referred to earlier. 
(b) A price p2 for the origin and a price p~" for the destination, which are 

specified in terms of the remaining prices by the equations 

p~ = min{z[z > asj + p+ + e for k or more arcs (s, j)}, (23) 

p~ = max{zlait + z < pr + e for k or more arcs (i, t)}. (24) 
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(c) A set of simple paths P1, . . . ,  Pm and a set of simple cycles 6'1, . . . ,  Cn, which 
are all node-disjoint, and a flow vector x such that for all arcs (i, j )  

{ 10 if (i, J) bel~ t~ ~ ~ the paths 

xij = P1, . . . ,  Pm or cycles C1, . . . ,  C,~, (25) 

otherwise. 

We require that out of the paths/'1 . . . .  , P , ,  exactly k are nontrivial and start 
at the origin, and at most k are nontriviat and terminate at the destination. 
Furthermore, a trivial path consisting of a single node, say i, belongs to the 
set {P1 . . . . .  P~} if and only if i ~ s, t, p~- < p~, and no nontrivial path from 
{P1 . . . .  , Pro} or cycle from {C1, . . . ,  C.} passes through i. (Note that the 
triplet (x, p+, p-)  specifies completely the paths /1, -.-, Pm and the cycles 
C1, . . . ,  Cn based on the above requirements.) 

We say that the triplet (x, p+, p-) satisfies e-CS for the k node-disjoint shortest 
path problem if the above conditions hold and in addition 

p~ ~_ aij + p+ -- e, V (i, j )  such that xi3 = 1, (26a) 

p~- _< aij + p+ + e, V (i, j )  such that xij = 0. (25b) 

For a triplet (x, p+, p-) satisfying e-CS, we say that one of the corresponding 
paths P1, . . . ,  Pm is active if it terminates at a node other than the destination. 
Note that a trivial path consisting of a single node i ~ s, t is active if and 
only if p~- < p~-. Note also that if there are no active paths, then in view of the 
requirement that out of the paths /'1, ---, Pro, exactly k are nontrivial and start 
at the origin, and no more than k are nontrivial and terminate at the destination, 
the paths 191, . . . ,  Pm must be k in number, must all start at s, and must all terminate 
at t, thereby yielding a feasible solution of the k node-disjoint shortest path problem. 

The following proposition gives the basis for the subsequent algorithm. 

PROPOSITION 4. Suppose that the triplet (x, p+, p-) satisfies e-CS. Then ire < I /N,  
there are no simple cycles corresponding to (x, p+, p-). I f  in addition none of  the 
corresponding paths PI, . . . ,  Pm is active, then these paths constitute an optimal 
solution of  the k node-disjoint shortest path problem. 

Proof. If C is a simple cycle corresponding to (x, p+, p-), then for every arc 
(/, j )  of C we must have xi~ = 1, and from (22) and (26), 

p+ > p; >_ a~j + p+ - e. 

By adding this reiation over all arcs of C, we obtain 

Cost o f t =  E aij < _ ( g - 1 ) e .  
(i,j)~c 
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Since the arc costs are integer and e < 1/N, it follows that the cost of C is 
less or equal to zero, which contradicts our assumption that all cycle costs are 
positive. 

If in addition there are no active paths, the vector x is a feasible solution that 
together with the price vector (p+, p-) satisfies e-CS for the associated minimum 
cost flow problem, el. Figure 2. The optimality proof for x is obtained by 
adapting the proof of Proposition 1 (see e.g., [6] or [15]) and by using the fact 
p+ > p~- for all i ~ s, t. We omit the details. [] 

The k node-disjoint shortest path algorithm starts each iteration with a triplet 
(x, p+, p-)  satisfying e-CS. The algorithm terminates if there is no active path. 
Otherwise, the algorithm selects an active path, and either contracts it by deleting 
its terminal node, or extends it by connecting its terminal node to another node; 
also the triplet (x, p+, p-) and at most one other of the corresponding paths 
and cycles are modified while maintaining e-CS. As a result of the iteration, the 
path may get eliminated (if it consists of a single node or arc and is contracted) 
or may stop being active (if it joins a path that terminates at the destination). 
The number of active paths then decreases by one. It is also possible that the 
number of active paths stays the same as a result of the iteration. 

To start the algorithm, we need an initial triplet (x, p+, p-)  satisfying e-CS. 
One way to obtain such a triplet is as follows: 

Standard initialization 

Set x~ = 0 for all arcs (i, j),  select p+ arbitrarily for all i ~ 8, set 

Pi- = min { +pi ' {jl(i,minj)e.aI{aiJ+P~'}+e} , V i e s ;  (27) 

and set p~- and p~ according to (23) and (24); then select k nodes j such that 
(s, j )  E A and p~- _> ass + P+ + e, and for all these nodes, set xsj = 1 and 
p~- = p~- - asj + e; then set xlt = 1 for all nodes arcs (i, t) with p~- > a~ + p~- + e. 

Contraction and extension operations 

We now describe the operations of contraction and extension of an active path. 
Let (x, p+, p-) be a triplet satisfying e-CS, and let P1, . . . ,  Pm and C1, . . . ,  Cn 
be the corresponding simple paths and cycles. Suppose that P is an active path 
with terminal node i. 

A contraction operation for P can be performed in one of the following 
two circumstances: 

(a) P consists of just node i and 
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p+ < min { a i ~ + p + } + e ,  (28) 
{Jl(~, j)e.4}- ~ 

in which case the contraction consists of setting 

p+ =p~- = min { a i j + P + } + e .  (29) 
{jI(i,j)EA} 

(In this case P is eliminated as a path.) 
(b) P has a final arc, say (r, i), and 

p ;  - a~-~ < min {alj + p+ }, (30) 
{JI(i,j)EA} 

in which case the contraction consists of setting 

p+ = p[ = min {aij + p;  } + e, 
{Jl(i, j ) eA}  

deleting the final arc (r, i) from P, and setting xTi = 0. If r is the origin 
node s, the following additional operations are executed: the price P2 is 
set to the value given by (23) (this value may be higher than the previous 
value of P2 since p+ was just increased); also an arc (s, n) is found such 
that xs~ = 0 and P2 = a~n + p+ + e, and its flow x~n is set to 1, while the 
flow of each incoming arc (r, n) with r r s is set to zero. (This creates a 
new nontrivial path starting at the origin, to replace the path P consisting of 
the arc (s, i) that was eliminated through the contraction.) Following these 
changes, the price p+ of each node n with x,,~ = 1 is set to P2 - as,~ + e. 

A n  extension operation for P is performed only if a contraction is not possible. 
Then we find a node ji such that 

j ~ = a r g  min {a i j+p+} ,  
{Jl(i,J)~A} 

and we a, so find 

in{jlj~j,,(i,j)~A}{ai j + p+} + e if i has two or more outgoing 
arcs, 

W i = 
if (i, ji) is the only outgoing 

arc from i, 

= [ p ~  - a~i + e if P has a final arc (r, i), 
vi  

t P I' if P consists of just node i. 

We then distinguish three cases, depending on whether j~ is the destination 
node, and whether an arc connecting the origin with Ji is part of a current path 
(x j, = 1). 

(a) If Jl r t and xsj, = 0, the prices p+ and p~- are set to 
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- -  = vi, p~ min{vi, wi} .  

Furthermore,  the price p+ is set to 

p~ = min{vi, w~} - aij~ + e, (31) 

while the arc (i, j~) is added to P and its flow is set to 1; also the flow of 
any incoming arc (n, ji) with n ~ i and xnj, = 1 is set to 0 (this could make 
n the terminal node of an active path). 

(b) If jl ~ t and zsj~ = 1, all the operations of  the preceding case (a) are 
performed, including setting xsi, to 0. The following additional operations 
are then executed to create a new nontrivial path starting at the origin, 
replacing the path P = (s ,  j i )  that was just eliminated [cf. case (b) of the 
contraction operation]: the price p~- is set to the value given by (23); also 
an arc (s, n) is found such that xsn = 0 and p~- = a~n + p+ + e, and its flow 
Xsn is set to 1, while the flow of each incoming arc (r, n) with r ~ s is set 
to zero. Following these changes, the price p+ of each node n with x~,~ = 1 
is set to p ;  - ash + E. 

(c) If jl = t, the prices p+ and p~- are set to 

p+ = v~, p~- = min{vl, w l ) ,  

and the arc (i, t) is added to P,  while its flow is set to 1. If as a result, the 
number  of paths terminating at t is k + 1, the price p~ is set to the value given 
by (24), and an arc (n, t) is found such that xnt = 1 and p~ = pg - ant + ~, 
and its flow xnt is set to 0. ]This eliminates a nontrivial path terminating 
at the destination, and since P was extended by arc (i, t), the number  of 
nontrivial paths terminating at the destination is maintained at k.] 

Note  that in an extension operation it is possible that the extension node j i  is 
already part of P; then by setting xij, = 1, a cycle C is obtained that consists of 
the portion of P between ji and i and the arc (i, j l ) .  In this case, if ji is the 
starting node of P,  the active path P is replaced by the cycle C, and the number  
of active paths is reduced by one. Otherwise, the portion of P up to but  not 
including j~ may become an active path. 

By examining the nature of the contraction and extension operation, it is 
straightforward to verify the following: 

(a) At the start of each iteration, the triplet (x, p+, p - )  satisfies E-CS. 
(b) A contraction or extension that does not change the flow of any of  the 

outgoing arcs from the origin is equivalent to an iteration of the network 
auction algorithm applied to the associated minimum cost flow problem 
described earlier. 

(c) A contraction or extension that changes the flow of an outgoing arc from the 
origin [cf. case (b) of a contraction or case (b) of an extension] is equivalent 
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to two iterations of the network auction algorithm: an iteration starting at 
node i followed by an iteration starting at the origin. 

k node-disjoint shortest path algorithm 

Our algorithm starts each iteration with a triplet (z, p+, p-), and corresponding 
simple paths and cycles P1, . . . .  P~, C1, . . . ,  C,~ satisfying e-CS. 

Typical iteration of the k node-disjoint shortest path algorithm 

Select an active path P. If no such path exists, terminate the algorithm; else if a 
contraction is possible for P [that is, if the corresponding condition (28) or (30) 
holds] perform the contraction, and otherwise perform an extension of P. 

Figure 3 illustrates the algorithm for a simple example. From our earlier 
discussion, it is seen that the algorithm is a special case of the network auction 
algorithm. By using Proposition 2, it follows that for a feasible problem, the 
algorithm terminates, and by Proposition 4, the feasible solution obtained at 
termination is optimal if e < 1/N. 

It is interesting to note that a k x k assignment problem can be converted to a k 
node-disjoint shortest path problem by adding an origin node s, which is connected 
with each person node with a zero cost arc, and by also adding a destination 
node t, which is connected to each object node with a zero cost arc. It can be 
verified that when the algorithm of this section is specialized to this problem, it 
becomes equivalent to the auction algorithm for the assignment problem. 

For another interesting connection, consider the case k = 1. Then the problem 
becomes a single origin/single destination shortest path problem. It can be verified 
that when the algorithm of this section is specialized to this problem but with 
the important difference that e = 0, it becomes equivalent to a recently proposed 
auction algorithm for shortest paths [5, 6]. 

5. Complexity analysis 

In this section, we derive a bound on the order of time required by a simple 
implementation of the network auction algorithm. Our analysis parallels a 
corresponding analysis of the E-relaxation method given in [12, 13, 15], which in 
turn uses the sweep implementation ideas of [2] and some of the scaling analysis 
ideas of [18]. However, there are some novel and nontrivial features, such as 
the adaptation of the sweep implementation to the network auction algorithm, 
and, particularly, the distinction of nonsaturating ~-pushes into two types, regular 
and irregular. We concentrate on an unscaled version of the algorithm. Once 
the main complexity result for the unscaled algorithm (Proposition 5) is proved, 
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Figure 3. Illustration of the k node-disjoint shortest path algorithm for k = 2, starting with p+ = 0 
for all i ~ s and using the standard initialization. The problem data is given in the first graph. The 
numbers on the left and the right sides of a node i are the prices p+~ and p~-, respectively. Thick 
(thin) line arcs are the ones with flow equal to 1 (0, respectively). Initially the active paths are (1, 2) 
and (1, 5). At the start of the second and third iterations there is only one active path, (1,5) and 
(1, 2), respectively. 
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the derivation of the corresponding results for scaled versions is straightforward, 
following established lines of analysis. 

We first make some assumptions: 

Assumption 1. Problem (LNF) is feasible. 
Assumption 2. All arc cost coefficients are integer multiples of e. 
Assumption 3. All starting prices are integer multiples of e, all starting flows 
are integer, and together they satisfy e-CS. 

We assume that the push lists of the nodes are maintained in a data structure 
that makes possible the addition and deletion of a single arc in O(1) time; this is 
true, for example if each push list Pi is maintained in a doubly linked list. Then 
it is seen that selecting an arc in Step 1 takes O(1) time, updating the push list 
of node i following a 6-push in Step 2 takes 0(1) time per &push, and updating 
the push list of a node i following a price rise involving node i in Step 3 takes 
O(di) time per price rise and node, where di is the number of incident arcs of 
node i. 

The admissible graph 

A notion that is central in our analysis is the so-called admissible graph, introduced 
in [2], which consists of the push list arcs, except that the directions of those 
arcs that are incoming to the corresponding nodes are reversed to make them 
consistent with the direction in which flow is pushed in the network auction 
algorithm. Formally, the admissible graph is defined as G* = (A/', A*), where A* 
contains arc (i, j )  if either (i, j)  is an e+-unblocked arc, or (j, i) is e--unblocked 
arc. Note that the admissible graph depends on the current pair (x, p) that 
satisfies e-CS and changes as the pair (x, p) changes during the course of the 
algorithm. In particular, when there is a saturating push on an arc, the arc 
is removed from Jr*. However, 6-pushes cannot create any new arcs of the 
admissible graph. Furthermore, when there is a substantive price rise of a node 
set I in Step 3, all the arcs (i, j )  and (j, i) with i E I and j ~ I that belonged 
to A* prior to the price rise are removed from A*, and an arc (i, j )  is added to 
.4* if either an arc (i, j)  (or (j, i)) with i c I and j r I became e +-unblocked 
(or e--unblocked, respectively), as a result of the price rise. Thus following the 
price rise, there are no arcs (j, i) of the admissible graph that have a start node 
j ~ I and an end node i E I, leading to the conclusion that price rises cannot 
create any new cycles of the admissible graph (this will be shown more precisely 
in the proof of the subsequent Prop. 5). Our next assumption is that: 

Assumption 4. Initially, the admissible graph has no arcs. 

Assumption 4 can be satisfied by setting initially xij = cij (or x~j = bij) for 
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all arcs (i, j )  with pi = pj + aij + e (Pi = Pj + aij - e, respectively). Under 
this assumption, the admissible graph is initially acyclic and since, based on the 
preceding arguments, neither 6-pushes nor price rises can create a cycle, we 
conclude that the admissible graph is acyclic throughout the algorithm. (Again this 
will be shown formally as part of the proof of Proposition 5.) 

The sweep implementation 

In order to obtain the subsequent complexity bounds, we need a certain rule for 
choosing the starting node in each iteration. This rule is the basis for the sweep 
implementation referred to earlier, and uses an ordered list T of all the nodes, 
which is restructured repeatedly in the course of the algorithm. The initial choice 
of the list can be arbitrary. We say that node i ranks higher (or lower) than node 
j at some time, if the position of i in the list T is higher (or lower, respectively) 
than the one of j at that time. The order of nodes in the list will be shown to 
be related to the admissible graph (see the proof of the subsequent Proposition 
5). In particular, it will be seen that a node i ranks higher than all nodes j such 
that there is a directed path from i to j in the admissible graph. 

The order of nodes in T is changed only when there is a substantive price rise 
in Step 3. In particular, if the price rise involves a set I, the nodes of I are 
placed at the top of T in the order in which they appear in T prior to the price 
rise. The position of the nodes not in I is not changed. Figure 4 illustrates 
the rule for restructuring the list T following a price rise. We note that the 
restructuring of T can be done in O(N) time per substantive price rise. In the 
case where the alternative form of Step 3 of the network auction algorithm or 
Step 3 of the e-relaxation algorithm is used, the restructuring of T can be done 
more simply, in time O(1) per single node price increase, by placing sequentially 
the nodes of L at the top of T as their price is increased. In practice one may 
want to maintain T in an appropriate data structure, such as a linked list, to 
minimize the restructuring overhead, but this is not necessary for the subsequent 
complexity bounds. 

If a given iteration is started at node i, the list T is used to select the starting 
node i' for the next iteration as follows: Let Ni be the set of nodes that were 
ranking lower than i in T at the start of the given iteration and whose price did 
not change during the iteration. If Ni contains nodes that have positive surplus 
at the end of the iteration, then i t is chosen to be the highest ranking of these 
nodes; otherwise i' is chosen to be the highest ranking node in T among all the 
nodes that have positive surplus at the end of the iteration. (Thus, the algorithm 
goes down the list T selecting nodes with positive surplus and when it reaches 
the bottom of the list, it returns to the top of the list.) 

A sequence of iterations between two successive times that the algorithm starts 
an iteration with the highest ranking node with positive surplus is called a cycle. 
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Figure 4. Illustration of the rule for restructuring the order of nodes in the list T following a price 
rise at the set 1. 

Note that the computation time for selecting the starting node of an iteration 
by going down the list T and checking for a positive surplus node, is O(N) per 
cycle. Our final assumption is: 

Assumption 5. The starting node of iterations of the network auction algorithm 
are chosen as described above. 

Main result 

We now introduce some terminology and state a lemma that is similar to one 
given for the c-relaxation method in [12, 13, 15]. For any path H, we denote by 
s(H) and t(H) the start and end nodes of H, respectively, and by H + and H -  
the sets of forward and backward arcs of H, respectively, as the path is traversed 
in the direction from s(H) to t(H). We say that the path is simple if it has no 
repeated nodes. For any price vector p and simple H, we define 
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(i, j )EH + (i, j ) E H -  

(32) 

It is seen that the following upper bound on dH(p) holds: 

dH(p) <_ p+ - p- -I- L, (33) 

where p+ = maxip~, p -  = min~p~, and L is the maximum simple path length, 
where the length of each arc (i, j )  is taken to be la~jl. Since any simple path 
can have at most N -  1 arcs, it is seen that when p+ - p -  = O(1), we have 
dH(p) = O(NC). 

For any capacity-feasible flow vector x, we say that a simple path H is unblocked 
with respect to x if we have xlj < cij for all arcs (i, j )  E H + and we have xij > bij 
for all arcs (i, j )  c H - .  For any price vector p and feasible flow vector x, denote 

D(p, f )  = max{dH(p)lH is a simple unblocked path with respect to x}. 

In the exceptional case where there is no simple unblocked path with respect to 
x, we define D(p, f )  = 0. In this case, we must have bij = cij for all (i, j )  since 
any arc (i, j )  with blj < cij gives rise to a one-arc unblocked path with respect 
to x. 

We have the following lemma: 

LEMMA 2. For every node, the total number of substantive price rises of a subset 
containing the node, up to termination of the network auction algorithm, is O( N + 
~(p~ where pO is the initial price vector and 

/~(p0) = min{D(p0, f ) lx  is feasible}. (34) 

The lemma has been proved for the e-relaxation method in [12, 13, 15], and 
is based on showing that the relation 

pi - p0 < ( N  - 1)e +/~(pO) (35) 

holds throughout the algorithm for all nodes i with g~ > 0. The proof  for the 
network auction algorithm is essentially identical and will not be given; see also 
the proof  of Proposition 3. 

Our main complexity result is the following: 

PROPOSITION 5. Let Assumption 1-5 hold and let pO be the initial price vector. 
Then the network auction algorithm terminates in O(N 3 + NE~(p~ time. 

Proof. To economize on notation, we write/~ in place of fl(p0). We will also need 
to distinguish between nonsaturating 6-pushes in Step 2 for which 6 < rj - g~ or 
6 = rj - g j  in (21); these are called regular and irregular nonsaturating 6-pushes, 
respectively. Note  that for each irregular 6-push, the node j of (21) enters the 
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set L and participates in a substantive price rise in the subsequent Step 3. The 
dominant computational requirements of the network auction algorithm are: 

(1) For price rises and for updating the push list of nodes involved in the price 
rises. 

(2) For restructuring the list T following price rises. 
(3) For saturating ~-pushes. 
(4) For irregular nonsaturating ~-pushes. 
(5) For regular nonsaturating cS-pushes. 
(6) For selecting a node i with g~ > 0 in Step 0. 

There is also additional computation for updating the reject capacities of various 
nodes, but this work can be lumped into the work for 6-pushes and price rises, 
with no effect on the subsequently derived complexity bound. 

We will show that the times required for the operations in (1)-(6) above can 
be estimated as follows: 

For (1), O(A(N + ~/~)). 
For (2), O(NZ(N +/3/E)); if the alternative form of Step 3 is used, the time 
required is O(A(N +/3/e)). 
For (3), O(A(N + ~/e)). 
For (4), O(A(N + 3/E)). 
For (5), O(N2(N + fl/E)). 
For (6), O(N2(N +/3/E)). 

Thus, we will obtain the desired O(N2(N +/3/~)) time bound. 
Indeed, since by Lemma 2, there are O(N +/3/E) price increases for each 

node and a total of O(N(N + /3/~)) price rises, the time required for (1) 
is O(A(N +/3/c)) and the time required for (2) is O(N2(N + d/a)). If the 
alternative form of Step 3 is used, then the restructuring of the list T can be 
done by placing sequentially the nodes of L at the top of T as their price is 
increased, so that the time required for (2) is O(A(N +/3/~)). 

Whenever an arc flow is set to either the upper or the lower bound due to a 
saturating push at one of the end nodes, it takes a price increase of at least 2E by 
the opposite end node before the arc flow can change again. Therefore, there 
are O(N + B/~) saturating pushes per arc. The computation time for each of 
these, including the time to remove the arc from the corresponding push list, is 
O(1), so the time required for (3) is O(A(N +/~/E)). Similarly, for each irregular 
nonsaturating ~-push there is a price rise of the corresponding node j that enters 
that set L. Thus there are O(N +/3/E) irregular nonsaturating pushes per arc, 
and the time required for (4) is O(A(N +/~/e)). 

There remains to estimate the computational requirements for (5) and (6). At 
this point, we will use the assumption that the algorithm is operated in cycles 
with the node order in each cycle determined by the list T. We will demonstrate 
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that the number of cycles up to termination is O(N(N +/3/e)). Given this, we 
argue that for each cycle, there can be only one regular nonsaturating push per 
node in Step 2, for a total of O(N2(N + fl/e)) regular nonsaturating pushes. 
Since the time required for each of these pushes is O(1), the time required for 
(5) is O(N2(N + ~/e)). Furthermore, the time to select a positive surplus node 
in Step 0 is O(N) per cycle, so the time required for (6) is also O(N2(N + ~/e)). 
Thus the proof of the time estimates for the computations (1)-(6) stated above 
will be completed. 

To show that the number of cycles up to termination is O(N(N +/3/e)), we 
use the admissible graph G* = (Af, A*) and we argue as follows: a node i is 
called a predecessor of a node j if a directed path starting at i, ending at j ,  and 
having arcs oriented from i to j ,  exists in G*. First we claim that immediately 
following a price rise of a node set I, there are no arcs (j, i) in .4* with j r 1 
and i E I. To see this, note that if (j, i) E A with j ~ I and i E I is e +-unblocked 
after the price rise, we must have pj > p~ + aj~ + e before the price rise, and, 
hence, xji = eji, implying that (i, j )  is not in .4*. The e--unblocked case is 
similar, establishing the claim. We next claim that G* is always acyclic. This is 
true initially because, by Assumption 4, .4* is empty. 6-pushes can only remove 
arcs from .4", so G* can acquire a cycle only immediately after a price rise of a 
node set I, and the cycle must include nodes of I as well as some nodes not in 
I. But since there are no arcs (j, i) with j r I and i E I in the admissible graph 
following the price rise, no such cycle is possible. This establishes the second 
claim. Finally, we claim that the node list T maintained by the algorithm will 
always be compatible with the partial order induced by G*, in the sense that 
every node will always appear in the list after all its predecessors. Again this is 
initially true because .4* starts out empty. Furthermore a 6-push does not create 
new predecessor relationships, while after a price rise of a node set I, there can 
be no predecessor of a node in I which does not belong to I, while the set I is 
moved to the top of the list before any possible descendants. This establishes 
the claim. 

Let N + be the set of nodes with positive surplus that have no predecessor with 
positive surplus, and let N O be the set of nodes with nonpositive surplus that 
have no predecessor with positive surplus. Then, as long as no price rise takes 
place, all nodes in N O remain in N ~ and execution of an iteration starting at a 
node i E N + moves i from N + to N ~ If there is no price rise during a cycle, 
then all nodes of N § will be added to N O by the end of the cycle, which implies 
that the algorithm terminates. Therefore, there will be a price rise during every 
cycle except possibly for the last one. Since the number of price increases per 
node is O(N + ~/e), there can be 0nly O(N(N +/3/e)) cycles. 

The proof of the time estimates for (1)-(6) stated above is now complete and 
the desired overall time bound for the algorithm follows. [] 

Note that the classical max-flow problem can be formulated so that all arc 
costs aij are zero except for one arc cost which is unity ([15] p. 334), and with 
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an initial price vector p0 such that p+ - p -  --- O(1), we have fl(p0) = O(1) (cf. 
(33)). By taking e = 1/(N + 1) in Proposition 5, it follows that the network 
auction algorithm solves the max-flow problem in O(N 3) time. 

Problems with unit arc capacities 

When the feasible flow range of each arc is [0, 1], such as for example the 
assignment problem and the k node-disjoint shortest path problem, there are 
no regular nonsaturating pushes. For this reason, to obtain a good complexity 
bound, it is not necessary to maintain and restructure the list T as described 
earlier. Instead, a much simpler FIFO queue that includes the nodes with 
positive surplus can be used. With this algorithmic modification, the preceding 
analysis can be adapted to show that the complexity bound of Proposition 5 is 
reduced to O(A(N + ~(p~ 

Complexity of the generic algorithm 

Much of the preceding complexity analysis can also be applied to the generic 
algorithm under some broadly applicable assumptions. In particular, let us call 
a 5-push by node i exhaustive on arc (i, j )  [or arc (j, i)] if 5 = min{gi, c4j - xij} 
[or 6 = min{g, xji - bji}, respectively]. Let also ni be the number of times that 
the price of node i is changed due to a price rise. Consider in addition to 
Assumptions 1-3, the following assumptions: 

(a) The computation required for price rises is bounded by a constant times 
~ieh/'aini, where ai is the number of incident arcs of node i. 

(b) Each 5-push requires O(1) computation and the number of 5-pushes which 
are not exhaustive is bounded by a constant time ~ieac ni. 

(c) Between two successive price rises there can be at most N 2 exhaustive 5- 
pushes. (This assumption is satisfied in the network auction algorithm if the 
node selection policy is arbitrary but the algorithm is operated so that the 
admissible graph is acyclic.) 

Then, for fixed e, by using assumptions (a) and (b) above, we can show similar 
to the proof of Proposition 5 that the computation for price rises, saturating 5- 
pushes, and nonexhaustive &pushes is O(A(N +/~(p~ By using assumptions 
(a) and (c) above we can also show similar to the proof of Proposition 5 that the 
computation for nonsaturating 5-pushes is O(N3(N + ~(pO)/e)). We thus obtain a 
O(N3(N + ~(p~ bound for the algorithm. By exploiting the problem structure 
and by using data structures such as the ones of the sweep implementation, it 
may be possible to reduce the time bound for nonsaturating 6-pushes, which is 
the worst-case complexity bottleneck. Such data structures can be developed in 
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the context of particular algorithms, e.g. the network auction algorithm. 

Scaled versions 

We can consider also a scaled version of the network auction algorithm. Given 
Proposition 5, this analysis is virtually identical to the corresponding analysis of 
the e-relaxation method given in the sources mentioned earlier. It can be found 
in our paper [8], which uses cost scaling. Here, we will just quote the main 
results. In particular, by using cost scaling as in [12] or [13], or e-scaling as 
in [18] or [19], it can be shown based on Proposition 5 that the scaled version 
of the network auction algorithm with the sweep implementation as described 
earlier has an O(N31og(NC)) running time, where C = max(i,j)eA I  Jl. Also, 
when the problem has unit arc capacities, we can obtain with a similar analysis an 
O(NA log(NC)) bound. Finally, for the scaled version of the generic algorithm, 
we can show a n  O(N 4 log(NC)) running time. 

6. Computational results 

In this section we present the results of some of our experimentation with the 
k node-disjoint shortest path algorithm of Section 4. The reader is also referred 
to several computational studies that have tested extensively auction algorithms 
for assignment and transportation problems [8, 9, 10, 11, 16]. 

We have implemented a code called AUCTION-KSP for k node-disjoint shortest 
path problems, which we tested against an implementation of the e-relaxation 
method, called E-RELAX (given in [6]), the RELAXT-III code, which is an 
improved version of the one described in [14], and the primal-simplex code 
NETFLO, which is given in [20]. Figures 5 and 6 give some representative 
experimental results. NETFLO was slower by an order of magnitude than 
RELAXT-III and E-RELAX for the problems we tried, so its performance is not 
shown in these figures. AUCTION-KSP does not use scaling and this probably 
slows down its performance, particularly when k is relatively large. Despite this 
fact, AUCTION-KSP is uniformly and substantially faster than RELAXT-III and 
much faster than E-RELAX. This suggests that our specialized auction algorithm 
for the k node-disjoint shortest path problem is not just a heuristic improvement 
on the e-relaxation method, but rather embodies some computational ideas that 
are genuinely interesting. We note also that the performance of AUCTION- 
KSP will probably improve substantially once we use scaling as well as "down 
iterations" where the prices of nodes with negative surplus are decreased. Down 
iterations have been shown to be very useful in the context of reverse auction for 
assignment problems [6, 11], and reverse auction for shortest path problems [5, 6]. 

We have also conducted much additional experimentation with the purpose to 
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Figure 5. Comparison for the auction code AUCTION-KSP for k node-disjoint shortest path problems, 
with the transhipment codes E-RELAX, and RELAXT-III. Here the problems have a constant k 
while the number of nodes increases. The graphs of these problems were generated using NETGEN. 

determine for what types of problems auction-like algorithms can form the basis 
for codes that outperform current state-of-the-art codes. This experimentation 
is not conclusive and cannot be presented here. However, the results seem 
to suggest that problems with a structure resembling the one of the assign- 
ment problem (bipartite or nearly bipartite structure, small and/or uniform sized 
supplies, small arc capacities) are good candidates for effective solution using 
specialized versions of the generic auction algorithm. Also a relatively simple 
problem structure such as the one of the max-flow, shortest path, and other 
related problems seems to favor the use of specialized auction algorithms. 
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