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Abstract. The NP-complete problem of determining whether two disjoint point sets in the n- 
dimensional real space /:/n can be separated by two planes is cast as a bilinear program, that is 
minimizing the scalar product of two linear functions on a polyhedral set. The bilinear program, which 
has a vertex solution, is processed by an iterative linear programming algorithm that terminates in a 
finite number of steps at a point satisfying a necessary optimality condition or at a global minimum. 
Encouraging computational experience on a number of test problems is reported. 
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1. Introduction 

The problem we wish to consider is the following: Given two disjoint points sets 
A and B in the n-dimensional real space R n, can they be (strictly) separated by 
two planes? This is a fundamental NP-complete problem [8, 20] that is depicted 
in Figure 1 for the 2-dimensional real space R 2. The configurations (a) and 
(b) of Figure 1 are equivalent as can easily be seen if the roles of A and B 
are interchanged. Bilinear separation is a natural extension of linear separation 
which, for a long time, has been known to be equivalent to the polynomial- 
time solution of a single linear program [5, 9, 14, 28]. Linear separat ion is 
also equivalent to separation by Rosenblatt's perceptron or linear threshold unit 
(LTU) [11, 26, 27] (see Figure 2). However most problems are not linearly 
separable. For example the simple Minsky-Papert exclusive-or classical problem 
[21], is not linearly separable, but is bilinearly separable. It can be solved by a 
neural network with two layers of linear threshold units [19, 27] (see Figure 3). 

Other methods of separation by more than one plane, for example multisurface 
methods (MSM) of pattern separation, have also been proposed [5, 6, 15] and 
extensively used for medical diagnosis [5, 18, 31]. MSM, which has been shown 
to be equivalent to a feed-forward neural network with a single hidden layer 
[5], can be trained by a greedy algorithm using linear programming [5, 6, 15]. 

*This material is based on research supported by Air Force Office of Scientific Research grant 
AFOSR-89-0410, National Science Foundation grant CCR-9161801, and Air Force Laboratory Graduate 
Fellowship SSN 531-56-2969. 
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Figure I. Three cases of bilinearly separable sets .A and B in R~: (a), (b) and (c). 
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Figure 2. Linear separator is equivalent to linear threshold unit: (a) Linear separator wx = 7, and 
(b) linear threshold unit with incoming weights w and threshold 7. 

Thus bilinear and MSM separation can be thought of as alternative linear- 
programming-based methods for solving problems that are usually solved by 
neural networks. 

It is interesting to note that the bilinear separation depicted in Figure 3(a), 
which corresponds to the topology of the bilinear separation of Figures l(a) and 
l(b), can be represented by a single hidden layer neural network with two hidden 
units and one output unit. However this is not the case for a bilinear separation 
with the topology of Figure l(c). In fact if we separated the exclusive-or example 
by planes using this topology, as shown in Figure 4(a), the corresponding neural 
net depicted in Figure 4(b) requires two hidden layers each with two units and 
one output unit. This indicates that this is a more complex separation from a 
neural network point of view. It will turn out that this separation leads also to 
a more difficult bilinear program with coupled constraints: program (15) instead 
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Figure 3. For exclusive-or example: A = {(t, 0, (co, ~)} ,  B = {(co, t), (t, ~c)}; (a) Bilinear separator 
and (b) equivalent neural network. 
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Figure 4. For exclusive-or example: (a) Alternative bilinear separator using the topology of Figure 
l(c); and (b) equivalent neural network. 
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of program (13) below. 
Our objective in this paper is to present an equivalent mathematical program- 

ming formulation to the bilinear separation problem, which turns out to be a 
bilinear program on a polyhedral set (Theorem 3.1). We shall solve this bilin- 
ear program by a finite sequence of linear programs (Algorithms 2.1, 2.2, and 
2.3) which terminate either at a solution of the bilinear program or at a point 
satisfying the minimum principle necessary optimality conditions [16, Theorem 
9.3.3]. In Section 2 we begin with some basic results on the existence of vertex 
solutions to bilinear programs as well as some linear-programming-based finite 
algorithms for their solution. Because of the special property of a zero minimum 
for bilinearly separable problems, we have opted for the simpler Frank-Wolfe 
type algorithms [10] (see Appendix A), rather than the more complex algorithms 
that have been given for bilinear programs [1, 29, 30, 32]. Our computational 
experience, summarized in Section 4, indicates that the proposed algorithms are 
quite effective ones, especially in view of the fact that the underlying problem is 
an NP-complete problem. (More precisely only the bilinear separability problem 
corresponding to Figures l(a) and l(b) has been shown to be NP-complete [8, 
20]. That the corresponding problem to Figure l(c) is NP-complete as well can 
be deduced from Theorem 3.1 below by noting that the bilinear program (13) is 
a special instance of the bilinear program (15).) 

A word about our notation now. For a vector x in the n-dimensional real space 
R '~, x+ will denote the vector in R n with components (x+)i := max{zi, 0}, i = 
1, . . . ,  n. The notation A ~ R m• will signify a real m • n matrix. For such a 
matrix, A' will denote the transpose while A~ will denote the ith row. A vector 
of ones in a real space of arbitrary dimension will be denoted by e. 

2. Vertex solutions and finite algorithms for bilinear programs 

We present here some simple basic results for bilinear programs which show 
under what conditions these problems have vertex solutions. These results are 
then used to generate finite linear-programming-based algorithms for solving 
bilinear separability problems as bilinear programs (see Section 3). We shall 
consider two categories of bilinear programs corresponding to cases (a) and (b) 
and case (c) of Figure 1. The first case will have uncoupled constraints while 
the second case will have coupled constraints. We note that there are many 
papers on bilinear programs such as [13, 24, 29, 30] with uncoupled constraints, 
and [1, 32] with coupled constraints. However, none of the papers on coupled 
constraints appear to exploit zeroness of the minimum as we do here for the case 
of bilinearly separable sets. This fact allows us to conclude that a vertex solution 
exists for such problems. This in turn leads to finite termination for the proposed 
algorithms. For uncoupled constraints, the existence of a vertex solution is known 
and has been exploited algorithmically [29, 30]. For completeness and contrast 
with the proof for the case of coupled bilinear programs, we begin with a simple 
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proof of the existence of a vertex solution for uncoupled bilinear programs. 

PROPOSITION 2.1 (existence of vertex solutions for uncoupled bilinear programs). 
I f  the uncoupled bilinear program 

min {xy lCx + Er  > g, Dy + Fs  >_ h, (x, y, r, s) >_ O} (1) 
x ,  y~ r~ s 

is feasible, then it has a vertex solution. 

Proof. Since the quadratic objective function is bounded below by zero on the 
polyhedral feasible region, it must have a solution (7, g, r, ~) [10]. Hence the 
linear program 

rain x~, X = {Cx  + E r  >_ g, (x, r) >_ 0} 
(~, r)~X 

has a vertex (~, f') of its feasible region X as solution [23], and such that 

Similarly the linear program 

rain ~y, y = {Dy  + Fs >_ h, (y, s) >_ O} 
(~, ~)~Y 

has a vertex (~, ~') of its feasible region y as solution, and such that 

Hence ((~, ~), (~, ~)) is a vertex of X • 3; and a vertex solution of (1). I-1 

To establish the existence of a vertex solution to a coupled bilinear program 
we require the additional assumption that the minimum value of the bilinear 
objective be zero. This does not affect the application to bilinear separation, 
since the objective function does indeed become zero for bilinearly separable sets. 

PROPOSITION 2.2 (existence of vertex solution for coupled bilinear programs). I f  
the coupled bilinear program 

min{xy lCx  + Dy + E r  >_ g, (x, y, r) >_ 0} (2) 
Z;~ y~ r 

has a zero minimum, then it has a vertex solution. 

Proof. Let S denote the feasible region of (2). Note first that 

x y  = 0, (x ,  y)  > 0 x - ( x  - u ) §  = 0 
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and forx ,  y � 9  ~ a n d i = l , . . . , n  

(x, y, r) �9 s (x, y) > 0 

Hence 

0 =  min x y r  min e ( x - ( x - y ) + )  
(x, y, r)E,S (x, y, r)e,S 

if xi - yl >_ 0 \  ifx~-y~<0/>-0 

However e ( x -  ( x -  y)+) is a concave function because e ( x -  y)+ is convex. 
Since we are minimizing a concave function on a polyhedral set not containing 
lines going to infinity in both directions, it must have a vertex solution [25, 
Corollary 32.3.4]. [] 

The above proof is based on the proofs of Lemmas 1 and 2 of [17], which 
show that every solvable linear complementarity problem, monotonic or not, has 
a vertex solution. With the above theorems we can formulate finite algorithms 
for each of the uncoupled and coupled bilinear programs: algorithms UBPA 2.1, 
UBPA1 2.2, and BPA 2.3. 

Algorithm 2.1 (uncoupled bilinear program algorithm (UBPA)). Start with any 
feasible point (x ~ y0, r0, s 0) for (1). Determine (x i+1, y~+l, ri+l, si+l) from 
(x i, y~, r i, s i) as follows: 

(x i+1, r I+1) E arg vertex partial min{xyi lCx + Er  >_ g, (x, r) > 0} 

(y~+l, s~+l) E arg vertex partial min{xi+lylDy + Fs  >_ h, (y, s) >_ 0} 
y~ s 

and such that xi+ly ~+1 < xiy ~. Stop when impossible. 

In the above algorithm, "arg vertex partial min" denotes a vertex in the solution 
set of the indicated linear program, or any vertex along the path of the simplex 
or other pivotal method that attempts to decrease the objective function. The 
combined decrease of both steps must be such that x~+ly i+1 < xiy i. We now 
establish finiteness of the above algorithm. 

THEOREM 2.1 (finite termination of UBPA). Let the uncoupled bilinear program 
(1) be feasible. Then UBPA 2.1 terminates in a finite number of steps at a global 
solution or a point (z ~+1, yi, r ~+1, s i) that satisfies the minimum principle necessary 
optimality condition [16] 

y~(x - x I+1) + x~+l(y - y~) >_ 0 V(x, r) 6 X, V(y, s) e Y. (3) 

Proof. If for some i, x i+ly  i+l ~ x iy  i, then each of the linear programs of UBPA 
must have been solved to optimality and 
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xy  i > xiy  i = xi+ly i = xi+ly i+l < xi+ly, V(x, r) e X, V(y, s) E J 2 

from which the minimum principle condition (3) follows. Since there are a finite 
number of vertices of A" x y,  and since each vertex visited by UBPA is less than 
the previous one in xy-value, no vertex is repeated. Thus UBPA must terminate 
at either a global minimum or a point satisfying the minimum principle (3). [] 

Note that UBPA is serial in nature in that (y/+l, 8/+1) is computed after 
(x i+1, r i§ is computed. A parallel version, Algorithm 2.2 below, where both 
(x i+a, r i+~) and (y~+1, si+1) are computed simultaneously, can be shown to possess 
the finite termination property. We skip the proof of finite termination at a 
global solution or a stationary point for Algorithm 2.2, since it is completely 
analogous to the proof of Theorem 2.1. 

Algori thm 2.2 (uncoupled bilinear program algorithm 1 (UBPA1)). Start with 
any feasible point (x ~ y0, r0, s 0) for (1). Determine (x i+1, yi+l  ri+l, si+l) from 
(xi, yi, ri, s i) as follows: 

(~/+1, ~+1) E arg vertex partial min{xy l ]Cx  + E r  >_ g, (x, r) >_ O} 
X~T 

(~+1, ~+1) E arg vertex partial min{x iy[Dy + Es  > h, (y, s) >_ O} 
y~ a 

(xi+l, yi+i) E {(~-/+1, yi), (xi, 7+1), (~+1, 0-/+1)} 

and such that xi+ly I+1 < xiy i. Stop when impossible. 

We "urn our attention now to the more general case and give a finite Frank- 
Wolfe algorithm for the coupled bilinear program (2) when its objective function 
has a zero minimum. 

Algori thm 2.3 (bilinear program algorithm (BPA)). Start with any feasible point 
(x0, y0, r 0) for (2). Determine (x i+1, yi+l, ri+l) from (x i, yi, ri) as follows: 

�9 (u i , v  i , w  i) E argvertex min{xy i + z i y l C x + D y + E r > g , ( x , y , r ) > O }  (~,y,~) - _ 
�9 Stop if uiy i + xiv  i = 2xiy i 
�9 (xi+l, yi+l, ri+l) = (1 -- ~i)(xl, yi, r i) +/~i(ui ' v i, w i) where 

)i ~ arg min (x ~ + A(u ~ - xl))(y ~ + A(u i - y~)) 
0<~<1 

THEOREM 2.2 (convergence and finite termination theorem for BPA). Either 
the sequence {(x  i, yi, ri)} o f  BPA terminates at some {(xJ, yJ, rJ)} satisfying the 
m i n i m u m  principle necessary optimality condition 

yJ(x - d )  + d ( y  - > o v(x, y, r) e s (4) 
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where S is the feasible region of (2), or each accumulation point (~, ~, 5) of 
{(xi, yi, ri)} satisfies the minimum principle. I f  ~ = O, then one of the vertices of  
the sequence {(u i, v i, wi)} solves the bilinear program (2) and uiv ~ = O. 

Proof. Follows from Theorems A.1 and A.2 of the Appendix. [] 

In practice, all bilinearly separable examples at tempted terminated at a zero 
minimum in a finite number of steps. For bilinearly inseparable problems, such 
termination may not be possible, and in fact the sequence may be unbounded.  
The latter could be an indication of bilinear inseparability. Should the problem 
accumulate to a stationary point for which ~ > 0, then this would also be an 
indication of bilinear inseparability. We do not claim that we can determine 
bilinear inseparability in all cases, since this is an NP-complete problem. However  
our computational results are such that we feel confident that our approach will 
easily determine bilinear separability whenever it exists. 

3. Equivalence of bUinear separability and bilinear programming 

In this part of the paper we will show how to reduce the bilinear separability 
problem to one of three bilinear programs. We consider the disjoint point sets 
.4 and B in R" made up of m and k points and represented by the matrices 
A E R m• and B E R k• respectively. When the convex hulls of .4 and 15 
are also disjoint then .4 and B are said to be linearly separable. By using the 
duality theory of linear programming, this can be shown to be equivalent to the 
existence of a plane wx = 7 strictly separating A from B (see Figure 2(a)) which 
is equivalent to [12, 14, 28, 5] 

- A w + e T + e < O ,  B w - e ' 7 + e < O ,  for some w E R  '~ ,9 'ER.  (5) 

Based on the above definition of linear separability, we now define bilinear 
separability as follows: 

Definition 3.1 (bilinear separability definition (see Figure 5)). The sets -4 and 
/3 are bilinearly separable if and only if at least one of the following systems 
of disjunctive linear inequalities is solvable for (w 1, w 2, 71, 3 ,2) thus giving the 
separating planes wax = 3,1 and w2x = 72: 

- A w  1 + 7 % + e < _ 0  
Biw 1 - 7 1 + 1 _ < 0  or 

- B w  1 +71e+e<_O 
A~w 1 - 7 1 + 1 _ <  0 or 

and - Aw 2 + 72e + e < 0 
Bi w2 - 7 2 + 1 <_ O, i = ly . .  . , k ,  (6) 

and -~2Bw2 -[-")'2e + e ~ O ) (7) 
Aiw 2 - + 1 _< 0, i = 1, . . . ,  m 
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( ( -A iw l+@+l<__O a;~ - A i w 2 + 7 2 + l < O )  ) 

( \ ( A i w 2 - 7 2 + l < _ O  and A i w 1 - 7 1 + l < O ) , i = l  m ) . . . . .  
a n d  - B i w  2 .~-_,),2 + 1 < O) \ (Biw 1 - 71 + 1 _< 0 (8) 

t J l  / \ ( B i w  2 - 7  2 + 1 _ < 0  and - B i w  1 + @ + 1 < 0 ) , i =  1 , . . . , k  

It is easy to see that the above definition can be stated in the following 
alternative form. 

Definition 3.2 (alternative bilinear separability definition). The sets A and 13 
are bilinearly separable if and only if at least one of the following systems of 
inequalities is solvable for (w 1, w e, @, 72): 

- A w  I + @e + e < 0 and - Aw 2 + 72e + e < 0 
(9)  

(Bw 1 - @e + e)+(Bw 2 -  72e + e)+ = 0 

- B w  l + @e + e <_ O and - B w  2 + ,,/2e + e <_ O 
(10) 

(Aw 1 - @e + e)+(Aw 2 -  72e + e)+ = 0 

( ( - A w  1 + 71e + e)+ + ( - A w  2 + 7Ze + e)+)((Aw 2 - "yZe + e)+ 

+(Aw 1 - @e + e)+)) = 0 
(11) 

( (Bw 1 - @e + e)+ + ( - B w  2 + 72e + e)+)((Bw 2 - q'2e + e)+ 

+ ( - B w  1 -b 71e q" e)+)) = 0 

To reduce the above definition of bilinear separability to a bilinear program, 
we make use of the following simple lemma. 

LEMMA 3.1. Let T ~ C R m, i = 1, . . . ,  4. Then 

( ( t t~ET~,  i =  1, " - ,  4 0 
+ tz+ )(t 4 + t 3 ) =  / 

l 
0 = minui,e,i=l,.... 4 

r such that 
(yl .,+. y2)(y4 -I- y3) \ 

t i E T , t  i < y i  O < y i )  
i = 1 , . . . , 4 -  i 

(12) 

Proof. (=~) Let ~i, i = 1 , . . . ,  4 solve the first problem. Define ~i := ~_ > 
~,i,i = 1 , . . . , 4 .  Then ~ i , >  ~.i,~,i > 0,~'i E T i, for i = 1 . . . .  ,4 .  Hence  
(p~, ~'~), i = 1, . . . ,  4, is feasible for the second problem, and is optimal because 

+ + 9 2 )  = + + = 0. 

(<=) Let (~,i, ~,i), i = 1 . . . .  ,4 ,  solve the second problem. Then 
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F i g u r e  5. Geometric representation of bilinear separability definition 3.1. Case (a) corresponds to 
system (6). Case (c) corresponds to system (8). 
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Consequently 

(~') < 0 and ~j2 ~ O) or ( ~  _< 0 and ~3 __< 0), j = 1, . . . ,  rn 

Hence 

(~1+ + ~ 2 + ) :  0 or (~4+ + ~ 9 + ) =  O, j = 1, . . . ,  m 

and 

+ tb( 2 + = o. r-I 

We now formulate the alternate bilinear separability definition as a bilinear 
program with the help of this lemma. 

THEOREM 3.1 (equivalence of bilinear separability to bilinear programming). The 
sets A and 13 are bilinearly separable if and only if at least one of the following bilinear 
programs has a zero minimum in which case a minimum solution (@1, @2, 9 1  92) 
determines the separating planes: @ix = @ and @2x = ~2: 

minimize 
ZI  Z2 W t, W2 ~ t  ~2 

such that 

minimize 
yl, y2  W 1, W 2, 71, ,),2 

such that 

z l z  2 

- A w  1 + @e + e < O, 
B w  1 - 7 1 e  + e ___ z 1, 

0_<z  1 

y l y 2  

- B w  I + 7 1 e +  e_<0, 
A w  1 - 71e + e __< yl, 

0_<y  1 

- A w  2 + 72e + e _< O 
B w  2 -- 72e + e ~ Z 2 

O_<z 2 

minimize 

~1I, y2, y3, y4, z l, 7.2 2:3 Z4 
w l  W 2, ,),1 ,.,/2 

such that 

- B w  2 + 7 2 e +  e_<0 
A w  2 - 72e + e _< y2 

0_<y  2 

(yl + y2)(y4 + y3) 
+ ( z  1 + Z2)(Z 4 + 2 3) 

- A w  1 + @ e  + e _< y 1 , 
0<_y  I 

A w  1 - @ e  + e < y3,  

0_<y  3 
B w  I - 71e + e _< Z 1, 

O < Z  1 
- B w  1 + 71(: + e < Z 3, 

O_<z 3 

- A w  2 + 72e  + e < yz  

0 <_ yZ 
A w  2 - 72e  + e < y4 

O < y  4 
- B w  2 + 72e + e _< Z 2 

O < z  2 
B w  2 - 72e + e < z 4 

O ~ Z  4 

(13) 

(14) 

(15) 

Proof.  Use Lemma 3.1 on Definition 3.2. [] 
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Remark 3.1.  Note that there is a key difference between problems (13)-(14) 
and (15) above. The former have uncoupled constraints in (z 1, w ~, 71) and 
(z z, w 2, 72), and in (1/1, w 1, 71) and (//2, w 2, 72) while (15) does not. This allows 
us to use the simplex method and the finitely terminating UBPA 2.1 and UBPA1 
2.2 on (13) and (14). 

Remark 3.2. In order to apply the results of Section 2, all the variables 
in the above bilinear programs need to be nonnegative. This can be eas- 
ily done by adding two nonnegative one-dimensional variables (1, (2 to the 
problem and defining W 1 = ~)1__ e(1, ,to2 = ~ ) 2 _  e~2, 71 = @ 1 _  ~1, 72 = 
~2 _ r (~1, r ~ ,  ~2, r r _> o. 

4. Computational results 

Both the uncoupled and coupled bilinear programming algorithms were imple- 
mented and tested on a suite of problems. The linear programming package 
MINOS 5.4 [22] was used to solve the linear subproblems. Initial experimen- 
tation with UBPA 2.1, UBPA1 2.2, and BPA 2.3 showed that they were prone 
to halting at solutions with w 1 = 0, w 2 -- 0, or w 1 = w 2, which satisfied the 
minimum principle necessary optimality condition. These are clearly undesirable 
solutions that are easily detected in practice. The w I = w 2 case was practically 
avoided by starting with a good initial solution found by using the first two planes 
of the multisurface-method-tree algorithm [4, 6]. This consists of obtaining the 
best linear programming split [6] using a single plane and then splitting one of 
the two resulting half-spaces (the one with the greatest percentage of misclas- 
sifted points) with a second plane. The problem of w 1 = 0 and w 2 = 0 was 
tackled by detecting when this occurred and then adding a linear constraint to 
the problem which made the zero solution infeasible. This did not affect the 
convergence proof of the algorithm. Care must be taken to avoid excluding the 
optimal solution. 

We tested the algorithms on two-dimensional toy problems and on randomly 
generated problems in high dimensions. Figure 6 shows a solution found by the 
UBPA1 2.2 on a two-dimensional problem with 65 points in ,A and 102 points 
B. The algorithm was able to completely separate the two sets in 157 simplex 
pivots. The bilinear separation found by BPA 2.3 in 829 simplex pivots on the 
other bilinearly separable problem in two dimensions with 130 points in A and 
74 points B is depicted in Figure 7. 

In order to investigate the effectiveness of the linear programming approach 
on high-dimensional bilinearly separable problems, we randomly generated test 
problems as follows [2]. We generated two random planes and determined two 
sets that are bilinearly separable by these two planes. We generated points 
in both sets. A subset of these points, the "training set," was used in either 
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Figure 6. Bilinear Separation Found by UBPA1. 
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Table 1. Performance of uncoupled bilinear programming algorithm UBPA on 
training set. 

Training Set 100% Bilinear 

Dimension n Size Separation 

10 500 10 of 10 

10 1,000 10 of 10 

25 500 10 of 10 

25 1,000 10 of 10 

50 500 I0 of 10 

50 1,000 10 of 10 

100 500 10 of 10 

100 1,000 10 of 10 

100 1,000 i0 of 10 

Table 2. Performance of coupled bilinear programming algorithm BPA on training 
set. 

Training Set 100% Bilinear 

Dimension n Size Separation 

5 500 10 of 10 

10 500 10 of 10 

10 1,000 10 of 10 

25 500 10 of 10 

25 1,000 10 of 10 

Algorithm 2.1 or 2.3 to obtain two planes (not necessarily the ones originally 
generated) that bilinearly separate the points in the training set. The remaining 
points were used as a "testing set" to determine how close the two planes were 
to the original two planes which determine the bilinearly separable sets. 

More specifically, two points were randomly generated on an n-dimensional unit 
sphere. These points were used as the normals w 1 and w 2 for the two separating 
planes wlz  = 0 and w2x = 0 with the topology of either of Figure l(a) or Figure 
l(c). Then a training set of I randomly generated points on the n-dimensional 
unit sphere was generated and classified using the two planes. Similarly a testing 
set of consisting of 5,000 points was also generated. The bilinear algorithm 
appropriate for the topology was run using the points in the training set, and 
then used to classify the points in the testing set. For the uncoupled problems, 
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Figure 8. Average Testing Set Error (Testing Set = 5000, 10 trials). 

we performed these experiments for 10, 25, 50, and 100 dimensional problems 
using 500 and 1,000 training points. For the coupled problems, we performed 
these experiments for 5, 10, and 25 dimensional problems using 500 and 1,000 
training points. These results are summarized in Tables 1 and 2 and in Figures 8 
and 9. 

Table 1 summarizes the training set performance on the uncoupled problems 
using UBPA 2.1. Table 2 summarizes the training set performance on the coupled 
problems using BPA 2.3. The algorithms correctly determined that the sets were 
bilinearly separable in every single case. We should note that we used the 
knowledge that "y] = ,yz = 0 at the solution to constrain the algorithm when 
w 1 = 0 or w 2 = 0 was encountered. However even with ,~1 = ,y2 = 0, the 
underlying problem is still NP-complete. 

Figure 8 depicts the performance of the bilinear separation on an unseen 
testing set made up of 5000 points. The curves in this figure (as well as those 
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Figure 9. Average Computational Cost (10 trials). 

in Figure 9) are the average of 10 runs, and are marked with 95% confidence 
intervals. Curves for two bilinear separations are given: one trained on a 500- 
point set and one on a 1,000-point set. These curves indicate that the trained 
bilinear separation is able to learn the underlying structure quite accurately for 
small-dimensional problems, as seen from the small errors for these problems. 
But as the problem dimension increases, the error increases. However, if more 
training examples are used the error decreases. This is indicated by lower curves 
in Figure 8 for the 1,000-point training set compared to the curves for the 500- 
point training set. These trends agree with computational learning theory results 
[3] that provide necessary and sufficient conditions for valid generalization (that 
is correctness on testing sets) which are dependent on problem dimension and 
number of points in the training set. 

To measure how well the algorithms scale as the dimension grows we examined 
the average number of total simplex pivots to solve each problem. These results 
are reported in Figure 9 for the uncoupled and coupled algorithms UBPA 2.1 and 
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BPA 2.3. The computational cost of the coupled algorithm is considerably higher 
than that of the uncoupled algorithm. Not only does the coupled algorithm 
require more pivots, but each pivot takes longer since the number of rows in 
problem (15) to which the coupled algorithm BPA 2.3 is applied is twice as many 
as the number of rows in problem (13) to which the uncoupled algorithm UBPA 
2.1 is applied. Also the number of columns in problem (15) is approximately 
four times as many as the number of columns in problem (13). Thus the 
more demanding problems solved by the coupled algorithm BPA 2.3 were of 
smaller maximum dimension, 25 instead of 100, than for the problems solved 
by the uncoupled algorithm UBPA 2.1. We did however successfully solve with 
the coupled algorithm, problems with as many 1,000 points in 100 dimensional 
space, but did not run 10 such cases to average and report. Note that in 
Figure 9 the number of pivots required for the uncoupled algorithm UBPA 2.1 
for a training set size of 500 in 100 dimensions is considerably lower than the 
corresponding number for the 50-dimensional case. This is because 500 is not a 
sufficient number of training set examples to adequately represent a problem in 
a 100-dimensional space. Nine out of ten generated training sets were linearly 
separable, and were quickly separated linearly by the multisurfaee-method-tree 
algorithm [4, 6]. 

We also compared the performance of the UBPA 2.1 and BPA 2.3 with that 
of the back-propagation (BP) algorithm [27], the standard algorithm for training 
neural networks which in general can only guarantee a stationary point. BP was 
used to train neural networks configured as in Figures 3(b) and 4(b) to solve the 
bilinear separability problem. We found that BP could consistently solve only 
small-dimensional problems with the topology of Figure l(a). Specifically BP 
completely separated five out of five such 5-dimensional problems. However BP 
solved only one out of five problems in 5-dimensional space with the topology 
of Figure l(e). Also BP failed to solve higher-dimensional problems for both 
topologies within 40,000 epochs. Unlike UBPA 2.1 and BPA 2.3, BP has no 
well-defined stopping criterion and hence may have failed because it was not 
given sufficient processing time. We found BP to be computationally more costly 
than the bilinear programming approach for all but small problems. For example, 
in the 10-dimensional case with the topology of Figure 1(c) and 500 training 
examples, BP failed after an average of 8204 seconds, while BPA correctly solved 
this problem in 691 seconds on average. 

5. Conclusion 

The NP-complete bilinear separation problem was posed as one of two bilinear 
programs. These bilinear programs were shown to have vertex solutions for 
bilinearly separable problems. This property led to linear-programming-based 
algorithms with finite termination property. Computational experiments indicated 
the viability of these algorithms for problems of up to 100 dimensions and 1,000 
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points. An important computational achievement to point out is the fact that all 
the 140 cases of the NP-complete problems, represented in Tables 1 and 2, were 
all solved correctly without a single failure. 

Appendix. Frank-Wolfe algorithm for nonconvex and bilinear programs 

For convenience and the sake of completeness, we give simple convergence 
proofs for a Frank-Wolfe [10] algorithm without any convexity assumptions. We 
also establish finite termination when the sequence of points generated by the 
algorithm tends to a zero minimum. These results, which do not seem to 
be readily available in the stated form, are needed for our bilinear program 
algorithm BPA 2.3. Our proofs are based on those of [7] for the convex case. 

We consider the following problem and assumptions. 

Problem A. 1 

min f ( x )  
xEX 

where f : R '~ -~ R, A' is a polyhedral set in R n that does not contain straight 
lines that go to infinity in both directions (e.g. it contains the constraint x > 0), 
f has continuous first partial derivatives on X and f is bounded below on X. 

Algorithm A.1 (Frank-Wolfe algorithm). Start with any z ~ �9 X. Compute x i+1 
from x ~ as follows. 

�9 v i e arg vertex min V f ( x i ) x  
xCX 

* Stop if Vf(x~)v  i = V f ( x l ) x  i 
�9 x i+1 = (1 - Ai)x i + Aiv i where 

Aie  arg min f ( ( 1 - A ) x  i + A v  ~) 
O<A<I 

THEOREM A.1 (convergence of Frank-Wolfe algorithm). The algorithm terminates 
at some xJ that satisfies the minimum principle necessary optimality condition: 
V f ( z J ) ( z  - xJ) > O, for all x E X, or each accumulation point �9 o f  the sequence 
{x i} satisfies the minimum principle. 

Proof. If the algorithm stops at xJ then 

Vf(xJ )x  5 = V f ( x J ) v  j = rain Vf(xJ)x 
ccEX 

and the minimum principle is satisfied at x j. If the algorithm does not terminate, 
let {x ij } ~ ~ and without loss of generality, let v ~j = g, some fixed vertex of Pg. 
Then for A �9 [0, 1] 
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f ( (1  - A)x ij + AT) - f ( x  ij) > min f ( x )  - f ( x  ij) = f ( x  ij+l) - f(xiO. 
�9 e[x% v-] 

Since {f(x~)} is a nonincreasing sequence bounded below it converges. Hence  
the limit of the last difference above is zero, and we have in the limit 

f ( (1  - A)5 + AT) - f (~)  >_ OVA �9 [0, 1] 

Letting A ~ 0 and invoking the differentiability of f gives 

- 5 )  _> 0. 

But by algorithm construction 

V f(xiJ)(x - x':J) _> V f(xiJ)(~ - xi~)Vx �9 2" 

and in the limit 

V f ( ~ ) ( x  - ~) > Vf(~)(U - ~) :> OVx �9 X [] 

We establish now finite termination of the Frank-Wolfe algorithm when f ( x )  
is a bilinear nonnegative function with a zero minimum. This is precisely the 
case of our case of bilinear separability. 

THEOREM A.2 (finite termination theorem for Frank-Wolfe algorithm). In Prob- 
lem A.1 let 

f ( x )  := (Gx + p) (Hx  + q) 
Gx + p > O, H x  + q > OVx �9 2" 

where G, H �9 R k• and X is a polyhedral set with no straight lines going to infinity 
in both directions. The sequence x i of the Frank-Wolfe algorithm accumulates to an 
~. I f  f (~)  = O, then one of the vertices {v ~) of X generated by the algorithm is a 
solution. Else ~ satisfies the minimum principle necessary optimality condition. 

Proof. Let  V be the finite subset of vertices of 2' that  constitutes the sequence 
of vertices {v ~) generated by the algorithm. Then 

(x  i} C convex hull {x ~ tO V) and ~ E convex hull {x ~ to V). 

where ~ is an accumulation point of {x ~) such that f (~)  = 0. If ~ �9 V, then we 
are done. If not then 

= ( 1 - A ) x + A v ,  for s o m e x � 9 1 4 9 1 4 9  

Since for j = 1, . . . ,  k, one of the linear functions G j ~ + p j  or H j ~ +  qj is zero 
and both are nonnegative at x and v, that same linear function must vanish at 
both x and v. Hence 

Gjv + pj = 0 or Hjv + qj = O, j = 1 . . . .  , k 
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H e n c e  f(v) = 0. The last s tatement of  the theorem fol lows from T h e o r e m  A.1. 
[] 
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