
Engineering with Computers (1996) 12:94-106
�9 1996 Springer-Verlag London Limited Engineering

C6~puters

Parallel Three-Dimensional Mesh Generation on Distributed Memory MIMD
Computers

H. L. de Cougny, M. S. Shephard and C. Ozturan
Scientific Computation Research Center, Rensselaer Polytechnic institute, USA

Abstract. This paper discusses the development of an
automatic mesh generation technique designed to operate
effectively on multiple instruction multiple data (MIMD)
parallel computers. The meshing approach is hierarchical, that
is, model entities are meshed after their boundaries have been
meshed. Focus is on the region meshing step. An octree is
constructed to serve as a localization tool and .for efficiency.
The tree is also key to the efficient parallelization of the
meshin 9 process since it supports the distribution of load to
processors. The parallel mesh generation procedure repartitions
the domain to be meshed and applies on processor face
removals until all face removals with local data have been
performed. The portion of the domain to be meshed remaining
is dynamically repartitioned at the octant level using an
Inertial Reeursive Bisection method and local face removals
are reperformed. Migration of a terminal octant involves
migration of the octant data and the octant' s mesh faces and/or
mesh regions. Results show relatively good speed-ups for
parallel face removals on small numbers of processors. Once
the three-dimensional mesh has been generated, mesh regions
may be scattered across processors. Therefore, a final dynamic
repartitioning step is applied at the region level to produce a
partition ready for finite element analysis.

1. Introduction

The development of automatic mesh generation
techniques for complex three-dimensional configura-
tions has been an active area of research for over a
decade [1,2]. The introduct ion of these mesh
generation procedures has removed a major bottle-
neck in the application of finite element and finite
volume analysis techniques. The introduction of
scalable parallel computers is allowing the solution of
ever larger models. It is now common to see meshes

Correspondence and offprint requests to." H. L= de Cougny,
Scientific Computation Research Center, Rensselaer Polytechnic
Institute, Troy, NY 12180-3590, USA.

of several million elements solved on these computers,
with the ability to solve on meshes of tens or hundreds
of millions of elements coming in the very near future.
As mesh sizes become this large, the process of mesh
generating on a serial computer becomes problematic
both m terms of time and storage. This paper discusses
efforts to address this problem by the development of
a parallel mesh generation procedure that will operate
on the same computer, and using similar structures,
as the parallel analysis procedures.

With recent advances in the efficiency of automatic
mesh generators which create well over two million
elements per hour on a workstation [3], one may
question the need for the parallel generation of meshes.
The obvious answer is that as the problem size grows,
the solution process on parallel computers will
continue to scale by the addition of more processors.
However, mesh generation on a single processor
will not scale, therefore becoming the computa-
tional bottleneck. A second critical reason for parallel
mesh generation is the shortage of memory on a
sequential machine when dealing with very large
meshes. On a parallel machine, the memory problem
is addressed by distributing the mesh over a number
of processors, each of which stores its own portion of
the mesh.

Efficient parallel algorithms require a balance of
work load among the processors while maintaining
interprocessor communication at a minimum. Key to
determining and distributing the work load and
controlling communications is knowledge of the
structure of the calculations and communications. In
the finite element analysis process, the mesh and its
connectivity naturally provide the required structure.
The ability to maintain efficiency is compromised
when the structure and, therefore, work load and
communications is altered as is the case in parallel
adaptive finite element analysis [4-7]. Parallel mesh
generation is even more complex to control effectively
since the only structure known at the start of the

Parallel 3-D Mesh Generation 95

process is that of the geometric model which has no
discernible relationship to the work load needed to
generate the mesh. On the other hand, the more useful
structure to discern work load and control com-
munications is the mesh which is only fully known at
the end of the process. The lack of initial structure
and ability to predict accurately the work load during
the meshing process underlies the selection of
algorithmic procedures in the parallel mesh generation
procedure presented here. In particular, the procedure
employs an octree decomposition of the domain to
control the meshing process. The octree structure
supports the distribution or redistribution of com-
putational effort to processors.

The next section considers efforts to date by others
on the paralMization of automatic mesh generation
and the general meshing approach developed here.
The third section follows with a detailed description
of the region (three-dimensional) meshing algorithm
in a sequential environment. The fourth section
describes the tools that have been developed to
support mesh generation in a distributed parallel
computing environment. This includes data structures,
multiple octant migration, and dynamic partitioning
and repartitioning. The fifth section explains how
region meshing can be accomplished in parallel along
with results showing relatively good speed-ups when
the problem size is in accordance with the number of
processors. The last section summarizes what has been
accomplished and what needs to be developed further.

2. Background and Meshing Approach

To date, there has been limited attention given to
parallel automatic mesh generation algorithms.
L6hner et at. [8] have parallelized a two-dimensional
advancing front procedure which starts from a
pre-triangulated model boundary. The approach
taken is to subdivide (partition) the domain (with the
help of a background grid) and distribute the
sub-domains to different processors for triangulation.
The interior of subdomains are meshed independently.
Then, the inter-subdomain regions are meshed using
a coloring technique to avoid conflicts. Finally, the
~corners' between more than two processors are
meshed following the same basic strategy. After the
mesh is generated, the node point positions are
smoothed in parallel employing an iterative procedure
which positions each node based on local information.
The choice of a scheduling scheme based on a
master/slave paradigm may be the weak point of the
method since it creates bottlenecks when transferring
data from the host to the nodes (and vice versa).

Saxena and Perruchio [9] describe a parallel
Recursive Spatial Decomposition (RSD) scheme
which discretizes the model into a set of octree cells.
Interior and boundary cells are meshed by either using
templates or element extraction (removal) schemes in
parallel. The algorithmic procedure they employ
to create these octant level meshes requires no
communication between octants. The main difficulty
for this meshing approach is to guarantee that a
boundary octant can always be meshed regardless of
the complexity of the model. Robust loop building
algorithms which include possible tree refinement to
resolve invalid configurations are in general difficult
to parallelize [10]. Parallel results have been simulated
on a sequential machine.

The parallel mesh generator presented in this paper
builds upon previous work on sequential octree-based
mesh generators [10-12], parallel adaptive finite
element analysis procedures [4 6], and parallel
mesh generation [13]. The present parallel mesh
generator meshes three-dimensional nonmanifold
objects following the hierarchy of topological entities.
That is, the model edges are meshed first, the model
faces are meshed second, and the model regions are
meshed last. Quadtrees and octrees are used for face
and region meshing for the purpose of localization,
respectively. This paper will focus on the three-
dimensional aspect of mesh generation, that is region
meshing with an underlying octree.

Figure 1 graphically depicts the basics of the present
mesh generator. The first step for the meshing of a
model region is to develop a variable level octree which
reflects the mesh control information and is consistent
with the triangulation on the boundary of the model
region. Octants containing mesh entities classifed on
the boundary of the model region to be meshed are
approximately of the same size as the mesh entities

...... i iili

B B B I - interior quadrant
Bi - boundary like interior quadrsnt

. B - boundary quadrant

Qusdtree with Boundary Edges Unsmoothed mesh

Fig. 1. Graphical depiction of the basics of the peresented mesh
generator.

96 H.L. de Cougny, M. S. Shephard and C. ()zturan

Face to remove New mesh region

Fig. 2. Face removal (2-d setting).

they contain. A one level difference on octants sharing
one or more edges is enforced during this process to
control smoothness of the mesh gradations. Once the
octree is generated, the octants are classified as interior,
outside, or boundary. Those classified as outside receive
no further consideration. Some interior octants are
reclassified boundary if they are too close to mesh
entities classified on the boundary of the model region
(boundary-interior). The purpose of this reclassification
is to avoid the complexities caused when interior
octant mesh entities (coming from the application
of templates) are too close to the boundary and
may lead to the creation of poorly shaped elements
in that neighborhood. Interior octants are meshed
using templates. Face removal procedures are then
used to connect the boundary triangulation to the
interior octants. Figure 2 graphically describes a
face removal in a two-dimensional setting The next
section provides more technical details on the region
meshing procedure.

3. Sequential Region Meshing

As indicated above, the starting point for the region
meshing process is a completely triangulated surface.
The surface triangulation must satisfy the conditions
of topological compatibility and geometric similarity
[14] for the model faces. The region meshing process
consists of the three steps of (i) generation of the
underlying octree, (ii) template meshing of interior
octants, and (iii) face removal to connect the given
surface triangulation to the interior octants.

Mesh faces to which tetrahedral elements will
eventually be connected are referred to as partially
connected faces. They are basically missing one
connected tetrahedron in the manifold case and up to
two in nonmanifold situations. Initially, the mesh faces
classified on the model boundary are the partially
connected mesh faces. Once templates have been
applied, that is, at the start of face removal, the interior
mesh faces connected to exactly one tetrahedron are
also partially connected mesh faces, In the remainder
of this paper, the current set of partially connected

mesh faces will be referred to as the front. During face
removal, tetrahedra are comaected to these faces,
therefore eliminating them. Any nonexisting face of a
newly created tetrahedra, referred to as a new face, is a
partially connected face until it is eliminated. The face
removal process is complete when there are no
partially connected mesh faces remaining.

3.1. Underlying Octree

The octree ~s built over the given surface mesh to (1)
help in localizing the mesh entities of interest and (ii)
provide support for the use of fast octant meshing
templates. Proper localization is achieved by having
each terminal octant reference any partially connected
mesh face which is either totally or partially inside its
volume. This information is used efficiently to
guarantee the correctness of the face removal
technique. The octree building process can be de-
composed into: (i) root octant building, (ii) octree
building, (iii) level adjustmem, (iv) assignment of
partially connected mesh faces to terminal octants,
and (v) terminal octant classification.

The root octant is such that the given surface mesh
is contained within it. It is cubic in order to avoid
the creation of unnecessary stretched tetrahedra
coming from the application of meshing templates on
stretched octants (assuming isotropy is desirable in
the resulting mesh).

The terminal octants are constructed to be approxi-
mately the same size as any partially connected mesh
face associated with them in order to ensure appropriate
element sizes and gradations. This is done by visiting
each mesh vertex in the initial surface mesh. computing
the average s~ze of the connected mesh edges, and
refining the octree until any terminal octant around
that vertex is at a level corresponding to that average
size. The level of the octant is given by:

, { root~engtn
octlev - 1og2\ s/~ze] (1)

where rootlength is the length of the root octant and
size is the size of the mesh entity. It should be noted
that this procedure does not theoretically ensure a
match in size between every terminal oetant and the
partially connected mesh faces it knows about.
However. since quadtrees are used to tirangulate
model faces and constructed following the same rules
as the octree, in practice, there is a match.

In order to have a smooth gradation between octant
levels, no more than one level of difference is allowed
between terminal octants that share an octant edge.
Application of this rule can possibly lead to refinement

Parallel 3-D Mesh Generation

of some terminal octants past the level that was set
by the partially connected mesh faces in their volumes.

Once the tree is completed, partially connected mesh
faces are assigned to terminal octants. Given a mesh
face, terminal octants that should know about it can
be separated into two groups: (i) those that are in the
path of each bounding mesh edge (obtained by
intersecting line segments with axis aligned solid
boxes) and (ii) those whose octant edges are in the
path of the mesh face (obtained by intersecting line
segments with triangles).

Any terminal octant which knows at least one
partially connected mesh face is classified boundary.
Terminal octants classified boundary separate interior
terminal octants from outside terminal octants. At this
point, it should be noted that the interior of the model
can be made of several model regions. One octant
corner of a boundary terminal octant is then classified
either interior or outside by firing a ray toward a corner
of the root octant. Considering the partially connected
mesh face closer to the octant corner among the ones
that intersect the ray, the classification corresponding
to the model region on the side of the mesh face facing
the octant corner is given to the octant corner [10].
If there is no intersection, the octant corner is classified
outside. In case the intersection is on the boundary of
the partially connected mesh face, no decision can be
taken and a ray to another corner of the root is fired.
The classification of the octant corner is then
propagated to any neighboring terminal octant (in a
recursive way) which has not been classified yet.
The process of classifying an octant corner and
propagating its classification continues until all
terminal octants have been classified.

After the basic octant classification process, interior
terminal octants can exist which have boundary
entities arbitrarily close to surface triangles in
boundary octants. Since poorly shaped elements can
result when these entities are too close, some interior
terminal octants are reclassified as boundary. If an
interior terminal octant is too close to a partially
connected mesh face, it is reclassified boundary.
Distances between two entities are relative, that is, the
actual distance should be divided by the average size
of the entities involved, in this case, entities involved
are octants (or octant faces) and mesh faces. The
threshold for closeness is set to 1.0 to make room for
potentially well shaped elements between interior
terminal octants and surface triangles.

3.2. Template Meshing of Interior Octants

Terminal octants classified interior are meshed using
(i) meshing templates or (ii) fast meshing procedures

97

Fig. 3. Terminal octant meshing templates available: one eight
vertex case, two nine vertex cases, one thirteen vertex case, and two
seventeen vertex cases.

when a template is not available. Examination of the
number of templates required for all cases and the
distribution of template usage indicates that octants
with eight, nine, thirteen, and seventeen vertices cover
over 90~o of the interior octants. All the nine, thirteen,
and seventeen vertex octant configurations can be
meshed by six templates (Fig. 3) with the correct
rotations applied. The remaining interior octants are
then quickly meshed using a fast procedure which
accounts for the fact that the octant is a rectangular
prism. One very fast option is to create an interior
vertex and to create the correct connections to it [15].

3.3. Face Removal

Given a partially connected mesh face, a face removal
consists of connecting it to a mesh vertex. Since the
volume to be meshed consists of the space between
the given surface triangulation and the interior octree,
the vertex used is usually an existing one. However,
in some situations, it is desirable to create a new vertex.
The choice of the target vertex (existing or new)
must be such that the created element is of good
quality and its creation does not lead to poor (in
terms of shape) subsequent face removals in that
neighborhood.

The following pseudo-code indicates how the target
vertex is selected for a given partially connected mesh
face to be removed. Detailed explanation for the key
steps is given in the next paragraphs of the section. In
this pseudo-code and any other thereafter, break forces
an exit from a loop, return forces an exit from the
function or routine (in other words, the function
terminates), and text between /* and */ denotes a
comment [16].

1. Collect set of potential target vertices from tree
neighborhood

98 H.L. ~te Cougny, M. S. Shephard and C. {)zturan

2. Reorder target vertices with respect to decreasing
shape measure (for the element to be created)

3. Initialize:
a. dist lim =

b. target_ver t = 0

c. max min dist = 0.0

4. for each potential target vertex vert {

a. Perform preliminary check on acceptability. If
not acceptable, c o n t i n u e

b. If the new element contains any mesh vertex
belonging to the front, continue

c. If the new element intersects any existing mesh
entity, c o n t i n u e

d. Evaluate how close the new element is to
existing mesh entities (compute relative minimum
distance min_dist)

e. if (min_dist >_ dist_lim) {

�9 target_ver t = vert

�9 max rain dist = min_dis t

�9 b r e a k

f. else if (min_dist > m a x _ m i n dist)

�9 target v e r t = v e r t

�9 max min d i s t = rain dist

J

5. i f

6. i f
a.

b .

f

(max_min_d i s t > dist_lim) return
target_ver t = 0 {

Create a new vertex vert at the best position for
the partially connected mesh face to be removed
target y e r t = vert

7. else ~/* Consider creating a new vertex */
a, Create a new vertex vert at the best position for

the partially connected mesh face to be removed
b. Evaluate closeness of new element to existing

mesh entities (min_dist)

c. if (min_dist > max_min_d i s t) target_ver t = vert

/* Better to create a new vertex */

The neighborhood of an entity is defined as a tree
neighborhood of a given order. Given a mesh entity,
a tree neighborhood of order 0 consists of all terminal
octants that know about the entity (have the entity
or part of it within their volumes). A tree neighborhood
of order n(n > 0) consists of a tree neighborhood of
order n - 1 to which is added all terminal octants that
neighbor any octant corner of any terminal octant in
the tree neighborhood of level n - 1 . The set of
potential target vertices is obtained via the partially
connected mesh faces in the tree neighborhood of the
appropriate order for the face in consideration. The
set of potential target vertices should be as small as

possible ~for efficiency reasons} but should not be
missing the best target (with respect to both shape of
new elemem and closeness to nearby existing mesh
entities) assuming all mesh vertices of the front were
considered. A tree neighborhood of order 0 is clearly
not enough while a tree neighborhood of order 1
is adequate assuming terminal octants have approxi-
mately the same sizes as the partially connected mesh
faces they know about.

It is of interest to be able to discard potential target
vertices as early as possible for purposes of efficiency.
A potential target is kept if it satisfies any of the three
following conditions (types):

1. connects to a bounding vertex of the face to be
removed through a mesh edge of the front. This
allows for the removal of partially connected mesh
faces other than the face in consideration (not m
all cases) and therefore leads to a reduction of the
size of the front (guaranteeing convergence of the
method).

2. is positioned inside the sphere centered at the best
position (with respect to shape) for the fourth vertex
of the face to be removed and of radius the size of
the face to be removed. This avoids the creation of a
stretched element with respect to the face in
consideration.

3. any of the three bounding vertices of the face to be
removed are positioned inside the sphere of any of
the partially connected mesh faces connected to the
target vertex. This allows for the creation of a
stretched elemenl with respect to the face in
consideration which is not stretched with respect
to partially connected mesh faces connected to
the target.

Figure 4 shows potential target vertices of type t. 2,
and 3 for the face to remove.

Given a potential target vertex, one has to make
sure that any new mesh entity (resulting from the

3

f t " ' ~

t

! 4 "" ,̂ , t I / t ~

Fig. 4. The three types of p0tentiai target vertices (2-d setting).

Parallel 3-D Mesh Generation 99

creation of the new mesh region) does not intersect
an existing mesh entity. The creation of a new mesh
region may result in the creation of a new mesh vertex,
up to three new mesh edges, and up to three new mesh
faces. New mesh edges are checked for intersection
against nearby partially connected mesh faces. Given
a virtual new mesh edge, the nearby partially
connected mesh faces are obtained through the tree
neighborhood of order 0 (of the new edge). If no
intersection is detected, new mesh faces are checked
for intersection against nearby front mesh edges. Given
a virtual new mesh face, nearby front mesh edges are
obtained through the partially connected mesh faces
in the tree neighborhood of order 0 (of the new face).
Since any terminal octant knows about the partially
connected mesh faces in its volume, considering a
tree neighborhood of order 0 guarantees that no
intersection can be missed.

The closeness of the new mesh region to existing
mesh entities is evaluated by considering the minimum
relative distance between any new mesh entity and
nearby existing mesh entities. The relative distance is
defined as the absolute distance divided by the average
size of the mesh entities involved. The nearby mesh
entities are obtained through a tree neighborhood of
order 1 of the new entity being tested. It is important
to note that nearby existing mesh entities in a tree
neighborhood of order 1 may not be in a tree
neighborhood of order 0. On the other hand, nearby
existing mesh entities cannot be missed with a tree
neighborhood of order 1. Considering the new region
to be created, there can be zero or one new vertex, up
to three new edges, and up to three new faces. If there
is a new vertex, distances between the new vertex and
nearby existing partially connected mesh faces are
considered. For any new mesh edge, distances between
the new edge and nearby existing front mesh edges
are considered. If the point on the new edge
corresponding to the distance (that is, closest to the
nearby existing front mesh edge) corresponds to an
existing bounding mesh vertex, the distance is
discarded. In that case, it means that the nearby
existing front mesh edge is close to another existing
mesh entity and not to a new mesh entity. Also, for
any new face, distances between the new face and
nearby existing front mesh vertices are considered.
Again, distances are discarded if the point on the new
mesh face corresponding to the distance (that is, closest
to the nearby existing front mesh vertex) is actually on
an existing bounding mesh vertex or edge. The three
different cases are shown in Fig. 5. The threshold c~
corresponds to what is considered acceptable in
terms of closeness when creating a new element.
Experimentation led to the use of a value of 0.2 for c~.

New vertex vs New edge vs New face vs
nearby faces nearby edges nearby vertices

Fig. 5. Evaluation of relative minimum distance between new
entities and nearby existing mesh entities.

2 intersection

~ distJim

rain dist _> dist lira ~..

Face to remove

Fig. 6. Potentiat target vertices and hest faceremovaI(2,-dsetting).

If a new vertex needs to be created, its location must
be such that the new element is well-shaped, and
neither causes intersection nor is too close to nearby
existing mesh entities. The initial location for the new
vertex is at the position which creates the best shaped
element for the face to be removed. This location is
on the perpendicular to the face passing through the
centroid. If the current location causes the new element
to intersect nearby existing mesh entities, a new
location is considered on the normal half-way from
the current location, and so on, until a valid location
is found. In order not to be too close to existing mesh
entities, the final location is considered conservatively
half-way from the current location.

Figure 6 graphically depicts a face removal in a
two-dimensional setting. There are four target vertices
ordered (1, 2, 3, and 4) with respect to increasing shape
measure of the element to be created. Target vertex 1
is rejected since the new element is too close to an
existing mesh entity (vertex 3). Target vertex 2 is
rejected since the new element intersects existing mesh
entities. Target vertex 3 is therefore accepted.

4. Parallel Constructs Required

4.1. Octree and Mesh Data Structures

The two main data structures are the octree and mesh
data structures. The octree data structure is on top of

100

the mesh data structure. To gather a tree neighborhood
or all terminal octants in the path of a mesh entity
(new vertex, edge, or face), any processor must be able
to effectively determine to which processor any
given terminal octant is assigned. This information
is easily available when each processor has full
knowledge of the basic octree in terms of structure
and processor assignment. This is the approach
currently implemented. Although the size of the tree
is small compared with that of the mesh and this tree
information can easily be copied to each processor for
meshes into the millions of elements, this approach
does not scale indefinitely. Techniques that maintain
only portions of the tree on individual processors are
currently under investigation to provide the needed
scalability. Any terminal octant stores links to
on-processor partially connected mesh faces and
off-processor partially connected mesh faces totally or
partially within its volume. Octree neighboring
information (like finding terminal octants neighboring
an octant face, edge, or corner) is obtained through
tree traversals. Techniques to reduce and/or avoid tree
traversals are under investigation as well [17].

The mesh is stored in a version of Weiler's Radial
Edge data structure [18] specifically defined for the
effiCient storage of meshes [19]. There is a two-way
link between mesh entities of consecutive order
(between regions and bounding faces, faces and
bounding edges, and edges and bounding vertices):
From this hierarchy, any entity adjacency relationship
can be derived by local traversals. The entities on the
partition boundary are augmented with interprocessor
links which point to the location of the corresponding
entities on neighboring processors [4-7]. Each
partition boundary entity can have attached to it either
the complete or the minimal set ofinterprocessor links.
In the complete set, all the boundary entities store the
location of the entity on the neighboring processor*.
Since the lower entities inherit the higher order entity
adjacency, it is possible to eliminate the interprocessor
links for entities whose adjacency can be derived from
higher order entities. This minimal link representation
has the advantage of reducing the storage needed to
maintain interprocessor link information. However,
the minimal representation has the disadvantage of
complicating the link update procedures when mesh
regions or partially connected mesh faces are migrated.
Therefore, a switching mechanism is used to allow for
both representations to be used disjointly. Figure 7
shows the minimal representation on a two-dimensional

* In the context of a nonmanifold representation [18], these links
represent links to use pairs where the interprocessor boundary is
treated in the same manner as a material interface.

H. L. de Cougny, M. S. Shephard and C. Ozturan

Processor 1 ~ Processor 2

1

Processor 4 : Processor 3

Fig. 7. [nterprocessor !inks tminimal links).

example. The minimal representation can be used
when the Finite Element mesh has become fully static.
that is, cannot be subject to element migration.

4.2. Multiple Octant Migration

When the mesh generation process comes :o a point
where no face removal can be applied l face removals
are not applied when needed tree neighborhoods are
not fully on processor), the tree and associated mesh
is repartitioned. The migration of octants is key
to repartitioning once decisions concerning new
destinations of terminal octants (classified boundary)
have been made. Multiple octant migration itself relies
on the multiple migration of partiNly connected mesh
faces and or mesh regions, the implementation details
of which can be found in Reference 7. Note that
multiple mesh region migration is also used in the final
repartitioning at the region level once the mesh has
been fully generated.

Any processor can send anv number of terminal
octants to another processor. When a terminal octant
is migrated from one processor to another, the
partially connected mesh faces not connected to any
mesh region (these are the mesh faces remaining from
the given surface triangulation) owned by the octant
and or the mesh regions that are bounded by at least
one partially connected mesh face owned by the octant
are migrated as well. An octant owns a mesh entity
when it knows about it (has it within its volume) and
has its centroid within its volume. Note that a partially
connected mesh face not known by the octant may be
migrated as part of a mesh region if that region is
bounded by another partially connected mesh face
whose owner is the octant. Also, if a mesh region is
bounded by more than one partially connected mesh
face known to the octant to be migrated (up to four),
the ownership is arbitrarily dictated by the first

Parallel 3-D Mesh Generation

~ c P c faces to be migrated with octant

es owned by octant

Regions to be migrated with octant

Fig. 8. Octant migration.

prec 0 proc 1

�9 -�9

X
O, .O
proc 2 proc 3

Fig. 9. Example of multiple octant migration.

partially connected mesh face to be processed (from
the list of partially connected mesh faces known to
the octant). Figure 8 shows an example of the mesh
regions to be migrated within an octant. There is no
limitation on the octant migrat ion process, in
particular, any processor can send and receive at the
same time (note that a processor can even send to and
receive from the same processor). Figure 9 shows an
example of multiple octant migration in a four
processor setting when all processors send and receive
from all other processors. When the multiple octant
migration completes, the processor is informed of the
octants it has received. For each received octant, a list
of associated mesh entities is also given, basically the
partially connected mesh faces and/or mesh regions
that were sent.

The primary complexity that rises when migrating
octants and associated mesh information is the
absence of a global labeling system for the mesh
entities. Each processor employs a local labeling for
the hierarchy of mesh entities that it is assigned. The

I01

interprocessor mesh adjacency links maintain the
required knowledge of the adjacent mesh entities on
neighboring processors. Although the mesh data for
a partially connected face is on one processor, the
octants which refer to that face may be on multiple
processors. Since the face removal procedure must
perform geometric checks on all partially connected
faces known to that octant, the time required to
perform these operations would be greatly increased
if the required information had to be fetched from
neighboring processors. To eliminate this requirement,
each partially connected face known to an octant will
either be a pointer to face when the face is actually
on-processor, or a set of three coordinates when the
face is stored off-processor. Although this approach
avoids interprocessor communications, it complicates
the process of updating references to partially
connected mesh faces on- and off-processor when
octants are migrated. Concerning the update of
processor assignment at the octant level, since the tree
structure is currently stored on all processors, a
broadcast is performed to all processors indicating the
fact that octants have been relocated.

4.3. Dynamic Repartitioning

Dynamic repartitioning enables to redistribute the
toad among processors as evenly as possible at key
stages of the mesh generation process. The key stages
are:

1. at the beginning of template meshing,
2. at the beginning of each face removal step, and
3. at completion of the mesh generation process.

Repartitioning for stages 1 and 2 is done at the
terminal octant level (1 with respect to terminal
octants classified interior and 2 with respect to
terminal octants classified boundary). Repartitioning
for stage 3 is performed at the mesh region level. The
strategy is identical for both cases, only the process
of migrating differs. In the following, it is assumed that
repartitioning is done at the level of some entity which
can be either a terminal octant or a mesh region.

Repartitioning relies on the Inertial Recursive
Bisection (IRB) method [20] which is a variation of
the more classic Orthogonal Recursive Bisection
(ORB) [21]. ORB is a recursive process that bisects
a set of entities by considering the median of the set
of corresponding centroids with respect to a given
coordinate axis. As ORB is recursively called, the
choice of coordinate axis is circularly permuted
(x, y, z, x, etc.). Unlike ORB, IRB considers the inertial
coordinate system (origin is at the center of gravity
and the three axes are the principal axes of inertia)

102 H.L. de Cougny, M. S. Shephard a~d C. CJzturan

for the set of entities to be bisected. !n three
dimensions, the determination of the three principal
axes of inertia is an eigenvalue problem of order 3.
Once the inertial coordinate system is defined, the
coordinates of the centroids are transformed and the
cut is made at the median with respect to the first
coordinate. This first coordinate will be the 'key'
the sorting algorithm described later in this section
works on.

The main assumption for performing repartitioning
in parallel is that the entities are distributed. It is also
assumed that there is no reason for the number of
entities stored on processor to be uniform across
processors. The result of this repartitioning will
be an equal number of entities per processor. It
should be noted that, in this context, the goal of
repartitioning is equivalent to the goal of load
balancing [4-7, 22, 23]. The key algorithm in IRB
(and ORB) is the determination of the median for a
given set of doubles (referred to as 'keys') [24]. With
respect to this paper, the 'keys' are the first coordinates
of the entities to be bisected. The method used here
is to sort the 'keys' and then pick the entry at the
middle of the sorted list. In this case, efficiently
performing IRB in parallel can be reduced to efficiently
sorting in parallel [25]. From the conclusions of a
paper by Blelloch et aI. [26] which compares different
parallel sorting algorithms (Batcher's bitonic sort,
radix sort, and sample sort), it appears that the sample
sort algorithm is the fastest of the three for large data
sets. Therefore, a parallel sample sort algorithm has
been implemented in order to efficiently support IRB.

Given a set of n 'keys' distributed on p processors
(n >> p), a sample sort algorithm consists of three main
steps:

1. p - 1 splitters (or pivots) are chosen among the
n 'keys'

2. Each key is routed to the processor corresponding
to the bucket the 'key' is in

3. Keys are sorted within each bucket (no com-
munication)

The goal of step 1 is to split the set of +keys' into p
parts (buckets) as evenly as possible and as efficiently
as possible. The p - 1 spliters which are implicitly
sorted (say with respect to increasing value) are labeled
from l to p - 1. All distributed 'keys' below splitter 1
belong to bucket 0, all distributed 'keys' between
splitter i (0 < i < p - 1) and splitter i + 1 belong to
bucket i, and all distributed 'keys' above splitter p - 1
belong to bucket p - 1 . Processor i (0 _ < i < p) is
responsible for the bucket labeled i. In step 2, assuming
the p - 1 splitters have been found and broadcasted
to all processors, any distributed 'key' can tell in which

bucket it belongs and is rerouted to the processor that
is responsible for that bucket. At this point, any
processor has knowledge of all "keys' that belong to
the bucket it has been assigned to. Step 3 can be
performed using any efficient sequential sorting
algorithm, like quicksort [24]. It is clear that the
parallel efficiency of the sample sort algorithm depends
on the sizes of the buckets. Parallel efficiency is
maximal when the sizes of the buckets are near equal.
A sampling method is used to obtain 'good' splitters.
Given the n input 'keys', ps key~ (s is an integer > 1
called the oversampling ratio) are selected at random
and sorted typically sequentially. The entries in the
sorted list of ranks s, 2s (p t ls are the p 1
splitters. The bound for bucket expansion (ratio of
maximum bucket size to average) is given in the
paper by Blelloch et al. [26]. In practice, the
oversampling ratm should be such that the sorting to
find the splitters (which is done serially) does not
become a bottleneck for the global parallel sample
sort algorithm. For the purpose of the presented
repartitioning technique, the oversampling ratio is
chosen such that ps is of the order of n/p (~/p being
of the order of the number of 'keys ' to sort In step 3).

The following pseudo-code shows the process of
repartitioning using IRB in parallel, tt is ass umed that
the entities are already distributed on processors. A
statement of the form for (i = 0; i < n: i+ ~-) { . . . 1
indicates a loop which gets executed as long as the
loop variable i which begins at 0 (i = 0) and is
incremented by 1 upon completion of each pass (i + +
has a value less than n (i < n). A statement of the form
while (i < n) { . . . } indicates a loop which gets
executed as long as the loop variable i has a value less
than n (i < n) [16]. Each processor executes the
following pseudo-code (MIMD):

1. Associate each entity with a 'key ' structure
consisting of:
a. 3 doubles for the coordinates of the entity's

centroid with respect to the current inertial
coordinate system (initially with respect to
original coordinate system)

b. t integer that indicates on which processor the
actual entity is stored

c. t pointer to the entity
d. I integer that indicates the current processor

destination for the entity (initially 0)
2. for (step = 0; step < logzp; step + +) {

a. to_pid = 0
b. while (to_pid < p) {

| Balance the load such that each proc has
approximately the same number of keys with
a current destination equal to to pid and
reroute the keys accordingly

Paraiiel 3-D M e s h Gene ra t i on 103

0

}
J

+ Get center of gravity for the set of keys with a
current destination equal to to_pid, find the
three principal axes of inertia, and apply
transformation to all keys with a current
destination equal to to_pid

�9 Get p splitters among the keys with a current
destination equal to to_pid

�9 Determine in which bucket each key with a
current destination equal to to_pid goes and
reroute the keys accordingly
Sort on processor (bucket) the keys with a
current destination equal to to_pid

�9 Assign a new destination to any key with a
current destination equal to to_pid that is past
the median (to pid + p/2 s*ep+ 1)
~o_pid = to_pid + 2 l~

3. Reroute all keys to the orginating processors
4. Migrate entities according to the destination

processor stored at the key level

5. Parallel Region Meshing

5.1. Underlying Octree

At this point in time, the octree is built sequentially
on a single processor (processor 0). A sequential octree
building may become a bottleneck when dealing with
very large meshes. It should be noted that the octree
building will be accomplished in parallel in the future
to allow for scalability.

5.2. Template Meshing of Interior Octants

Once all terminal octants have been properly
classified, the terminal octants classified interior are
partitioned. The parallel application of templates is a
strightforward process in which there is no com-
munication required during the process of creating the
octant level meshes. It should be noted that the
application of templates to octants sharing the same
octant face implicitly lead to the same octant face
triangulation. The finite elements generated in these
octants are loaded into the processor mesh data
structure. The interprocessor communication required
at the end of this step is for the updating of
interprocessor mesh entity links for mesh entities
created on the boundaries of interior octants which
are on processor boundaries. The cost for the
application of templates is small compared with the
cost of performing face removals. Therefore, parallel

efficiency of parallel region meshing is dictated by the
face removal part only.

5.3. Face Removal

Parallel face removal is an iterative process where each
iteration consists of three steps:

I. Tree repartitioning at the terminal octant (classified
boundary) level,

2. Face removal step, and
3. Reclassification of terminal octants from boundary

to meaningless

The goal of step 1 is to make sure that all processors
will have an equal amount of work to perform during
step 2. It is difficult to predict how much work or,
more precisely, how many face removals (step 2) any
processor will perform and the total amount of effort
for a particular face removal. However, a terminal
octant classified boundary is a good unit of work load
since the set of all terminal octants classified boundary
approximately corresponds to the domain still to be
meshed. The difficulty of performing face removals in
parallel resides in the fact that any face removal
requires the knowledge of tree neighborhoods. Tree
neighborhoods of order 0 or 1 are needed at different
steps of the removal of a given mesh face. If, at any
point during the face removal, a tree neighborhood is
not fully on-processor, the face removal is aborted and
the next mesh face is considered for removal. Once all
possible face removals have been performed on
processor, some terminal octants classified boundary
which used to know about partially connected mesh
faces (on- or off-processor) are reclassified meaningless.
As those octants do not now cover any portion of the
domain still to be meshed, they are now useless (for
the purpose of face removals) and will therefore not
influence the next repartitioning.

Figure t0 depicts the first iteration on a simplistic
example. In the left-side picture, terminal octants
classified boundary have been partitioned and each of

i i
+o I

t+'" +

p i +

11 1

..i

/ J /

. + . �9

Fig. 10. Parallel face removal (2-d setting).

104 H. L de Cougny, M. S. Shephard and C. Ozturan

them is assigned to a processor (0 to 3). The right-hand
side picture shows the current mesh after all possible
face removals have been performed on processors.
Shaded areas represent the domain still to be meshed.

The process of performing face removals and
repartitioning the tree continues until there are no
more partially connected mesh faces in the mesh.
Define the efficiency of the face removal stage as being
the ratio of the number of performed face removals
to the number of attempted face removals. After a few
iterations, the efficiency of the face removal stage can
be very low because information required to perform

face removals is almost always off-processor. When
more than half of the processors have an efficiency
below some given threshold (25yo), the processor set
is reduced (by half).

Since migration of terminal octants only deals with
those classified boundary and only worries about mesh
regions bounded by partially connected mesh faces, it
is very likely that the final mesh will be scattered across
processors with no real structure. It is therefore
necessary to repartition in parallel the distributed
mesh using IRB at the mesh region level with the
original full set of processors. Figure i 1 shows the

! i e r ~ a n 1 ~ t c r x) - 4- / 4- W o r Itercd6on 2 (~far:) "- / 4 0 r c m a

I t e rO. iun 4 (g t a r t) - 4 / 4 pc~:s : t e r ~ i e n S (s t c r z) - 2 /' + p r e c s

Rer~ion 8 (~ar~) - ! / @ y ~ ~noi ~ep~rtitlone~ ~esh - #~ 9roe~

Fig. tl. Successive face removal iterations and fina] repartitioned mesh for chicktel.

Parallel 3-D Mesh Generation 105

Fig. 12. Final repartitioned mesh for connecting rod (4 processors).

Table 1. Face removal statistics for connectin 9 rod (initially
21,000 partially connected mesh faces--35,000 mesh regions
created).

Procs 1 2 4
Iterations 1 5 7
Face removal 1.0 1.9 3.3

speedup
Total speedup 1.0 1.8 2.9

whoie process of parallel face removal on four
processors. The first 8 pictures display the currently
partially connected mesh faces after the terminal
octants classified boundary have been repartitioned.
Note that iterations 1, 2, 3, and 4 use all four
processors, iterations 5, 6, and 7 use two processors,
and iteration 8 uses one processor. The final picture
displays the final three-dimensional repartitioned
mesh on four processors.

Table 1 shows speed-ups for up to four processors
for a connectin9 rod model (final repartitioned mesh
on four processors is shown in Fig. 12). Table 2 shows
speed-ups for up to four processors for a blade model
(final repartitioned mesh on four processors is shown
in Fig. 13). The number of mesh regions created
indicated in the captions corresponds to parallel face
removal only and does not include template meshing.
Face removal speed-up indicates speed-up for step 2
of the parallel face removal procedure. Total speed-up
indicates speed-up for all steps (1, 2, and 3). In that
case, the first repartitioning (iteration 1) is not counted
since it can be considered an initial partitioning step.
Note that the time taken to perform the first
repartitioning depends on the size of the problem and
not the number of processors. If the number of
processors is one, the speed-up is by definition set
to 1. It should be noted that speed-up on p processors

Fig. 13. Final repartitioned mesh for blade (4 processors).

Table 2. Face removal statistics for blade (initially 35,000
partially connected mesh faces--60,000 mesh regions
created).

Procs 1 2 4
Iterations 1 5 8
Face removal 1.0 2.0 3.2

speedup
Total speedup 1.0 1.9 2.8

is defined as the time spent by the 'best ' sequential
version of the algorithm divided by the time spent by
the parallel version of the algorithm running on p
processors [25]. If there is no or little difference
between the sequential algorithm and the parallel
algorithm running on 1 processor (which is true here),
the speed-up can be simply defined as the time spent
by the parallel version of the algorithm running on 1
processor divided by the time spent by the parallel
version of the algorithm running on p processors. The
procedure demonstrates near-perfect speed-ups for
two processors and ' good ' speed-ups for four
processors.

6. Closing Remarks

This paper has presented a method to mesh objects
in three dimensions for operation on MIMD parallel
computers. The parallel efficiency of the overall
method is dictated by the performance of the parallel
face removal stage. It is difficult to predict adequately
the amount of work a processor will perform and to

106 H.L. de Cough}, M. S. 3hephard and C. Ozturan

balance the load properly. This conditions speed-up.
The parallel face removal stage shows promising
speed-ups (up to four processors). There is, however,
still work to be done to ensure a better load balance
and even better speed-ups. At the moment, the tree
structure is stored on all processors. Scalability
(memory wise) will require the tree to be distributed.
Also, the tree building procedure and related tasks are
performed serially. Tree related nonscalable tasks are
being worked on and will be solved in the near future
to have a fully scalable region meshing algorithm. The
problem of meshing model edges and surfaces has not
really been addressed here since the techniques used
in region meshing can be applied in these contexts.
Edge and face meshing will be presented in the near
future as a complement to the region meshing
procedure.

Acknowledgment

The authors would like to acknowledge the support of NASA Ames
Research Center under grants NAG 2-832 and NCC 2-9000; and
the National Science Foundation under grant DMS-9318184.

References

1. George, P. L. (1991) Automatic Mesh Generation, Chichester,
John Wiley and Sons

2. Shephard, M. S.; Weatherill, N. P. (Editors) (!991) int. J. Numer.
Moth. Engng., Vol 32, Chichester, Wiley-Interscience

3. Weatherill, N. P.; Hassan, O. (1994) Efficient three-dimensional
Detaunay triangulation with automatic point creation and
imposed boundary constraints, Int. J. Numer. Meth. Engng.,
37, 2005 2039

4. de Cougny, H. L.; Devine, K. D.; Flaherty, J. E.; Loy, R. M.;
Ozturan, C.; Shephard, M. S. (1994) Load balancing for the
parallel solution of partial differential equations, Applied
Numerical Mathematics, Vol 16, pp 157-182

5. Ozturan, C., de Cougny, H. L.; Shephard, M. S.; Fiaherty, J. E.
(1994) Parallel adaptive mesh refinement and redistribution on
distributed memory machines, Comp. Meth. Appl. Mech.
Engng., 119, 123-137

6. Shephard, M. S., Bottasso, C. L., de Cougny, H. L.; Ozturan,
C. (1994) Parallel adaptive finite element analysis of fluid flows
on distributed memory computers. In Recent Developments in
Finite Element Analysis, pp 205-214, Barcelona, Int. Center for
Num. Moth. in Engng.

7. Ozturan, C. (1995) Dynamic load balancing for adaptive finite
element methods, PhD Thesis, Rensselaer Polytechnic Institute,
Troy NY

8. L6hner, R.; Camberos, J.; Merriam, M.; (1992) Parallel

unstructured grid generation. Comp. Meth. Appk Mech. Engng.,
95. 343-357

9. Saxena. M.: Perucchio. R (1992) Parallel FEM algorithms
based on recursive spatial decompositions I. Automatic mesh
generation, Computers and Structures. 45. 817-83l

10. Shephard. M. S.: Georges, M. K t199t) Automatic three-
dimensional mesh generation by the Finite Octree technique,
int. J. Numer. Meth. Engng., 32(4~: 709 749

l l Schroeder. W. J.: Shephard. M. S (1990) A combined
octree/Delaunay method for fully automatic 3-D mesh
generation. Int. J. Numer. Meth. Engng., 29, 37 55

12. Shephard, M. S.; Georges, M. K. (!992) Reliability of automatic
3-D mesh generation. Comp. Moth. Appl Mech. Engng, 101;
443-462

!3. de Cougny, H. L.: Shephard. M. S.: Ozturan. C. t 1995~ Parallel
three-dimensional mesh generation. Computing Systems in
Engineering, to appear

14. Schroeder, W. J.: Shephard. M. S. (1991) On rigorous conditions
for automatically generated finite elemem meshes. In Product
Modeling for Computer-Aided Design and Manufacturing,
Turner J.: Pegna. J.: Wozny, M ~Editors/ Amsterdam.
North-Holland

15. Yerry, M. A.: Shephard. M. S. (1984) Automa~m three-
dimensional mesh generation by the modified-octree technique,
Int. J, Numer. Meth~ Engng. 20. 1965-1990

16, Kernigham. B, W.: Ritchie. D. M, (1990) The C Programming
Language, Englewood Cliffs NJ 07632_ Prentice Hall

17, garnet. H, (1984) The quadtree and related hierarchieM data
structures. Computing Surveys. 16, ACM Comput. Surveys. Vol
16. no 2. June 1984 pp 187--260

18, Weiler. K. J. (1988~ The radial-edge structure: A topo-
logical representation for non-manifold geometric boundary
representations. In Geometric Modeling for CAD Applications.
Wozny. M. J,: McLaughtin. H, W.: gncarnacao, J, L. (Editors)
pp. 3-36. North-Holland

!9. Beall. M, W, (19931 Scorec mesh database users guide.
version 2.2--draft_ Technical Report SCOREC ~26-1993_
Scientific Computation Research Center. Rensselaer Polytechnic
institute. Troy, NY

20. L6hner. R.: Ramamurti. R. (1993l A parallelizable load
balancing algorithm. In Proc. of the AIAA 3tst Aerospace
Sciences Meeting and Exhibfi

21. Berger, M. J.: Bokhari. S. H. (1987) A partitioning strategy for
nonuniform problems on multiprocessors. IEEE Transactions
on Computers. C-36(5), 570-580

22. Leiss. E.: Reddy, H. (1989) Distributed toad balancing: Design
and performance analysis. Technical Report Vol. 5. W. M. Keck
Research Computation Laboratory

23. Vidwans. A.: Kallinderis. Y.: Venkatakrishnan V. (1994) Parallel
dynamic load-balancing algorithm for three-dimensional
adaptive unstructured grids. AI AA Journal. 32(3), 497-505

24. Sedgewick, R. (1990) Algorithms in C, Reading MA. Addison-
Wesley Publishing Company

25. JaJa. J. (1992) An Introduction to Parallel Algorithms, Reading
MA. Addison-Wesley

26. Blelloch. G.: LeJserson. C.: Maggs, B.: Plaxton. C.: Smith. S.:
Zagha. M. (199I) A comparison of sorting algorithms ['or the
connection machine cm-2. ACM. 089791-438-4191. p 3-16

