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Abstract. This paper discusses the development of an 
automatic mesh generation technique designed to operate 
effectively on multiple instruction multiple data (MIMD) 
parallel computers. The meshing approach is hierarchical, that 
is, model entities are meshed after their boundaries have been 
meshed. Focus is on the region meshing step. An octree is 
constructed to serve as a localization tool and .for efficiency. 
The tree is also key to the efficient parallelization of the 
meshin 9 process since it supports the distribution of load to 
processors. The parallel mesh generation procedure repartitions 
the domain to be meshed and applies on processor face 
removals until all face removals with local data have been 
performed. The portion of the domain to be meshed remaining 
is dynamically repartitioned at the octant level using an 
Inertial Reeursive Bisection method and local face removals 
are reperformed. Migration of a terminal octant involves 
migration of the octant data and the octant' s mesh faces and/or 
mesh regions. Results show relatively good speed-ups for 
parallel face removals on small numbers of processors. Once 
the three-dimensional mesh has been generated, mesh regions 
may be scattered across processors. Therefore, a final dynamic 
repartitioning step is applied at the region level to produce a 
partition ready for finite element analysis. 

1. Introduction 

The development of automatic mesh generation 
techniques for complex three-dimensional configura- 
tions has been an active area of research for over a 
decade [1,2].  The introduct ion of these mesh 
generation procedures has removed a major bottle- 
neck in the application of finite element and finite 
volume analysis techniques. The introduction of 
scalable parallel computers is allowing the solution of 
ever larger models. It is now common to see meshes 
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of several million elements solved on these computers, 
with the ability to solve on meshes of tens or hundreds 
of millions of elements coming in the very near future. 
As mesh sizes become this large, the process of mesh 
generating on a serial computer becomes problematic 
both m terms of time and storage. This paper discusses 
efforts to address this problem by the development of 
a parallel mesh generation procedure that will operate 
on the same computer, and using similar structures, 
as the parallel analysis procedures. 

With recent advances in the efficiency of automatic 
mesh generators which create well over two million 
elements per hour on a workstation [3], one may 
question the need for the parallel generation of meshes. 
The obvious answer is that as the problem size grows, 
the solution process on parallel computers will 
continue to scale by the addition of more processors. 
However, mesh generation on a single processor 
will not scale, therefore becoming the computa- 
tional bottleneck. A second critical reason for parallel 
mesh generation is the shortage of memory on a 
sequential machine when dealing with very large 
meshes. On a parallel machine, the memory problem 
is addressed by distributing the mesh over a number 
of processors, each of which stores its own portion of 
the mesh. 

Efficient parallel algorithms require a balance of 
work load among the processors while maintaining 
interprocessor communication at a minimum. Key to 
determining and distributing the work load and 
controlling communications is knowledge of the 
structure of the calculations and communications. In 
the finite element analysis process, the mesh and its 
connectivity naturally provide the required structure. 
The ability to maintain efficiency is compromised 
when the structure and, therefore, work load and 
communications is altered as is the case in parallel 
adaptive finite element analysis [4-7].  Parallel mesh 
generation is even more complex to control effectively 
since the only structure known at the start of the 
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process is that of the geometric model which has no 
discernible relationship to the work load needed to 
generate the mesh. On the other hand, the more useful 
structure to discern work load and control com- 
munications is the mesh which is only fully known at 
the end of the process. The lack of initial structure 
and ability to predict accurately the work load during 
the meshing process underlies the selection of 
algorithmic procedures in the parallel mesh generation 
procedure presented here. In particular, the procedure 
employs an octree decomposition of the domain to 
control the meshing process. The octree structure 
supports the distribution or redistribution of com- 
putational effort to processors. 

The next section considers efforts to date by others 
on the paralMization of automatic mesh generation 
and the general meshing approach developed here. 
The third section follows with a detailed description 
of the region (three-dimensional) meshing algorithm 
in a sequential environment. The fourth section 
describes the tools that have been developed to 
support mesh generation in a distributed parallel 
computing environment. This includes data structures, 
multiple octant migration, and dynamic partitioning 
and repartitioning. The fifth section explains how 
region meshing can be accomplished in parallel along 
with results showing relatively good speed-ups when 
the problem size is in accordance with the number of 
processors. The last section summarizes what has been 
accomplished and what needs to be developed further. 

2. Background and Meshing Approach 

To date, there has been limited attention given to 
parallel automatic mesh generation algorithms. 
L6hner et at. [8] have parallelized a two-dimensional 
advancing front procedure which starts from a 
pre-triangulated model boundary. The approach 
taken is to subdivide (partition) the domain (with the 
help of a background grid) and distribute the 
sub-domains to different processors for triangulation. 
The interior of subdomains are meshed independently. 
Then, the inter-subdomain regions are meshed using 
a coloring technique to avoid conflicts. Finally, the 
~corners' between more than two processors are 
meshed following the same basic strategy. After the 
mesh is generated, the node point positions are 
smoothed in parallel employing an iterative procedure 
which positions each node based on local information. 
The choice of a scheduling scheme based on a 
master/slave paradigm may be the weak point of the 
method since it creates bottlenecks when transferring 
data from the host to the nodes (and vice versa). 

Saxena and Perruchio [9] describe a parallel 
Recursive Spatial Decomposition (RSD) scheme 
which discretizes the model into a set of octree cells. 
Interior and boundary cells are meshed by either using 
templates or element extraction (removal) schemes in 
parallel. The algorithmic procedure they employ 
to create these octant level meshes requires no 
communication between octants. The main difficulty 
for this meshing approach is to guarantee that a 
boundary octant can always be meshed regardless of 
the complexity of the model. Robust loop building 
algorithms which include possible tree refinement to 
resolve invalid configurations are in general difficult 
to parallelize [10]. Parallel results have been simulated 
on a sequential machine. 

The parallel mesh generator presented in this paper 
builds upon previous work on sequential octree-based 
mesh generators [10-12], parallel adaptive finite 
element analysis procedures [4 6], and parallel 
mesh generation [13]. The present parallel mesh 
generator meshes three-dimensional nonmanifold 
objects following the hierarchy of topological entities. 
That is, the model edges are meshed first, the model 
faces are meshed second, and the model regions are 
meshed last. Quadtrees and octrees are used for face 
and region meshing for the purpose of localization, 
respectively. This paper will focus on the three- 
dimensional aspect of mesh generation, that is region 
meshing with an underlying octree. 

Figure 1 graphically depicts the basics of the present 
mesh generator. The first step for the meshing of a 
model region is to develop a variable level octree which 
reflects the mesh control information and is consistent 
with the triangulation on the boundary of the model 
region. Octants containing mesh entities classifed on 
the boundary of the model region to be meshed are 
approximately of the same size as the mesh entities 
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B B B I - interior quadrant  
Bi - boundary  like interior quadrsnt  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  B - boundary quadrant 

Qusdtree with Boundary Edges Unsmoothed mesh 

Fig. 1. Graphical depiction of the basics of the peresented mesh 
generator. 
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Face to remove New mesh region 

Fig. 2. Face removal (2-d setting). 

they contain. A one level difference on octants sharing 
one or more edges is enforced during this process to 
control smoothness of the mesh gradations. Once the 
octree is generated, the octants are classified as interior, 
outside, or boundary. Those classified as outside receive 
no further consideration. Some interior octants are 
reclassified boundary if they are too close to mesh 
entities classified on the boundary of the model region 
(boundary-interior). The purpose of this reclassification 
is to avoid the complexities caused when interior 
octant mesh entities (coming from the application 
of templates) are too close to the boundary and 
may lead to the creation of poorly shaped elements 
in that neighborhood. Interior octants are meshed 
using templates. Face removal procedures are then 
used to connect the boundary triangulation to the 
interior octants. Figure 2 graphically describes a 
face removal in a two-dimensional setting The next 
section provides more technical details on the region 
meshing procedure. 

3. Sequential Region Meshing 

As indicated above, the starting point for the region 
meshing process is a completely triangulated surface. 
The surface triangulation must satisfy the conditions 
of topological compatibility and geometric similarity 
[14] for the model faces. The region meshing process 
consists of the three steps of (i) generation of the 
underlying octree, (ii) template meshing of interior 
octants, and (iii) face removal to connect the given 
surface triangulation to the interior octants. 

Mesh faces to which tetrahedral elements will 
eventually be connected are referred to as partially 
connected faces. They are basically missing one 
connected tetrahedron in the manifold case and up to 
two in nonmanifold situations. Initially, the mesh faces 
classified on the model boundary are the partially 
connected mesh faces. Once templates have been 
applied, that is, at the start of face removal, the interior 
mesh faces connected to exactly one tetrahedron are 
also partially connected mesh faces, In the remainder 
of this paper, the current set of partially connected 

mesh faces will be referred to as the front. During face 
removal, tetrahedra are comaected to these faces, 
therefore eliminating them. Any nonexisting face of a 
newly created tetrahedra, referred to as a new face, is a 
partially connected face until it is eliminated. The face 
removal process is complete when there are no 
partially connected mesh faces remaining. 

3.1. Underlying Octree 

The octree ~s built over the given surface mesh to (1) 
help in localizing the mesh entities of interest and (ii) 
provide support for the use of fast octant meshing 
templates. Proper localization is achieved by having 
each terminal octant reference any partially connected 
mesh face which is either totally or partially inside its 
volume. This information is used efficiently to 
guarantee the correctness of the face removal 
technique. The octree building process can be de- 
composed into: (i) root octant building, (ii) octree 
building, (iii) level adjustmem, (iv) assignment of 
partially connected mesh faces to terminal octants, 
and (v) terminal octant classification. 

The root octant is such that the given surface mesh 
is contained within it. It is cubic in order to avoid 
the creation of unnecessary stretched tetrahedra 
coming from the application of meshing templates on 
stretched octants (assuming isotropy is desirable in 
the resulting mesh). 

The terminal octants are constructed to be approxi- 
mately the same size as any partially connected mesh 
face associated with them in order to ensure appropriate 
element sizes and gradations. This is done by visiting 
each mesh vertex in the initial surface mesh. computing 
the average s~ze of the connected mesh edges, and 
refining the octree until any terminal octant around 
that vertex is at a level corresponding to that average 
size. The level of the octant is given by: 

, { root~engtn 
octlev - 1og2\ s/~ze ] (1) 

where rootlength is the length of the root octant and 
size is the size of the mesh entity. It should be noted 
that this procedure does not theoretically ensure a 
match in size between every terminal oetant and the 
partially connected mesh faces it knows about. 
However. since quadtrees are used to tirangulate 
model faces and constructed following the same rules 
as the octree, in practice, there is a match. 

In order to have a smooth gradation between octant 
levels, no more than one level of difference is allowed 
between terminal octants that share an octant edge. 
Application of this rule can possibly lead to refinement 
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of some terminal octants past the level that was set 
by the partially connected mesh faces in their volumes. 

Once the tree is completed, partially connected mesh 
faces are assigned to terminal octants. Given a mesh 
face, terminal octants that should know about it can 
be separated into two groups: (i) those that are in the 
path of each bounding mesh edge (obtained by 
intersecting line segments with axis aligned solid 
boxes) and (ii) those whose octant edges are in the 
path of the mesh face (obtained by intersecting line 
segments with triangles). 

Any terminal octant which knows at least one 
partially connected mesh face is classified boundary. 
Terminal octants classified boundary separate interior 
terminal octants from outside terminal octants. At this 
point, it should be noted that the interior of the model 
can be made of several model regions. One octant 
corner of a boundary terminal octant is then classified 
either interior or outside by firing a ray toward a corner 
of the root octant. Considering the partially connected 
mesh face closer to the octant corner among the ones 
that intersect the ray, the classification corresponding 
to the model region on the side of the mesh face facing 
the octant corner is given to the octant corner [10]. 
If there is no intersection, the octant corner is classified 
outside. In case the intersection is on the boundary of 
the partially connected mesh face, no decision can be 
taken and a ray to another corner of the root is fired. 
The classification of the octant corner is then 
propagated to any neighboring terminal octant (in a 
recursive way) which has not been classified yet. 
The process of classifying an octant corner and 
propagating its classification continues until all 
terminal octants have been classified. 

After the basic octant classification process, interior 
terminal octants can exist which have boundary 
entities arbitrarily close to surface triangles in 
boundary octants. Since poorly shaped elements can 
result when these entities are too close, some interior 
terminal octants are reclassified as boundary. If an 
interior terminal octant is too close to a partially 
connected mesh face, it is reclassified boundary. 
Distances between two entities are relative, that is, the 
actual distance should be divided by the average size 
of the entities involved, in this case, entities involved 
are octants (or octant faces) and mesh faces. The 
threshold for closeness is set to 1.0 to make room for 
potentially well shaped elements between interior 
terminal octants and surface triangles. 

3.2. Template Meshing of Interior Octants 

Terminal octants classified interior are meshed using 
(i) meshing templates or (ii) fast meshing procedures 
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Fig. 3. Terminal octant meshing templates available: one eight 
vertex case, two nine vertex cases, one thirteen vertex case, and two 
seventeen vertex cases. 

when a template is not available. Examination of the 
number of templates required for all cases and the 
distribution of template usage indicates that octants 
with eight, nine, thirteen, and seventeen vertices cover 
over 90~o of the interior octants. All the nine, thirteen, 
and seventeen vertex octant configurations can be 
meshed by six templates (Fig. 3) with the correct 
rotations applied. The remaining interior octants are 
then quickly meshed using a fast procedure which 
accounts for the fact that the octant is a rectangular 
prism. One very fast option is to create an interior 
vertex and to create the correct connections to it [15]. 

3.3. Face Removal 

Given a partially connected mesh face, a face removal 
consists of connecting it to a mesh vertex. Since the 
volume to be meshed consists of the space between 
the given surface triangulation and the interior octree, 
the vertex used is usually an existing one. However, 
in some situations, it is desirable to create a new vertex. 
The choice of the target vertex (existing or new) 
must be such that the created element is of good 
quality and its creation does not lead to poor (in 
terms of shape) subsequent face removals in that 
neighborhood. 

The following pseudo-code indicates how the target 
vertex is selected for a given partially connected mesh 
face to be removed. Detailed explanation for the key 
steps is given in the next paragraphs of the section. In 
this pseudo-code and any other thereafter, break forces 
an exit from a loop, return forces an exit from the 
function or routine (in other words, the function 
terminates), and text between /* and */ denotes a 
comment [16]. 

1. Collect set of potential target vertices from tree 
neighborhood 
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2. Reorder target vertices with respect to decreasing 
shape measure (for the element to be created) 

3. Initialize: 
a. dist lim = 

b. target_ver t  = 0 

c. max  min dist = 0.0 

4. for each potential target vertex vert { 

a. Perform preliminary check on acceptability. If 
not acceptable, c o n t i n u e  

b. If the new element contains any mesh vertex 
belonging to the front, continue 

c. If the new element intersects any existing mesh 
entity, c o n t i n u e  

d. Evaluate how close the new element is to 
existing mesh entities (compute relative minimum 
distance min_dist)  

e. if (min_dist  >_ dist_lim) { 

�9 target_ver t  = vert 

�9 max  rain dist = min_dis t  

�9 b r e a k  

f. else if (min_dist  > m a x _ m i n  dist) 

�9 target v e r t = v e r t  

�9 max  min d i s t =  rain dist 

J 

5. i f  

6. i f  
a. 

b .  

f 

(max_min_d i s t  > dist_lim) return 
target_ver t  = 0 { 

Create a new vertex vert at the best position for 
the partially connected mesh face to be removed 
target y e r t  = vert 

7. else ~/* Consider creating a new vertex */ 
a, Create a new vertex vert at the best position for 

the partially connected mesh face to be removed 
b. Evaluate closeness of new element to existing 

mesh entities (min_dist)  

c. if (min_dist  > max_min_d i s t )  target_ver t  = vert 

/* Better to create a new vertex */ 

The neighborhood of an entity is defined as a tree 
neighborhood of a given order. Given a mesh entity, 
a tree neighborhood of order 0 consists of all terminal 
octants that know about  the entity (have the entity 
or part of it within their volumes). A tree neighborhood 
of order n(n > 0) consists of a tree neighborhood of 
order n - 1 to which is added all terminal octants that 
neighbor any octant corner of any terminal octant in 
the tree neighborhood of level n - 1 .  The set of 
potential target vertices is obtained via the partially 
connected mesh faces in the tree neighborhood of the 
appropriate order for the face in consideration. The 
set of potential target vertices should be as small as 

possible ~for efficiency reasons} but should not be 
missing the best target (with respect to both shape of 
new elemem and closeness to nearby existing mesh 
entities) assuming all mesh vertices of the front were 
considered. A tree neighborhood of order 0 is clearly 
not enough while a tree neighborhood of order 1 
is adequate assuming terminal octants have approxi- 
mately the same sizes as the partially connected mesh 
faces they know about. 

It is of interest to be able to discard potential target 
vertices as early as possible for purposes of efficiency. 
A potential target is kept if it satisfies any of the three 
following conditions (types): 

1. connects to a bounding vertex of the face to be 
removed through a mesh edge of the front. This 
allows for the removal of partially connected mesh 
faces other than the face in consideration (not m 
all cases) and therefore leads to a reduction of the 
size of the front (guaranteeing convergence of the 
method). 

2. is positioned inside the sphere centered at the best 
position (with respect to shape) for the fourth vertex 
of the face to be removed and of radius the size of 
the face to be removed. This avoids the creation of a 
stretched element with respect to the face in 
consideration. 

3. any of the three bounding vertices of the face to be 
removed are positioned inside the sphere of any of 
the partially connected mesh faces connected to the 
target vertex. This allows for the creation of a 
stretched elemenl with respect to the face in 
consideration which is not stretched with respect 
to partially connected mesh faces connected to 
the target. 

Figure 4 shows potential target vertices of type t. 2, 
and 3 for the face to remove. 

Given a potential target vertex, one has to make 
sure that any new mesh entity (resulting from the 

3 
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Fig. 4. The three types of p0tentiai target vertices (2-d setting). 
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creation of the new mesh region) does not intersect 
an existing mesh entity. The creation of a new mesh 
region may result in the creation of a new mesh vertex, 
up to three new mesh edges, and up to three new mesh 
faces. New mesh edges are checked for intersection 
against nearby partially connected mesh faces. Given 
a virtual new mesh edge, the nearby partially 
connected mesh faces are obtained through the tree 
neighborhood of order 0 (of the new edge). If no 
intersection is detected, new mesh faces are checked 
for intersection against nearby front mesh edges. Given 
a virtual new mesh face, nearby front mesh edges are 
obtained through the partially connected mesh faces 
in the tree neighborhood of order 0 (of the new face). 
Since any terminal octant knows about the partially 
connected mesh faces in its volume, considering a 
tree neighborhood of order 0 guarantees that no 
intersection can be missed. 

The closeness of the new mesh region to existing 
mesh entities is evaluated by considering the minimum 
relative distance between any new mesh entity and 
nearby existing mesh entities. The relative distance is 
defined as the absolute distance divided by the average 
size of the mesh entities involved. The nearby mesh 
entities are obtained through a tree neighborhood of 
order 1 of the new entity being tested. It is important 
to note that nearby existing mesh entities in a tree 
neighborhood of order 1 may not be in a tree 
neighborhood of order 0. On the other hand, nearby 
existing mesh entities cannot be missed with a tree 
neighborhood of order 1. Considering the new region 
to be created, there can be zero or one new vertex, up 
to three new edges, and up to three new faces. If there 
is a new vertex, distances between the new vertex and 
nearby existing partially connected mesh faces are 
considered. For  any new mesh edge, distances between 
the new edge and nearby existing front mesh edges 
are considered. If the point on the new edge 
corresponding to the distance (that is, closest to the 
nearby existing front mesh edge) corresponds to an 
existing bounding mesh vertex, the distance is 
discarded. In that case, it means that the nearby 
existing front mesh edge is close to another existing 
mesh entity and not to a new mesh entity. Also, for 
any new face, distances between the new face and 
nearby existing front mesh vertices are considered. 
Again, distances are discarded if the point on the new 
mesh face corresponding to the distance (that is, closest 
to the nearby existing front mesh vertex) is actually on 
an existing bounding mesh vertex or edge. The three 
different cases are shown in Fig. 5. The threshold c~ 
corresponds to what is considered acceptable in 
terms of closeness when creating a new element. 
Experimentation led to the use of a value of 0.2 for c~. 

New vertex vs New edge vs New face vs 
nearby faces nearby edges nearby vertices 

Fig. 5. Evaluation of relative minimum distance between new 
entities and nearby existing mesh entities. 

2 intersection 

~ distJim 

rain dist _> dist lira ~..  

Face to remove 

Fig. 6. Potentiat target vertices and hest faceremovaI(2,-dsetting). 

If a new vertex needs to be created, its location must 
be such that the new element is well-shaped, and 
neither causes intersection nor is too close to nearby 
existing mesh entities. The initial location for the new 
vertex is at the position which creates the best shaped 
element for the face to be removed. This location is 
on the perpendicular to the face passing through the 
centroid. If the current location causes the new element 
to intersect nearby existing mesh entities, a new 
location is considered on the normal half-way from 
the current location, and so on, until a valid location 
is found. In order not to be too close to existing mesh 
entities, the final location is considered conservatively 
half-way from the current location. 

Figure 6 graphically depicts a face removal in a 
two-dimensional setting. There are four target vertices 
ordered (1, 2, 3, and 4) with respect to increasing shape 
measure of the element to be created. Target vertex 1 
is rejected since the new element is too close to an 
existing mesh entity (vertex 3). Target vertex 2 is 
rejected since the new element intersects existing mesh 
entities. Target vertex 3 is therefore accepted. 

4. Parallel Constructs Required 

4.1. Octree and Mesh Data Structures 

The two main data structures are the octree and mesh 
data structures. The octree data structure is on top of 



100 

the mesh data structure. To gather a tree neighborhood 
or all terminal octants in the path of a mesh entity 
(new vertex, edge, or face), any processor must be able 
to effectively determine to which processor any 
given terminal octant is assigned. This information 
is easily available when each processor has full 
knowledge of the basic octree in terms of structure 
and processor assignment. This is the approach 
currently implemented. Although the size of the tree 
is small compared with that of the mesh and this tree 
information can easily be copied to each processor for 
meshes into the millions of elements, this approach 
does not scale indefinitely. Techniques that maintain 
only portions of the tree on individual processors are 
currently under investigation to provide the needed 
scalability. Any terminal octant stores links to 
on-processor partially connected mesh faces and 
off-processor partially connected mesh faces totally or 
partially within its volume. Octree neighboring 
information (like finding terminal octants neighboring 
an octant face, edge, or corner) is obtained through 
tree traversals. Techniques to reduce and/or avoid tree 
traversals are under investigation as well [17]. 

The mesh is stored in a version of Weiler's Radial 
Edge data structure [18] specifically defined for the 
effiCient storage of meshes [19]. There is a two-way 
link between mesh entities of consecutive order 
(between regions and bounding faces, faces and 
bounding edges, and edges and bounding vertices): 
From this hierarchy, any entity adjacency relationship 
can be derived by local traversals. The entities on the 
partition boundary are augmented with interprocessor 
links which point to the location of the corresponding 
entities on neighboring processors [4-7]. Each 
partition boundary entity can have attached to it either 
the complete or the minimal set ofinterprocessor links. 
In the complete set, all the boundary entities store the 
location of the entity on the neighboring processor*. 
Since the lower entities inherit the higher order entity 
adjacency, it is possible to eliminate the interprocessor 
links for entities whose adjacency can be derived from 
higher order entities. This minimal link representation 
has the advantage of reducing the storage needed to 
maintain interprocessor link information. However, 
the minimal representation has the disadvantage of 
complicating the link update procedures when mesh 
regions or partially connected mesh faces are migrated. 
Therefore, a switching mechanism is used to allow for 
both representations to be used disjointly. Figure 7 
shows the minimal representation on a two-dimensional 

* In the context of a nonmanifold representation [18], these links 
represent links to use pairs where the interprocessor boundary is 
treated in the same manner  as a material interface. 
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Processor 1 ~ Processor 2 

1 

Processor 4 : Processor 3 

Fig. 7. [nterprocessor !inks tminimal links). 

example. The minimal representation can be used 
when the Finite Element mesh has become fully static. 
that is, cannot be subject to element migration. 

4.2. Multiple Octant Migration 

When the mesh generation process comes :o a point 
where no face removal can be applied l face removals 
are not applied when needed tree neighborhoods are 
not fully on processor), the tree and associated mesh 
is repartitioned. The migration of octants is key 
to repartitioning once decisions concerning new 
destinations of terminal octants (classified boundary) 
have been made. Multiple octant migration itself relies 
on the multiple migration of partiNly connected mesh 
faces and or mesh regions, the implementation details 
of which can be found in Reference 7. Note that 
multiple mesh region migration is also used in the final 
repartitioning at the region level once the mesh has 
been fully generated. 

Any processor can send anv number of terminal 
octants to another processor. When a terminal octant 
is migrated from one processor to another, the 
partially connected mesh faces not connected to any 
mesh region (these are the mesh faces remaining from 
the given surface triangulation) owned by the octant 
and or the mesh regions that are bounded by at least 
one partially connected mesh face owned by the octant 
are migrated as well. An octant owns a mesh entity 
when it knows about it (has it within its volume) and 
has its centroid within its volume. Note that a partially 
connected mesh face not known by the octant may be 
migrated as part of a mesh region if that region is 
bounded by another partially connected mesh face 
whose owner is the octant. Also, if a mesh region is 
bounded by more than one partially connected mesh 
face known to the octant to be migrated (up to four), 
the ownership is arbitrarily dictated by the first 
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~ c P c  faces to be migrated with octant 

es owned by octant 

Regions to be migrated with octant 

Fig. 8. Octant migration. 

prec 0 proc 1 

�9 -�9 

X 
O, .O 
proc 2 proc 3 

Fig. 9. Example of multiple octant migration. 

partially connected mesh face to be processed (from 
the list of partially connected mesh faces known to 
the octant). Figure 8 shows an example of the mesh 
regions to be migrated within an octant. There is no 
limitation on the octant migrat ion process, in 
particular, any processor can send and receive at the 
same time (note that a processor can even send to and 
receive from the same processor). Figure 9 shows an 
example of multiple octant migration in a four 
processor setting when all processors send and receive 
from all other processors. When the multiple octant 
migration completes, the processor is informed of the 
octants it has received. For each received octant, a list 
of associated mesh entities is also given, basically the 
partially connected mesh faces and/or  mesh regions 
that were sent. 

The primary complexity that rises when migrating 
octants and associated mesh information is the 
absence of a global labeling system for the mesh 
entities. Each processor employs a local labeling for 
the hierarchy of mesh entities that it is assigned. The 

I01 

interprocessor mesh adjacency links maintain the 
required knowledge of the adjacent mesh entities on 
neighboring processors. Although the mesh data for 
a partially connected face is on one processor, the 
octants which refer to that face may be on multiple 
processors. Since the face removal procedure must 
perform geometric checks on all partially connected 
faces known to that octant, the time required to 
perform these operations would be greatly increased 
if the required information had to be fetched from 
neighboring processors. To eliminate this requirement, 
each partially connected face known to an octant will 
either be a pointer to face when the face is actually 
on-processor, or a set of three coordinates when the 
face is stored off-processor. Although this approach 
avoids interprocessor communications, it complicates 
the process of updating references to partially 
connected mesh faces on- and off-processor when 
octants are migrated. Concerning the update of 
processor assignment at the octant level, since the tree 
structure is currently stored on all processors, a 
broadcast is performed to all processors indicating the 
fact that octants have been relocated. 

4.3. Dynamic Repartitioning 

Dynamic repartitioning enables to redistribute the 
toad among processors as evenly as possible at key 
stages of the mesh generation process. The key stages 
are: 

1. at the beginning of template meshing, 
2. at the beginning of each face removal step, and 
3. at completion of the mesh generation process. 

Repartitioning for stages 1 and 2 is done at the 
terminal octant level (1 with respect to terminal 
octants classified interior and 2 with respect to 
terminal octants classified boundary). Repartitioning 
for stage 3 is performed at the mesh region level. The 
strategy is identical for both cases, only the process 
of migrating differs. In the following, it is assumed that 
repartitioning is done at the level of some entity which 
can be either a terminal octant or a mesh region. 

Repartitioning relies on the Inertial Recursive 
Bisection (IRB) method [20] which is a variation of 
the more classic Orthogonal Recursive Bisection 
(ORB) [21]. ORB is a recursive process that bisects 
a set of entities by considering the median of the set 
of corresponding centroids with respect to a given 
coordinate axis. As ORB is recursively called, the 
choice of coordinate axis is circularly permuted 
(x, y, z, x, etc.). Unlike ORB, IRB considers the inertial 
coordinate system (origin is at the center of gravity 
and the three axes are the principal axes of inertia) 
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for the set of entities to be bisected. !n three 
dimensions, the determination of the three principal 
axes of inertia is an eigenvalue problem of order 3. 
Once the inertial coordinate system is defined, the 
coordinates of the centroids are transformed and the 
cut is made at the median with respect to the first 
coordinate. This first coordinate will be the 'key'  
the sorting algorithm described later in this section 
works on. 

The main assumption for performing repartitioning 
in parallel is that the entities are distributed. It is also 
assumed that there is no reason for the number of 
entities stored on processor to be uniform across 
processors. The result of this repartitioning will 
be an equal number of entities per processor. It 
should be noted that, in this context, the goal of 
repartitioning is equivalent to the goal of load 
balancing [4-7, 22, 23]. The key algorithm in IRB 
(and ORB) is the determination of the median for a 
given set of doubles (referred to as 'keys') [24]. With 
respect to this paper, the 'keys' are the first coordinates 
of the entities to be bisected. The method used here 
is to sort the 'keys' and then pick the entry at the 
middle of the sorted list. In this case, efficiently 
performing IRB in parallel can be reduced to efficiently 
sorting in parallel [25]. From the conclusions of a 
paper by Blelloch et aI. [26] which compares different 
parallel sorting algorithms (Batcher's bitonic sort, 
radix sort, and sample sort), it appears that the sample 
sort algorithm is the fastest of the three for large data 
sets. Therefore, a parallel sample sort algorithm has 
been implemented in order to efficiently support IRB. 

Given a set of n 'keys'  distributed on p processors 
(n >> p), a sample sort algorithm consists of three main 
steps: 

1. p -  1 splitters (or pivots) are chosen among the 
n 'keys' 

2. Each key is routed to the processor corresponding 
to the bucket the 'key'  is in 

3. Keys are sorted within each bucket (no com- 
munication) 

The goal of step 1 is to split the set of +keys' into p 
parts (buckets) as evenly as possible and as efficiently 
as possible. The p -  1 spliters which are implicitly 
sorted (say with respect to increasing value) are labeled 
from l to p - 1. All distributed 'keys' below splitter 1 
belong to bucket 0, all distributed 'keys' between 
splitter i (0 < i < p - 1) and splitter i + 1 belong to 
bucket i, and all distributed 'keys' above splitter p - 1 
belong to bucket p - 1 .  Processor i ( 0 _ < i <  p) is 
responsible for the bucket labeled i. In step 2, assuming 
the p - 1 splitters have been found and broadcasted 
to all processors, any distributed 'key'  can tell in which 

bucket it belongs and is rerouted to the processor that 
is responsible for that bucket. At this point, any 
processor has knowledge of all "keys' that belong to 
the bucket it has been assigned to. Step 3 can be 
performed using any efficient sequential sorting 
algorithm, like quicksort [24]. It is clear that the 
parallel efficiency of the sample sort algorithm depends 
on the sizes of the buckets. Parallel efficiency is 
maximal when the sizes of the buckets are near equal. 
A sampling method is used to obtain 'good'  splitters. 
Given the n input 'keys', ps key~ (s is an integer > 1 
called the oversampling ratio) are selected at random 
and sorted typically sequentially. The entries in the 
sorted list of ranks s, 2s . . . . .  (p t ls are the p 1 
splitters. The bound for bucket expansion (ratio of 
maximum bucket size to average) is given in the 
paper by Blelloch et al. [26]. In practice, the 
oversampling ratm should be such that the sorting to 
find the splitters (which is done serially) does not 
become a bottleneck for the global parallel sample 
sort algorithm. For  the purpose of the presented 
repartitioning technique, the oversampling ratio is 
chosen such that ps is of the order of n/p (~/p being 
of the order of the number of 'keys '  to sort In step 3). 

The following pseudo-code shows the process of 
repartitioning using IRB in parallel, tt is ass umed that 
the entities are already distributed on processors. A 
statement of the form for (i = 0; i < n: i+  ~-) { . . .  1 
indicates a loop which gets executed as long as the 
loop variable i which begins at 0 (i = 0) and is 
incremented by 1 upon completion of each pass (i + + 
has a value less than n (i < n). A statement of the form 
while (i < n) { . . .  } indicates a loop which gets 
executed as long as the loop variable i has a value less 
than n (i < n) [16]. Each processor executes the 
following pseudo-code (MIMD): 

1. Associate each entity with a 'key '  structure 
consisting of: 
a. 3 doubles for the coordinates of the entity's 

centroid with respect to the current inertial 
coordinate system (initially with respect to 
original coordinate system) 

b. t integer that indicates on which processor the 
actual entity is stored 

c. t pointer to the entity 
d. I integer that indicates the current processor 

destination for the entity (initially 0) 
2. for (step = 0; step < logzp; step + +) { 

a. to_pid = 0 
b. while (to_pid < p) { 

| Balance the load such that each proc has 
approximately the same number of keys with 
a current destination equal to to pid and 
reroute the keys accordingly 
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0 

} 
J 

+ Get center of gravity for the set of keys with a 
current destination equal to to_pid, find the 
three principal axes of inertia, and apply 
transformation to all keys with a current 
destination equal to to_pid 

�9 Get p splitters among the keys with a current 
destination equal to to_pid 

�9 Determine in which bucket each key with a 
current destination equal to to_pid goes and 
reroute the keys accordingly 
Sort on processor (bucket) the keys with a 
current destination equal to to_pid 

�9 Assign a new destination to any key with a 
current destination equal to to_pid that is past 
the median (to pid + p/2 s*ep+ 1) 
~o_pid = to_pid + 2 l~ 

3. Reroute all keys to the orginating processors 
4. Migrate entities according to the destination 

processor stored at the key level 

5. Parallel Region Meshing 

5.1. Underlying Octree 

At this point in time, the octree is built sequentially 
on a single processor (processor 0). A sequential octree 
building may become a bottleneck when dealing with 
very large meshes. It should be noted that the octree 
building will be accomplished in parallel in the future 
to allow for scalability. 

5.2. Template Meshing of Interior Octants 

Once all terminal octants have been properly 
classified, the terminal octants classified interior are 
partitioned. The parallel application of templates is a 
strightforward process in which there is no com- 
munication required during the process of creating the 
octant level meshes. It should be noted that the 
application of templates to octants sharing the same 
octant face implicitly lead to the same octant face 
triangulation. The finite elements generated in these 
octants are loaded into the processor mesh data 
structure. The interprocessor communication required 
at the end of this step is for the updating of 
interprocessor mesh entity links for mesh entities 
created on the boundaries of interior octants which 
are on processor boundaries. The cost for the 
application of templates is small compared with the 
cost of performing face removals. Therefore, parallel 

efficiency of parallel region meshing is dictated by the 
face removal part only. 

5.3. Face Removal 

Parallel face removal is an iterative process where each 
iteration consists of three steps: 

I. Tree repartitioning at the terminal octant (classified 
boundary) level, 

2. Face removal step, and 
3. Reclassification of terminal octants from boundary 

to meaningless 

The goal of step 1 is to make sure that all processors 
will have an equal amount  of work to perform during 
step 2. It is difficult to predict how much work or, 
more precisely, how many face removals (step 2) any 
processor will perform and the total amount  of effort 
for a particular face removal. However, a terminal 
octant classified boundary is a good unit of work load 
since the set of all terminal octants classified boundary 
approximately corresponds to the domain still to be 
meshed. The difficulty of performing face removals in 
parallel resides in the fact that any face removal 
requires the knowledge of tree neighborhoods. Tree 
neighborhoods of order 0 or 1 are needed at different 
steps of the removal of a given mesh face. If, at any 
point during the face removal, a tree neighborhood is 
not fully on-processor, the face removal is aborted and 
the next mesh face is considered for removal. Once all 
possible face removals have been performed on 
processor, some terminal octants classified boundary 
which used to know about partially connected mesh 
faces (on- or off-processor) are reclassified meaningless. 
As those octants do not now cover any portion of the 
domain still to be meshed, they are now useless (for 
the purpose of face removals) and will therefore not 
influence the next repartitioning. 

Figure t0 depicts the first iteration on a simplistic 
example. In the left-side picture, terminal octants 
classified boundary have been partitioned and each of 
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Fig. 10. Parallel  face removal  (2-d setting). 
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them is assigned to a processor (0 to 3). The right-hand 
side picture shows the current mesh after all possible 
face removals have been performed on processors. 
Shaded areas represent the domain still to be meshed. 

The process of performing face removals and 
repartitioning the tree continues until there are no 
more partially connected mesh faces in the mesh. 
Define the efficiency of the face removal stage as being 
the ratio of the number of performed face removals 
to the number of attempted face removals. After a few 
iterations, the efficiency of the face removal stage can 
be very low because information required to perform 

face removals is almost always off-processor. When 
more than half of the processors have an efficiency 
below some given threshold (25yo), the processor set 
is reduced (by half). 

Since migration of terminal octants only deals with 
those classified boundary and only worries about mesh 
regions bounded by partially connected mesh faces, it 
is very likely that the final mesh will be scattered across 
processors with no real structure. It is therefore 
necessary to repartition in parallel the distributed 
mesh using IRB at the mesh region level with the 
original full set of processors. Figure i 1 shows the 

! i e r ~ a n  1 ~ t c r x )  - 4- / 4- W o r  Itercd6on 2 (~far:) "- / 4 0 r c m a  

I t e rO. iun  4 ( g t a r t )  - 4 / 4 pc~:s : t e r ~ i e n  S ( s t c r z )  - 2 /' + p r e c s  

Rer~ion 8 (~ar~) - ! / @ y ~  ~noi ~ep~rtitlone~ ~esh - #~ 9roe~ 

Fig. tl. Successive face removal iterations and fina] repartitioned mesh for chicktel. 
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Fig. 12. Final repartitioned mesh for connecting rod (4 processors). 

Table 1. Face removal statistics for connectin 9 rod (initially 
21,000 partially connected mesh faces--35,000 mesh regions 
created). 

Procs 1 2 4 
Iterations 1 5 7 
Face removal 1.0 1.9 3.3 

speedup 
Total speedup 1.0 1.8 2.9 

whoie process of parallel face removal on four 
processors. The first 8 pictures display the currently 
partially connected mesh faces after the terminal 
octants classified boundary have been repartitioned. 
Note that iterations 1, 2, 3, and 4 use all four 
processors, iterations 5, 6, and 7 use two processors, 
and iteration 8 uses one processor. The final picture 
displays the final three-dimensional repartitioned 
mesh on four processors. 

Table 1 shows speed-ups for up to four processors 
for a connectin9 rod model (final repartitioned mesh 
on four processors is shown in Fig. 12). Table 2 shows 
speed-ups for up to four processors for a blade model 
(final repartitioned mesh on four processors is shown 
in Fig. 13). The number of mesh regions created 
indicated in the captions corresponds to parallel face 
removal only and does not include template meshing. 
Face removal speed-up indicates speed-up for step 2 
of the parallel face removal procedure. Total speed-up 
indicates speed-up for all steps (1, 2, and 3). In that 
case, the first repartitioning (iteration 1) is not counted 
since it can be considered an initial partitioning step. 
Note that the time taken to perform the first 
repartitioning depends on the size of the problem and 
not the number of processors. If the number of 
processors is one, the speed-up is by definition set 
to 1. It should be noted that speed-up on p processors 

Fig. 13. Final repartitioned mesh for blade (4 processors). 

Table 2. Face removal statistics for blade (initially 35,000 
partially connected mesh faces--60,000 mesh regions 
created). 

Procs 1 2 4 
Iterations 1 5 8 
Face removal 1.0 2.0 3.2 

speedup 
Total speedup 1.0 1.9 2.8 

is defined as the time spent by the 'best '  sequential 
version of the algorithm divided by the time spent by 
the parallel version of the algorithm running on p 
processors [25]. If there is no or little difference 
between the sequential algorithm and the parallel 
algorithm running on 1 processor (which is true here), 
the speed-up can be simply defined as the time spent 
by the parallel version of the algorithm running on 1 
processor divided by the time spent by the parallel 
version of the algorithm running on p processors. The 
procedure demonstrates near-perfect speed-ups for 
two processors and ' good '  speed-ups for four 
processors. 

6. Closing Remarks 

This paper has presented a method to mesh objects 
in three dimensions for operation on MIMD parallel 
computers. The parallel efficiency of the overall 
method is dictated by the performance of the parallel 
face removal stage. It is difficult to predict adequately 
the amount  of work a processor will perform and to 
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balance the load properly. This conditions speed-up. 
The parallel face removal stage shows promising 
speed-ups (up to four processors). There is, however, 
still work to be done to ensure a better load balance 
and even better speed-ups. At the moment, the tree 
structure is stored on all processors. Scalability 
(memory wise) will require the tree to be distributed. 
Also, the tree building procedure and related tasks are 
performed serially. Tree related nonscalable tasks are 
being worked on and will be solved in the near future 
to have a fully scalable region meshing algorithm. The 
problem of meshing model edges and surfaces has not 
really been addressed here since the techniques used 
in region meshing can be applied in these contexts. 
Edge and face meshing will be presented in the near 
future as a complement to the region meshing 
procedure. 
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