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Abstract, This paper presents an investigation o.1(" interactive 
adaptive techniques for nonlinear finite element structural 
analysis. In particular, effective methods leading to reliable 
automated,finite element solutions of nonlinear shell problems 
are of primary interest here. This includes automated adaptive 
nonlinear solution procedures based on error estimation and 
adaptive step length control, reliable finite elements that 
account for finite deformations and finite rotations, three- 
dimensional finite element modeling, and an easy-to-use, 
easy-to-learn graphical user intoface with three-dimensional 
graphics. A computational environment, which interactively 
couples a comprehensive geometric modeler, an automatic 
three-dimensional mesh generator and an advanced nonlinear 
,finite element analysis program with real-time computer 
graphics and animation tools, is presented. Three examples 
illustrate the merit and potential of the approaches adopted 
here and confirm the feasibility of developing fully automated 
computer aided engineering environments. 

Keywords. Adaptive mesh refinement; Adaptive solu- 
tion procedures; Graphic visualization tool; Interactive- 
adaptive integrated system; Nonlinear finite element 
analysis; Rezoning; User-interface 

1. Introduction 

Since the development of the first 'general purpose' 
finite element (FE) computer programs in the 1960s, 
the finite element method (FEM) has become the 
main tool in computational structural mechanics 
(CSM). The success of the method is manifested 
by the number of program packages available (more 
than 500 [1]), the number of FE users (more than 
20 000 [2]), and the amount of money spent on finite 
element analysis worldwide (more than $500 million 
annually [2]). 

The computing environment has changed signifi- 
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cantly since this tool's inception, when batch processing 
on stand-alone computers was the norm. Today, the 
users have access to a network of almost unlimited 
hardware resources; processors, memory, mass storage, 
graphics and other I/O devices. Some of these 
resources are collected into platforms specialized in 
certain functions: (1) Supercomputers or mini-super- 
computers with relatively few (less than i00) complex 
high performance processors for computationally 
intensive operations, (2) mainframe-type computers 
with many processors that support a high level of 
parallelism (more than 1000 processors), for large 
problems that may be split into smaller problems, and 
(3) high-powered personal workstations for data 
generation, component analysis, graphic visualization 
and coarse grained distributed processing. Regardless 
of the program or the problem being solved, a finite 
element analysis (FEA) involves the following three 
main steps: 

(1) FE modeling including geometry definition, initial 
mesh definition, prescription of loads and bound- 
ary conditions, definition of element and material 
properties, problem setup and output requests. 

(2) FEA which involves assembly of element contri- 
butions and solving a resulting set of linear 
equations. 

(3) Result generation which involves compilation and 
presentation of the results of the analysis in a form 
which is meaningful and provides insight to the 
analyst. 

The steps (1) and (3) are usually referred to as the 
~pre- ' and 'post-processing' steps respectively. These 
steps are today usually carried out in separate 
programs tailored with special capabilities for building 
FE models and reviewing analysis results [3, 4, 5]. 

In order to carry out nonlinear analysis of complex 
problems, the FEA module (step 2) has to include a 
complete suite of capability tools including; full 
treatment of nonlinear statics including bifurcation 
and post-buckling, linear and nonlinear transient 
dynamics, random vibration and natural frequency 
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response, a complete set of elements and material 
models accounting for finite rotations and finite 
deformations. In order to exploit the current hardware 
and obtain computational efficiency, the inner-loops 
in the FE calculations should be vectorized as well as 
parallelized [6, 7]. Recent advances in sparse matrix 
technology should also be incorporated in order to 
reduce the CPU and storage costs during the equation 
solving [8, 9]. 

This paper presents an investigation of interactive- 
adaptive methods for nonlinear finite element analYSiS 
(NFEA) of complex structural problems. 'Interactive- 
adaptive' methods are those in which the FE model 
and the algorithmic parameters are automatically 
selected or changed by the program or the user during 
the analysis itself. Large-scale NFEA of such prob- 
lems, calls for supercomputer power in combination 
with supergraphical three-dimensional (3D) real-time 
graphics in order to be carried out interactively. 

The use of interactive real-time graphics in NFEAs 
has heretofore been mainly restricted to the 'pre- ' and 
'post-processing' steps, respectively. Although inter- 
active graphics in these steps represents a significant 
improvement in productivity over earlier techniques, 
in which these steps were performed manually, it 
does not address the process of the NFEA (step 2) 
itself. The division of a NFEA into three distinct steps 
may be appropriate for the way a NFEA usually is 
carried out today, for which step 2 is carried out as 
batch jobs. However, for an adaptive NFEA these 
three steps have to be tightly integrated, in that typical 
functions of the 'pre-' and 'post-processing' steps 
have to be performed during the analysis itself. 

Traditional NFEA based on a batch approach, 
requires globally convergent soIution algorithms that 
are self-adaptive and handle computational difficulties 
(bifurcation, limit and turning points, zero pivots, etc.) 
without diverging or spending an excessive amount of 
computer time. Even though the emerging automatic 
and self-adaptive solution algorithms [10, 11] improve 
the efficiency and the convergence of a NFEA, they 
do not overcome the difficulties completely. Moreover, 
conventional batch procedures, even when applied 
successfully, do not actively promote the understanding 
of the nonlinear structural behavior. In addition, all 
batch procedures, self-adaptive or not, cannot compete 
with interactive procedures in a CSM research 
environment where new algorithms, elements, mate- 
rial models, equation solvers and other computational 
strategies are being developed and tested. 

In this work, some new concepts of interactive- 
adaptive analysis of nonlinear structural problems are 
studied, developed and implemented in an integrated 
system. Section 2 gives a description of a computa- 

tional environment tailored for interactive-adaptive 
NFEA. This section is followed by a presentation of 
the basic steps involved in an adaptive nonlinear 
solution procedure. In particular this study focuses on 
an h-adaptive version of the FEM applied to nonlinear 
shell analysis. The paper also examines easy-to-use, 
easy-to-learn graphical techniques as means to moni- 
tor the results and to intervene and control the 
adaptive analysis in real computing time, In Section 
3 a practical implementation of an integrated system 
that takes advantage of both a supercomputer and a 
supergraphic workstation in a heterogeneous distri- 
buted environment is presented. The possibilities for 
interactive-adaptive nonlinear analyses are also 
presented. These analyses are carried out through a 
seamless integration of an automatic 3D mesh genera- 
tor, a highly modular general purpose nonlinear FE 
program, and a high-performance visualization tool. 
This Section is co~cluded by some examples that 
illustrate and evaluate these techniques in h-adaptive 
nonlinear analysis of three shell type problems. 

To a certain extent the investigation of this paper 
is related to the available hardware configuration at 
the Department of Structural Engineering at the 
Norwegian institute of Technology (NTH). The 
typical graphical workstation considered here must be 
able to visualize color 3D analysis results in real 
time. In order to give a realistic on-screen representa- 
tion. an Iris Indigo XZ with a 19inch (1280 x 
1024) monitor, 64 MByte RAM and 24 Bits graphics 
with 24 Bits Z-buffer from Silicon Graphics Computer 
Systems has been considered in this study. For small 
to moderately sized nonlinear shell type problems. 
which typically consist of lesa than 10000 degrees of 
freedom, the analysis program may be executed 
locally on the workstation, Larger problems are 
currently being analyzed as distributed tasks at other 
workstations in our network or on a CRAY Y- 
MP 464, thal is located at NTH in Trondheim. 

2. Conceptual Description of a 
Computational Environment for an 
Interactive-Adaptive Integrated System 

Developmen~ of an imera~tive adaptive integrated 
system for NFEA requires a combination of a variety 
of computer tools. These tools should provide the 
following basic functions: 

(1) A visually menu-driven easy-to-use, easy-to-learn 
user interface that controls all functions of the 
integrated system. 

(2) A 3D geometric modeler in which the complete 
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geometry, the material properties, the boundary 
conditions and the loads can be built up quickly 
and easily. 

(3) An automatic 3D mesh generator that effectively 
and efficiently can create a FE discretization for 
all kinds of structures. 

(4) A geometry database that is precisely and effect- 
ively linked to the geometric modeler and the 
mesh generator. 

(5) Support for NFEA through form-driven analysis 
setup. 

(6) Interactive communication with a highly modular 
NFEA program allowing the user to intervene 
and modify the algorithmic parameters as well as 
the FE model during the analysis itself. 

(7) Distributed processing taking advantage of the 
most suited hardware at any time. 

(8) A 3D color graphic visualization tool that is 
seamless wired to the user interface and communi- 
cates with the analysis program interactively. 

(9) Plotting-functions for monitoring the development 
of time varying results, characteristic analysis 
parameters and convergence statistics for the 
solution process. 

2.1. User Interface for the Integrated System 

The user interface should provide a complete CSM 
problem-solving environment that integrates the typical 
'we-processing' functions, which include geometry 
definition, initial mesh definition, prescription of 
boundary conditions and loads, with problem setup, 
execution control and advanced real-time visualiza- 
tion. To use an analogy, we may imagine the 
structural engineer as being in the 'driver's seat' 
relative to his computing environment, in which 3D 
visualization of the physical problem, real-time 
animation, and color will create for him a virtual 
reality of the physical problem that is simulated 
numerically. The user should also be able to converse 
with the system in several engineering 'jargons' and 
at several levels of expertise. 

To provide a user friendly system, the user interface 
must be intuitive and easy-to-use and common for the 
whole system, such that it is also easy-to-learn. The 
user interface should also provide a menu system that 
guides the user through all operations. A beginning 
or occasional user should be able to access the system 
through 'short' tailored menus to simplify the selec- 
tion of options available in the system. At the same 
time an experienced user should have the possibility of 
accessing the full menus or even bypass the menus 
by typing commands directly. The user interface 
should also provide an on-line help system. This 

help system should preferably contain examples that 
illustrate how the different features of the system can 
be used. 

Another important requirement is that the user 
interface should be built around a standard that is 
supported on most hardware platforms. 

2.2. Geometric Modeling 

In performing a FEA, today's computer aided engin- 
eering (CAE) analyst typically consumes a significant 
amount of time on model construction [12]. Reducing 
model generation time is therefore a key issue for 
increasing the productivity. In contrast the design 
engineer has benefited significantly from computer 
aided design (CAD) systems. By integrating the 
geometric modeler with the FE modeler similar 
benefits may be provided to the CAE analyst. It is 
important to note that the term CAD used in this 
context, refers to a full function solid modeler based, 
computer aided design system [13]. In such a system, 
it is imperative that wireframe, surface, and solid 
modeling tools coexist, to allow for dimensional 
reduction. 'Dimensional reduction' refers to the 
representation of a thin solid by a surface, or 
a long and narrow solid by a wireframe entity. 

A NFEA model consists of a FE mesh, loads, 
boundary conditions, material properties, and solu- 
tion algorithm control parameters. Traditionally the 
functional assignment (loads, boundary conditions 
and material properties) are applied to nodes and 
elements. However, in an automated adaptive process 
the functional assignments should be moved from the 
FE model to the geometry. As a result, when the user 
or the adaptive algorithm changes the FE model, the 
often complex array of functional assignments need 
not be recreated, but automatically passed to the 
underlying FE model. 

Perhaps the greatest advantage of geometry based 
attributes relates to the natural and intuitive improve- 
ment in the way the analysts think about physical 
systems that they are attempting to simulate. By using 
geometry based features, the analysts can begin to 
focus on the essential nature of the physical problem 
at hand, rather than get lost in the details of how to 
transform the physical problems into a FE model. 

2.3. Automatic Mesh Generation 

Traditionally, an automatic mesh generation system 
is a system which given sufficient and unique geometry 
is capable of producing a valid FE model without 
user intervention [14]. This definition is necessary, but 
not sufficient to convey the intrinsic concepts of 
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automatic adaptive mesh generation based on error 
estimation. However, the definition does point out the 
complete reliance on geometry of the automatic mesh 
generation system. The geometry must contain all the 
information necessary to produce the FE model. In 
addition the mesh generator must also provide 
capabilities for automatic modification of mesh 
density and element shape such that, e.g., an analyst 
can begin with a coarse mesh and allow adaptive 
meshing to refine the model only in areas where more 
elements are needed for accuracy. 

There has been a significant amount of work done 
in the field of automatic mesh generation based on 
automatic modification of mesh density. A survey of 
different approaches for unstructured grid generation 
has been presented by Shephard [15]. One of these 
approaches is the method advocated by Peraire et aL 

[16], the advancing front method. Another successful 
approach is the finite octree technique, presented by 
Shephard and Georges [17]. 

2.4. Geometry Databases 

A single geometry database that is common for the 
CAD system, used to construct the geometry and to 
create the functional assignments, and the automatic 
mesh generation system, is one of the major techno- 
logical components of an integrated system. By letting 
the mesh generator access the geometry database 
directly, the need to translate, transfer or recreate 
the geometry is eliminated. Since prescribed loads, 
boundary conditions and material properties all work 
directly on the CAD geometry, they may be passed 
directly from the common database to the FE model 
without any transformations. An example of a standard 
for engineering data exchange is the STEP standard 
(Standard for the Exchange of Product model data) 
[18, 19]. Another standard is IGES (Initial Graphics 
Exchange Specification) which was developed in the 
USA and is used for the exchange of engineering 
drawings and geometry throughout the world. 

2.5. Analysis Setup for NFEA 

The user interface should integrate the NFEA program 
by providing a direct interface where the user could 
create all necessary input that is needed for a 
nonlinear analysis. After the user has selected the 
analysis type (linear or nonlinear, static or dynamic, 
time domain or frequency domain, random or deter- 
ministic, transient or steady state, etc.), the user should 
only be requested information that is necessary for the 
selected analysis job. The user interface should 
function as an intelligent user interface providing 

expert advice on standard practice, such that it can 
lead a user through the complete analysis setup and 
provide default values for each possible ichoice in the 
menus. The user interface should include checks on 
incomplete or inconsistent data input, such that errors 
could be detected interactively and the user will be 
notified before the analysis starts. 

In addition this part of the user interface should 
also include capabilities for creating and verifying 
(through, e.g.; interactive visualization ) nonlinear 
loads, nonlinear boundary conditions, nonlinear 
material models and the mathematical discretization 
model (element type; e.g., Mindlin/Reissne r or Kirch- 
hoff type plate theory, linear or quadratic element, etc:). 

2.6. Interactive Communication with the NFEA So~ver 

No matter how automated the process becomes, 
simulation using the FEM is still an approximation 
of a real world problem. Fundamental simplifications 
and assumptions are thus needed throughout the 
numerical simulation. Experience and expertise is 
required to select an idealized mathematical model for 
the physical problem at hand. Adaptive meshing 
through error estimation provides guidance and 
automation of mesh density. However, it must be kept 
in mind that engineering insight is irreplaceable in the 
process of numerical simulation of a complex struc- 
tural problem. Consequently the CAE monitor should 
provide interactive communication with the  NFEA 
program in real computing time throughout the whole 
analysis, such that the analyst at any stage of the 
process can: 

(1) Monitor any results he wants. 
(2) Control the flow of the analysis. 
(3) Change any parameters that he wants (e.g., 

analysis type, step length, convergence tolerance, 
discretization error tolerance, etc.). 

(4) Modify the problem definition (e.g., element type, 
loads, boundary conditions, material models, etc.). 

2.7. Distributed Processing 

A CAE environment of the 1990's shouId be able to 
take advantage of more than one computer system in 
order to produce a result. However, there must be 
some good reasons why one should use more than 
one computer system to tackle a problem. To a 
computer scientist, simply being able to do such a 
thing may be good enough reason. But, for a 
structural engineer, the following may be considered 
as reasons: 
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(1) Distributed processing can improve turn-around 
time. 

(2) Some computer systems have specialized hardware 
that makes them ideal for some tasks, but 
undesirable for others. 

(3) A computer system may simply not be capable of 
solving all aspects of our problem. 

(4) There may be economical reasons to utilize more 
than one computer system. 

While this list by no means is meant to be complete, 
it does cover the two main reasons of why distributed 
processing is desirable; time and money. 

An interactive-adaptive nonlinear structural analy- 
sis of a complex problem may take a lot of computing 
time. If the problem takes too long a time (wall clock 
time) to be run on a local node, distributed processing 
may be the only solution. In general as a rule of 
thumb, a distributed task should be done at least five 
times faster on the distributed node as compared 
with the local node, before it is distributed. However, 
this general rule of thumb does not apply to this 
special case. In designing the 'total system', the 
following goals should be kept in mind: 

(t) Take advantage of distributed processing (e.g., 
computational power of a supercomputer) for the 
task of running the analysis program only. 

(2) Take advantage of the local node (e.g., a graphics 
workstation with hardware graphics) for running 
the user interface and the visualization software. 

(3) Minimize the network traffic by utilizing high 
level communication between the distributed 
processes (e.g., between a workstation and a 
supercomputer) and by distributing the data in an 
optimal manner. 

2.8. Graphic Visualization Tool 

The graphic visualization tool should be seamless 
wired to the user interface and have direct access 
to the FE model and results in real computing time. 
The visualization toot should include capabilities 
for real-time visualization of 3D color graphics, 
which includes animation of models or results in 
combination with a variety of display options. 

Since communication is the most fundamental com- 
ponent in distribution processes, the visualization tool 
should accept communication on different levels, e.g., 
TCP/IP socket level communication, direct piping 
and communication through files. This makes it 
possible to carry out real-time visualization as well as 
a posteriori  animation of results stored on files. 

In order to carry out visualization of 3D color 
graphics in real computing time, the visualization 

software should take full advantage of any available 
hardware graphics on high performance workstations. 
A powerful visualization tool should also allow for 
easy access to rotation and zooming to enable the user 
to get an overall picture as well as to identify critical 
information immediately. 

2.9. Plotting Functions for Time Varying Results 

In order for the analyst to interpret the analysis 
correctly, results developed during the simulation 
must be presented in an understandable form. In 
addition to 3D color graphics, the user interface 
should include capabilities for: 

(1) Two-dimensional function plotting for time vary- 
ing results together with user defined functions. 

(2) Three-dimensional function plotting across model 
geometry. 

(3) Data manipulation capabilities that combine 
and/or manipulate results via predefined mathe- 
matical functions before presentation. 

(4) Selective sorting and tabular reporting of results. 
(5) Numerical and visual reporting of selected solution 

control quantities (e.g., the number of iterations 
spent per load step, the displacement, force and/or 
energy norms, convergence norm during itera- 
tions, current iteration number, load step number 
and time, etc.). 

3.  S o l u t i o n  P r o c e d u r e s  

The governing equilibrium equation of a noniinear FE 
problem is often written compactly as 

R(2, r) -- 0 (1) 

where R(2, r) denotes the residual force vector at a 
certain configuration represented by a load level 
parameter, 2, and a vector of nodal displacements, r. 

The goal of a nonlinear solution procedure is thus 
to solve (1) for the unknowns, r, within a certain range 
of the load parameter, 2. This is usually done through 
incrementation and equilibrium iterations, and is 
based on a linearized version of (1), which reads 

K Ar - P A,~ = R(L  r) (2) 

d I i) R(2, r) where K = ~ = o R ( 2 ,  r |  and P =  

are respectively the tangential stiffness matrix and the 
tangential load vector. 

For a fixed value of 2 and r, Eq. (2) is a linear system 
of equations consisting of ndof equations, but ndo~ + 1 
unknowns. It is therefore augmented by an additional 
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Fig. 1. Algorithmic overview of the adaptive nonlinear solution procedure. 

constraint equation relating the load increment, A2 
and the displacement increment Ar. Several alterna- 
tives exist for this additional constraint. Herein, it is 
taken as 

liAr [I 2 + AZ 2 = As z (3) 

where As is a prescribed increment in the arc-length 
of the generalized load-displacement curve. Using Eq. 
(3) results in a solution procedure commonly known 
as the arc-length method E20, 21]. 

3.1. Adaptive Solution Procedure 

In linear FEA, adaptivity is usually introduced 
through a mesh refinement iteration loop on top of 
the solution algorithm itself. That is, the FEA is 
performed on successively refined meshes until the 
prescribed tolerance requirements are satisfied. The 
mesh refinement is guided by element level error 
indicators which reflect the distribution of the error 

over the FE mesh. This concept may be employed in 
NFEA as well. However, due to their incremental 
nature, adaptive nonlinear solution procedures should 
have the mesh refinement iteration loop on the load 
step level. 

Figure 1 gives an algorithmic overview of an 
adaptive nonlinear FE solution procedure based on 
standard incremental- i terat ive methods. Here, s 
denotes some solution dependent state variables, e.g., 
the stresses, i is the load step counter, k is the iteration 
counter and m and n are mesh counters 

After convergence has been obtained on a certain 
load step, an error estimation is performed before con- 
tinuing on the next load step. However, if the prescribed 
error tolerance is violated at a certain load step the 
normal execution is halted and the FE mesh is refined 
based on the computed elemental error indicators. 

Before the solution procedure continues with the 
new mesh, the values of the state variables must be 
transferred from the old to the new FE mesh. This 
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process is in the literature known as rezoning and is 
discussed in some more detail below. Note that it is 
the results of the load step just before the one that 
violated the error tolerance that should be transferred, 
since these are the latest results with acceptable error. 
The load step counter, i, is therefore decremented by 
one. This load step is then recalculated by means of 
equilibrium iterations with the new FE mesh and the 
solution procedure resumes normal execution starting 
with the load step that triggered the mesh refinement. 
Note that if the error violates the prescribed tolerance 
in the first or the second load step no solution transfer 
is needed. In these cases the analysis is restarted from 
the beginning on the first load step with the new mesh. 

The term 'Refine mesh' in Fig. 1 is assumed to cover 
mesh coarsenin 9 also. The ability of mesh coarsening 
is perhaps even more important in NFEA than in the 
linear case, since the optimal computational model 
may change during a nonlinear analysis as a result of 
the 'time variation' of the applied loads, or due to 
geometric changes in large deformation analyses. A 
region of the mesh that has been refined at an early 
stage of the analysis may thus become less critical on 
a later stage. The refinement procedure should then 
be able to change to a coarser mesh in this region in 
order to provide the most economical analysis. 

In the predictor step indicated in Fig. 1, a first 
estimate of the load parameter increment, A21 ~ and 
the displacement increment, Arl ~ are first determined 
and then the state variables are updated through 
210) = ":oi- 1 + A)ol ~ and rl ~ = ri_ 1 @ Arl ~ The dis- 
placement increment Arl ~ is found by solving the 
linearized equilibrium Eq. (2) at the previous computed 
configuration, i.e., 

Ar~~ = A)4~176 ~I ~ (4) 

where i = K - I P  and ~ = K-1R are respectively the 
tangential and residual displacement vectors. The load 
increment A21 ~ is found by imposing the arc-length con- 
straint (3) on the incremental displacement (4), while 
neglecting the residual ~I ~ This leads to an expression 

A,~lo~ = _+ As~ (5) 

J 1 + ndofi l]~lO)ll2 

The arc-length increment of the first load step, Asx, 
is determined by specifying A2(1 ~ and then using the 
inverse of (5). For the succeeding load steps, the 
arc-length increments are adapted based on the 
number of iterations spent on the previous steps in 
order to obtain convergence, i.e., 

[.,-1 
A s  i :-- i t e r  Asi_ (6) 

d 1 
"~ /7 iler 

where nlter iS the number of iterations spent on load 
step i, and naer denotes the desired number of 
iterations per step. 

The sign of A21 ~ may be determined based on the 
characteristics of the tangential stiffness matrix, K, or 
alternatively by claiming that the current predictor 
step must form a positive dot-product with the 
previous predictor step. Note that the Euclidean norm 
of the tangential displacement vector in (5) is scaled 

by the factor 1,/~dof to account for a varying number 
of degrees of freedom during the analysis. If this 
scaling factor is omitted, the use of (6) will result in a 
too small step size in the first load step after a mesh 
refinement, since Jl~ H typically grows with increasing 
number of degrees of freedom. 

The equilibrium iterations (often referred to as the 
corrected step) consist of determining iterative correc- 
tions 321 k) and c~rl k) which update the state variables 
t h r o u g h  ~J~l k) : )~I k- 1) _}_ (~}~Ik) and r} k) = rl k- 1) @ (~rlk). 

The displacement correction is determined in a similar 
way as for the predictor step, i.e., 

8rl k)= 6)ol~)~!k) + ~'I k) (7) 

The load parameter correction, c521 k), may be deter- 
mined by utilizing the constraint equation (3), either 
directly [22J or in a linearized form [23]. Herein, 
however, we use an orthogonal trajectory method 
[24], where the idea is to claim that the iterative 
correction (Srl k), 821 k)) should be orthogonal to the 
current tangent (~I k), 1), i.e., 

a,~?, 3 ( l 3 = 0 (8) 

When combined with Eq. (7) this orthogonality 
condition results in 

821 k) - (9) 
1 + I1~I ~) [I 2 

The main advantage of this approach compared to 
methods based on the arc-length constraint (3) is that 
there is no need to calculate the updated displacement 
increment Arlk)= Arlk-1)O6rl k). This is essential 
when considering the restart of the solution procedure 
on a new mesh after a mesh refinement has been 
performed. In these cases the initial displacement 
increment, Ar~ ~ on the new mesh is unknown since 
the predictor step then is represented by the solution 
transfer operation. 

3.2. Error Est imat ion 

The spatial error in the FE solution at a certain 
load step is herein estimated by the widely used 
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Zienkiewicz-Zhu [24] error estimator. This simple 
estimator is based on comparison of the FE stresses, 
s h, which are typically discontinuous across the 
element interfaces, with a recovered continuous stress 
field, s*. The error is measured on the element level 
through an energy norm expression of the form 

"~ = Se) C (s e - Se ~) dg) (10) !le*ll~ ~ ( s * -  ~T , , 
e 

where C is the constitutive matrix and ~e denotes the 
element domain. An estimate of the global error i n  
energy norm is then obtained by summation of the 
local elemental contributions 

ncl 
I[e*ll g 2 , , 2  = Ilee lIE (11) 

e=l 
where nel denotes the number of elements. 

For the example problems presented in this paper, 
the stress recovery is based on a global least squares 
fit projection of the FE shell stress resultants onto a 
set of C o continuous interpolation functions [26]. 
However, we are currently working with alternative 
recovery procedures for shell problems based on the 
superconvergent patch recovery technique [27, 28] 
and plan to present results with such methods in 
future publications. 

3.3. Adaptive Mesh Refinement 

Output  from the error estimation procedure is a 
refinement indicator for each finite element telling 
how much the size of that element should be reduced 
(or increased) in order to obtain the optimal mesh 
meeting the desired accuracy. In our work we use the 
refinement indicator 

(~e ~_ Q~ ~ /~elHeeg H2 ~l/p 
h 2 (12) 

line lie + I[e~*ll2J 

where p is the polynomial order of the finite element 
type used, Ii Ue h II E is the energy norm of the FE solution 
(the strain energy), and r/p is the permissible relative 
error in energy norm. Expression (12) is obtained by 
assuming that the error has a rate of convergence 
equal to p and by claiming that the global error being 
equally distributed among the elements in the optimal 
mesh [25, 29]. If the characteristic size of an existing 
element is h e , the size of the new elements in the region 
covered by that element should then be 

he 
h~w = q5 ~ (!3) 

When the estimated global error is higher than the 
permissible error, the analysis program halts at that 

load step and passes the control to the mesh generator 
that will generate a new mesh guided by the computed 
refinement indicators. 4~e. That ~s, in regions where 
q)e > 1 the mesh is refined whereas in other regions 
with q)e < 1 the mesh is coarsened or de-refined. 

In the present investiga6on an anstruct ured meshing 
approach based on the finite octree technique [ I7 ]  is 
used for the generation of meshes with triangular shell 
elements. When quadrilateral elements are desired, a 
conversion of the triangular mesh into a quadrilateral 
mesh is performed at the end 

Mesh refinements and de-refinements are carried 
out by complete regeneration of the whole mesh. The 
element level refinement indicators are first mapped 
onto the underlying octree and the old FE mesh is 
removed. The octree is then refined 'de-refined accord- 
ing to the refinement indicators and a new mesh is 
created based upon the refined octree. For further 
details about this mesh generator, the interested 
reader should consult Reference 17. The refinement 
de-refinement procedures are fully described in Refer- 
ence 30. 

3.4. Solution Transfer Between Finite Element Meshes 

An impor tam but crucial step of an adaptive nonlinear 
solution process is the transfer of solution variables 
from the old mesh to the new mesh after a mesh 
refinement. Basically, this consists of the following 
four steps, of which the first three are illustrated in 
Fig. 2. 

1. Define the state variables in the old mesh (i.e., the 
mesh from which the solution is to be transferred) 
by means of discrete variables located at the nodes. 
i.e., convert the element-wise quantities into the 
nodal ones. 

2. For  each node in the new mesh il.e., the mesh to 
which the solution is to be transferred), interpolate 
values of the state variables at that node based on 
the nodal values of the old mesh. 

3. Evaluate the necessary integration point values 
(including assumed strain poim values for elements 
having such points) of the state variables for each 
new element by interpolation of the nodal values 
of the new mesh. 

4. Perform equilibrium iterations on the new mesh to 
ensure that the transferred solution is in equlibrium 
with the external load. 

The first step is trivial for geometrically nonlinear 
analyses where only the displacements and stresses 
need to be transferred. The displacement field is 
already defined through its nodal values from the 
FE solution itself, whereas nodal stress values are 
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b) 
[ 

c) 

o nodal point of the new mesh 

o nodal point of  the old mesh 

�9 integration point 

�9 assumed strain point  
Fig. 2. The first three steps of the solution transfer process; (a) definition of nodal values in the old mesh, (b) calculation of nodal values in 
the new mesh, and (c) evaluation of integration (and assumed strain) point values. 

computed by the stress recovery procedure needed in 
the error estimation process. 

The second step of the solution transfer process is 
perhaps the most critical one when considering curved 
shell problems. Interpolating field variables from the 
old mesh to the new mesh requires a point in the new 
mesh to be associated with the element in the old mesh 
that contains the same material point. This is realized 
through an element search procedure in which an 
element in the old mesh that matches the location of 
the point in the new mesh is determined. Since the 
element shape functions are used to define the 
interpolation function of the field variables, a para- 
metric inversion is needed to find the local parameters 
of the point with respect to the element in the old 
mesh it resides in. Full details on the second and third 
step of the solution transfer operation is given in 
References 30 and 31. 

The equilibrium iterations that constitute the final 
step of the solution transfer operation are similar to 
those used in the original incremental-iterative 
procedure, but with one important modification. 
Recall that the tangential stiffness matrix, K, of a 
nonlinear FE problem is obtained through consistent 
linearization of the internal virtual work, and may 
formally be defined through 

= fn {6e:C:Ae + A(c~e):s} dfZ (14) &rK Ar 

where e and s are respectively the strain and stress 
tensors and C is the fourth order material tensor. The 
second term in the right-hand side of Eq. (14) 
represents the geometric stiffness and depends directly 

upon the current stress state s. Following a standard 
procedure these stresses are calculated based on the 
current displacement state. In the first iteration cycle 
after a remeshing this means the displacement field 
that is transferred from the old mesh. However, the 
present study has revealed that these stresses often are 
spuriously high, leading to erroneous geometric 
stiffnesses and failure of the iteration procedure. 
Therefore, we also transfer the recovered stress field, 
s*, onto the new mesh and use these stresses in the 
geometric stiffness calculation in the first few iteration 
cycles. 

4. Design, Implementation and Examples of 
an Interactive-Adaptive Integrated System 

To verify the practical feasibility of the concept 
discussed in this paper, a fully integrated interactive- 
adaptive system has been designed and implemented. 
The adaptive nonlinear solution procedure presented 
above has been implemented in a fully vectorized 
version of the general purpose nonlinear FE program 
FENRIS (Finite Element NonlineaR Integrated Sys- 
tem) [6, 32]. This program has a highly modular 
structure which allows for combination of different 
types of integrated nonlinear analysis, with particular 
capabilities for offshore structures. In order to 
improve the computational efficiency, a true sparse 
matrix solver has been implemented within FENRIS 
as another part of the present investigation [_8, 9]. 

The developed interactive-adaptive environment 
for NFEA is based on full coupling of the extended 
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Fig. 3. Overview of the adaptive nonlinear FE analysis system. 

version of FENRIS,  the Finite Octree mesh generator 
[17], a high performance 3D visualization tool 
GLview [33] and a Motif-based graphical user 
interface FENRIX (Finite Element Non l inea r  Inte- 
grated X-environment) [34], see Fig. 3. FENRIS  and 
Finite Octree communicate through a well-defined 
interface, the SESAM Interface File format  (SIF) [35], 
while GLview is compatible with the MOVIE.BYU 
file format. The communication between FENRIS and 
the user interface F E N R I X  is based on socket 
communication while between GLview and FENRIX 
it is based on UNIX piping. The data are transferred 
exclusively as pure ASCII text. Therefore, no extra 
data translation is needed when FENRIX and FENRIS 
are run on different hardware platforms. Most of the 
FE software and the mesh generator used herein is 
written in FORTRAN,  while the user interface is 
implemented in C. 

The main window of the Motif-based graphical user 
interface is presented in Fig. 4. On the right-hand side, 
six different windows are designed to monitor  the 
performance of the solution process. The upper 
window shows the actual convergence norm versus 
the iteration number computed during current load 
increment. The prescribed convergence criterion is 
indicated in the same window as a full-drawn hori- 
zontal line. During the i teration process, many  
complex problems need to be closely monitored and 
have certain parameters adjusted in o rder  to assure 
stability, convergence and good performance. By 
monitoring the performance of the convergence 
process an experienced user may interactively adjust 

the needed parameters to achieve better stability and 
speed up the solution process. 

The second window from upper right, shows the 
number of Newton-Raphson  iterations spent per load 
step. This information is crucial m order to select the 
most appropriate  time/toad step as the solution 
process develops. The next window shows the develop- 
ment of the total strain energy computed based on the 
FE stress field (Strain) and the recovered stress field 
t Smoothed) during the solution process, as well as the 
development of the estimated global error measured 
in the energy norm (Absolute and Relative). The user 
may select one or more of these quantities to be 
presented by simply pushing the "push but tons '  in this 
window. 

The fourth control window is used to plot certain 
time varying quantities tsuch as displacement or 
reaction force components in specified points, etc.) 
versus time or any other time varying quantity. Up 
to six quantities may be momtored simultaneously. 
The fifth window contains information on current 
iteranon number, load step number and toad level. 
The last window simply shows an estimate of execu- 
tion time (CPU time) relative to the iteration, load 
step and total solution time. respectively. 

Each user may want to moni tor  different param- 
eters. The control windows have been designed such 
that each user may customize his own environment 
by simply hiding any (or even alt) of the contro] 
windows in order to increase the work space for the 
other windows. 

The upper left window, the image window, is 
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Fig. 4. The FENRIX user interface. 

intended for 3D color graphic visualizaton in real 
computing time. This includes animation, fringe plots, 
vector plots, isocurves, etc. The lower left window 
reports messages from FENRIS  during the execution. 
The amount  of information received from FENRIS  
may be customized. Typically, this window reports 
what is going on in the analysis program at the 
moment,  more detailed information regarding the 
iterative solution process and an echo of computed 
quantities (e.g., computed error estimates at the 
current load step, etc.). 

The user may control the execution of the analysis 
program interactively by selecting any of the available 
options (Start, Stop, Step, Continue, Restart, Abort, 
Kill) in the Command menu shown in Fig. 5. A new 
analysis is started by selecting the Start option after 
having created the geometry in the geometric modeler 
and defined the analysis setup for the problem on an 

input file. The user may then choose to execute 
FENRIS  on any available node in the network, see 
Fig. 6. Depending on the size of the FE model and 
the number  of increments in the analysis, it may be 
preferable to execute F E N R I X  and FENRIS  on two 
different computers. As seen from Fig. 6 the current 
load on all computers available in the network is 
monitored,  and the user may  choose the most  
appropriate  node at the moment  for his problem. 

The analyst must indicate if he wants to run the 
analysis adaptively by pressing the A d a p t i v e  button in 
the middle of the host selection box. FENRIX will 
then first invoke the Finite Octree mesh generator in 
order to generate the initial FE mesh based upon data 
stored in the geometry database, before it invokes the 
FEA program. The FEA is now continued until the 
estimated global error violates the prescribed error 
tolerance. When this happens the analyst is prompted 
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if he wants the FE mesh to be regenerated based on 
the computed error distribution, or if he wants to 
increase the error tolerance and continue with the 
same mesh, see Fig. 7. If he chooses the first 

Remesh or change Hmit ? 

_j Ok to remesh 

Change limit ~:~Ii3 .................................................................................. i 

L+ pP!z+.+i 

Fig. 7. The Remesh prompt box. 

alternative, the FEA is terminated at the current load 
step while saving all relevant data such that a restart 
is possible, and the mesh generator is invoked for 
generation of the new mesh. FENRIS is then restarted �9 
and the transfer of solution variables from the old 
mesh to the new mesh is performed before normal 
execution resumes with the new FE mesh. 

During execution, the deformed FE model is 
displayed in the image window. Various results from 
the last computed increment may be fringed on the 
image using the Results menu. The results are 
automatically updated after the next increment is 
corn pleted. If more time is needed to study the results 
of an increment than it takes to compute the next one, 
the analysis may be halted while studying the results�9 
This is done by using the Stop and Step options in the 
Command menu. By choosing the Slop and Restart 
options, the user is also allowed to change the analyms 
parameters (e.g., analysis type, step length, convergence 
tolerance, error tolerance, etc.) and or modify the 
problem definition by changing element type, loads. 
boundary conditions, material models, etc. 

In the following, the use of the developed interactive 
adaptive FE system is demonstrated by solving three 
benchmark shell problems. Two types of shell elements 
are employed in this study: (1) A three-noded 
triangular (FFT) and a four-noded quadrilateral 
(FFQ) Kirchhoff type of element based on the ~ 
Formulation'  theory [36, 37].~ and (2) a four-noded 
quadrilateral based on the Geometrically Exact Shell 
(GES) model due to Simo and Fox. The latter 
element, denoted GES42, utilizes a five-parameter 
Heltinger-Reissner consistent formulation for the 
membrane and bending fields, while the assumed 
natural coordinate strain concept is adopted for the 
transverse shear strain part. A thorough description 
of the underlying theory and the implementation of 
this element may be found in References 38 40. 

The path solution strategy employed to solve 
the arising nonlinear systems of equations incorpor- 
ates arc-length control with true Newton Raphson 
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Fig. 8. The stretched cylinder problem: Geometry and properties. 

equilibrium iterations. An energy norm is used as 
convergence criterion, with a convergence tolerance 
~E = 0.0001. The desired number of iterations per load 

d = 5  and the size of the load step is set to Hiter 
increments, measured in terms of the incremental 
arc-length, As, are adjusted automatically by means 
of Eq. (6). 

4.1. Stretched Cylinder with Free Ends 

The geometry, the material characteristics and the 
loading conditions for the first example are illustrated 
in Fig. 8. One eighth of the depicted cylinder is 
analyzed using symmetry boundary conditions. 

The cylinder is herein analyzed using the triangular 
Free Formulation element (FFT). The analysis is 
performed with r/p = 10% as the prescribed tolerance 
on the estimated relative error and with the initial 
load step size set to A2] ~ = 0.0t. This resulted in the 
sequence of refined meshes shown in Fig. 9. The 
meshes 1 3 are here depicted in their deformed 
configuration corresponding to the load steps at 
which they are generated, i.e., at load step 1, 5 and 7, 
respectively. In addition, the final configuration (step 
!2) is shown for mesh 3. 

[n Fig. 10, the horizontal displacements at the 
points A and B and the vertical displacement under 
the point load (point C) are plotted versus the applied 
load for the adaptive analysis. The present solution 
for the displacement at point C is compared with 
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the solution obtained by Peri6 and Owen [41] who 
used a uniform mesh with 10 x 20 triangular elements. 
It appears that the present solution is slightly stiffer 
than Peri6 and Owen's. 

At the load level ~0.35 x P the cylinder experiences 
a snap-through in the area that deflects inwards 
(compare the deformation of mesh 2 and mesh 3 in 
Fig. 9 and study the curves A and B in Fig. 10). At 
this load level also the third refinement occurs and 
from Fig. 10 we see that the finer mesh captures the 
snap-through better than the coarser mesh does. 

In Fig. 11 the estimated discretization error and the 
CPU-time consumption for the adaptive analysis 
is compared with a non-adaptive analysis using a 
uniform 20 x 40 mesh. We observe that the total time 
consumption for the adaptive analysis is only a small 
fraction of the time consumption for the single mesh 
analysis. Moreover, the single mesh analysis satisfies 
an accuracy oft/v = 167/o only, compared with t/p = 10% 
for the adaptive analysis. 

4.2. Hinged Cylindrical Shell 

The geometry, material characteristics and loading 
conditions for the second example are illustrated in 
Fig. 12. The straight edges are hinged whereas the 
curved edges are free. Assuming a symmetric response, 
only the shaded quarter of the depicted shell is 
analyzed using symmetry boundary conditions. This 
classical snap-through problem is herein analyzed 
using the quadrilateral Free Formulation element 
(FFQ) and with the initial load step size set to 
A2<~ ~ = 0.2. 

An interesting aspect with this example is that the 
discretization error appears to be highest at the first 
part of the FE solution path. Therefore, an adaptive 
analysis would normally create a relatively fine mesh 
at the very first load step and then stick with that 
mesh throughout the analysis. This mesh would, 
however, be unnecessarily fine for the last part of the 
analysis. Instead, we therefore introduce a lower limit 
on the global relative error and perform a mesh 
coarsening when the estimated error drops below that 
limit. This lower limit is here set to F/I = 2% whereas 
the permissible relative error is set to ~Tp = 4%. The 
resulting sequence of meshes are depicted in Fig. 13, 
in their deformed configurations. 

In Fig. 14, the vertical displacements at the points 
A and B are plotted versus the applied load for the 
adaptive analysis. The present solution is compared 
with the solution obtained by Nygfird [37] using the 
same element and a uniform 8 x 8 mesh throughout 
the analysis. 



76 K.M. MathJsen and K. M. Okstad 

Mesh 0 : 208 elements 
Step : 1 Mesh 1 

Step 
236 elements 
1-5  

/ 

Mesh 2: 345 elements 
step : ~ ~ - 7 

Mesh 3 : 692 elements 
Step : 7-  12 Mesh 3 692 elements 

Final configuration 

Fig. 9. The stretched cylinder problem: 
sequence of mesh refinements obtained with the 
FFT element, np = 15~g~, and A2]0t = 0.01. 
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Fig. 10. The stretched cylinder problem: Load deflection curves 
for the different mesh configurations at the three points A, B, and C. 

In Fig. 15 the es t imated  d iscre t iza t ion  e r ror  and  the 
C P U - t i m e  c o n s u m p t i o n  arc  p lo t t ed  as funct ions of  the 
load  step number  for the two cases r h = 2~o ( labeled 
4~o-270) and  ~h = 0 ( labeled 4}/o). W e  observe tha t  the 
to ta l  t ime c o n s u m p t i o n  is r educed  by a pp rox ima te ly  
20~o when in t roduc ing  the lower er ror  l imit  r h = 2~o. 

4.3. Compressed Pear-Shaped Cylinder 

The pea r - shaped  cyl inder  shown in Fig. 16 has  been 
s tudied by many  researchers,  see e.g. References 
42 46. The  cyl inder  is s imply suppo r t ed  at  each end 
and is subjected to an uniform end-shor tening .  T h e  
response becomes  nonl inear  at  low values of  the 
appl ied  end-shor ten ing  and the flat po r t ions  of the 
cyl inder  deflects Outward  as the load  is increased.  Due  
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Fig. 11. The stretched cylinder problem: (a) Development  of the 
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Fig, 12. The hinged cylindrical shell problem: Geomet ry  and 
properties. 

to symmetry, one quarter of the cylinder is analyzed 
as indicated by the gray area in Fig. 16. 

The cylinder is herein analyzed in the load level 
range 0.0 < 2 < 0.002, where the load parameter 2 
here corresponds to the prescribed end-displacement 
in the longitudinal direction of the cylinder. The 
initial size of the first load increment is specified equal 
to A2~ ~ = 0.0004. 

Four different analyses are considered in this 
example, using the quadrilateral GES42 shell element: 
An adaptive analysis with the error tolerance r/v = 5%, 
and three single mesh analyses using 50 x 4, 100 x 8 
and 200 x 16 dements, respectively. The mesh se- 
quence obtained in the adaptive analysis is shown in 
Fig. 17. A total of eight mesh refinements are required 
in order to satisfy the rather strict error tolerance, 
t/p = 5%, throughout the entire analysis. 

Hartung and Ball [43] reported an elastic collapse 
load of 2372 for this problem using a finite difference 
version of STAGS [46]. Several years later, Almroth 
and Brogan [44] performed a convergence study 
using the FE version of STAGS and estimated the 
collapse load to be between 2300 and 2400. These 
results, along with the present results, results obtained 
with the NASA CSM Testbed [45] as well as the 
result of McCleary and Knight's study [42], are 
summarized in Table 1. The latter, which also agrees 
very well with the converged value obtained with the 
CSM Testbed, is within 0.5% of the value obtained 
with the present adaptive procedure. It therefore 
seems more likely that the collapse toad is around 
2450 and not between 2300 and 2400 as claimed by 
Almroth and Brogan. 

In Fig. 18 the total axial load (i.e., the sum of the 
nodal reaction forces in the axial direction along the 
edge with the prescribed displacement) is plotted 
versus the normal deflection, Wlso o, for each of the 
present analyses. Observe that the load of collapse is 
highly dependent on the degree of fineness of the FE 
mesh employed, whereas the response prior to collapse 
appears to be quite insensitive to that. It is therefore 
important to use a relatively strict error tolerance r/p 
in an adaptive analysis of this problem, in order to 
get an accurate prediction of the collapse load. 

In Fig. 19 the estimated error and the accumulated 
CPU-time are plotted as functions of the load level. 
The 100 x 8 analysis stays below the 5% error limit 
up to the load level 2 = 0.00155, which is just after 
the collapse load has been reached. We observe that 
the adaptive analysis reaches this load level with only 
75% of the time-consumption required by the 100 x 8 
analysis. Both the 200 x 16 analysis and the adaptive 
analysis stay below the 5% error limit up to reaching 
the second turning point in the post-collapse phase. 
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Mesh 0 : 64 elements Mesh ! : 115 elements Mesh 2 : 34 elements 
Step : 1 Step : 1-13 Step : 13-19 

Mesh 3 : 46 elements Mesh 4 : 58 elements Mesh 4 : 58 elements 
Step : 19 - 24 Step : 24 - 28 FinM configuration 

= o n 2')s and AY~ ~ 0.4. Fig. 13. The hinged cylindrical shell problem: sequence of mesh refinements obtained with the FFQ element, % 47~,, ~ = = 
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Fig. 14. The hinged cylindrical shell problem: Load deflection 
curves for the different mesh configurations at the two points A 
and B. 
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H o w e v e r ,  the 200 x t6  analys is  spends  2,8 t imes  m o r e  

C P U  t ime than  the adap t ive  analysis to reach this point.  

5. Conclusions 

T h e  theo re t i c a l  d e v e l o p m e n t s  a n d  p rac t i ca l  app l i ca -  

t ions  p r e s e n t e d  here  con f i rm  tha t  ef for ts  t o w a r d  

a u t o m a t i c  a d a p t i v e  N F E A  in C S M  are  def in i te ly  

feasible  and  p r o m i s e  g rea t  p a y o f f  in p r ac t i ca l  as  wel l  

as r e sea rch  c o m m u n i t i e s  O n c e  i m p l e m e n t e d  a n d  

ava i lab le ,  the  i n t e r a c t i v e - a d a p t i v e  a u t o m a t e d  ve r s i on  

will g rea t ly  i m p r o v e  qua l i ty ,  re l iabi l i ty  and  t i m e  

eff iciency by p rov id ing :  

(1) An efficient  w a y  to m o n i t o r  the  resul ts  of  ana lys i s  

in real  c o m p u t i n g  t ime. Th i s  capab i l i t y  c a n  a lso  

be used  to a l l ow  the  user  to  c o n t r o l  the  f low of  

the  analysis ,  i n t e rvene  w h e n  p r o b l e m s  appea r ,  
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800 FFQ adaptive 4%-2% ~ ~ -  
FFQ adaptive 4% + - y "  I 

7 0 0  . ,  - f "  j 

600 
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~ 400 

300 

< 2 0 0  
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0 i i _ _  

0 5 l0 15 20 25 30 

Load step number Load step number 

Fig. 15. The hinged cylindrical shell probiemi (a) Development of the global relative error during the anaiyses, and (b) accumulated 
CPU-time consumption. 
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Almroth and Brogan 

Collapse 
Source Element Mesh size load 

Present study GES42 50 x 4 Elements 2685 
100 • 8 Elements 2515 
200 x 16 Elements 2475 
Adaptive 5~ 2460 

McCleary and Knight 9-node ANS Adaptive 10~ 2471 
C~ 

CSM Testbed 4-node ANS 
C~ 

Hartung and Ball 

L 

R i 

9-node ANS 
C~ 

4-node flat 
C1-Element 

4-node fiat Cl-el. 
w/drilling DOF's 

26 x 3 Nodes 3945 
37 x 5 Nodes 2696 
51 x 7 Nodes 2568 
37 x 5 Nodes 2475 
51 x 7 Nodes 2466 

25 x 3 Nodes 3586 
37 x 5 Nodes 2731 
47 x 7 Nodes 2586 
37 x 5 Nodes 2657 
47 x 7 Nodes 2530 

40 x 4 Nodes 2372 

Interactive-Adaptive Geometrically Nonlinear Analysis 

Table 1. The pear-shaped cylinder problem: Elastic collapse loads. 

W l S 0  ~ 

Radius : R = 1.0 
Length : L = 0.8 
Thickness : t = 0.01 
Elasticity : E = 107 

u = 0 . 3  

Fig. 16. The pear-shaped cylinder problem: Geometry and prop- 
erties. 

redefine parameters and loads through the history 
concept, and modify algorithms. 
(2) A more simplified nonlinear analysis that is easy 

to comprehend. Moreover,  interactive adaptive 

(3) 

(4) 

techniques also enhance finite element research by 
making the overall numerical experimental process 
more creative. 

Automatic control of the quality of the computa-  
tional results, in particular keeping the discretiza- 
tion error within prescribed limits. 

A minimum computat ional  effort necessary to 
obtain good quality results by automated design 
of the optimal mesh, optimal step length (time step 
in dynamics) and by carrying the analysis out on 
the most  appropriate  hardware. 

Although the interactive adaptive integrated system 
developed here was proven to be very useful and 
effective, the development of a fully automated CAE 
environment will require extensive further develop- 
ments. This includes the following, and will be dealt 
with in our future work: 

(1) Knowledge-based expert systems that provides 
assistance for inexperienced engineers. 

(2) Automatic handling of all kinds of computat ional  
difficulties, by automatically switching to the most 
appropriate  solution algorithm at any time during 
the analysis. 

(3) Automatic learning capabilities, with the system's 
own experience growing with the number  of 
solved problems. 

(4) Further development and improvement of adaptive 
computat ional  techniques and error estimates. 
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Mesh 0 : 44 elements 
Step : 1 - 6 

Mesh 1 : 56 elements 
Step : 6 -  10 

Mesh 2 : ! 16 elements 
Step ~ 10-  i2  

Mesh 4 
Step 

494 elements 
18-31  

Mesh 5 : 959 elements 
Step : 31 - 37 

Mesh 3 : 227 elements 
Step : 12-  18 

Mesh 6 : 1462 elements 
Step : 37 - 45 

Mesh 7 2929 elements 
Step 45 - 56 

Mesh 8 : 5367 eiements 
Step : 5 6 -  65 

Fig. 17. The pear - shaped  cyl inder  problem:  Sequence of mesh ref inements  ob ta ined  in the adap t ive  non l inear  anaIysis  using the 

GES42 element,  r/p = 5 ~  and  A2] ~ = 0.0004. 
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Fig. 18. The pear-shaped cylinder problem: (a) Load-deflection plots for the different mesh configurations and (b) detailed Iook at the top 

of the load-deflection curves. 
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Fig. 19. The pear-shaped cylinder problem: (a) Development of the global relative 
CPU-t ime consumption.  

(b) 

error during the analyses, and (b) accumulated 
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