
Mh. Math. 114, 317--329 (1992) 

~ t g t r  

�9 Springer-Verlag 1992 

Printed in Austria 

The Abramov-Rokhlin Entropy Addition 
Formula for Amenable Group Actions 

By 

Thomas Ward, Norwich, and Qing Zhang, Columbus, OH 

(Received 30 March 1992, in revised form 9 June 1992) 

Abstract. In this note we show that the entropy of a skew product action of a 
countable amenable group satisfies the classical formula of Abramov and Rokhlin. 

1. Introduction 

Let G be a countable amenable group. We wish to express the 
entropy of a skew product action of G on a Borel space (defined below) 
as the sum of a base entropy and a conditional fibre entropy. For G 
singly-generated, this result was obtained by ABRAMOV and ROKHLIrq 
in 1962. Their proof uses two attributes of the acting group: averaging 
sets (to give convergence in the limit defining conditional fibre entropy) 
and tiling sets. When the group is singly generated one can choose a 
sequence of averaging sets that also tile. We describe briefly here what 
occurs if G is an amenable group. Averaging sets are guaranteed to 
exist, and the analogous convergence of conditional entropy is ob- 
tained by the method that KIEFFER used to prove the Shannon-Mac- 
Millan theorem for amenable groups in [3]. One cannot (presumably 
- -  see [2] and [4] for a description of what is known in this direction) 
assume the existence of averaging sets that also tile, but the machinery 
of quasitilings developed by ORNSTEIN and WEISS in [4] provides an 
adequate replacement. The proof below is therefore identical in princi- 
ple to that of [1], but the arguments to support each step are a little 
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more involved. One specific point  should be clarified: we use the deep 
generalization of Krieger's theorem, due to Rosenthal,  which guaran- 
tees the existence of  a finite generator for a finite en t ropy  free ergodic 
action of  an amenable group. This is not  necessary but allows a 
considerable simplification in the argument.  We then show how this 
implies the general case. 

The second author  would like to express his appreciation to Profes- 
sor Benjamin Weiss for his encouragement and advice, and we are both 
grateful to Professor Dan  Rudolph  for advice. We also thank an 
anonymous  referee for improvements  in the exposition. 

2. Quasi-Tilings for Amenable Groups 

We now describe the replacement for tiling sets that  are needed. The 
following terminology and results are due to ORNSTEIN and WEISS [4]. 
Subsets A1, A2, ..., Ak of G are e-disjoint if there are subsets B~, B2, ..., 
Bk such that  

(1) B ; c  Ai for i =  1, 2, ..., k, 
IBil 

(2) ~ > l - e ,  and 

(3) B i n  Bj = 0 for i ~ j. 
A collection {At, A2, ..., Ak} of  subsets of  G a-covers the set A if 

I A A;)I a. 
IAI 

A collection {At, A2 . . . .  , Ak} of  subsets of  G is a &even cover of the set 
A if 

(1) A; = A for i = 1, 2, ..., k ,  
(2) there is a number  M with ~ =  1 ZA,(x) <<. M for almost every x, 

and ~ = 1  IAil >/((1 - 8) M. 
Let K c G and ~ > 0. A subset A c G is (K, b')-invariant if 

[{g ~ G: Kg c~ A ~ 0 and Kg c~ (G\A) ~ 0}1 
<f t .  

IAI 

Define the K-boundary of A to be 

B(A, K) = { g ~ G : K g n A  ~ 0 and Kgc~(G\A) ~ 0}. 

Lemma 2.1. I f  A is (K, 6)-invariant, then for any c~ G, the translate 
A c is (K, ~):invariant. 
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Proof  It is clear from the definition that B(A, K) c = B(A c, K), so 
IB(A, I01 = IB(A c, K)I. [] 

The property of (K, 8)-invariance is almost preserved under  almost 
disjoint unions in the following sense:  

Lemma 2.2.  I f  the sets  Ai~ i = 1 . . . .  , k are (K, 8)-invariant and 
c-disjoint, then their union Uki= 1Ai is (K,(1 + e)8))-invariant. In par- 
ticular, i f  the Ai are disjoint, then Uki= 1Ai is (K, 8)-invariant. 

Proof  It is clear that B(z~k= 1A;, K) c ~/k=l B(A~, K), so 

B A,, K <~ ~, In(Ai, K)I ~< 8 ~ IA;I ~< 8(1 + e) A;. 
i = 1  i = 1  

[] 

The group G is amenable and therefore admits a Folner sequence, 
which has the following asymptotic invariance property. 

Lemma 2.3. Let {F,} be a Folner sequence in G. Then, for  any finite 
subset A c G, and any 8 > 0, there is an integer N > 0 such that the set 
F~ is (A, 8)-invariant for  all n >i N. 

Proposition 2.4. [4, w 1.2] I f  S c G is a finite set with e e S, and A c G 
is an (S S -1, 8)-invariant set, then the right translates o f  S that lie in A 
form a 8-even cover o f  A. 

Proposition 2.5. [4, w 1.2] I f  { A z : ~  A} forms a 6-even cover o f  A, 
then there is some e > O for  which there is an G-disjoint sub-collection o f  
{A~ :~.sA} which 6(1 - 8)-covers A. 

For completeness we prove the following theorem (this is proved in 
[4]). 

Theorem 2.6. Let e~F~ c F2 c ... be a Folner sequence in 
G. Then, for  any e~(O, ~) and any integer N > O, there exist integers 

n~, n2, ..., nk with N <~ nl < n2 < ... < nk such that for  any FM 
(M sufficiently large), one can f ind finite subsets C1 . . . .  , Ck o f  G with the 

following properties 
(1) F~C~ c F~tfor i =  1, 2, ..., k, 
(2) FniCinFnjCj=O for  i # j ,  
(3) {Fni c : c ~ Ci} is an G-disjoint family, and 

(4) {F, Ci:i  = 1, 2, ..., k} forms a (1 - e)-cover o f fer .  
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1 Proof. Fix ~ > e >  0 and N >  0. Choose  k > 0 and 8 such that  

(1 - 3)k < e and 6 k 8 < i." By L e m m a  2.3, we can choose  nl, n2, ..., n, 

with N ~< nl < n2 < "" < nk such that  Fn/+1 is (Fni Fn~-1, 8)-invariant and 

IF.;I/IF.,+II < 8. Now for any (FnkF,~ -1 , 8)-invariant Fm with IF.J/IFml < 8, 
the right translates o f  F, k that  lie in Fm form a 8-even cover o f  Fm. 

By Propos i t ion  2.5, there exists a finite set Ck such that  
(1) {F, kc:c~  Ck} is e-disjoint, 

(2) F, k Ck is an e(1 -- 8)-cover o f  Fro, and 

(3) ( e -  8)]Fm] ~< IF.~fkl ~< ( e +  8)lFml. 

To see (3), notice that  IF.~ Ckl IFml -~ > e(1 - 8) >i e -  8. On the other 
hand,  

IF.k Ck \ Fn~Cl IFml -~ >>- IFo~ Ckl IFm1-1 - 8, 

and IF .k f k \F .  cllFm1-1 <<. e(1 - 8), so IF.kfkllF,.I -~ ~ e(1 -- 8) + 
+ 8-..< e +  8. 

Let  D1 = Fm\F, k Ck. We claim that  D1 is (F,k_ 1F,~-ll , 68)-invariant.  

Indeed, using L e m m a  2.1 and 2.2, we have: 

- 1  1B(01, Fnk_iFn-kl_i)[ <<~ ]B(Fm, gnk_lFnkl_l )1 -1-]B(g~kfk, Fnk_lgnk_l)[ <~ 

<<. In(Fro, F n k F n ; 1 ) [ - - ~  Ifkl IB(F.~, Fn~_l F.~-_~,)I ~< 

1 
~< 8(IFml + Ifkl IF~kl) ~< 8(IFml + IfkF,~l) ~< 

1 - e  

38 
~<381Fml~<l e _ _ 81D11 ~< 681Dll 

since 1 - e - 8 > ~.1 It  follows that  D1 is (Fnk_ i F~21-1, 68)-invariant.  

N o w  consider  the size o f  D1. It is clear that  

(1 - e-t- 8)lFm] ~> IOll/> (1 - e - 8)lFm]. 

1 Since 1 - e > & I011 > IFnkl > ~lFnk_,l, SO IFn~_ 111D1[ -1 < 8. Then there 

is a finite set Ck_ 1 such that  
(1) {F,k_ 1 c : c~ Ck_ 1) is e-disjoint. 

(2) F~k_l C~_ 1 is an e(1 -- 68)-cover  o f  D 1 . 

(3) (e -- 68)1011 ~< IFn k_t Ck_ll ~< (e + 68)1Dll. 

Then let DE = D1 \ Fnk_l Ck _ 1 with 
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IO21<1 - E + •)(1 - e-t- 6~)lFm[ < (1 __ 2) iFml.,2 

Inductively, we get Dk with 10kl < (1 -- e/2)klF,,I and this implies the 
theorem. [] 

From now on, we say that sets A1 . . . . .  Ak e-quasi-tile a set A if there 
are finite sets C~, ..., Ck such that 

(1) A i C i C A  f o r i = l ,  2 , . . . , k ,  
(2) A~C~c~AjCj=O for i ~ j ,  
(3) {Aic:c~ C~} forms a e-disjoint family, and 
(4) {AiCi :i = 1, 2, ..., k} forms a (1 - e)-cover of  A. 

The sets C1, .,., Ck are called: the tiling centres. 

3. Conditional Entropy and Entropy 

In order to define the entropy of  an action of a countable amenable 
group, an analogue of the total order on the integers adapted to the 
action is needed; this is furnished by the following Lemma due to 
KmFFER. The proof is contained in the proof  of Lemma 2 in [3]. Notice 
that the entropy is being implicitly defined as an integral of  the 
information function, and is therefore well-defined without the 
assumption of ergodicity. 

Lemma 3.1. [3] There is a probability space (S, 6e, 7~), a G-action 
{Ug:g~G} on S and a total order ~( of S such that 

(1) For each s~S,  if gl =/=g2EG, then Ugh(S) ~ Ug2(S), and 
(2) for each g~G, {s~S: Ug(s) ~ s}~Se. 

We sketch the proof  here for completeness (see [3], page 1033). If G 
is finite let S = G with uniform measure, and for < take any total 
order on S. Let G act on S by group multiplication. If G is countably 
infinite, consider the product o--algebra on {0, 1} G, and the Bernoulli 
(~, ~)-measure. Then G acts on {0, 1} G by left translation, and we may 

choose a G-invariant subset S c {0, !} G with (1). Restrict the G action 
to S and order S lexicographically to obtain (2). 

For any s t  S, one can define a total order <~ of  G as follows: 
g~ ~(,~g2 if  and only if Ugl(s)-~ Ug2(S ). For any s ~ S  and g~G, let 

= {g ~ G . g  ~(~g}. V (s) ' �9 ' 

Let (/2, ~ ,  I~,{SglgsG}) be a measure preserving system, so 
(/2, ~ , /1)  is a probability space, and S:g~--~ Sg is an action of  G by 
measure-preserving transformations of  (0, ~,  p). 
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For  any finite measurable partit ion P o f / 2  and any subset A c G, 
let P(A) denote the smallest o-algebra containing S g l p  for all g e A. 
In particular, P({g}) = Sg -1P  for any g e  G. For  any finite parti t ion P 
and toe/2, le t  P(co) denote the unique a t o m  of  P containing co. Now 
for any sub-o-algebra d of  &, and any finite parti t ion P, the con- 
ditional information function I ( P l d )  and the  conditional entropy 
H ( P I d )  can be respectively defined by 

I(PI~r (co) = - log ~ )  (e(co)ld).  
and 

H(PI r = I ( P I d )  (co) 

Notice that  H(P ~r <<. H(P) <~ loglP[. 

Theorem 3.2. Let {F,} be a Folner sequence in G with e~ Fl c F2 c ... 
and F, ,~ G. Then, for any finite partition P and sub-a-algebra ~ ,  the 
sequence a, = I-~.II(P(F,)Id) converges in Ll(/2). The limit does not 

depend on the choice of Folner sequence. 

Proof. From the basic properties of  information functions (see [5]), 
we have 

I(P(F.)Id) (co) = ~ I(P({g})IP(F. c~ Vg(s)) v d )  (co) = 
g~F. 

= ~ I(PIP(F.g-~c~ Vg(s)g -~) v d)(Sgco). 
geF n 

Now fix the parti t ion P. For  any E c G, define 

fe(co, s) = I ( e l e ( E n  V.(s)) v d)(co). 

One can check that  fe  is a measurable function o n / 2  x S. Then 

I(P(F.)ld)(co)= ~ I(PIP(F.g-l c~ V~(Ugs)) v ~)(Sgco) = 
g~ F n 

Z fF~g- l (Sg co' Ugs), 
g~G 

where U is the G-action given by Lemma 3.1. It is clear that  for any 
sequence E1 c E2 c " ' ,  E, .~ G the limit lim._~| =fG exists in 
L 1 (/2 • S ) .  For  any e > 0, there is a finite set B such that  if E = B, 
Ilf~--fGIl~ < e. Since B is a finite set, when n is sufficiently large we 
have 
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IF.n((]oE.b- '  F.)l >>. (l _ e). 
W.I 

It is clear that for any g~F.c~((]b~nb-lF.), we have F.g- i= B. 
Therefore, when n is sufficiently large we have 

I-~,II(P(F,)I d ) - f E  ~ < 1  ~ x -fEll <~ IlfF.g-l(ag uO 
L I ( D •  S) Ir.I .,~. 

<~ 1-2-- Y, Ilfv, g-,(Sg • Ug) -fEll + [r"\v"n((']b~nb-'F")lloglP[ <~ 
IF.I ~F.nCnb,.b-'F.) IF.I 

~< e(1 + log Iel). 

This implies that 

lim ?FnlI(P(F,)Id)-fG =0 .  
n---~ oo LI(~Q X S)  

Therefore 

~F~] I 5fcdX Ll~a) lim (P(F~)Id) = 0, 
~ --~ 00 

and the theorem follows. [] 

Corollary 3.3. For any Folner sequence {F,} satisfying F1 c F2 c ..., 
F, ,~ G, the limit 

lim 1 H( V SgPlsr I 

exists and is independent of the choice of {F.}. 

We will use h(S, P l d ) t o  denote the limit lim._.o~ IF~ H(Vg~e. SgP]~r 
and  define the conditional entropy of S with respect to d by 
h(S]d)  = supeh(S, P]d).  The entropy of the G-action S is defined to 
be the conditional entropy of S with respect to the trivial sub-o-al- 
gebra X = {0, s h(S) = h(S]X). Similarly, we define h(& P) to be 
h(S, PIX) ,  

If d is a finite o-algebra, let P(~r be the finite partition that 
generates d .  
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Lemma 3.4. i f { d , }  is a sequence of finite a-algebras with d ,  ,~ ~,  then 
h(S) = lim._.~ h(S, p(d . ) ) .  

Proof. For finite partitions P and Q 

",g e V n / ~g~V. gee. 

"(X x" + Z "CS.'r V X. 
g ~ F  n \ [ g e F  n 

so h(S, P). <<. h(S, Q) + H(PIQ). 
An easy consequence of  the Increasing Martingale theorem 

shows that if P is a finite partition, then H ( P I d , ) ~  H ( P I ~ ) =  0 
(see [6], page 38). Hence h(S; P)<<. h(S, e ( d , ) +  H(e]e(d,))  and 
H(PIP(d . ) )  --, 0 as n --, ~ .  It follows that h(S, P) ~< lim,_,~ h(S, e(d,))  
for any finite partition P, so h(S) <<. lim,_.~ h(S, P ( d , ) ) ;  the reverse 
inequality is clear, [] 

4. Entropy Addition Formula 

Let (X, ~, p,{Tg:g~G}) be a measure preserving system and let 
(Y, ~,  v) be a probability space. Let MPT(Y) denote the group of all 
invertible measure preserving transformations of  Y and let 
a: X x G ~ MPT(Y) be a cocycle with the property that for any fixed 
g ~ G, a(x, g)(y) is a measurable Y-valued function of  x and y with 
respect to the product  a-algebra ~ | of. Let s = X x Y. Define a 
measure preserving G-action {Sg:g ~ G} on s by: 

Sg(x, y) = (TeX, a(x, g)y). 

The action S is then a skew-product extension of  T by  a. For a set 
B~(C~Cg) ,  we also use B (resp. C) to denote t h e  set B x Y (resp. 
X x C) in : ~ |  of. This nota t ional  device amounts to a canonical 
embedding, ~ ~ | cg (resp, ~ ~ ~ | of), 
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In order to prove the entropy addition formula without  the assump- 
tion of  freeness (see Theorem 4.4 below) we will need an independent 
p roof  of the formula for the entropy of  a direct product.  This may be 
obtained for group actions exactly as for single transformations (see 
[6], p. 61); we include a short p roof  for completeness. 

I f  the cocycle a(x, g) is independent of  x ~ X then a(x, g) = Vg for 
some G-action V on (Y, c.g, v), and the skew product  S above is then 
the direct p roduct  Sg = Tg • Vg. 

Lemma 4.1. The entropy of a direct product is the sum of the 
entropies: 

h(7 • V )  = h(7") + h(V).  

Proof Let (~.} and {c~.} be sequences of  finite o--algebras with 
~ . / ~  ~ (that is, ~ .  c ~ .  +1 for all n, and U . ~ .  generates ~ )  and 
cg./~ ~. Then, by independence, 

h(S, P(~n x r = h(T, P(~.))  + h(V, p(cg.)). 

Applying Lemma 3.4 gives the result. [] 

Theorem 4.2. [7]. I f  T & an ergodic free G-action with h(T) < 09, then 
there is a finite partition ~ such that ~ = k/g~G Tg~. 

Such a partit ion ~ will be called a generator of (X, ~ ,  p, {Tg" g ~ G}). 
In fact Rosenthal proves a much stronger result, exhibiting a finite 
uniform generator of  optimal (least) cardinality. 

Proposition 4.3. Let S and T be the measure preserving G-actions 
defined above, and assume that the base action T is ergodic and free. 
Then h(S) = h(T) + h(S[~) .  

Proof. We first show that h(S)>~ h(T)+ h(SIg~). It is enough to 
show that the supremum of h(T, P) over all partitions P of X • Y 
which are of the form P = ~ • 77, where ~ and 77 are finite partitions 
of X and of  Y reSpectively, is greater than or equal to h(T) + h(SIg) .  
Let {F,} be a Folner sequence in G such that  e~F1 c F2 c . . . and  
F, /"  G. For  a partit ion P = ~ x 17, 

H(P(Fn)) = H(~(Fn) v ~7(F,)) = H(~(F,)) + H(JT(F,)[~(F,)) 

and so 
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H(P(Fn)) >>. H(~(F~)) + H(r/(F~)I~). 

By Corollary 3.3, we have 

h(S, P)  = lim 1-~ H(P(Fn)) >1 

>1 lim 1 H(~(F , ) )+  lim ~ 1  H(r / (F~)I~)= 
~-,oo IF#I #~o0 IFnl 

= h(T, ~) + h(S, r/[~) 

Now we show that h(S) <~ h(T) + h(Sl~) .  We need only consider 
the case h(T)< oo. By Theorem 4.2, there is a finite generator ~ for 
(X, ~ ,  l*,{Tg:g~G}). Let P be any finite partition o f / 2  = X x Y. For 
any e > 0, there is an N such that when n > N, 

and 

~F~I H(P(F,)) -- h(S, P) < e, 

~F~I H(~(F~)) -- h(T, ~)] < s, 

t l F - ~ R ( P ( F o ) I ~ )  - h(S, e l ~ )  < 

By Theorem 1.6, for e > 0 and an integer N > 0, there exist nl, ..., nk 
with N < n I < -.. < nk for which the sets Fnl, :.., F, k &quasi-tile any F,n 
with m sufficiently large. 

Since ~ is a generator, the Increasing Martingale theorem (see [6], 
p. 38) shows that for any finite parti t ion Q, H(QI~(Fk)) "~ H(QI~)  as 
k ~ oo. It follows that there is a finite set B such that for any set A ~ B, 

H(P(F~)I~(A)) <~ n(P(Fni)[~ ) + s 

for i = 1, ..., k. 
Now for m sufficiently large, Fm is (B, e)-invariant and can be 

e-quasi-tiled by Fnl, .-., Fn k' Now 

l__l_H(P(Fm)) ~ 1 H(~(Fm)) + IFmlI-~-H(P(Fm)[~(Fm))" 
1F,~l IFml 

Therefore 
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1 
h(S, P) ~ h(T)+ "-:--H(P(Fm)[~(Fm)) + 2e. 

IFml 

Let C1 . . . .  , Ck be tiling centres for Fro. T h e n  

IF, nl ~ F~ C~ >>. (1 - e)lFm[ and C,. /> (1 - z) ~. [C~ItF~,I. 
i=1 i=l  

Now we have 

1 
iF,,I levi \ \;= 1 

<~ k P C,  I~(Fm) + eloglPI ~< 
IU,= 

k 
<. E-e-)- '--  Y H(P(Fn, Ci)I~(F~)) + elog]P[. 

5k=  1 ]Cj[ [Fnj [ i=l  

Let t~= IC~llF~,l/(~=~[CiJlF~,l) for i= 1, 2, .i., k. Then 1 t> t~> 0, 
ti = 1, and so 

1 k k 

~= ,  I c: HF~);o~ H(P(F~,Ci)]~(Fm))= ,=E, IC,'It-----J---~H(P(Fn'Ci)]g(Fml)'IF.J 

Since eEFn, , Ci c F., and C, o Cj = 0 for i # j .  Let A = {g~Fm:Bg c Fm}. 
Since Fm is (B, e)-invariant, IAI/IF=I > / 1 - ~ .  Therefore, for any 
l < i ~ k ,  

I_._~.H(P(F, C,)I~(Fm)) ~ 1_}_( ~, I_~_H(P(F " c)I~(F,~))) 
ICI IF..I IC, I \~c, IF.,I ' 

1 2 H(p(F")I~(FmC-1)) + ICil IF,,---~I 

<. 1-~ H(P(F.,)I~(B)) + IFm\A-----L log ]el ~< 
IF.:I Ic~l IK, I 

.< 1 H(P(FDI~  ) + IFm\x___~I log IPI + e. 
W.,I ' Ic; lIF~, l  
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This implies that 

1 
- -H(P(F, . ) I  ~(Fm)) 
IFml 

1 (i__~t t~ 1-~- H(P(F~)[~ 
1 -  IFnil ' J 

+ 

k IF~\AI 
+ ~ t~ log IPl + 6(1 q- log let) 

~=~ IC~IIF~,I 

~< 1 - s ,=~t; H(P('Fn,)I~) _ _  1 IFm\AI log IPI + 6(1 + l og  Iel) 
(1 - 6) 2 IF~I 

Since ni > N, we have 

1 H(P(Fm)I~(F~))~ 1 h(S, e l~ )  + 
IFm[ 1 - e  

( 1 1 

+ e (1 c) - - - - - -S + - -  - 1 - 6  
+ 1)loglPI + 1). 

1 and [P[ >i 2, then I f 0 < e < ~  

1 
- -H(P(Fm)I  ~(Fm)) <~ 
IF~I 

1 
h(S, e l ~ )  + 8clog Iel. 

1- -6  

Therefore 

h(S, P) <<. h(T) + h(S, P[~) + 10sloglPI. 

Since s was arbitary, we have h(S, P) <<.h(T) + h(S, PI~). The theo- 
rem follows. [] 

Theorem 4.4. Let S and T be the measure preserving G-actions 
defined above. Then h(S) = h(T) + h(Sl~). 

Proof. There are two reductions to be carried out. First, let 
T = ~1 T(S) ds be the ergodic decomposition for  T (this is constructed 
for any countable group action in [8, w We then have 
h(T) = S~h(T(S))ds (this follows easily from the definition of entropy 
for G-actions given in Section 3 above), Writing S (s~ (x, y) = (Tg (~ (x), 
a(x, g) (y)), we obtain 

;o' h(S) = ( h ( r  (s~) + h(S(~)l~))ds = h ( r )  + h(SlN)  

by Proposition 4.3. 
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We maY therefore assume that T is an ergodic action. Define an 
action U o f  G as follows. Let Z {0, 1} ~ with the Bernoulli (~, ~)-mea- 

sure r/defined on the o--algebra of  Borel sets ~ obtained from the 
discrete topology {0, 1}. The group G acts via the shift, Ug(z)h = 
= Zg h where z = (Zg)g~GeZ. An easy calculation shows that h(U) = 
= log 2; moreover U acts freely. To see this, notice that {zl UgZ = z} has 
zero measure if either {An} or G/{g n} is infinite, and one of  these must 
occur un!ess G is finite - -  in which case all the entropies are zero. Let 
G act on X X Z x Y via S[(x,  z, y) = ((Zg • Ug)(X ,  Z), t~(X, g)(y)). 
Then it is clear that h(SVlN)= h(S[~)  since a is independent of  the Z 
Coordinate. Also, the base action T x U is free, so we may apply 
Proposition 4.3 a n d  Lemma 3.4 to obtain h ( S ) +  h ( U ) =  h(S v) = 
= h(T x U) + h(SUlg~) = h(T) + h(U) + h(Sl~) ,  which gives the re- 
sult since h(U) is finite. [] 
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