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1. Introduetion

Given a finite group G define ¢(G) to be min y(X), the minimum
taken over all graphs X whose automorphism group G{(X) is isomorphic
to G (2o(X) denotes the number of vertices of X). By a graph X we
mean a finite set V(X) (the set of vertices of X) together with a set
E(X) (the set of edges of X) of unordered pairs of distinct elements of
V(X). We shall indicate unordered pairs by brackets. The automor-
phism group of a graph X, i. e. the group of all one-one functions ¢
of V(X) onto V(X) such that [, y]e E(X) implies [¢ z, ¢ y] ¢ E(X),
will be denoted by G(X).

It is known ([1], p. 377) that

(@) = O(mn),

where m is the order of &, and n is the minimal number of generators
of G~ More precisely, (@) < 2mn, if n = 2. By refining the method
of [1] we shall prove:

Theorem 1: oG) = O(m log n).

In view of the fact that » =O(logm) (cf. [1], p. 378) we have:

Corollary: a(@) = O(m log log m).

The proof consists of constructing a graph X such that G(X) = G,
and eo(X) = O(m log n). Concerning the construction of X two facts
should be emphasized. First, our method always yields a result of the
form (@) < m f(n). Hence, no matter how effectively f(n) can be
improved upon, one cannot hope to obtain anything like a best possible
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estimate (for the symmetric group S, of order m!, &(S,)=m, while
our method gives (S,) < m! f(2)). Becond, it appears that the result
f(n) =O(log n) cannot be further refined in any substantial way; for
instance, it seems to be impossible to obtain f(n) = O(log log n).
In the simple case that G is the cyclic group Z,, of order m it is known
([11, p. 371) that (Z,) < 10, and (Z,,) < 3m if m = 4.
With little effort one obtains:
Theorem 2: 2, ifm=2
3m, 5 m=3,4,6
oZ,) = {2m, of m=p° =T, where p is prime
a(Zplel) + ...+ a(Zp:r)s if m = y AR y 28
where py, ..., p, are distinct primes.

2. Proof of Theorem 1

Let w be a given positive integer. By M,, ..., M,, r = 2°—1, denote
the non-empty subsets of the set M = {1, ..., w}, and form all products
Mi,,, X Mv'k’ 12g=nl1s53Srk=1,... 7% Given a finite group
G of order m, let w be the smallest positive integer for which 72 = n,
where n is the minimum nuawber of generators of . Clearly w = O(log ).

Now let {4y, ... h,} be a set of generators of &, and define a graph
X as follows:

V(X) ={(g. 7 ]gaG 0=+=wiU{(g,7)]|geG,0=i w1},
E(X) ={[(g,2),(9,9)] |9 G, 0<s < w}U
{[(g,z—l (0. ")|geG1<i<w+1}U
{lg, 0), (¢, 1. [(g: 1), (", DI, g, (w + 1)) (', (w + 1Y N] |
geG, g =gh, 1<E<n}U
{10 2. (¢ 10 |96, g = ghy (0, ) e M, x M,, 1< k< n).

Note that ay(X) =m(2w + 3) =O(mlog n). It remains to prove
that G(X) = @. For any ¢’ £ G define ¢, : V(X)— V(X) by Ppl9, x) =
=(g' g, %), g ¢ G. Then clearly @ = {¢, | ¢’ ¢ G} is a subgroup of H(X)
isomorphic to G.

It is immediate from the definition of X that each (g, 0'), g ¢ @, is
of degree 1; (g, 2'), where ge@, w=1,...,w-+1, is of degree 2;
all other vertices of X are of degree = 2. Let ¢ ¢ G(X). Then (g, 0') is

of degree 1; hence p(g, 0') = (¢’, 0’) for some ¢ £G. (g, 0) is the only
vertex of X Jomed with (g, 0). Likewise, (¢’, 0) is the only vertex joined
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with (¢', 0"). Hence ¢(g, 0) = (¢, 0). This in turn implies ¢(g, 1') = (¢’,1'),
ete., and we obtaing(g, ) = (¢, z)forall2 =0, 0,1, 1, ..., w, (w--1).
The crucial fact here is that at least every other vertex in the sequence
(9. 0),(9,0) (9. 1), (9, 1), ..., (g, w), (g, (w + 1)) is of degree 2.

Now let @ ¢ G(X) be such that ¢(g, 0') = (g, 0') for some fixed ¢ ¢ (.
By the previous argument, ¢(g, ) = (g, ), 2 = 0,0, ..., w, (w + 1)".
Suppose ¢, g’ ¢ G are such that [(¢, 1), (¢', 1)] and [(g, 1), (¢, 1)] are
edges of X, and suppose that ¢(g', 1) = (¢”, 1). Then either ¢ =g,
g =gh, or ¢ =gh7l, ¢"" =gh;'. Assume ¢’ = gh,. Then g(¢,1) =
= (g”s 1) 1mPheS tp[(g,O), (¢, D] =g 0), (9”7 1)]e E(X). Hence by
definition of E(X), ¢ = ghy. Similatly, if ¢ =gh;'. Now ¢ = gh,,
g = ghy, and ¢’ = gh', ¢’ = gh;" each imply M, =M, , M, =M, ,
whence & = &', so that ¢’ = ¢"’. This shows that if (¢, y) is joined with
some (g, ) then (¢’, y) is invariant under ¢. An inductive argument then
proves that ¢ is the identity on the whole set V(X).

Let v e G(X), (9, z) e V(X), then in view of the fact that y(g, x) =
= (¢', ») there is a ¢’ ¢ G such that ¢ v(g, 2) = (¢, »). Hence g, v =1,
so that p ¢ ¢’. Hence G(X) =" Z G.

3. Proof of Theorem 2

In view of the triviality of «(Z,) = 2, we can assume that m = 3.
Case (1): m = p° = 7. Let X(m) be the following graph:

VX)) ={1, ....m U, ...,m},

E(X(m) ={[3,i + 1[5, 73 [ + L1 [i — 2, 71| L S i S m),
where addition is modulo m.

Cleatly v: V(X(m))-> V(X(m)) givenby p i =1+ Lypd =@ + 1),
t=1,...,m, is an automorphism of X(m); hence G(X(m)) contains a
subgroup isomorphic to Z,,.

Note that the m-circuit C' formed the vertices 1, ..., m is the only
m-circuit of X(m) whose vertices are of degree b in X(m). Hence C
remains invariant under all automorphisms of X(m). In particular, if
@ &£ G(X(m)) is such that ¢ 5, = 7, for some 45 ¢ V(C), then eitherg | C =1
or ¢(ig+4§) =19 —14, j =1, ..., m Note that all 3-circuits of X(m)
are of the form 4,72+ 1,4,1 =<4 < m. Hence if ¢(¢tg +§) =19, —j it
follows that g iy = (4, — 1)'. But then ¢[d), 4g— 2] = [(¢p — 1),
ip + 2] & E(X{m)), a contradiction since m = 7. Hence ¢ |C =1, and
therefore @ = 1. It follows that G(X(m)) = Z,,. ey(X(m)) = 2 m, hence
oZ,) <=2m. BN . a
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To complete the proof that a(Z,) = 2 m assume that there is a graph
Y with G(Y) 2 Z, and oY) < 2 m. Since m = p° it follows that if
@eG(Y) and ye V(Y), then either 4,09, ...,¢" ' y are all distinct,
or else ¢ y = y. In either case G(Y) 2 D,, (= the dihedral group of
order 2 m), a contradiction. Hence «(Z,) = 2 m.
Case (2): m = 3, 4, 5. Here we define X(m) by
VXm)) ={1,...,m, 1, ... m, 1, ... ,m'}
EX(m) ={{t,s + 1L 7L 0+ LOL I, LI, G+ 1YL 7, 4 4 1T
1< i< m} (addition modulo m), m = 3, 4, 5.
Obviously eo(X(m)) = 3 m. The proof that G(X(m)) = Z,,, and that
o(Z,,) = 3 m is similar to that in case (1).
Case (3): m == p ... pir. Consider the graph
X=X + ... + X).
Since X(m) and X(m') are non-isomorphic whenever m == m/, it follows
that
G(X) 2 G X)) X ... X G X(pin) = Z”i‘ X ... X Zpif zZ,

Hence

) = Z e X)) = 2 ally),
and an argument analogous to that in case (1) then shows that there
is actual equality.
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