On the Minimum Order of Graphs with Given Automorphism Group*

By

Gert Sabidussi, New Orleans, La., USA.

(Received May 16, 1958)

1. Introduction

Given a finite group G define $\alpha(G)$ to be min $\alpha_0(X)$, the minimum taken over all graphs X whose automorphism group G(X) is isomorphic to G ($\alpha_0(X)$ denotes the number of vertices of X). By a graph X we mean a *finite* set V(X) (the set of vertices of X) together with a set E(X) (the set of edges of X) of unordered pairs of distinct elements of V(X). We shall indicate unordered pairs by brackets. The automorphism group of a graph X, i. e. the group of all one-one functions φ of V(X) onto V(X) such that $[x, y] \in E(X)$ implies $[\varphi x, \varphi y] \in E(X)$, will be denoted by G(X).

It is known ([1], p. 377) that

 $\alpha(G) = O(mn),$

where *m* is the order of *G*, and *n* is the minimal number of generators of *G*. More precisely, $\alpha(G) \leq 2 mn$, if $n \geq 2$. By refining the method of [1] we shall prove:

Theorem 1: $\alpha(G) = O(m \log n)$.

In view of the fact that $n = O(\log m)$ (cf. [1], p. 378) we have: Corollary: $\alpha(G) = O(m \log \log m)$.

The proof consists of constructing a graph X such that $G(X) \cong G$, and $\alpha_0(X) = O(m \log n)$. Concerning the construction of X two facts should be emphasized. First, our method always yields a result of the form $\alpha(G) \cong m f(n)$. Hence, no matter how effectively f(n) can be improved upon, one cannot hope to obtain anything like a best possible

^{*} Written with the support of the National Science Foundation of the United States of America,

estimate (for the symmetric group S_m of order m!, $\alpha(S_m) = m$, while our method gives $\alpha(S_m) \leq m! f(2)$). Second, it appears that the result $f(n) = O(\log n)$ cannot be further refined in any substantial way; for instance, it seems to be impossible to obtain $f(n) = O(\log \log n)$.

In the simple case that G is the cyclic group Z_m of order m it is known ([1], p. 371) that $\alpha(Z_3) \leq 10$, and $\alpha(Z_m) \leq 3$ m if $m \geq 4$. With little effort one obtains:

Theorem 2:

$$\alpha(Z_m) = \begin{cases}
2, & \text{if } m = 2 \\
3 m, & \text{if } m = 3, 4, 5 \\
2 m, & \text{if } m = p^e \ge 7, \text{ where } p \text{ is prime} \\
\alpha(Z_{p_1e_1}) + \dots + \alpha(Z_{p_r^{e_r}}), & \text{if } m = p_1^{e_1} \dots p_r^{e_r}, \\
\text{where } p_1, \dots, p_e \text{ are distinct primes.}
\end{cases}$$

2. Proof of Theorem 1

Let w be a given positive integer. By $M_1, \ldots, M_r, r = 2^w - 1$, denote the non-empty subsets of the set $M = \{1, \ldots, w\}$, and form all products $M_{i_k} \times M_{j_k}, 1 \leq i_k \leq r, 1 \leq j_k \leq r, k = 1, \ldots, r^2$. Given a finite group G of order m, let w be the smallest positive integer for which $r^2 \geq n$, where n is the minimum number of generators of G. Clearly $w = O(\log n)$.

Now let $\{h_1, \ldots, h_n\}$ be a set of generators of G, and define a graph X as follows:

$$\begin{split} V(X) &= \{(g, i) \mid g \in G, 0 \leq i \leq w\} \cup \{(g, i') \mid g \in G, 0 \leq i \leq w+1\}, \\ E(X) &= \{[(g, i), (g, i')] \mid g \in G, 0 \leq i \leq w\} \cup \\ &\{[(g, i-1), (g, i')] \mid g \in G, 1 \leq i \leq w+1\} \cup \\ &\{[(g, 0), (g', 1)], [(g, 1), (g', 1)], [(g, (w+1)'), (g', (w+1)')] \mid \\ &g \in G, g' = gh_k, 1 \leq k \leq n\} \cup \\ &\{[(g, x), (g', y)] \mid g \in G, g' = gh_k, (x, y) \in M_{i_k} \times M_{j_k}, 1 \leq k \leq n\} \end{split}$$

Note that $\alpha_0(X) = m(2w+3) = O(m \log n)$. It remains to prove that $G(X) \cong G$. For any $g' \in G$ define $\varphi_{g'} \colon V(X) \to V(X)$ by $\varphi_{g'}(g, x) = (g' g, x), g \in G$. Then clearly $G' = \{\varphi_{g'} \mid g' \in G\}$ is a subgroup of G(X) isomorphic to G.

It is immediate from the definition of X that each (g, 0'), $g \in G$, is of degree 1; (g, x'), where $g \in G$, $x = 1, \ldots, w + 1$, is of degree 2; all other vertices of X are of degree ≥ 2 . Let $\varphi \in G(X)$. Then $\varphi(g, 0')$ is of degree 1; hence $\varphi(g, 0') = (g', 0')$ for some $g' \in G$. (g, 0) is the only vertex of X joined with (g, 0'). Likewise, (g', 0) is the only vertex joined with (g', 0'). Hence $\varphi(g, 0) = (g', 0)$. This in turn implies $\varphi(g, 1') = (g', 1')$, etc., and we obtain $\varphi(g, x) = (g', x)$ for all $x = 0', 0, 1', 1, \ldots, w, (w+1)'$. The crucial fact here is that at least every other vertex in the sequence $(g, 0'), (g, 0), (g, 1'), (g, 1), \ldots, (g, w), (g, (w+1)')$ is of degree 2.

Now let $\varphi \in G(X)$ be such that $\varphi(g, 0') = (g, 0')$ for some fixed $g \in G$. By the previous argument, $\varphi(g, x) = (g, x), x = 0', 0, \ldots, w, (w + 1)'$. Suppose $g', g'' \in G$ are such that [(g, 1), (g', 1)] and [(g, 1), (g', 1)] are edges of X, and suppose that $\varphi(g', 1) = (g'', 1)$. Then either $g' = gh_k$, $g'' = gh_{k'}$ or $g' = gh_{k}^{-1}, g'' = gh_{k'}^{-1}$. Assume $g' = gh_k$. Then $\varphi(g', 1) =$ = (g'', 1) implies $\varphi[(g, 0), (g', 1)] = [(g, 0), (g'', 1)] \in E(X)$. Hence by definition of $E(X), g'' = gh_{k'}$. Similarly, if $g' = gh_{k}^{-1}$. Now $g' = gh_k$, $g'' = gh_{k'}$, and $g' = gh_{k}^{-1}, g'' = gh_{k'}^{-1}$ each imply $M_{i_k} = M_{i_{k'}}, M_{j_k} = M_{j_{k'}}$, whence k = k', so that g' = g''. This shows that if (g', y) is joined with some (g, x) then (g', y) is invariant under φ . An inductive argument then proves that φ is the identity on the whole set V(X).

Let $\psi \in G(X)$, $(g, x) \in V(X)$, then in view of the fact that $\psi(g, x) = (g', x)$ there is a $g'' \in G$ such that $\varphi_{g''} \psi(g, x) = (g, x)$. Hence $\varphi_{g''} \psi = 1$, so that $\psi \in G'$. Hence $G(X) = G' \cong G$.

3. Proof of Theorem 2

In view of the triviality of $\alpha(Z_2) = 2$, we can assume that $m \ge 3$. Case (1): $m = p^e \ge 7$. Let X(m) be the following graph:

 $V(X(m)) = \{1, \ldots, m, 1', \ldots, m'\},\$

 $E(X(m)) = \{[i, i + 1], [i, i'], [i + 1, i'], [i - 2, i'] \mid 1 \leq i \leq m\},\$ where addition is modulo m.

Clearly $\psi: V(X(m)) \to V(X(m))$ given by $\psi i = i + 1$, $\psi i' = (i + 1)'$, $i = 1, \ldots, m$, is an automorphism of X(m); hence G(X(m)) contains a subgroup isomorphic to Z_m .

Note that the *m*-circuit *C* formed the vertices 1, ..., *m* is the only *m*-circuit of X(m) whose vertices are of degree 5 in X(m). Hence *C* remains invariant under all automorphisms of X(m). In particular, if $\varphi \in G(X(m))$ is such that $\varphi i_0 = i_0$ for some $i_0 \in V(C)$, then either $\varphi \mid C = 1$ or $\varphi(i_0 + j) = i_0 - j$, j = 1, ..., m. Note that all 3-circuits of X(m)are of the form $i, i + 1, i', 1 \leq i \leq m$. Hence if $\varphi(i_0 + j) = i_0 - j$ it follows that $\varphi i_0' = (i_0 - 1)'$. But then $\varphi[i_0', i_0 - 2] = [(i_0 - 1)', i_0 + 2] \in E(X(m))$, a contradiction since $m \geq 7$. Hence $\varphi \mid C = 1$, and therefore $\varphi = 1$. It follows that $G(X(m)) \cong Z_m$. $\alpha_0(X(m)) = 2m$, hence $\alpha(Z_m) \leq 2m$. To complete the proof that $a(Z_m) = 2 m$ assume that there is a graph Y with $G(Y) \cong Z_m$ and $\alpha_0(Y) < 2 m$. Since $m = p^e$ it follows that if $\varphi \in G(Y)$ and $y \in V(Y)$, then either $y, \varphi y, \ldots, \varphi^{m-1} y$ are all distinct, or else $\varphi y = y$. In either case $G(Y) \cong D_{2m}$ (= the dihedral group of order 2 m), a contradiction. Hence $\alpha(Z_m) = 2 m$.

Case (2): m = 3, 4, 5. Here we define X(m) by

$$V(X(m)) = \{1, \ldots, m, 1', \ldots, m', 1'', \ldots, m''\},\$$

$$\begin{split} E(X(m)) = \{ [i, i+1], [i, i'], [i+1, i'], [i', i''], [i'', (i+1)''], [i'', i+1] \mid \\ 1 \leq i \leq m \} & \text{(addition modulo } m\text{)}, \ m = 3, 4, 5. \end{split}$$

Obviously $\alpha_0(X(m)) = 3 m$. The proof that $G(X(m)) \cong Z_m$, and that $\alpha(Z_m) = 3 m$ is similar to that in case (1).

Case (3): $m = p_1^{e_1} \dots p_r^{e_r}$. Consider the graph

$$X = X(p_1^{e_1}) + \ldots + X(p_r^{e_r}).$$

Since X(m) and X(m') are non-isomorphic whenever $m \neq m'$, it follows that

$$G(X) \stackrel{\sim}{=} G(X(p_1^{e_1})) \times \ldots \times G(X(p_r^{e_r})) \stackrel{\sim}{=} Z_{p_1^{e_1}} \times \ldots \times Z_{p_r^{e_r}} \stackrel{\sim}{=} Z_{m^*}$$

Hence

$$\alpha(Z_m) \leq \sum_{i=1}^r \alpha_0(X(p_i^{e_i})) = \sum_{i=1}^r \alpha(Z_{p_r^{e_r}}),$$

and an argument analogous to that in case (1) then shows that there is actual equality.

References

[1] Frucht, R., Graphs of degree 3 with given abstract group. Canad. J. Math. 1 365-378. (1949).