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1, Introduction 

Given a finite group G define a(G) to be mln ao(X), the minimum 
taken over all graphs X whose automorphism group G(X) is isomorphic 
to G (ao(X) denotes the number of vertices of X). By a graph X we 
mean a finite set V(X) (the set of vertices of X) together with a set 
E(X) (the set of edges of X) of unordered pairs of distinct elements of 
V(X). We shall indicate unordered pairs by brackets. The automor- 
phism group of a graph X, i. e. the group of all one-one functions 
of V(X) onto V(X) such that [x, y] e E(X) implies [~ x, ~ y] e E(X), 
will be denoted by G(X). 

I t  is known ([1], p. 377) that 

a(G) = O(mn), 

where m is the order of G, and n is the minimal number of generators 
of G. More precisely, a(G) ~ 2 ran, if n ~ 2. By refining the method 
of [1] we shall prove: 

Theorem 1 : a(G) ~ O(m log n). 

In view of the fact that n-----O(logm) (el. [1], p. 378) we have: 
Corollary: a(G) = O(m log log ~n). 

The proof consists of constructing a graph X such that G(X) ~ G, 
and ao(X ) ~ O(m log n). Concerning the construction of X two facts 
should be emphasized. First, our method always yields a result of the 
form a(G)~ m/(n). Hence, no matter how effectively [(n) can be 
improved upon, one cannot hope to obtain anything like a best possible 
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estimate (for the symmetric group S~ of order m[, a ( S ~ ) =  m, while 
our method gives a(S,,) <= m! [(2)). Second, it appears that  the result 
[(n) = O(log n) cannot be further refined in any substantial way; for 
instance, it seems to be impossible to obtain [(n) ----- O(log log n). 

In the simple case that  G is the cyclic group Z~ of order m it is known 
([1], p. 371) that  a(Z~) < 10, and a(Z,,) < 3 m if m > 4. 
With little effort one obtains: 

Theorem 2: {2, i/ m = 2 

o;(Z m) = ~2 m, i / m  = p~ > 7, whe~'e p i~ prime 

" (where p~ . . . . .  p, are distinot Trimes. 

2. Proof of Theorem 1 

Let w be a given positive integer. By M1, . . . ,  M,, r = 2~ denote 
the non-empty subsets of the set M = { 1 . . . . .  w}, and form all products 
M~k X Mjk, 1 =< i k < r, 1 ~ ?k < % k ---- 1, . . . ,  r 2. Given a finite group 

G of order m, let w be the smallest positive integer for which r e _> n, 
where n is the minimum number of generators of G. Clearly w ---- O(log n). 

Now let {hi, . . .  hn} be a set of generators of G, and define a graph 
X as follows: 

V(X) = {(g, i)[ g s a ,  0--< i_< w} U {(9, i ' ) l g ~ a ,  0_< i ~ ~v + 1}, 

E(X) = if(g, i), (g, i')] I g ~ G, 0 -< i - w}U 

{ [ ( g , i -  1), (g,i')] lgsG,  1 <_ i <~ w +  1}U 

{[(g, 0), (g', 1)], [(g, 1), (g', 1)], [(9, (w + 1)'), (g', (w -}- 1)')] I 

geG, g '=gh~,  l ~ < k _ < n } U  

{[(g, x), (g', y)] } g s G, g' = gh k, (x, y) e M,~ • M~k , 1 ~ k <_ n}. 

Note that  ao(X) = m(2 w A- 3) = O(m log n). I t  remains to prove 
that  G(X) ~ G. For any g' eG define ~g, : V(X)--+ F(X) by ~,(g, x) = 
= (g' g, x), g e G. Then clearly G' = {?g, [ g' e G} is a subgroup of G(X) 
isomorphic to G. 

I t  is immediate from the definition of X that  each (g, 0"), g e G, is 
of degree 1; (g, x'), where !/eG, x = 1, . . . ,  w + 1, is of degree 2; 
all other vertices of X are of degree ~ 2. Let ~p s G(X). Then ~(9, 0') is 
of degree 1; hence q~(g, 0') = (g', 0') for some g' sO. (g, 0) is the only 
vertex of X joined with (g, 0'). Likewise, (g', 0) is the only vertex joined 
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p / p lV~  with (g', 0'). Hence~v(g, 0) = (g,  0). This in turn implies ~(g, 1') = / g ,  ), 
etc., and  we obtain ~(g, x) ---- (g', x) for all x -~ 0', 0, 1', 1 . . . . .  w, (w-~ 1)'. 
The crucial fact  here is tha t  a t  least every other ver tex in the sequence 
(g, 0'), (g, 0), (g, 1'), (g, 1), . . . ,  (g, w), (g, (w ~- 1)') is of degree 2. 

Now let ~ ~ G(X) be such tha t  ~(g, 0') = (g, 0') for some fixed g s G. 
B y  the previous argument,  ~(g, x) ~ (g, x), x ~ 0', 0, . . . ,  w, (w + 1)'. 
Suppose g', g" s G are such tha t  [(g, 1), (g', 1)] and [(g, 1), (g", 1)] are 
edges of X,  and  suppose tha t  ~(g', 1) = (g", I). Then either g' --~ gh~, 
g" =gh~, or g ' - -  h -1 g" g ' =  = - -  g k '. ~--- g ] t I~  1. Assume gh~. Then ~(g', 1) 
-= (g", 1)  implies ~[(g, 0), (g', 1)] = [(g, 0), (g", 1)] s E(X). Hence b y  
definition of E(X), g" = gh~,. Similarly, if g' = gh~ 1. Now g' --ghk, 
g" = ghk,, and g' = gh~ "1, g" = gh~-; 1 each imply M ~ =  M~k,, Mjk = Ms~ ,, 

whence k = M, so tha t  g' ---- g". This shows tha t  if (g', y) is joined with 
some (g, x) theu (g', y) is invariant  under  ~. An inductive argument  then 
proves tha t  ~ is the ident i ty  on the whole set V(X). 

Let yJ s G(X), (g, x) e F(X), then in view of the  fact  tha t  ~(g, x) 
(g', x) there is a g" e G such tha t  ~g,, v(g, x) = (g, x). Hence  W~" V ~-- l ,  

so tha t  V e G'. Hence G(X) = G' ~ G. 

3. Proof of Theorem 2 

In  view of the tr ivial i ty of a(Z~) =- 2, we can assume tha t  m > 3. 
Case (1): m -= p~ > 7. Let  X(m) be the following graph: 

v ( x ( m ) )  = {1, . . . ,  r ,  . . . .  m '} ,  

Z ( x ( m ) )  = {[i, i + 1], [i, i '], [i + 1, i'], [i - 2, i ']  ] 1 _< i < 
where addit ion is modulo m. 

Clearly v2: V(X(m)).--> V(X(m))given b y  ~ i ~ i -f- 1, ~ i' ---- (i + 1)', 
i = 1, . . . ,  m, is an automorphism of X(m);  hence G(X(m)) contains a 
subgroup isomorphic to Z~. 

Note  tha t  the  m-circuit C formed the vertices 1 . . . .  , m is the only 
m-circuit of X(m) whose vertices are of degree 5 in X(m). Hence C 
remains invariant  under  alI automorphisms of X(m). In  particular,  if 
cf s G(X(m)) is such tha t  T i0 = io for some ~o e V(C), then either ~ l C = 1 
or ~V(io ~- ~') -=-- io - -  ~, j ~ 1 . . . .  , m. Note  tha t  all 3-circuits of X(m) 
are of the  form i, i + 1, i ', 1 --< i < m. Hence if ~v(i o -4- i) = io - - ]  it 
follows tha t  ~ io' ---- (io - -  1)'. Bu t  then  ~[i0', io - -  2] = [(i0 - -  1)', 
io -~ 2] s E(X(m)), a contradict ion since m > 7. Hence  ~ ] C = 1, and 
therefore ~ ~- 1. I t  follows tha t  G(X(m)) ~ Z m. ao(X(m)) = 2 m, hence 

m ,  ' ' 
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To complete the proof that  a(Zm) : 2 m assume that  there is a graph 
Y with G(Y) "_- Zm and a0(Y) < 2 m. Since m : pe it follows that  if 

s G(Y) and y z V(Y), then either y, T y, . . . ,  T , -1  y are all distinct, 
o1" else ~ y : y. In either case G(Y)---" De~ ( :  the dihedral group of 
order 2 m), a contradiction, ttence a(Z,~) = 2 m. 

Case (2): ra = 3, 4, 5. Here we define X ( m )  by 

V ( X ( m ) )  = { 1 . . . .  , m,  1', . . . ,  ,~', 1", . . . .  ~n"}, 

~ ( X ( m ) )  = {[i, i + I], [i, i'], [i + I, i'], [i', i"], i f ' ,  (i + 1)"], [r i + t] 1 

1 ~ i --~ m} (addition modulo m), m ~- 3, 4, 5. 

Obviously ao(X(m)) : 3 m. The proof that  G(X(m)) ~ Z~, and tha t  
a(Zm) : 3 m is similar to that  in ease (1). 

Case (3): m -~ p~' . . .  p~. Consider the graph 

x = x(p?)  + . . .  + x ( p T ) .  

Since X ( m )  and X ( m ' )  are non-isomorphic whenevez m ~ m', it follows 
that  

a ( x )  "- G(x(p~,))  x .  x G ( X ( g , ) )  - Z ~  1, x . . .  x Z~,, - Z~. 

Hence  
r 

i=I ~=I r 

an4 an argument analogous to that m ease (I) then shows that the~e 
is actual equality. 
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