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Abstract. It is shown that every profirdte torsion group has a finite series of closed 
characteristic subgroups in which each factor either is a pro-p-group for some prime p 
or is isomorphic to a Cartesian product of isomorphic finite simple groups. 

w 1. Introduction 

It has been known for some time that all compact  Hausdorf f  
torsion groups are profinite. A proof  of  this result may be found in [3], 
p. 69. Examples of  infinite profinite torsion groups are provided by, 
for instance, Cartesian products of  finite groups of  bounded expo- 
nent, with the product  topology. In [2], HERFORT has shown that if G is 
a profinite torsion group then the set ~ (G) o fp r imesp  for which G has 
non-trivial Sylow p-subgroups is finite. Here we use this result, the 
results of  HALL and HIGMAN [1] and the classification of  the finite 
simple groups to establish a stronger statement: 

Theorem 1. Let G be a compact Hausdorff torsion group. Then G has 
a finite series 

1 =Go<<.GI<<. . . .<<.G.=G (*) 

of  closed characteristic subgroups, in which each factor Gi/Gr 1 either is 
O) a pro-p-group for some prime p or is (ii) isomorphic (as a topological 
group) to a Cartesian product of  isomorphic finite simple groups. 

Here, of  course, by a characteristic subgroup we mean a subgroup 
invariant under  all continuous automorphisms,  and we shall always 
understand Cartesian products of  finite groups to be equipped with 
the product  topology. 

Cartesian products of  groups isomorphic to a fixed finite simple 
group S may be regarded as relatively well understood: they are locally 
finite and satisfy the laws of  S, and in particular they have finite 
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exponent. Theorem 1 therefore demonstr~ites rather clearly that a 
number of difficult open problems concerning profinite groups are 
essentially problems about pro-p-groups. Thus, for example, since the 
class of locally finite groups and the class of groups of finite exponent 
are both closed with respect to extensions, Theorem 1 implies the 

Corollary. (i) I f  all torsion pro-p-groups are locally finite, then so 
are all compact Hausdorff  torsion groups. 

(ii) I f  all torsion pro-p-groups have finite exponent, then so do all 
compact Hausdorff  torsion groups. 

The assertion (ii) also follows from the theorem of HSaVORT [2] 
mentioned above. We do not care to comment on the hypotheses in (i) 
and (ii), except to remark that all compact Hausdorff torsion groups 
of finite exponent are locally finite if and only if the restricted Burnside 
problem has a positive solution. 

In [5], McMtJLLEN studied the question of the existence of infinite 
compact Hausdorff groups having no infinite abelian subgroups. For 
brevity we write 1I for the class of groups with these properties. Clearly 
tl-groups are torsion-groups. MCMULLSN showed that the existence 
of a group G in 11 would entail the existence of pro-p-groups in 1/. This, 
too, follows from Theorem 1, since it is very easy to check that the first 
infinite factor G~/Gi_ 1 in the series (*) for G given by Theorem 1 lies in 
1I and is a pro-p-group for some p. Indeed, using the profinite version 
of the Schur--Zassenhaus theorem and proceeding by induction on j, 
one can show that each infinite factor group G/Gj lies in 11, so that each 
infinite factor in (*) lies in lI and is a pro-p-group for some p. 

Structural information of the type given in Theorem 1 can be 
obtained under weaker conditions than periodicity. We shall deduce 
Theorem 1 from the following two results: 

Theorem 2. Let p be a prime and G a profinite group whose Sylow p- 
subgroups are torsion groups. Then G has a finite series o f  closed 
characteristic subgroups in which each factor either is pro-(p-soluble) 
or is isomorphic to a Cartesian product o f  non-abelian finite simple 
groups o f  order divisible by p. 

Theorem 3. Let p be an odd prime and G a pro- (p-soluble) group 
whose Sylow p-subgroups are torsion-groups. Then G has a finite series 
o f  closed characteristic subgroups in which each factor is either a pro-p- 
group or a pro-p" group. 
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The deduction of Theorem 1 from these results is so straightfor- 
ward that we can give it immediately. Let G be a compact Hausdorff 
torsion group. Then G is profinite, and by Theorem 1 of HERFORT [2], 

(G) is finite. Arguing by induction on the number of primes in ~ (G) 
we obtain from Theorems 2 and 3 a finite series of closed characteristic 
subgroups of G in which each factor either is a pro-p-group for some 
prime p or is isomorphic to a Cartesian product of finite simple 
groups. Clearly it suffices to show that each factor C of the latter type 
accords with Theorem 1. A Cartesian product of a family (S~; 2 e A) of 
finite groups can only be a torsion group if the finite groups S~ have 
bounded exponent. However the classification of the finite simple 
groups has as a consequence that there are only finitely many 
isomorphism classes of finite simple groups of any given exponent. It 
therefore follows that C can be written in the form 

C~-- C1 x . . . x C r ,  

where each group Ci is a Cartesian product of isomorphic simple 
groups and is characteristic in C. The series 

1 <<. C1 <~ C l x C 2  <. . . .  <<. C1 x . . . X C r  ~- C 

consists of closed characteristic subgroups of C and has factors 
isomorphic to the groups Ci, and thus Theorem 1 follows. 

The role played in Theorem 1 by the classification of the finite 
simple groups deserves some comment. The consequence of the 
classification which we have just used - -  that there are only finitely 
many isomorphism classes of finite simple groups of any given 
exponent - -  cannot be avoided because it is in fact implied by 
Theorem 1. This is because any Cartesian product of finite groups of 
bounded exponent is a profinite torsion group. It seems possible that 
Theorem 1 could be proved using only this consequence of the 
classification; certainly it can be proved using only the slightly 
stronger statement that for each finite set z~ of primes there are only 
finitely many isomorphism classes of finite simple z~-groups. On the 
other hand, it seems unlikely that one could prove a satisfactory 
weaker version of Theorem 1 without some appeal to the classification 
theorem. In our proof of Theorem 2 we have made use of another well 
known consequence of the classification theorem, the validity of the 
Schreier conjecture: that Aut S/Inn S is soluble for every finite simple 
group S. 
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w 2. Reductions 

We shall prove three results of an elementary nature and use them 
to relate Theorems 2 and 3 to results concerning finite groups. I fXis  a 
subset of  a group G, we say that X has finite exponent if there is an 
integer e > 0 such that x ~ = 1 for all x E X; the least such integer e is 
called the exponent of  X. 

Lemma 1. (i) I f  G is a profinite torsion group, then there is an open 
normal subgroup H of  G one of  whose cosets tH in G has finite exponent. 

(ii) I f  G is a profinite group and for some prime p a Sylow p- 
subgroup P of  G is a torsion group, then there is an open normal Sub- 
group K of  G such that some cose t t (Kn  P) of  K n  P in P has finite 
exponent. 

Proof O) Write Xe = {g ~ G; ge ___ 1 } for each integer e > 0. Then 
each set Xe is closed and G = U (Xe; e > 0). It follows from Baire's 
category theorem (see for example [4], p. 200) that some set Xe has 
non-empty interior and therefore contains a coset tH of the required 
type. 

(ii) Applying (i) to the group P with the subgroup topology, we 
find an open subgroup H of  P and an element t e P such that tH has 
finite exponent. Since His  open, there is an open subgroup K of  G such 
that K c~ P ~< H; and clearly K can be chosen to be normal in G. The 
result follows. 

By a class of groups we understand a class, in the usual sense, 
which contains all trivial groups and which is closed under isomorphic 
images; if 3E is a class of finite groups, the statement that G is a pro-3E- 
group means that G is a projective limit of ~-groups. 

Lemma 2. Let ~1,..., ~n be classes o f  finite groups closed with 
respect to normal subgroups and subdirect products and let 3s be the class 
of  groups H having a series 

I = H o ~ H I < ~ . . . ~ H n = H  
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with Hi/Hi-l 6 Y~ifor each i. Then every pro-Y.-group G has a ser&s 

1 = G  o<~GI<~.. .<<.Gn=G 

of closed characteristic subgroups such that Gi/G i_ l is a pro-Xi-group 
for each i. 

The proof of this by induction on n is straightforward and may be 
omitted. 

Lemma 3. Let ~ be a class of  groups consisting of  non-abelian finite 
simple groups, and let Y. be the class of  finite direct products of  ~-groups. 
Then a profinite group G is a pro-Y.-group if and only if it is isomorphic 
(as a topolog&al group) to a Cartesian product of ~-groups. 

Proof. If G is a Cartesian product  of ~-groups, then G is the 
projective limit of  the groups G/K with K running through all 
intersections of  finitely many kernels of projection maps; each such 
G/K is clearly in X and so G is a pro-3~-group. 

Conversely, suppose that G is a pro-~-group, and let ~/~ be the 
family of  open maximal normal subgroups of  G. If  K is an open 
normal subgroup with G/KeX then K must be an intersection of  
subgroups in d / ;  thus since G is a pro-a~-group we have 

~ ( M ; M e J r  1, 
so that the map 

: G ~ Cr (G/M; M ~ Jg) 

is an injection. Since each M is open, 9: is an injection of compact 
groups; thus it will suffice to show that ~0 is surjective. If  M 6  ~#I and if 
K1, K2 are normal subgroups of G such that G = MK~ = MK> then 
we have G = M(K1 c~ K2): for otherwise,/s c~ K2 ~< M a n d  the derived 
group G' of  G satisfies 

G' = [ M K1, M K2] ~ M [ K~ , K2] <~ M ( K~ ~ K2) = M,  

contradicting the fact that G/M is non-abelian. Using this and an easy 
induction we see that, if M~, . . . ,  M~ are distinct elements of Jr then 
G = Mi ( ~  Mj) for i = 1, . . . ,  n. It follows that the image of  the map 

j # i  

G -~ G/MI •  • G/Mn 

contains the canonical image in the direct product of each group 
G/Mi, so that this map is surjective. In other words, given M~gi~ G/Mi 
for i = 1 . . . . .  n there is an element g~G such that Mig i = Mzg for 
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each i. Since this holds for all finite subfamilies (M~,. . . ,  Mn) of J//, we 
conclude that G~v is dense in Cr(G/M; M still). However, being 
compact, it is also closed; and therefore ~ is surjective, as required. 

In w 3 we shall prove the following two results: 

Theorem 2*. Let p be a prime and K a normal subgroup of  a finite 
group H. I f  a Sylow p-subgroup Q of  K has a coset tQ in H of exponent 
dividing pa, then K has a series 

1 = go  <~ 1(.1 ~ . . .  <~ K2a+, = K (*) 

such that Ki/Ki_l is p-soluble for i odd and is a direct product of  non- 
abelian simple groups of  order divisible by p for i even. 

Theorem 3*. Let p be an odd prime and K a normal p-soluble 
subgroup of  a finite group H. I f  a Sylow p-subgroup Q of K has a coset 
tQ in H of  exponent dividing pa, then K has p-length at most 2 a. 

If in Theorem 3* we take tQ = Q, the assertion becomes the 
familiar relationship between the p-length of K and the exponent of its 
Sylow subgroup furnished by Theorem A of HALL and HIGMAN [1]; 
and examples in [1] show that the bound in Theorem 3* is best 
possible. Examples to show that the bound implicit in Theorem 2* is 
best possible are provided by wreath powers of suitably chosen groups 
GL (2, q). 

Using the three lemmas above, one can deduce Theorems 2 and 3 
easily from Theorems 2* and 3*. We indicate only the proof that 
Theorem 2* implies Theorem 2; the proof that Theorem 3* implies 
Theorem 3 is similar and may be omitted. 

Let G be as in Theorem 2, and write ~p for the class ofnon-abelian 
finite simple groups of order divisible by p. By Lemma 1 there is an 
open normal subgroup K of G whose Sylowp-subgroup has a coset in 
G of finite p-power exponent, pa say. Each finite continuous image H 
of G satisfies the hypotheses of Theorem 2*, and so the image of K in 
each such H has a series of the form (*). Therefore each H has a series 

1 =Ho<<,H~<~.. .<~Hn=H, 

with n = 2 a + 1 + I G/KI, such that Hi/Hi_l is p-soluble for i odd and 
is a direct product of ~p-groups for i even. On applying Lemma 2, we 
find in G a series of closed characteristic subgroups 

1 =Go<~GI<~. . .<~Gn=G 
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such that G~/Gi_ 1 is pro-(p-soluble) for i odd and is a projective limit of 
direct products of ~ :g roups  for i even; the factors of the latter type 
are isomorphic to Cartesian products of |  by Lemma 3. 

w 3. Finite Groups 

It now remains to prove Theorems 2* and 3*. The bulk of the proof 
of Theorem 2* is contained in the following lemma. It is the proof of 
assertion (ii) that we appeal to the validity of the Schreier conjecture. 
Again we write ~p for the class of all non-abelian finite simple groups 
of order divisible by the prime p. 

Lemma 4. Let p be aprime and K a normal subgroup of  a finite group 
H, and suppose that a coset tQ in H of  a Sylow p-subgroup Q of  K has 
exponent dividing pa, where a >~ 1. Write 

A = :(uP~ u~ tQ) 

and write N for the normal closure of  A in H. 

(i) Let L /M be a perfect chief factor of  H such that L <~ K and such 
that p divides ] L/M]. (Thus L /M is a direct product Of ~p-groups. ) Then 
N normalizes the simple direct factors of  L/M. 

(ii) There are normal subgroups Kl, K2 of  K c~ N with K1 <~ K2 such 
that K1 is p-soluble, K2/K1 is a direct product of  %-groups and 
(K r~ N)/K2 is soluble. 

Proof. O) Passing to a homomorphic image of H if necessary, 
we may clearly assume that M = 1. Thus L is now a direct product 
S~ x . . .  x Sa of ~p-groups which are permuted by conjugation by 
H, and for each i, Q r~ Si is a Sylow p-subgroup of Si so is non- 
trivial. We choose an element u~ tQ and one of the groups Si. If 
uP"-' does not normalize Si, then :(u) permutes the conjugates of S~ 
under :(u) faithfully, so that the groups S~ uj for 0 <~j<pa are 
distinct and generate their direct product. On the other hand, if 
h~(Q n S i ) \  1, then we have u h~tQ, and so 1 = u : =  (uh) pa. 
Therefore 

h up~-I . . .h"h = 1, 
and since 

h~:r ~ for 0 ~ j < p ~  

this is evidently a contradiction. It follows that the intersection of the 
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normalizers of all subgroups S; contains u p~ for each u ~ tQ, and thus, 
since this intersection is normal in H, it also contains N. 

(ii) Let cg be a maximal series of H-invariant subgroups of K n N 
and let cgl be a maximal series of N-invariant subgroups of K n N 
containing cg. By (i) N normalizes the simple direct factors of the 
perfect factors in cg of order divisible by p, and so each factor in (g~ is 
either p-soluble or an ~p-group. Let C1,. . . ,  Cr be the centralizers in 
K n N of the factors in cg I which are | and set Ki = 
= C~ n . . .  n Cr. Intersecting ~l with the subgroup K1, we see that K~ 
isp-soluble. Let K2/K1 be the smallest normal subgroup of(K n N)/K l 
such that ( K n  N)/K2 is soluble. Each group ( K n  N)/Ci is isomor- 
phic to a group of automorphisms of an ~p-group containing the 
inner automorphisms, and so, since Schreier's conjecture holds, 
I~2 CJCiE ~p for each i. Thus each group K2/(Ci n K2) lies in ~p, and 
K2/KI = K2/N (Ci n K2) is a direct product of ~p-groups, as required. 

Proof of  Theorem 2*. If a = 0 then Q = 1 so that K is a p'-group 
and the result holds. We may therefore assume a > 0 and argue by 
induction. Define the subgroup N as in Lemma 4. The image in H/N of 
Q is a Sylow p-subgroup of KN/N, and the image of the coset tQ has 
exponent dividing pa-1. Induction therefore yields series of length 
2a - 1 in K N / N  and in the isomorphic image K/(Kn  iV) of KN/N; 
let the series in K/(K n N) be 

(K n N)/(K n N) <<. K3/(K n N) <....  <~ K2a/(K n N) <<. 

<~ K2a+l/(Kn N) = K/ (Kn  IV). 

If K~ and K2 are the subgroups of K n N given by Lemma 4 (ii), then 
the series 

1 ~< KI~< . . . ~<K2a+ I=K 

for K clearly has the desired properties. 

For the proof of Theorem 3* we need the following result. 

Lemma 5. Let p be an odd prime and K a p-soluble normal subgroup 
of  a finite group H, and suppose that a coset tQ in H of  a Sylow 
p-subgroup Q of  K has exponent dividing pa, where a >~ 1. Write A = 
= :(up~ u ~ tQ), and write N, N1 respectively for the normal closures 
in H of  A and the derived group A'  of  A. Then 

(i) Nx acts trivially on each chief p-factor L /M of H satisfying 
L <.K; 
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(ii) N acts trivially on each chief p-factor L / M  o f  H satisfying 
L <~ K and N1 n K <<. M;  and 

(iii) N n K has p-length at most two. 

Proof. Let L / M  be chief p-factor satisfying L <<. K, and write 
C = CH (L/M),  so that H / C  acts faithfully by conjugation on L/M.  
Since it also acts irreducibly it has no non-trivial normal p-sub- 
groups, and so Theorems 2.1.1 and 2.1.2 of HALL and HtGMAN 
[l] may be applied. Let u e tQ. If h e Q then u h e tQ, and so ue"= 
= (u h)P~ 1, and 

h"~q-'~ . . . h~2 h" h = 1, 

where q = p a - l .  Because Q is a Sylow p-subgroup of K we have 
L / M  <~ Q M / M a n d  therefore L = M ( Q  n L), so that every element of 
L is congruent to an element of Q n L modulo M. Thus, in additive 
notation, the automorphism of L / M  induced by u satisfies the 
polynomial equation 

X p q - 1  "~ , , . - t - X 2  q- X q - ] = O.  

Thus either u q = u e"-~ acts trivially on L/M,  or the automorphism 
induced by u is exceptional in the sense of [1], p. 10. Since this applies 
for each u e tQ, it follows from Theorem 2.1.2 of [1] that A induces an 
elementary abelian group of automorphisms in L/M.  We conclude 
that both A '  and its normal closure N1 act trivially on L/M,  and (i) 
holds. 

Now suppose that N1 n K ~< M. Let u ~ tQ and h e Q n L, and 
write 

y = hq-~ h. 

Then [(uh)L uqJ c A '  ~< N~. On the other hand 

= [uqy ,  uf l  = [y, uq] 

and this lies in K since y e L ~< K. Thus 

[(uh)q, uq]~ N1 n K <~ M .  

Transferring to additive notation and recalling that L = M (Q n L), 
we find that the automorphism induced in L / M  by each element u e tQ 
satisfies 

( X  q-1  -[- . . .  -[- X -[- 1 ) ( x  q - -  t) = 0, 

and so satisfies (x - 1) 2q-I = 0. If on the other hand u induces an 
automorphism o f o r d e r p  ~, then by the Corollary to Theorem 2.1. l of  
5 Mouat~b.efte f/ir Mathematik, Bd. 96/1 
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[1] its minimal  polynomial  has the form 

(x - 1) ~ = O, 

where k I> (p - 1)p a-1. Since 

(p - -  1 ) p  a-1 = (p --  1 )q  > 2 q  -- 1, 

this is impossible. Therefore u q acts trivially on L/M. Since this holds 
for each u e tQ, we conclude that  bo th  A and N act trivially on L/M, 
and (ii) holds. 

Finally, since by (i) N1 acts trivially by conjugat ion on each chief p- 
factor L/M of G with L ~< N~ n K, the group N~ n K is p-nilpotent .  
Similarly (ii) implies that  (N n K)/(Nl n K) is p-nilpotent .  It therefore 
follows that  N n K has p- length at mos t  two, and the p roo f  of  Lemma  
5 is complete.  

Proof of Theorem 3*. I f  a = 0 then K is a p ' -group  and the result 
holds. I f  a > 0 then we define N as in L e m m a  5. Induct ion  applied to 
the group H/N shows that  K N / N  has p-length at mos t  2 (a - 1). 
Therefore K/ (KnN )  has p-length at mos t  2 ( a -  1). By L e m m a  5, 
K n  N has p-length at mos t  two, and Theorem 3* follows. 
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