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In this note an effort is made to give an abstract approach to some 
features of the theory of spline interpolation within the framework of 
functional analysis. For this purpose we introduce the concept of spline 
systems allowing us to formulate certain minimal properties and their 
analogues which we obtain by duality technique. Finally, as an illustra- 
tion we describe the linkage of these results to classical sphne inter- 
polation theory. 

0. Basic Notation 

All vector spaces we shall consider in this paper will be defined over 
the field R of real numbers. 

Let E, F be two topological vector spaces. We shall denote by 
L(E, F) the vector space of all R-linear mappings from E into F con- 
tinuous with respect to the initially given topologies and by L(E) the 
algebra L(E, E) over R consisting of all continuous endomorphisms 
of E. 

As usual the kernel and the image of any mapping ] E L(E, F) will 
be denoted by Ker [ and Im ] respectively. 

A mapping / e  L(E, F) is called an epimorphism iff it is an open 
surjective mapping from E onto F, i. e. fff/is a surjective strict morphism. 
Recall that if / has a right inverse in s (F, E) we arc sure that ] is an 
epimorphism. 

Furthermore any idempotent mapping ]1 e L(E) is called a pro- 
jector in E. Then ]2 = idE --/1 is the supplementary projector of ]l- 

Let H be a prehilbert space. The scalar product of H is written 
(x, y) ~ (x[y) and the canonical norm induced by it will be denoted 
by IJ.lJ . 
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Finally, if M and N are orthogonal subsets of H, i. e. if (xly) ---- 0 
for all pairs (x, y) e M x N, we shall employ the notation M • N. 

I. Spline Systems 

In the following definition we are going to introduce the key notion 
for our developments. 

Let E be a topological vector space and H be a (separated) prehilbert 
space. A quadruple 

(E, p ,  u, H) 

is called a spline system, provided the following four conditions are 
satisfied by the linear mappings Pl and u: 

(i) Pl e s is a projector {having p~ as the supplementary pro- 
jector in E), 

(ii) u s /_  (E, H) is an epimorphism, 

(iii) Ker u __c Im Pl, 

(iv) Im (u o Pl) / Im (u o p~). 

In section 3 an explicit example of a spline system will be discussed 
in some detail. 

Let ~ : E ~ E/Ker  u be the canonical epimorphism and 

: E/Ker  u --> H 

be the injection associated with u. Then we have the canonical facto- 
rization 

u = ~ o ~  (1)  

and by  condition (ii) the mapping 7t represents a (toplinear) isomorphism 
of the quotient topological vector space E/Ker  u onto the prehilbert 
space H. 

Condition (iii) is equivalent to Ker u _c Ker P2. Hence there exists 
exactly one continuous linear mapping Ps : E /Ker  u -+ E such that  

p~ = ~ o ~. (2) 

We may now state 

Theorem 1. Let (E, 191, u, H) be any spline system in the sense de- 
]ined above. Then the mapTing 

P ~ = u o p ~ o u  -1 

is an orthogonal projecto~ in the prehilbert space H. 
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Proo/. Evidently P~ e / ( H ) .  To prove that P2 is an idempotent 
endomorphism of H, first of all we remark that the relation p~op~----p2 
implies by (2) the identity 

Then by (1), (2), (3) we obtain 

P2 o P~ = u o P2 o ~ - 1  o u o P2 o u - 1  

= u o p ~ o ~ - 1 o ~ o ~ o : ~ 2 o ~ - I  

= u o p 2 o ~ 2 o ~  -1 

Consequently /)2 is a projector in H. It  remains to verify that P2 
is symmetric relative to the bilinear form (x, y) ---> (xly) on H X H. 
To this end we observe that we can derive by means of (1) and (2) 

P~ou=uop,,ou-l o~o~ =uop~. 

Suppose that x, y are arbitrary elements of H. Condition (ii) for 
spline systems enables us to choose elements x 0 e E, Y0 e E such that 
x -= u(x,) and y ---= u(y.). Then by condition (iv) 

(P~(x)]y) = (u o p~(xo) l u(yo)) 

= (u o p~(xo) / u o P2(Yo)) 

= (u(xo) I P2 o u(yo)) 

= (x ] P~(y)). 
This completes the proof. 
If P1 e L (H) denotes the supplementary orthogonal projector of P~, 

we can infer from the preceding proof the following relations which will 
be used repeatedly. 

Lemma 1. For i ---- 1, 2 we have the relation 

P~ o u = u o p~. 

Combining Theorem 1 with the projection theorem of ttilbert space 
we obtain by virtue of the preceding lemma the following minimal 
property: 

Theorem 2. Let (E, p~, u, H) be a spline system and suppose that 
H is a Hilbert space. For any  xo e E there is one and only one point 
x e Im P~ such that 

I[ U(Xo) -- x 111t = inf tl u(xo) -- u o p~(Zo) I]H 
zo EE 

where i = 1, 2. We have x = u o pi(xo). 
~l[onat~hefte fiir Mathematik, Bd. 74/5. 26 
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2. Dual Aspeets 

Given a spline system (E, Pl, u, H), in the sequel we shall suppose 
that  E denotes a locally convex topological vector space and H represents 
a tti lbert space. Let us form the topological duals E' and H' associated 
with E and H respectively and suppose that  both vector spaces are 
equipped with the strong dual topologies. In addition H' carries the 
IIilbert space structure transported by the canonical isometric iso- 
morphism j : H ~ H' .  I t  will not be useful for our purposes to identify 
the spaces H and H'.  

As is well known, the transposed linear mappings 

qi = tpi e I. (E'), (i = 1, 2), 

v = ~ u E  t (H ' ,E ' ) ,  

Q, = 'P,  e L (H'),  (i = 1, 2), 

exist. Clearly v is an injective linear mapping. Hence its induced inverse 
w----v -1 is well defined on Im v and represents a surjective linear 
mapping 

w : I m v - ~  H'.  

Lemma 1 yields 

Lcmma 2. For i = l,  2 the relation 

Qi = W 0 qi 0 V 

iS valid. 
I t  follows from Theorem 1 that  Qi = J o P i o  j - i  (i = 1, 2), are 

or~hogonal projectors in the Hilbert space H' each supplementary to 
the other. Thus by the projection theorem and Lemma 2 we are led to 

Theorem 3, Let (E, pl, u, H) be a spline system, E being a locally 

convex topological vector space and H being a Hilbert space. For any  

x 0 e Im v there is exactly one point x' ~ Im Qi such that 

II w(x'o)--x' IIH, -~ inf ]l W(Xo)--w o q,(zo)[1•, 
z0 ~ ~ Im v 

where i -~ 1, 2. We have x' = w o qi(x'o). 
Let us proceed to a special case. ~rom (1) we deduce the identity 

Im v ---- Im %. Hence we obtain by (2) the inclusion 

Im qz _c Im v. (4) 

If  X'o denotes any point of E' ,  it  is possible to apply the previous 
theorem to qa(Xo) e Im v in place of ~o. Select any point Y'o e E'  such that  
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Yo -- xo e Im v is verified. By Lemma 2 we get ql(y;--Xo) a Im v. Hence 
by (4) 

zo = ql(Yo) -- xo ~ Im v. 

Setting i = 1, Theorem 3 yields a 

Corollary. Let (E, p~, u, H) be a spline system having the same pro- 
perties as in Theorem 3. For any x' o ~ E' we have 

II ~ o ~ ( 4 ) I 1 . ,  = inf 11 ~(4-~(y;))II.,. 
Yo' ~ Xo'+ Im V 

8. An Example of a Spline System 

I t  is the purpose of this and of the last section to give an illustration 
of the preceding developments. 

Let I = [a, b] be any non-trivial compact interval in the real line tt 
and m > 1 any fixed integer. We denote by C~-1(I) the vector space 
of all real-valued functions / which are defined on I and have conti- 
nuous derivatives D~/of order 0 < i < m--1 in I, addition and multi- 
phcation by scalars being defined in the usual way. Clearly, at the end 
points of I the corresponding left resp. right derivatives take the place 
of Di/. 

We shall provide C~-1(i) with the topology of uniform convergence 
of functions and of their derivatives of order < m -- 1. I f  we denote 
by II. II~ the CEBY~EV norm on I, this topology is induced on C~-1(I) 
by the norm 

/ --. l l / l I c ~ - l -  sup jj 1)? II~, 
O<i<m--I 

and clearly it turns Cr~=l(I) into a Banach space. 

Following I. J. SOlOEd'BERG [4] we consider the (algebraic) vector 
subspace K~"(I) of C~-I(I) which consists of all functions / e C~-1(I) 
such that  Dm-~/is an absolutely continuous function on I and the function 
Din~ (more precisely, the equivalence class defined by Din~ which lies 
automatically in L~(I)) is an element of the Hilbert space L~(I). The 
space K~'m(I) is equipped with the natural norm 

1 ~ If I I1~ . . . .  sup (IJ I Jl~-~, II D~I IJL')" 
Evidently the canonical injection K~m(I) -+ C~-~(I) is continuous, 

i. e. the topology of K~'~(I) defined by II. IIK~,~ is finer than the relative 
topology induced by C~-~(I). 

26* 
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Theorem 4. K~"~(I) is a Banach space. 

Proo]. Let (/~)~>_1 be any Cauchy sequence in the space K~m(I). 
Evidently (/~)n>_l is a Cauchy sequence in C~-l(I) and (Dm/~),>l is a 
Cauchy sequence in L2R(I). By completeness, these sequences have 
limits / e  C~-1(I) resp. F ~ L~R(I) in the topologies associated with 
these vector spaces. Since F e L]~(I), it  suffices to prove that  relative 
to the topology of pointwise convergence for all t e I 

t 

lim (Dm-ls ----- ] F(s) ds. 

But we have with a constant c > 0 
t 

I Din-1/~(t)--D'~-~[,(a) - -  ~ F(s) ds 1 
e~ 

II D~/~ - - F  [IL,~ c. II Dm]~ - F  llz, 
for all n _> 1 and all points t ~ I .  This proves the theorem. 

Let us denote by P~_I(I) the vector space of the restrictions restiP 
to the interval I of all polynomial functions P of degree ~ m--1 with 
real coefficients. We shall consider P,~_I(I) as a (closed) vector subspace 
of the Banaeh space K~(I ) .  

Theorem 5. The linear mapping D m belongs to the space s  L2R(I)) 
and is an epimorphism with Ker Din= Pm_l(I). 

Proo]. I t  follows immediately from the definition of the topology 
carried by the vector space K~m(I) that  the linear mapping 

Li(I) 
is continuous. Given an integer n with 1 ~ n ~ m, let us consider the 
linear mapping 

( (n--l)' 1 ' ) d~ : L~(I) ~ F -+ t --> ! F(s). (t--s) n-1 ds . 

Then D~o J ~ :  J~-~ for 0 < i < n with the usual conventions 
concerning the identity mapping. In particular we obtain 

t 

D ~-1 o J~(F) ---- JI(F) : t ~ f F(s) ds, 
a 

D m o Jm(F) ---- F e L~(I) 
and 
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with an appropriate constant c m > 0. I t  follows that  jm~ L(L~(I), g~m(I)) 
is a right inverse of the mapping Dm. Hence D m is an epimorphism. The 
last assertion comes from the fact that  / e  Ker D m if and only if 
/ ~  C~-l(I) and Din-i / is  a constant function on the interval I.  

Remark. In view of the fact that  K~'m(I) is a Banach space (Theo- 
rem 4), it suffices to verify that  D m is a continuous linear mapping 
from K~m(I) onto the Hilbert space L~(I). By the open mapping theorem 
D ~ is then an epimorphism. However, the procedure above makes use 
only of arguments which are completely elementary in character. 

Let us briefly recall what a (natural polynomial) spline/unction is 
(see e. g. AHLBERG-NILSON [1], T. N. E. GREVILLE [2], I. J. SCr[OEN- 
BERG [4]). Let n denote an integer, n > m > 1, and let (ti)l<~< ~ be n 
numbers within the interval I ordered in the following way: 

a < t 1 < t 2 < . . .  < t n _  1 < t n < b. (5) 

By a spline function of degree 2 m--1 having the n points (ti)l<_is, 
as nodes we mean a function S ~ C~m-~(lt) with the property 

rest]_ ~, t, [S e Pro- i ( ] - -  ~,  tiD, 

rest]ti, ti+ltS e P2~n_l(]ti, ti+l[), l < i < n -- 1, 

rest] % +~ [S ~ P.~-l(]Q, ~- ~[). 

We may then state the following interpolation theorem. 

Theorem 6. Given n numbers (ti)~s~s ~ within the interval I c R, 
ordered as in (5) and an n-tuple (/1 . . . .  ,/~) o/ real numbers then there 
exists one and only one (natural polynomial) spline /unction S o/degree 
2m--1 with nodes (tl)l<i<_. such that 

/or l < i < n .  

We shall not prove here the interpolation theorem but we refer to 
T. N. E. GREWLLE [2] and I. J. SCHOENBERG [5]. 

Let us denote by S i (1 < i ~ n) the restrictions to I of the funda- 
mental functions of spline interpolation relative to the nodes (ti)l<_is,. 
In the sequel we regard the functions S i as elements of the Banach 
space K~m(I). Moreover let sti ~ K ~ ( I )  ', (1 < i < n), be the Dirac 

measure (unit point mass) placed at the node t~ and let < . , .  > denote 
�9 " " ~ m  the bilinear form associated with the topological duality (K~ (I), K~'m(I)'). 

To any function / e K~m(I) we shall assign the linear combination 
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SPa(l) : I ~ t ~ X < / ,  % > .  8~(t). 
4=1 

Clearly / --> SP,(/) defines a linear mapping of the vector space 
K~m(I) into itself. I t  is easy to see that  Im SP~ is the suhspace 
of K~m(I) generated by  {S 4 I 1 < i < n}. For convenience we set 

Theorem 7. Let the nodes (ti)l<~< ~ be chosen within the interval I 
as in (5) and 1 < m <  n. Then 

(K~'~(I), SP=, D m, L~(I)) 
/orms a spline system. 

Proo]. To verify property (i) of spline systems we observe that  for 
any function / e K~(I )  

where c~,~ = X It S~ llK~,m. Hence SP~ e L(K~(I)). The fact that  the 
~=~ 

linear mapping SP,  is idempotent follows at once by Theorem 6. 
Next we refer to Theorem 5 which is applied to establish condition (ii). 
In addition Theorem 5 yields Ker D ~ = Pm_~(I). By virtue of Theorem 6 

SP,(Pm_~(I)) = P,~_~(I). 

Hence property (iii) follows. Finally, property (iv) of spline systems 
reads in the present case 

b 

DmSP.(/)(t). (D'V(t) -- D'~SP.(/)(t)) dt = 0 
t~ 

for all functions / ~  K~m(I). But this is equivalent to the so-called 
integral relation, well-known from spline interpolation theory. See 
AHLBEgG-NILSON [1] and T. N. E. GgEVlLLE [2]. 

4. Classical Minimal Properties 

Besides the fact that  the preceding theorem yields a concrete example 
of a @line system, it enables us to apply the results we have derived 
in sections 1 and 2 for general spline systems to the case 
(K~m(I), SP,,  D m, L~(I)). Recall that  Xm, ~(I) denotes the closed vector 
subspace of K~'~(I) of spline functions (restricted to I) having degree 
2m--1 and the points (ti)l<4< ~ in the ordering (5) as nodes. 

Let us begin with Theorem 2. We obtain in the case i = 1  the following 
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Theorem 8 (First minimal property). Let / ~  K~"(I) be given. For 
any spline /unction s ~ Xm,~(I ) we have in the Hilbert space L~(I) 

IJ Din~ -Dins JfL. >-- II Dm/-D  o If. 
with equality i// 

s :-- SP~(]) rood Pm_l(I). 

We proceed to apply the case i ---- 2 of Theorem 2 to our special spline 
system and obtain for any / e K~'~(I) 

It Dm/--g ItL, = inf I[ Din~ - D ~ h  + Din~ SPa(h) [[z~, 
h e K m(Z) 

where g -= DmJ--D ~ o SP~(/). Consequently 

[[ e "~ o SP. ( / )  lifo ~ 1[ D~'/ ]]L~, 

with equality iff / _~ SP,~(/) rood P m - f l ) .  Hence follows 

Theorem 9 (Second minimal property). For any /unc t ion  / e  K ~ ( I )  
we have 

]] Din~ IlL, >--i[ Dm ~ SP~(/) []L~ . 

Equality holds i//  
] ---- SP,(/) .  

Our last application is concerned with Schoenberg's approxima- 
tion theorem. I t  will be obtained as a simple and direct consequence 
of the Corollary of Theorem 3. 

Let (bi)l<_i<~ denote real numbers. Then the real Radon measure on I, 

T ~- ~ b i et~ 
i ~ 1  

whose support is contained in the set {t~ I 1 ~ i ~ n} of given nodes 
is an element of the dual space K~'m(I) '. For any function / e K~m(I) we 
have the identities 

</, T}  = Z bj(t~) = X b~SP~(/) (t~) = 
i = 1  i = 1  

= <SP~,(/), T}  = </, tSp,(T)>. 
Hence 

T ~- tSPn(T). 

In addition let a continuous linear form L ~ C~-1(I) ' be given. 
Clearly T - - L  can be considered as an element of the space K~'(I) ' .  
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Suppose that restp~_l(~)(T--L ) ----0. I t  is possible to apply Peano's 

theorem (see A. SARD [3, Chap. 1]). It  yields for any function /~  K~m(I) 
the identities 

</, T - - L }  ---- (Din/IK) = <Dm/, j~,(g)> ---- </, tDm o jL,(K)> (6) 

where K e L~(I) denotes the Peano kernel associated with the linear 
form T - - L  and Jr, denotes the canonical isometric isomorphism from 
L~(I) onto its topological dual L2a(I) '. It follows that 

T e L + Im 'Dm. 

Hence we get by virtue of the aforementioned Corollary 

Theorem l0 (I. J. SCHOENBERG [4]). Let the continuous linear 
/orm L e C'~-1~I) ' be given. I] the discrete Radon measure 

T ---- X b i eti e K ~ ( I )  ' 
i = 1  

on I has the property 

restp~_l(x ) (T--L)  = 0 

then the inequality 

[I (tnm) -1 (L--T)[IL~, >_ [] (~n~) -~ (L--tSP~(L)) []z~" 
holds and 

'SP.(L) = Z <Si, L>.%. 
i = 1  

In view of (6), the preceding theorem states that, loosely speaking, 
when the continuous linear form L is approximated by T, the remainder 
L - - T  turns out to have a Peano kernel with minimal L ~ norm if the 
coefficients (bi)l_<i_< ~ of T are equal to the values <Si, L> of L at the 
fundamental functions (Si)l<_~<_, , of spline interpolation with nodes 
(t~)l_<i_< n. In this sense the discrete Radon measure 

tSP~(L) 

represents a best approximation of L on I. 

It  is the topic of forthcoming papers to expose more detailed investi- 
gations of the topological duality (K~m(I), K~m(I) '), to point out especially 
the connections to elementary distribution theory and to give appli- 
cations of our notion of spline system to the theory of L-splines. 
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