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PERIODIC SOLUTIONS OF ASYMPTOTICALLY LINEAR
HAMILTONIAN SYSTEMS

Herbert Amann and Eduard Zehnder

We prove existence and multiplicity results for periodic solutions of
time dependent and time independent Hamiltonian equations, which are
assumed to be asymptotically linear. The periodic solutions are found
as critical points of a variational problem in a real Hilbert space.
By means of a saddle point reduction this problem is reduced to the
problem of finding critical points of a function defined on a finite
dimensional subspace. The critical points are then found using
generalized Morse theory and minimax arguments.

1. Introduction

We shall study the existence of periodic solutions of

Hamiltonian equations

(1) % = 0h' (t,x) 5 (t.x) € R x RE",
where

o -1\ .,
(2) J= ( > e LrR™

1 0

is the standard symplectic structure in Rzn, 1 denoting the identity
. 2
matrix in R" . The Hamiltonian function h belongs to CZ(R x R°M)

and by h'(t,.) we denote the gradient with respect to the x-variable.

0025-2611/80/0032/0149/$08.20

149



4 AMANN - ZEHNDER

We shall assume that h depends periodically on the time t with

period T > 0 :

(3) h(t,x) = h(t+T,x) » (t.x) € R x RZ" .

Our aim is to find periodic solutions of the system (1) having period

T. We consider asymptotically linear systems assuming that:
4 Jh'(t,x) = Jb_x + o([x]) , as [x]| » =

uniformly in t , for a symmetric and time independent matrix
b€ a((RZ") . In addition we shall require the Hessian of h(t,.) to

be uniformly bounded:

(5) -BSh'(t,x)<B , (t.x) €RxRM,
for some constant 8 > 0. The following existence result has been

proved in [1] (Theorem 12.4).

Theonem 1;: Let h(t,x) be periodic in t with perniod T > 0. Then
unden the assumptions (4) and (5) the Hamiltonian system (1) possesses
at Least one T-periodic solution provided

(6) ob)niZz =g,
Here and in the §ollowing o(Jb_) denotes the specthum of the Lingar

operator Jdb_ .

Condition (6) reminds of the nonresonance condition in

Liapunovs theorem. It requires that the linear and time independent
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AMANN - ZEHNDER 3

Hamiltonian system x = Jb_x does not possess a periodic solution of

period T .

It should be said that in theorem 1 the constant solutions
are admitted as periodic solutions. Namely for a time independent
Hamiltonian function h , the system (1) possesses necessarily an
equilibrium point, which is a constant periodic solution. In fact, if

f dis any C2

-function on R" satisfying f'(x) = bx + o(|x]), as
[x| >« , with a symmetric and nonsingular matrix b_ eL(R™ , then
there is an x* € R™ such that f'(x*) = 0. (see for instance [1],

proposition 12.5).

For this reason we consider in the following systems which
possess an equilibrium point, which we assume to be 0 , i.e.
Jh'(t,0) = 0. The aim is to find T-periodic solutions, which are not

trivial, i.e. x(t) # 0. More precisely we shall require, that

(7N dh'(t,x) = Jb x + o(lx]) , as |x]| =0

uniformly in t for a symmetric and time independent matrix bo e[(Rzn)
It turns out that such systems possess at least one

nontrivial T-periodic solution, if the two linear Hamiltonian systems

X = Jbox and X = mex are different from each other. This

difference will be measured by an integer

(8) i=ilbeb ez ,
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4 AMANN - ZEHNDER

which will be computed explicitly in terms of the period T and the

imaginary eigenvalues of the linear systems X = Jbox and X = Jb_x.

Our main result (theorem 2) guarantees the existence of a
nontrivial T-periodic solution if i(bo,bm,gg) > 0 provided the
nonresonance condition (6) for Jb_ holds true. For example, i>0,
if b0 <0<b, orif b <0< b0 . We remark that no nonresonance
condition for Jbo is required. We also point out, that only
assumptions "at 0" and "at =" are required and none in the "interior".
In this respect the existence statement is similar to the Poincaré-
Birkhoff fixed point theorem; the condition i > 0 corresponds to

the twist condition required in that theorem.

The above periodic solutions will be found as critical points
of a variational problem in a real Hilbert space H . Due to the
assumption (5) the problem can be reduced to the problem of finding
nontrivial critical points of a function a which is defined on a
finite dimensional subspace Z C H . As a consequence of the
assumption (6) this function satisfies the so called Palais-Smale
condition. Moreover due to the assumptions (4) and (6) the qualitative
behavior of the function is known in a neighborhood of 0 and of "=
The critical points are then found using the topological tools of the

generalized Morse theory developped by C. Conley [5].

In the sections 4 and 5 we shall establish multiplicity

results, however under additional assumptions on the function h "in
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AMANN - ZEHNDER 5

the interior”. We shall prove (theorem 4) for h even in the
x-variable, i.e. h(t,x) = h(t,-x) for all (t,x) € R x R", that the
integer i(bo,bw,gg) is a lower bound of the number of nontrivial
T-periodic aolutions of (1). Here standard minimax arguments based on
the concept of genus as described by D.C. Clark [4]1ead to the result.
In section 5 we consider a time independent Hamiltonian function h .
In this situation there is no "natural” period for the sought periodic
solution given. Assuming h to be strictly convex we shall show
(theorem 5) that for any positive number T satisfying i(bo,bw,gF)>0
there are at least 1/2 distinct, non constant, periodic solutions of
the Hamiltonian system (1) having period T . Again the proof is based
on minimax arguments. This time we use the fact, that the functional
is invariant under a special Sl-action and apply the index-theory

developed by E. Fadell and P. Rabinowitz [6].

The proofs of these results.already announced in a prelimi-
nary version in 1979,rest heavily on our previous work in [1]. Recent-
1y, V. Benci proved results related to our multiplicity results in
section 5. His approach however is different from ours, but also based

on minimax arguments.

We would 1ike to thank C, Conley, J. Moser and P.
Rabinowitz for valuable discussions. The second author would like to
thank the Institute for Advanced Study in Princeton for its hospi-

tality.
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6 AMANN - ZEHNDER

2. The index (b sb_,7)

In order to formulate our first existence statement, we shall intro-
duce first an integer i(bo,b&,r) for two symmetric matrices

bysbe EoC(Rzn) and a positive number t .

IfFbed (RZn) is symmetric, and u 2 0 we consider the

2n Z2n

guadratic form on R™ x R™ , defined as

(8) 2u<Jx1,x2> - <bx1,x1> - <bx2,x2> .

2n . It is represented by the matrix Q(u,b) eoC(R4"):

o J' b 0
(9) Q(u,b) = u( ) - ( ) )
J 0 0 b

Notice that -J = JT . We denote in the following by m+(.), m°(.)

(xl,xz) € RZ" x R

and m (.) the positive, the zero and the negative Morse index of a

quadratic form or of a matrix representing this form. We observe that
(10) m' (Q(u,b)) = m (Q(u,b)) = 2n

if u>max {a € R | ia € o(Jb)} .

In fact if u > 0 is sufficiently large thenm =m =2n ,
which are the indices of the first matrix in (9). Moreover if u
decreases, these indices can change only at those values of yu , for
which the matrix (9) is singular, that is m(Q(u,b)) # O . This

occurs precisely for those values of u € R for which iu is a
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AMANN - ZEHNDER 7
purely imaginary eigenvalue of Jb . Indeed assume (xl,xz) € R2n X R2n
is an eigenvector of (9) with eigenvalue O . Then, using JT = ~J, we
have bx; + qu2 =0 and bx2 - wlx; = 0 . Therefore b(x1+ix2)
= uJ(ixl-xz) = iuJ(x1+ix2) » hence Jb(xl—ixz) = -ip(x1+ix2) and so
tip € o(Jb) , as claimed. From these remarks the assertion (10) is
obvious.

R2n

Assume the two matrices bo,bw Eaf( ) to be symmetric and

let t>0. Abbreviating Q7 = Q(u,by) and Q> = Q(u,b,), we then

o)
define two integers it = ii(bo,bw,r) as follows:

1 4.0, % o N
(11) 7= 5 I (Qy) - m(Q)} +j£1{m (Qg,) - m(Q;.)3

Finally, we set:
(12) i(bysb_»7) = max (i1,i1 ez

In view of (10) the above sum is finite. As a sideremark we observe
that it(sTbos,thmt,r) = ii(bo,bw,r) for two symplectic matrices s
and t , since sTJs =J for s € Sp(2n,R) . Hence i is a symplectic
invariant. Clearly ii(bo,bw,r) =0 if b0 =b_ , or if both matrices

Jbo and Jb_ have no imaginary eigenvalues (zero included). Also:
.t _ o+ ¥
i (bo,bw,r) =m (bo) m (b_)

if t is sufficiently large.

We next compute the numbers it explicitly in terms of the

purely imaginary eigenvalues of Jb0 and Jb_. If b€ JC(RZ") is a
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8 AMANN - ZEHNDER

real and symmetric matrix, then it is well known that with an eigen-
value A € g(Jb) , also =r, X and -X belong to o(Jb) . That is, the
eigenvalues of Jb occur in groups of four, in case they are complex,
and in groups of two, in case they are real or purely imaginary. With
PA we denote the projection onto the eigenspaces of such an eigen-
value group. Then PAR2n is a symplectic subspace on R2n , which is
invariant under Jb ; in particular the dimension of P)‘R2n is even.

Therefore R2"

decomposes into invariant symplectic subspaces
corresponding to different eigenvalue groups. We now consider the
symplectic subspaces, which belong to a pair of purely imaginary
eigenvalues +ia, o« # 0 € R . It is important to observe that there is
a preferred symplectically invariant choice of the signs of these
eigenvalues which singles out half of them as “positively oriented".
To explain this, we first assume ia to be a simple eigenvalue, so
that dim PiaR2n = 2 . There is a linear symplectic coordinate change

in this subspace such that the corresponding Hamiltonian has the

following normal form on R2
1 2 2
h(x,y) = 5 o(x” +y7) .

The number o is a symplectic invariant, and we call io the
"positively oriented" eigenvalue (of the pair zia). If the multi-
plicity of ia is r > 1, then dim PiaRZ" = 2r . If we denote by

Eia the complex eigenspace belonging to the eigenvalue ia , then

%T <v, V>, VvEE,

1o

defines a nondegenerate Hermitean form. If this form has an r+-d1men-
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AMANN - ZEHNDER 9

sional positive and an r_-dimensional negative subspace, where
r,+r_=r, then we set r,_of the eigenvalues equal to ia, o >0

and r_ of them equal to -ia, so that

iayia, ...l ~idy... =1a

r,-times r_-times

are the positively oriented eigenvalues of the restriction of Jb onto
PMRZn . If this restriction is symplectically diagonalizable, there
is a symplectic change of coordinates, which puts the corresponding
Hamiltonian into the normal form on Rzr :
r r
+ -

2 2 1
(x5 +y:)-50z (X
. (XJ yJ) 7 U'j=1(

2 2

AyS L) .
r ++J Y‘++J

h(x,y) =

o

N

j=1

We should say that a definite Hamiltonian is always symplectically
diagonizable. For instance, if it is positively definite, its

normalform is

2
J

N =

h(x:y) = a _E (X

+ y?) sy a>0
j=1 J

and io,...,ia (r-times) are the positively oriented eigenvalues. We
refer to J. Moser [7] for more details. After these remarks the
indices of the quadratic form (9) are easily computed. We shall denote

in the following by [M1 the cardinality of a finite set M.
Lemma 1: Assume the imaginany port of Jb is symplectically

diagonalizable and denote by S = {ial,...,ias} the set of positively

ondented imaginary elgenvalues. Then 4§ u > 0:
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10 AMANN - ZEHNDER

m(Qusb)) =2n - 2[ja€S | a2pl +2[ia€S | a< -y
mQu,b)) =2n+2[ic€S | a>p ~2[ia €S | a< =~y
m(Q(u,b)) =2[ia€S |a=p] +2[10€S | a= -y

14, in addition, b is a nonsingular matrix, then:

m(b)=nt {[ia€S|a>0] -[ic€S|a<0]}.

We recall that in the special case, where the restrictions of b onto
the imaginary subspaces are definite, then Jb 1is symplectically
diagonalizable on these subspaces. The condition of being

diagonalizable can be dropped if iu & o(Jdb) .

Proof4: We have seen that m=m =2n if u > 0 is sufficiently large.
Moreover of u decreases, these indices change precisely if iu € o(Jb).
Assume first that ia, « € R is a simple positively oriented eigen-
value of Jb . Then we put the Hamiltonian, restricted to the eigen-
space of the pair tia, by means of a symplectic transformation into
the form %—a(xi + yi) . The restriction of the form Q(u,b) onto the

two copies of these subspaces becomes
2
2u(x1y2 - xzyl) - a(x§ + yl) - a(xg + yg) =
2, 2
= (g - 20 e (1- B%) ¥

tlxy 2y )2 e (1- B2 yh

Consider the case o > 0. Then we read off for u > a:
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AMANN - ZEHNDER 11

(m,m°,m) = (2,0,2) , for p=a: (m",m°,m") = (0,2,2) , and for
p<a (m+,m°,m-) = (0,0,4) . Similarly for the case o < 0: if

-u < a, then (m+,m0

) = (2,0,2) , if -u =a, then (m,nC,m) =
(2,2,0), and if -p > as then (m+,m°,m') = (4,0,0) . Therefore,in case
a > Osthe index m' changes by -2 and m by +2 if u crosses

a from above, andsin case o < 0, the index m changes by +2 and
m by -2 if u crosses -a =|a| from above. If tia is not a
simple eigenvalue pair then, by our assumption, the restriction of

Q(u,b) onto the eigenspace is a sum of quadratic forms of the above

type and the Lemma follows.

As a consequence we find the following explicit expressions

for the integers ii(bo,bm,r) .

Lemma 9 Let b ,b_ € (R be symmetric and t > 0 . Assume the
Amaginany parts o4 Jbo and Jb_ are symplectically diagonalizable,
and denote by 0 = {iao,..,iag } and S = {ia?,...,ia: } the sets

-3

0
04 positively orniented imaginary edigenvafued of Jb0 and Jb_ . Then:

.1 4,00y o Hoae
i,=5 m(Q) - m(QN
b2 5 (1€ s | o0 < -jr - [1® € $%a® 2 §u}
j=1
-2 1 (l[i0esS | a” <-j1 - [ia” €S| 2 I}
j=1

wty
1

_=g @ (@) - m(@)y

(e € $°[a® > jul - [ia® € 5°[a® < -ju])
1

2

+

W18

N
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12 AMANN - ZEHNDER

-2 '21 ([ia” € S¥|a” > 1l -[ia” € ¥lo” < =311).
j=
I§ b b~ are non singubar then
7 @) - m' (@)= - 3 o7 (Q]) - m (@)

=15%a® <0 -18%e® 200 - [S7]a" < 01 HS”[a" 2 O]

The assumption that, Jb0 and Jb_ are symplectically diagonalizable
on the imaginary subspace can be dropped provided c(Jbo) NitZ =@
and o(Jdb ) N itZ =9 .

3. The time dependent case

a) The statements:

After these preliminaries we formulate the main results and some

consequences:

Theonem 2: Assume h(t,x) € C2 to be periodic in t with period
T>0 satisfying (4), and assume

Jh' (t,x) = Jb x + o(lx]) , [x] =0
(13)
Jh'(t,x) = Jdb_x +o(|x]) , [x| -+«

uniformby in t fgon two symmetrnic time independent matrices
bysb, € £ (R?"). Then if

R 27
1(b0’bw’ 'T") > 0 .

there 48 at Least one nontrivial T-periodic solution of the
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AMANN - ZEHNDER 13

Hamiktonian system % = Jb'(t,x) , provided o(db )0 i 5 Z =9 .
This statement generalizes theorem (12.11) in [1], where the addition-
al assumption o(Jbo) nj —ZT’L Z =9 is required. The interest of this
statement 1ies in the fact, that the index i is explicitely com-
putable in terms of the normal modes of the two linear systems

X = Jbox and X = wax . This leads to various existence statements.

We mention two simple special cases.

Conollary 1: Assume h as in the theorem, and assume b0 <o<b,
on b <0< b0 » then the Hamiltonian system has ot Least one non-

triviat T-periodic solution provided o(db )P i T = ¢ .

In fact in this case Jb0 and Jb_ are symplectically
diagonalizable and if bo <0<b_  then ® <0 for ia®€s® and
o >0 for ia” € S”, and therefore by Lemma 2,

(14) i = m(by) + 22 (15°]e° < -ju + 1S7]e” 2 )
j=1
which is greater than 2n for every t > 0 . Similarly for the case

b, <0 <b, .

More generally, if b0 <0< b_ , then we conclude, in view
of (14), a T-periodic solution if either m'(bo) > 0, or if there is

an integer j = 1 such that jr < a: for some ia: € S” , where

_ 27
T——T—'.

Conollany 2: Assume h as in the theorem. 14 Jb0 L8 hypenbolic
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14 AMANN - ZEHNDER

({.e. has no imaginary eigenvalues), and if the nestriction of b
onto the imiginahy eigenspace of Jb_ is definite le.g. {f Jb_
possesses only one pain of simple imaginany eigenvalues), then the
Hamiltonian system has at Least one non-trivial T-periodic solution
provided o(db )N 1% Z = .

Indeed, in this case ° = @ and we find by Lemma 2, in the
positive definite case,
= (s®e" >0 +2 1 [S7]a” 2 ul
j=1
which is greater than zero. In the negative definite case we have
iT =187 <0} +2 £ [S]a” < g1l
i=1
b) Proof of theorem 2

We first reformulate the problem as an abstract variational problem in

a Hilbert space in order to apply the abstract results of [1]1. We let
27
T>0 and T=T s

and consider the Hilbert space H = L2(0,T;R2") . In H we define the
linear operator A : dom(A) C H-+H by dom{A) = {ue Hl(O,T;RZ")!
u(0) = u(T)} and

(15) Au = -Ju , u€ dom(A) .
We also define the continuous potential operator F : H - H by

(16) F(u)(t) = h'(t,u(t)) .
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AMANN - ZEHNDER 15

whose potential ¢(u) 1is given by
T

(17) #(u) = 5 h(t,u(t))dt.
)

Clearly F is the gradient of ¢ , i.e. ¢'(u) = F(u) . Writing the

equation (1) in the form -Jdx = h'(t,x) , we see that every solution

u € dom(A) of the equation
(18) Au = F(u)

defines {by T-periodic continuation) a classical T-periodic solution
of (1). Conversely,every T-periodic solution of (1) defines (by
restriction) a solution u of the equation (18). The equation (18)
is the Euler equation of the variational problem extr {f(u) ,

u € dom{A)} , where
(19) £(u) = 5 <Au,u> - o(u)

or in classical notation
T 1.
extr J { > <X,dx>-h(t,x(t))dt ,
0
x(0) = x(T) . The following properties of the operator A are readily

verified:

Lemma 3: The operaton A 44 selfadfjoint and has a pure point spectrum
o(R) = tZ . Every eigenvalue » € o{A) has multiplicity 2n and the
eigenspace E(A) = ker(r-AR) 4is spanned by the onthogonal basis:

tad

t>e e = (cos At)ek+(sin xt)dek, k=1,2,...,2n ,
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16 AMANN - ZEHNDER

where e, | 1<ks2n) 4is the standard basis of R2N

2n

. In pan~-

ticulan, ker{A) =R that 48, At consists of the constant functions.

Since h'(t,0) = 0 , the potential operator F satisfies
F(0) = 0, and it follows from the assumption (5) that
2 2
(20) -Blu-v|© < <F(u)-F(v),u~v> < glu-v|

for every u,v € H . Introducing the bounded symmetric operators

B,:B,, el (H) by

Bo u(t) = bo u(t) , B u(t) =b_ u(t) ,
we derive from our assumption (13), that

F'(0) = B, and F'(=) =B, ,

where the last equation means | }im lul"1 |F(u)-B u| = 0.
Ul >
We finally observe that the condition o(wa) N itZ =@ of theorem

2 is equivalent to the statement 0 ¢ o(A-B ) .

The estimate (20) for the nonlinearity F allows to reduce
the problem of finding a nontrivial solution of the equation (18) to
the problem of finding nontrivial critical points of a function de-
fined on the following finite dimensional subspace Z = PHCH ,
where P is the projection

F = dE
f
B A
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AMARN - ZEHNDER 17

onto the eigenspace of A belonging to the eigenvalues contained in
(-8,8) 3 here EA is the spectral resolution of the selfadjoint

operator A . We can assume that B ¢ o(A) .

Lemma 4: There are a function a € CZ(Z,R) and an infective Cl-map
u:Z->H satisdying u(0) =0 and Imu C dom(A) with the
following propenties:
(i) a(0) =0, a'(0) =0 and z € 7 L8 a enitical point of a,
d.e. a'(z) = 0, 4§ and only 4§ u(z) 48 a solution of the
equation Au = F(u) . a 48 of the fonm:

a(z) = 5 <Au(z),u(z)> - $(u(2))

(i1) 1§ 0 ¢ o(A-B_), then a satisgfies the Palais-Smale
condition.

(ii11) The operatons Bo and B_  commute with the projection
P, and there {8 a constant & > 0 such that

%<(A-Bm)z,z>-6 < a(z) < % <(A-B_ )z,2> + &
for eveny z € 1 . Moneover
a"(0) = (A-BO)IZ.
Proog: The proof follows from [11, Proposition 2.1, Proposition 4.5,

and Lemma 7.2, observing that we have the freedom to make B 1in the

estimate (4) large.
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18 AMANN - ZEHNDER

It remains to find nontrivial critical points of the function a,which
by the Lemma behaves like < (A-Bo)z,z > in a neighborhood of 0 and
like < (A-B_)z,z > 1in a neighborhood of « . A critical point is

guaranteed by the following crucial lemma, which can be proved using

the generalized Morse theory developed by C. Conley [5].
Lenma 5: Assume O ¢ o(A-B) , then the function a has a nontrivial
crnitical point L4
(21) m'((A-8,)12) ¢ [m'(a"(0)) , m'(a"(0)) + n°(a"(0))].
Proof: See Proposition 9.3 in [11 .
Observe that in the special case, where, in addition, 0 o(A-Bo) the
above condition is simply

m'((A-B_)[2) # m'((A-B,)|Z) .

Since 0 ¢ o(A-B_) we have m ((A-B_)|Z) = dimZ - m ((A-B_)|Z) ,

and therefore condition (21) es equivalent to
m+((A—B°)lZ) - m ((A-B_)|Z) > 0
or
m'((A-Bo)[Z) - m ((A-B_)[Z) >0 .

We shall show that the left hand sides of these two inequalities agree
with 1¥(b,b_,t) and i (b,.b_,7) , for 1t =3F . Indeed, if E()

denotes the eigenspace of A for the eigenvalue A € o(A) = <Z,
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AMANN - ZEHNDER 19

T = EF-, we find by Lemma 3:

E(A)+E(-A)=¢ % {cos At)x1+ %(sin xt)xz, 0<tsT]|

2n
X12Xo € R}

Let now A = jt € o(A) , j 2 1. The restriction of the operator A-Bo
(resp. A - B_) onto the subspace E(x) + E(-A) C H defines a quadratic
form, which agrees with the quadratic form Q(u,b) defined by (8), for
u=Jjr and b = b0 (resp. b = b ). Therefore, if we choose B8 so

large that c(Bo) and o(B_) are contained in (-8,8) it follows
from (11) that

mt ((A-B, )7) - mt ((A-B_)12)
A’BO)IZ) - m ((A-B_)|Z)

.+
i*(bysb,,7)
i7(b,sb,»7)

(22)

where =-1~ Theorem 2 now follows by Lemma 5 and Lemma 4.

c) Remarks

Remark 1: There is a curious relation of the above existence theorem
to the Poincare-Birkhoff fixed point theorem. We consider a
Hamiltonian system in 2 dimensions h(t,x) = h(t+T,x) for (t,x) €

Rx RZ , he C¥(R x R%) , which satisfies

Jh' (t,x) = oa%x + o(|x]) , as |x| >0

Jh' (t,x)

]

(23) w
aJdx +o(|x]), as [x] »= ,

for two real numbers o # o , say a® <o . The two linear systems
L]

x = a%x and X = o Jx represent two harmonic oscillators with

frequencies a® resp. o . One verifies easily that in this special
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20 AMANN - ZEHNDER

case the conditions 1i(b,b,t) >0 and o(db) N itZ =@, t = 3%,
required in theorem 2, are equivalent to the following conditions:

there is an integer j € Z, such that
(24) o < jt<a

and o # kt , for every k € Z. We shall assume in the following
only condition (24) which is always satisfied if <0<,

Introducing symplectic polar coordinates
S i0
x; +ix, = /Re” ,

the system x = Jh'(t,x) becomes

e
H

= -H,(t,0,R
(25) r(ts0:R)

'+He(t,e,R)

with H(t,8,R)

H{t,x) periodic in & of period 2r . The flow of
(25) gives rise to measure preserving homeomorphisms of the annulus
0<e<2r O0<R<w«, In the covering space -=»< 8 <», R>O0 we

define the measure preserving map
8 ¢ (855 R)) = (81,Ry) = (8(T) - 2nj, R(T))

where 8(t) and R(t) are solutions of the equations(25) having the
initial conditions o(0) = o, and R(0) = Ro . Since x =0 1s an
equilibrium point of x = Jh'(t,x) , the "inner" boundary, Ro =0,

remains invariant under ¢ ,and on Ro =0

4]
= T2 - = L.
(26) 8y = 8 = Ta 2n = 2n { - jy<o
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by our assumptions (23) and (24). If Ro # 0 then the corresponding
circle of radius Ro is not necessarily invariant under ¢ , but if

R0 is sufficiently large we find in view of (23) and (24)

81 - 9 Ta” - 21§ + 0 (~R1—)
(27) °

2n (“T-j)+0(-Rl;_)>o.

Therefore on account of (26) and (27) the twist condition required in
the Poincare-Birkhoff fixed point theorem for a measure preserving
homeomorphism of an annulus is satisfied, [3], and we conclude two
fixed points for ¢ in 0 <R < Ro which by construction give rise
to nontrivial T-periodic solutions. In order to prove this statement
we did not require condition (5). Incidently it also follows by means
of this fixed point theorem that ¢ has infinitely many periodic
points, which correspond to infinitely many distinct periodic

solutions having periods nT, n€N .

Summarizing we have seen that the condition i >0 in
theorem 2 corresponds to the twist condition required in the Poincaré-
Birkhoff fixed point theorem. It has to be said that a genuine
generalization of this fixed point theorem to symplectic mappings of
higher dimensions has not been found. Of course, if additional assump-

tions are imposed in the interior such results do exist, see [8].
Remark 2: An existence statement similar to theorem 2 cannot be

expected for general asymptotically linear equations, as the

following example shows:
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X = -y8 + (1-8)x

y = x8 + (1-8)y ,

where 6 = e(rz) s r2 = x2 + y2 , and where 8 1is a function with

compact support 6(0) =1, 6(0) =0 and e(rz) <1 for rz #0.

For every solution of this equation:
d 2,2
65 = 1 e 6dnd)

which is greater than 0 , if x2+y2 # 0 . Therefore x=y =0 is

the only periodic solution.

Remark 3: The existence statements so far require the linear
Hamiltonian systems Jb x and Jb_X to be independent of t .
Although the general time' dependent case is not worked out yet, we
give a special result. Assume that bo(t) depends periodically on
t with period T and assume that b_=a 1 with a constant

a_ € R . We denote by o(Bo) the spectrum of the bounded operator
Bou(t) = Bo(t) u(t) in H . It can be shown that if there is an
integer j € Z such that either

a(Bo) <Jjt <o,
or
a, < Jjr < O(Bo) N

where T = EF » then there is a nontrivial T-periodic solution of

x = Jh'(t,x) , provided a_ ¢ tZ. In fact this statement is an
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immediate application of Corollary 9.5 of [1].

4, The Hamiltonian is even

In the following we shall restrict the class of Hamiltonian systems
under considerations even further, in order to prove multiplicity
results. We do not only make assumptions on the systems "at 0" and

"at =" but also in the "interior". We first assume the function h to

be even in the x-variable and prove the following:

Theorem 3: Let h be as in theonem 2 and assume, in addition, that

(28) h{t,x) = h{t,-x)

2n 2w

fon all (t,x) ERxR™ . Then if 1= i(bo’bmfi’) > 0, thene are at

Least i nontrivial pains (x(t),-x(t)) of periodic solutions having

period T, provided o(db) i3 7 =0 .

Prood: It follows from (28) that the potential operator F in (16) is
odd, and we conclude from [1] Proposition 3.2, that the function a of

Lemma 4 is an even function:
(29) a(z) = a(-z) .

Following D.C. Clark [4] closely we shall apply minimax arguments
based on the genus in order to find critical points of a . We recall,
that the genus g(.) is defined for closed symmetric subsets C of

Z \{0}, and g(C) 1is the least integer k such that there exists an
odd continuous map from C into Rk \ {0}; we set g{@) = 0 . This
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genus has the following properties (see for example [4]):

(g1) C1 C C2 implies g(Cl) < g(CZ)
(g2) If Cl n C2 =@ , then g(cl v Cz) = max {Q(CI),Q(CZ)}
(g3) If there exists an odd homeomorphism of C onto the

k-sphere, then g(C) = k + 1 .

{g4) If Zm is an m-dimensional subspace of Z and

cn Zm =@ then g(C) < m.
For the function a in Lemma 4 which now satisfies also {29), we
define:
(30) ck(a) : = inf sup a{C) .
g(C) 2 k

Clearly, cl(a) < cz(a) < ..., and if

(31) —=<ci=cpfa) =cpq(a) =...=c (a) <0

]

then g(Kc) 2k+1,where K :={z€ Zla(z) =cand a'(z) = 0} .
This assertion is theorem 8 in [4]. The following Lemma is also

jmplicitly contained in [4].
Lemma 6: let ¢ € C2(Z,R) be an even function satisgying the Palais-
Smale condition, and ¢(0) = 0. Assume that

(1)  There is an r-dimensional subspace Z of Z and a
positive number p such that ¢(z) <0 for alk z€ 7~
satisfying lz| = o.
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(i1)  zhere is an s-dimensional subspace I' of I, such

that ¢ 4s bounded below on 7

(iii) r+s-dimZ>0.

Then ~» < ck(w) <0 fornall k satisfying dimZ-s<k<r, and
¢ has at Least s + r - dim Z nonzeno pains (z,-z) of critical
points.

Proof: Property (g3) and condition (i) imply that there is a CC Z\ {0}
with g(C) = r such that sup ¥(C) < 0 and hence cr(w) <0.1If teR
we introduce the notation b= w_l((—w,r}). Due to condition (ii) there
is t€R with y_0 7t = p , hence by (g4), a(v ) < dimZ-s .
Therefore if j satisfies dimZ - s < j<dimZ , and if g(C) 2

(such a set exists by (g3)), then sup y(C) 2 t and hence cj(w) zT>

- . The Lemma now follows from (iii) on account of (31).

To conclude the proof of Theorem 3 we denote by E;, Eg, E: s
o = 0, the subspaces on which the symmetric operator (A-Bu)lZ ,
o = 0, , is negative definite, zero, and positive definite respec-

tively. By assumption o(Jb_) ® itZ =@ , hence 0 ¢ o(A-B_) and so
E + E . Setting r = dim E and s = dim Z - dim E_ we find
by (11)

r+s - dimZ = dim E; - dim E

((A-8,)12) = m™((A-B_)12)

+
i (bo’bw’T) .
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Assuming i > 0 , the assumptions of Lemma 6 are satisfied for the
function ¢ = a with the subspaces Z = E; and 7' = E: . This
follows from Lemma 4 (iii). We conclude that a has i pairs of
nontrivial critical points, which by Lemma 4(i) correspond to pairs
{x(t),-x(t)) of periodic solutions. Similarly, if it >0 we con-
+ Lt

sider ¢ = -a and take Z = Ey» 2 = E_  Setting r = dim E; and

s = dim E_ we find this time

u

r+s-dimZ= din £ - dimE,

i

m'((A-B,)[Z) - m'((A-B_)|2)

¥ (b sb_s1) .

Consequently, by Lemma 6, there are it pairs of nontrivial periodic

solutions and Theorem 3 is proved.

From now on we shall assume the Hamiltonian function h to
be time independent.In this case there is no "natural" period for the
sought periodic solutions given. The function h is an integral and
we could ask for periodic solutions on a given integral surface. But
instead of prescribing this integral we look for periodic solutions
having a prescribed period T . Such periods are described by the

next theorem.

Theorem 4: Assume h satisfies the assumptions of theorem 2, and

assume, 4in addition, h even and independent of t .

let T be any positive number satisfying 1i(bysb .5 >0 .
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Then % 48 a Lower bound fon the numben of distinct, nontrivial pairs
(x(t)s=x(t)) of T-periodic solutions of the equation X = Jh'(x) ,
provided o(db )0 i F z=p .

Remark: Theorem 4 does not claim that the periodic solutions found
are not constant. Additional singular points of the Hamiltonian
vector field could be among these periodic solutions. It is good to
know that there is always an additional singular point if

m (b)) ¢ [m"(bo),m'(bo) + m°(b0)] (see [11 Proposition 12.5).

It turns out in the proof of theorem 4, that under further
artifical restrictions on h , the periodic solutions are nonconstant.
In fact, we shall show that if h satisfies the assumptions of

theorem 4 and if, in addition,

h(x) 20 (resp. h(x) <0) ,xeRM ,

then if i* = 1+(bo,bm, EF-) >0 (resp. i > 0), there are at least
i*/2 (resp. i /2) nonconstant pairs of periodic solutions having

period T .

Proog: Since the Hamiltonian vector field is independent of the time,
with every solution x(t) also x(t+s) is a solution for every fixed
s € R, As a consequence,the equation (18) is invariant under a unitary
representation of sl ze €| |z] = 13 in H . In fact, denote by

ET C H the dense subspace of H consisting of all u € H such that

2n

U is the restriction of a T-periodic function U €C(R,R™) , and
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define for u€ E;

(32) Uc u(t) = G(t+s) for all te€R
where

» S €R.

Since UG defines a continuous linear operator from ET to H , it
has a continuous extension which we denote again by U0 . Clearly
o~ Uo : Slsz(H) is a strongly continuous unitary representation of

the circle group S1

. Moreover UACAU and FolU =U oF for
g g [s) g

g € S1 . Consequently, if u € dom(A) 1is a solution of (18) i.e. of

Au = F(u) , then every element of the orbit ({u) is also a solution,

where
Olu) = Wu | oesh

We now claim that distinct orbits O(u) consisting of solutions of
(18) correspond to geometrically distinct T-periodic solutions of the
equation x = Jh'(x) . Here we call two nonconstant solutions of an
ordinary differential equation X = f(x) geometrically not distinct,
if one is a reparametrization of the other, that is,if there is a
Cl-diffeomorphism ¢ : R+R , so that xl(t) = x2(¢(t)) . Suppose
that ¢ 1is such a reparametrization. Then we claim ¢(t) = t+s. In
fact, since il = f(x;) and iz = f(x,) we conclude that
f(xl(t))(¢(t)-1) =0 for all t . By assumption the solution X1 is
not a constant, hence f(xl(t)) # 0 for every t € R, and therefore

¢(t) =1 for te€ R which proves the claim.
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Since F and A commute with the unitary representation, the

function a of Lemma 4 is invariant, i.e.
(33) a(U z) = a(z) , sesl

for all z € Z ., This follows from (1] Proposition 3.2. Therefore if
z* is a critical point of a, then its orbit0{z*) = {Uoz* | o€ Sl}
consists of critical points of a. But by Lemma 4 and the previous
considerations, different critical orbits give rise to different
periodic orbits.

Assume now 1 = (b .b_, EF) > 0, then it has been shown in
the proof of Theorem 3, that for some integer 2 the critical levels

of ¢ satisfy

=< q(W) s .. sc L (v) <0,

where ¢ 1is either equal to a or equal to -a . Let m be equal to
% if i 1is even and equal to [ %-] +1 if {1 1is odd. Then if m
of the critical levels are distinct, there are at least m distinct
pairs O(z) v O(-z) of critical orbits of a,giving rise to m
distinct pairs (x(t),-x(t)) of T-periodic solutions and Theorem 4 is

proved in this case. Otherwise there is an integer J such that
c = Cj+1(¢) = Cj_,_z(‘l‘) = Cj+3(‘l‘) <0

and g(KC(w)) > 3 on account of (31). But for every 2€ 7, z # 0,
g(01(z) v O(-2)) < 2 (see [2] Lemma 6.1). Therefore by property (g2)

of the genus we conclude that there are infinitely many distinct orbits
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in Kc(w). This finishes the proof of Theorem 4.

It remains to prove the statement in the remark following
Theorem 4. We need a 1emma. Recall the notation of section 3b and

Lemma 4.

Lemma 7: Assume h to be independent of t . Then u(z®) € Ker(A) Af
and only Lf z* € Ker a , and in this case u(z*) = 2% . Moreover, if

2n

z* € Ker A, then z*¥€R {by Lemma 3) and

a(z") = -Th(z*).

Proof: Assume u(z*) € Ker(A) . Since Ker(A) € Z it follows from the

1.

definition of the map u (see [1] Section 3) that u(z*) = z* .

2n is a sonstant

Conversely, if z®* € Ker(A) , then by Lemma 3, z*¥ € R
vector, hence F{z*) € Ker(A) , where F is defined by (16) (note h
is independent of t). It then follows from Proposition 2.1 in[1]
that u(z*) = z* (since R{ker a) = S(Ker A) = {0}, in the notation of
that proposition). By the representation a(z) = % <Au(z),u(z)>-¢(u{z))
of Lemma 4 i, we conclude for z* € Ker A , in view of the

definition (17) for ¢ :
T
a(z®) = -¢(2*) = - h(z*) dt = -Th(2*) ,
0

and the Lemma is proved.

In order to prove the statement in the remark following

Theorem 4 we shall assume i—(bo’bw’T) >0 and h(x) £ 0 for every
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2n

x € R™" . Assume that one of the solutions found by Theorem 4 is a

constant solution. By Lemma 7 it is represented by u(z®)=z* € Ker(A),
z* a critical point of a . Since in view of Lemma 6, the critical
values of a are all negative, we have a(z*) < 0 . On the other
hand, since h(z*) <0 , we find by Lemma 7, a(z*) = -Th(z*) 20,
which is a contradiction. Hence the solutions found are nonconstant.

The other case is proved similarly.

5. Convex Hamiltonians

For a strictly convex Hamiltonian function h , the system x = Jh'(x)
has many periodic solutions. For instance, every "energy surface"

{x € R2n I h(x) = const} carries at least one nonconstant periodic
solution. This has been proved by P. Rabinowitz [9] and A. Weinstein
[10]. In contrast to these solutions having prescribed "energy" we
look for nonconstant periodic solutions having prescribed periods

and prove the following multiplicity result.

2 R2n

Theonem 5: Suppose h € C(R™) 4is strnictly convex with bounded

second denivative. Assume, An addition, that

Jh' (x)

Jbx +o(lx[) , [x| >0

Jh'(x)

i

dbx +o(lx|) s [|x[~>e

fon two symmetnic positive definite matnices b .b, € RACGW
Then £§ T s a positive mumber satisfying i=i(b ,b_, ) >

> O thene are at Least 1/2 nonconstant -periodic solutions of the
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system % = In'(x) , provided o(b )N iZZ =9 .

Remarks: We first observe that since bo,b°° >0, the index i 1is an
even integer. In fact Jbo and Jb_ are symplectically diagonalizable
and S” = {ioglop >0, k=1,2,...,n , 8% = {io{]aﬁ >0, k = 1,2,

..sn}. Hence by Lemma 2:

(33) i,(bysb,.7) = 2 '21 (157" 231 - 15°]® 2 ju1)
J:
(34) i_(bgsb,.1) = 2 '21 (5°]e® >i11 - 157" > j1l) .
J:
This can be rewritten as
n
ip=2 1 ( 1 - 1)
k=1 i< © ¢ i g o0
(lk TJ > dk ak JT = U.k
n
i_=2 1 ( N L1l )
k=1 u;51j<a§ aﬁSjt(aE

As an illustration we consider an example in R2n s n=6.We give
a possible distribution of the normal modes of the two linear systems

at 0 and at « by the following diagram:

a2 o0 ad ° a2 ag
+ - é % \ ‘i :—E 4 g -
-7 0 T 27 37 61
{ e et et + + L
A ;
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By the above formulars for i, and i_ one finds %i+ = 145-1-2-4-7
= -8<0 and i = 2+3+7-1-5 = 6 . Hence 5i = 2i_ = 6 .
It should be said that "in general® max{i+,i-} =1 > as

v > 0 . For instance, let

g, i=

then clearly i -« and i_--= as 1t~ 0 provided 2 >2¢_.

The convexity assumption on h in Theorem 5 can be replaced
by other conditions. For example the following statement will follow
from the proof of Theorem 5: Assume h satisfies the requirements of
Theorem 5 with the convexity assumption replaced by the assumption

2n . 27
. If then 1+(bo,bm, —TJ > 0 , there are

h(x) 20 for every x€ R
at Teast %-i+ nonconstant T-periodic solutions provided o(wa) N
127 =0 . Here the index i,(bsb,» ) is given by (33). For
example the integer it is positive if the two systems at O and at
= are separated in the sense that there is an integer j =1 such
that uﬁ < jt < a: for every k,t = 1,2,...,n ; in fact we then find
i 22n.

+4

Proof of Theorem 5: We have to establish critical points of the

function a € CZ(Z) of Lemma 4. Since h does not depend on t , the

function a is invariant under the unitary representation (32) of 51,

i.e. a(Uoz) =a(z), o€ S1 and z € Z . Analogous to the proof of
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Theorem 4 we shall apply minimax and maximin arguments in order to
find critical points of a . This time however the function a is not
even and we replace the genus, which is suited dealing with function-
als which are invariant under a ZZZ-action,by the Fadell-Rabinowitz
index for a special Sl-action. This cohomological index is intro~
duced in connection with actions of compact Lie groups in [6]. In
order to realize the set up of [6] we shall complexify the even
dimensional subspace Z C H as follows: recalling Lemma 3 we take the
eigenvectors ”x,k(t) = etw e, of the eigenvalue » € tZ of A .
Let o(A) O (-8,8) = {~tm, -t(m-1),...,-1,0,7,...,1m} . The linear
maps R2 -C, Xy Uy + Xo Ux,k+ﬁ* Xq + ix2 define an isomorphism of
the eigenspace EA onto C" , hence an isomorphism of Z onto
"x...xc" (2m+l-times). Consequently we may assume from now on

that
(35) Z=C"x...xC" (2ml-times) .

The Sl-action UG » given by (32), is by this isomorphism carried over

into the following group action of S1 on Z:

(36) orr= (0" T o'(m'l)c_(m_l),-.-,co, s " L)) o

where GESIQ{AGC{ |a] =1} and where ¢ = {z_ ,...,z )€ Z . The

-m
fixed point set of this action is the subspace No = Ker(A) :

_ n
(37) N, = 1(0,...,0,¢,,0,...,0) | ¢, € C

With F we denote in the following the family of subsets X C Z \ {0},

which are invariant under the Sl-action (36), i.e. S1 - X = X. Then
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the following crucial result is taken from [6].

Lemma 8: let Z , No CZ, and the Sl—aotéon be as introduced above.

Then there {4 a map vy : F>NuU e} satisfying:

(v0)

(v1)

(v2)

(¥3)

(v4)

(¥5)

(v6)

14 X =0 then v(X) =0, if X#0 then v(X) 2 1.
1§ X,Y € Fthen v(XUY) <v(X) +v(Y) .

14 X,Ye F and L ¢:X> Y s a contlnuous and
equivarniant map from X Anto Y , then (X)) < v(Y) .

Equality holds in panticular i§ ¢ 4s a homeomorphism.

I§ Xe F s compact, then there &8 a compact neighbor-
hood Ne€ F , such that v(X) = v(N) .

14 XﬁNo=¢ then y(X) = = .

If Xn N0 =@ and X compact, then vy(X) < = .

1§ EC Z 48aninvariant Linear subspace with dimCE =k,
and satisfying E N No = {0}, then ~(EN SR) =k fon

eveny R>0 .

14 1< y(X) <=, then the onbit space )yl is an
S

Anfinite sef.

For each n €N we define the family of subsets T = {X€ In < v(X)

< =} and define for a function ¢ on Z the minimax levels cn(w)

by
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c,(¥) = inf sup ¥(X) ,
Xer
n
provided, of course, that T, #0 . It is obvious that cl(w)SCZ(w)s...
The basic properties of these minimax levels are contained in the

following lemma.

Lemma 9: Assume ¢ € CZ(Z,R) L8 invarniant under the special Sl-ac,téon
(35) and satisfies the Palais-Smale condition. Suppose that, for some

integers n and Kk :

e <e=c(v) = ()=l =cp, () <0

Then, L4 ‘y(KC) < o, we have y(Kc) 2k + 1, wherne l(c = Kc(w) =
= {t€Z ]| ¢(g) =c and v'(g) = 0} 48 the critical set of ¢ on the
Level ¢ .

In view of Lemma 7, the proof follows almost Titerally the
proof of ([41, Theorem 8), see also ([2], Lemma 4.5). The next state-
ment is the analogon of Lemma 6 for the special Sl—action instead

of the Zz-action.

2

Lerma 10: Assume ¢ € C5(Z,R) with ¢(0) = 0 44 invariant under the

Sl-ac/téon (32) and satisfying the Palais-Smale condition. Suppose that

(1) There 48 an invariant subspace 7 C 7 , with 7 N N, =
= {0} and dimcz' = r , such that ¢(z) <0 fon alk
z€ 7 satisfying |zl =p , some gixed p >0 .
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(i1) There 48 an invariant subspace 7 c 7 with No czt

and dich+ = s , such that ¢ is bounded befow on Z'.
(iii) r+s> dime.Z .

Then -~ < ck(w) <0 forall k€N satisfying dimZ-s<ksr,
and ¥ has at Least s +r - dim.Z distinet nonzero eritical onbits
provided ch(w) n No =0 .

Proo4: For a € R we denote by vy the set w'l(-w,a] CZ, and by

S we denote the unit sphere in Z . By assumption (i) there is a
positive o > 0 such that y(z) € -0 <0 for z€ pSNZ =: B
hence Bp v, and by (v2) of Lemma 8, y(Bp) < y(w_o) . Since

N, 0 7" = {0}, we have y(Bp) =r by (v5) and therefore c (v) < -0<0
and so ck(w) <0 for k<r . Inview of assumption (ii) we can pick
1< 0 with Vo nzt= g.If =1~ (Z+)J‘ denotes the orthogonal
projection, then = : g (Z+)l\\{0} is continuous and equivariant,
7yt

hence by (y2) and (y5) we find v(y ) < dime( = dimZ - s , since

No ﬂ(Z+)J' = {0} . let j> dimCZ - s and assume there is X € f?such
that j < y(X) < = , then sup ¢(X) =t . If, in addition, j=<r,
then there is indeed such a set in view of the assumptions (i), (ii{)
and on account of (y5). Consequently, cj(w) 21> - for dimCZ -5<
< j<r and the statement follows from Lemma 9, in case the levels

ck(w) are different and K . 0N N0 = § . If, however, two or more of

(o
k
these levels coincide, say they are equal to c , then by {(y6) the
orbit space Kf// is an infinite set. This finishes the proof of
1
S

Lemma 10.
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In order to prove Theorem 5 we first assume i+(bo,bw, EF) >0 and
apply Lemma 10 to the function v = -a . let E_, E0, E', a = 0, be
the subspaces on which (Ba-A)|Zis negative, zero, and positive,
respectively. These subspaces are clearly invariant under the Sl—
action since A-Ba commutes with the action. Set 7 = E; and

z" = €, then, by Lemma 4 iii, NN Z = {0} and N C Z¥ since by

assumption, bo,b°° > 0 . Moreover, with r = dich' and s = dimCZ+ s

.- .ot .
d1mch + d1mcEw - d1mCZ

r+s - dlmCZ

dim E_ - dimE_

li*b b, 2 >0,
Z 0w T

Consequently the assumptions of Lemma 10 are met in view of Lemma 4
(ii1), and we conclude that -~= < ck(¢) <0 forall k€N satis-
fying dimCZ - s<k<r . Weshall show that ch(w) n N0 =0 .

Assume z* € No n ch(w) » then in particular z* € Ker(A) , hence by
Lemma 7, u(z*) = 2* € Ker(A) and u{z*) 1is a constant periodic
solution, hence a singular point of the vector field Jh'(x) . But since
h is strictly convex, the only singular point of Jh'(x) is x =10,
hence u(z*) = 'z* = 0 and a(z*) = 0 in contradiction to ¢ v) <0 .
Therefore ch(w) N N= § as claimed, and we conclude, that there

are at least %-i+ nonzero critical orbits of a , hence at least

% i* nonconstant T-periodic solutions of x = Jh'(x) .

If,on the other hand, i'(bo,bm, EF) > 0, one proceeds
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similarly. This time, however, one considers the "maximin" levels:

Ek(¢) = sup  inf y(X) .
X € Ty

The statement then follows from the dual version of Lemma 10 applied

to ¢ = -a . This finishes the proof of Theorem 5.

Remark: In Theorem 5 the technical difficulty caused by the fixed
point set No = Ker(A) of the Sl-action can be avoided under the
additional assumption O < a < h"(x) < 8 <« . In fact in this case

we can define the subspace Z = PH C H differently, namely by

€ 8
P= r dEA + I dEA s
"B c

for some 0 < e < min{r,a} . It then follows that Z N N0 =@ and the
above Sl-action on Z is now fixed point free, which simplifies the
proof considerably. The abstract results in [1] still hold true with

the projections P_ and P_ in there given by

.-B L
P= JdE 4P, P édE}\ ,

P0 being the projection onto Ker(A) .
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