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PERIODIC SOLUTIONS OF ASYMPTOTICALLY LINEAR 

HAMILTONIAN SYSTEMS 

Herbert Amann and Eduard Zehnder 

We prove existence and mult ipl ic i ty results for periodic solutions of 
time dependent and time independent Hamiltonian equations, which are 
assumed to be asymptotically linear. The periodic solutions are found 
as cr i t ical  points of a variational problem in a real Hilbert space. 
By means of a saddle point reduction this problem is reduced to the 
problem of finding cr i t ical  points of a function defined on a f in i te  
dimensional subspace. The cr i t ical  points are then found using 
generalized Morse theory and minimax arguments. 

1. Introduction 

We shall study the existence of periodic solutions of 

Hamiltonian equations 

, R 2n (I) ~ = Jh'(t ,x) (t ,x) e R x , 

where 

( 0  -1 1 (2) J = e~(R 2n) 
1 0 

is the standard symplectic structure in R 2n, 

matrix in R n . The Hamiltonian function h 

and by 

I denoting the identity 

belongs to C2(R x R 2n) 

h ' ( t , . )  we denote the gradient with respect to the x-variable. 
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2 AMANN - ZEHNDER 

We shall assume that h depends periodically on the time t with 

period T > 0 : 

(3) h(t,x) = h(t+T,x) , ( t ,x) E R x R 2n 

Our aim is to find periodic solutions of the system (1) having period 

T. We consider asymptotically linear systems assuming that: 

(4) Jh ' ( t ,x)  = Jbx + o(Ixl)  , as Ixl ~ ~ 

uniformly in t , for a symmetric and time independent matrix 

b| E ~(R 2n) . In addition we shall require the Hessian of h( t , . )  to 

be uniformly bounded: 

(5) - B ~ h"(t,x) _< B , ( t ,x) ~ R x R 2n , 

for some constant B > O. The following existence result has been 

proved in [1] (Theorem 12.4). 

Theorem I: Let h(t,x) be periodic in  t with period T > O. Then 

und~ the ~sumption~ (4) and (5) the Hami~tonian system (I) p o s s ~ s ~  

at  lea6t  one T-periodic solution provided 

(6) o(Jb| n i - ~  77 = @ . 

Here and in the following o(Jb=) denote the spectrum of the linear 

o p ~ r  Jb| 

Condition (6) reminds of the nonresonance condition in 

Liapunovs theorem. I t  requires that the linear and time independent 
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AMANN - ZEHNDER 3 

Hamiltonian system ~ = Jb=x does not possess a periodic solution of 

period T . 

I t  should be said that in theorem I the constant solutions 

are admitted as periodic solutions. Namely for a time independent 

Hamiltonian function h , the system (I) possesses necessarily an 

equilibrium point, which is a constant periodic solution. In fact, i f  

f is any C2-function on R m satisfying f ' ( x )  = b x + o(JxJ), as 

JxJ ~ | , with a symmetric and nonsingular matrix b E~(R m) , then 

there is an x*E R m such that f ' ( x * )  = O. (see for instance [1 ] ,  

proposition 12.5). 

For this reason we consider in the following systems which 

possess an equilibrium point, which we assume to be 0 , i .e.  

Jh'(t,O) = O. The aim is to find T-periodic solutions, which are not 

t r i v i a l ,  i .e. 

(7) 

uniformly in 

x(t) # O. More precisely we shall require, that 

Jh ' ( t ,x)  = JboX + o(Jxl) , as JxJ ~ 0 

t for a symmetric and time independent matrix b o F-~(R2n). 

I t  turns out that such systems possess at least one 

nontrivial T-periodic solution, i f  the two linear Hamiltonian systems 

= JboX and R = Jb x are different from each other. This 

difference wi l l  be measured by an integer 

(8) i = i(bo,b| ~) ~ ~ , 
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4 AMANN - ZEHNDER 

which wi l l  be computed exp l ic i t ly  in terms of the period T 

imaginary eigenvalues of the l inear systems R = Jb x and 
o 

and the 

= Jb| 

Our n~in result (theorem 2) guarantees the existence of a 

T-periodic solution i f  i(bo,b ,~-) > 0 provided the nontrivial 

nonresonance condition (6) for Jb= holds true. For example, i > 0 , 

i f  b o < 0 < b| or i f  b < 0 < b o . We remark that no nonresonance 

condition for Jb o is required. We also point out, that only 

assumptions "at O" and "at | are required and none in the " inter ior" .  

In this respect the existence statement is similar to the Poincar~- 

Birkhoff fixed point theorem; the condition i > 0 corresponds to 

the twist condition required in that theorem. 

The above periodic solutions wi l l  be found as cr i t ica l  points 

of a variational problem in a real Hilbert space H . Due to the 

assumption (5) the problem can be reduced to the problem of finding 

nontrivial cr i t ica l  points of a function a which is defined on a 

f in i te  dimensional subspace Z c H . As a consequence of the 

assumption (6) this function satisfies the so called Palais-Smale 

condition. Moreover due to the assumptions (4) and (6) the qualitative 

behavior of the function is known in a neighborhood of 0 and of "~". 

The cr i t ica l  points are then found using the topological tools of the 

generalized Morse theory developped by C. Conley [5I .  

In the sections 4 and 5 we shall establish mult ip l ic i ty 

results, however under additional assumptions on the function h "in 
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AMANN - ZEHNDER 5 

the interior".  We shall prove (theorem 4) for h even in the 

x-variable, i.e. h(t,x) = h(t,-x) for all ( t ,x) E R x R n, that the 

integer i(bo,b ,~ )  is a lower bound of the number of nontrivial 

T-periodic aolutions of (1). Here standard minimax arguments based on 

the concept of genus as described by D.C. Clark [4|lead to the result. 

In section 5 we consider a time independent Hamiltonian function h . 

In this situation there is no "natural" period for the sought periodic 

solution given. Assuming h to be s t r ic t ly  convex we shall show 

(theorem 5) that for any positive number T satisfying i(bo,b ,~-)>0 

there are at least i/2 distinct, non constant, periodic solutions of 

the Hamiltonian system (1) having period T . Again the proof is based 

on minimax arguments. This time we use the fact, that the functional 

is invariant under a special sl-action and apply the index-theory 

developed by E. Fadell and P. Rabinowitz {6]. 

The proofs of these results,already announced in a prelimi- 

nary version in 1979,rest heavily on our previous work in {1]. Recent- 

ly, V. Benci proved results related to our mult ipl icity results in 

section 5. His approach however is different from ours, but also based 

on minimax arguments. 

We would like to thank C. Conley, J. Moser and P. 

Rabinowitz for valuable discussions. The second author would like to 

thank the Institute for Advanced Study in Princeton for i ts  hospi- 

ta l i ty .  
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6 AMANN - ZEHNDER 

2. The index i(bo,b ,~ ) 

In order to formulate our f i r s t  existence statement, we shall intro- 

duce f i r s t  an integer i(bo,b ,T ) for two symmetric matrices 

bo,b ~ E ~ ( R  2n) and a positive number �9 . 

I f  b E~ (R  2n) is symmetric, and ~ ~ 0 we consider the 

quadratic form on R 2n x R 2n , defined as 

(8) 2~<JXl,X2> - <bXl,Xl> - <bx2,x2> , 

(Xl,X2) E R 2n x R 2n . I t  is represented by the matrix Q(~,b) E~(R4n): 

CO jT)  Cb 0 )  
(9) Q(p,b) = p - . 

J 0 0 b 

Notice that . j  = jT . We denote in the following by m+(.), m~ 

and m'(.) the positive, the zero and the negative Morse index of a 

quadratic form or of a matrix representing this form. We observe that 

(10) m+(Q(,,b)) = m'(Q(p,b)) = 2n 

i f  ~ > n~x {~ E R I in E ~(Jb)} 

In fact i f  ~ > 0 is suff iciently large then m + = m- = 2n , 

which are the indices of the f i r s t  matrix in (9). Moreover i f  

decreases, these indices can change only at those values of ~ , for 

which the n~trix (9) is singular, that is m~ # 0 . This 

occurs precisely for those values of ~ E R for which iv is a 
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AMANN - ZEHNDER 7 

purely imaginary eigenvalue of Jb . Indeed assume (Xl,X2) E R 2n x R 2n 

is an eigenvector of (9) with eigenvalue 0 . Then, using jT = _j, we 

have bx I + ~Jx 2 = 0 and bx 2 - ~Jx I = 0 . Therefore b(x1+ix2) 

= ~J(iXl-X 2) = iuJ(Xl+ix2) , hence Jb(Xl-ix2) = -ip(xl+ix2) and so 

• E ~(Jb) , as claimed. From these remarks the assertion (10) is 

obvious. 

Assume the two matrices bo,b ~ E~(R 2n) to be symmetric and 
co 

o = Q(u,bo ) and Q~ = Q(~,b ), we then let ~ > 0.  Abbreviating Q~ 

define two integers i • = i• ,~) as follows: 

. +  + oo 

(11) I- : �89 {m• O) - m-(Qo)} 

Finally, we set: 

(12) i(bo,b ,T ) = max {i +,i-} E 7/ 

0o 

+ 0 m • ~, + Z {m-(Qj~) - (Qj~)} 
j=l  

In view of (10) the above sum is f in i te.  As a sideremark we observe 

that i• t,T) = i• ,T) for two symplectic matrices s 

and t , since sTjs = J for s E Sp(2n,R) . Hence i is a symplectt 

invariant. Clearly i• ,~ ) = 0 i f  b o = b , or i f  both matrices 

Jb o and Jb  have no imaginary eigenvalues (zero included). Also: 

+ ~ m+(b) i-(bo,b ,T ) = m (bo) - 

i f  T is sufficiently large. 

We next compute the numbers 

purely imaginary eigenvalues of Jb o 

.• 
1 

and 

expl ici t ly in terms of the 

Jb| I f  b E Z(R 2n) is a 
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8 AMANN - ZEHNDER 

real and symmetric matrix, then i t  is well known that with an eigen- 

value ~ E a(Jb) , also -~, ~ and -7 belong to a(Jb) . That is, the 

eigenvalues of Jb occur in groups of four, in case they are complex, 

and in groups of two, in case they are real or purely imaginary. With 

Px we denote the projection onto the eigenspaces of such an eigen- 

value group. Then P~R 2n is a symplectic subspace on R 2n , which is 

; in particular the dimension of P~R 2n is even. invariant under Jb 

Therefore R 2n decomposes into invariant symplectic subspaces 

corresponding to different eigenvalue groups. We now consider the 

symplectic subspaces, which belong to a pair of purely imaginary 

eigenvalues • ~ # 0 E R . I t  is important to observe that there is 

a preferred symplectically invariant choice of the signs of these 

eigenvalues which singles out half of them as "positively oriented". 

To explain this, we f i r s t  assume is to be a simple eigenvalue, so 

R 2n 2 There is a linear symplectic coordinate change that dim Pin = " 

in this subspace such that the corresponding Hamiltonian has the 

following normal form on R 2 : 

h(x,y) = �89 ~(x 2 + y2) . 

The number ~ is a symplectic invariant, and we call in the 

"positively oriented" eigenvalue (of the pair • I f  the multi- 

p l ic i ty  of is is r > 1 , then dim Pi R 2n = 2r . I f  we denote by 

Ei~ the complex eigenspace belonging to the eigenvalue i~ , then 

1 <v,J-v> v ~ Ei~ 7T 

defines a nondegenerate Hermitean form. I f  this form has an r+-dimen- 
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AMANN - ZEHNDER 9 

sional positive and an r-dimensional negative subspace, where 

r+ + r = r , then we set r+ of the eigenvalues equal to ie, 

and r of them equal to -i~, so that 

e>O 

ie,ie . . . . .  is -ie . . . . .  -ie 

r+-times r -times 

are the positively oriented eigenvalues of the restriction of Jb onto 

R 2n I f  this restriction is symplectically diagonalizable, there Pie 

is a symplectic change of coordinates, which puts the corresponding 

Hamiltonian into the normal form on R 2r : 

r.F r_ 
1 e s (x 2 .+y2 +.) h(x,y) = �89 ~ (x2 +y~) - ~  

j= l  J j=l  r++j r+ J 

We should say that a definite Hamiltonian is always symplectically 

diagonizable. For instance, i f  i t  is positively definite, i ts 

normal form is 
r 2 ~ 

1 ~ (Xj + ) , e h(x,y) = ~ y > 0 
j= l  u 

and ie . . . . .  ie (r-times) are the positively oriented eigenvalues. We 

refer to J. Moser [7] for more details. After these remarks the 

indices of the quadratic form (9) are easily computed. We shall denote 

in the following by [M] the cardinality of a f ini te set M. 

Lemma I: Ass~e the imaginary pa~ of Jb is symplectically 

diagonalizable and denote by S = {ie I . . . . .  i(~ s} the s ~  of positively 

oriented imagin~y eigenvalues. Then i f  ~ > O: 
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10 AMANN - ZEHNDER 

m+(Q(p,b)) = 2n - 2 [ i s  e S [ s > ~] + 2 [ i s  e S I s <-~]  

m-(Q(~,b)) : 2n + 2 [ i s  e S I s > p] - 2 [ i a e  S I s < -u] 

m~ = 2 [ i s  e S I s = ~] + 2 [ in  e S I a = -p] 

I f ,  in add, L6s b is a noywingul(za r , ~ x ,  tAen: 

m• : n+ { [ i s e S  I s > O l  - [ i s e S  I s < O ] }  

We recall that in the special case, where the restrictions of b 

the imaginary subspaces are defini te, then Jb is symplectically 

diagonalizable on these subspaces. The condition of being 

diagonalizable can be dropped i f  iv ~ o(Jb) . 

onto 

P~oo~: We have seen that m + : m- = 2n i f  ~ > 0 is suff ic ient ly large. 

Moreover of p decreases, these indices change precisely i f  iv e o(Jb). 

Assume f i r s t  that is, s e R is a simple positively oriented eigen- 

value of Jb . Then we put the Hamiltonian, restricted to the eigen- 

space of the pair • by means of a symplectic transformation into 

�89 + y ~ ) .  The restr ict ion of the form Q(~,b)onto the the form 

two copies of these subspaces becomes 

-- -s ((x z - ~  y2) 2 + (I - (~)2) y~} 

-s ((x 2 + ~ yl) 2 + ( I -  (~)2) y~ 

+ Y~) = 

Consider the case s > O. Then we read of f  for ~ > s: 
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AMANN - ZEHNDER 11 

(m+,m~ -)  = (2,0,2) , for ~ = a : (m+,m~ -) = (0,2,2) , and for 

< ~ : (m+,m~ ") = (0,0,4) . Simi lar ly for the case ~ < 0: i f  

-~ < a, then (m+,m~ -) = (2,0,2) , i f  -~ = a, then (m+,m~ ") = 

(2,2,0), and i f  -~ > a, then (m+,m~ ") = (4,0,0) . Therefore,in case 

> 0,the index m + changes by -2 and m- by +2 i f  ~ crosses 

from above, and,in case ~ < 0 ,  the index m + changes by +2 and 

m- by -2 i f  ~ crosses -~ =lal from above. I f  • is not a 

simple eigenvalue pair then, by our assumption, the rest r ic t ion of 

Q(~,b) onto the eigenspace is a sum of quadratic forms of the above 

type and the Lemma follows. 

As a consequence we find the following exp l i c i t  expressions 

integers i+(bo,b ,T) . for the 

Lemma 2: L~t bo,b  ~ E (R 2n) be symmetric and T > 0 . Assume the  

imaginary pa~ts of Jb o and J b  are s y m p l e c t i ~ u ~ y  dia~onalizabs 

and denote by S O = {1~i , .  o . . , i a s~  } and S ~ = {la 1 "  ~ . . . .  , ' l a s 2  " the  s~ts  
o 

of p o s ~ u e l y  oriented imaginary eigenualues of Jb o and J b  . Then: 

i+ : � 8 9  {m +(Q~ . m +(QC) } 

o a  

+ 2 z { [ i ~  ~ E S O I o < -jTl - [ i ~  ~ e S~ ~ >_ iT} 
j=1 

e o  

- 2 ~ { [ i ~  ~ e  S ~ I ~ <-iT] - [ i a  ~ e  S~la ~ >_ J~]} 
j = l  

i_ : �89 {m-(Q~ - m-(Qo)} 

+2  
j= l  

( [ i~ ~  S~ ~ > jT] - [ i a  ~ E S~ ~ -< - jT])  
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12 AMANN - ZEHNDER 

I f  bo,b = 

- 2  
eo 

z 
j = l  

([is = E  S=[s ">iT] 

~ e  non singular then 

- [ is  = ~ S=[s = <- - jT ]  ) .  

1 {m +(Qoo). m +(Q~)}=_ �89 {m-(Q~)- m-(Q;)} 

= [ s ~  ~ < o] - [ s ~  ~ ~ 0] - [s=[~ | < OlRS=ls = ~ o] 

The assumption that ,  Jb ~ and Jb= are s ymp le~ t i~ey  d iago~ i zab le  

on the imaginary su6spaee e ~  be dropped provided a(Jbo) n i~7/ = (~ 

and ~(Jb=) n iTZZ = (~ . 

3. The time depende.nt case 

a) The statements: 

After these preliminaries we formulate the main results and some 

consequences: 

Theorem 2: A~su~e h( t ,x )  e C 2 to be periodic in t 

T > 0 s~ti~fyi~ (4), and ~sume 

Jh ' ( t , x )  = JboX + o ( I x l )  , Ixl ~ 0 

(13) 

u~fo~mlg in 

bo,b = e ~(R2n). Then i f  

Jh ' ( t , x )  = Jb=x + o ( [ x l )  , IxI ~ | 

t for two symmetric time independent mat~ic~ 

i ( b o , b  =, -~) > 0 , 

with pe,,ci.od 

there i s  at l eas t  one nont~ivi~ T-pe)u~cL(.c Solution of the 
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AMANN - ZEHNDER 13 

H ~ i l t o ~ i a n s y s t e m  ~ = Jb'( t ,x) , provided ~(Jb| n i - ~  = ~ . 

This statement generalizes theorem (12.11) in [ I ] ,  where the addition- 

al assumption o(Jbo) n i ~ = ~ is required. The interest of this 

statenmnt l ies in the fact, that the index i is expl ic i te ly com- 

putable in terms of the normal modes of the two linear systems 

= JboX and ~ = Jb x . This leads to various existence statements. 

We mention two simple special cases. 

Corollary I: Assume h as in  the  theorem, and a ~ s ~ e  b o < o < b| 

or b < 0 < b o , then the  Hamiltonian system ha~ at  l ~ t  one non- 

t r iv ial  T-periodic solution provided o(Jb) n i ~- 27 : {~ . 

In fact in this case Jb o and Jb  are symplectically 

diagonalizable and i f  b < 0 < b then s ~ < 0 for is ~ E S O 
o 

~ > 0 for i~ ~E S ~, and therefore by Lemma 2, 

and 

(14) i + = m-(bo) + 2 ~ { [S~ ~ < -j~] + [S~Is ~ >- j r ] }  
j= l  

which is greater than 2n for every T > 0 . Similarly for the case 

b < 0 < b 0 . 

More generally, i f  b o _< 0 < b , then we conclude, in view 

of (14), a T-periodic solution i f  either m-(b o) > 0, or i f  there is 

, ~ S ~ , an integer j _> 1 such that jT < s k for some is k E where 

27 
T ~" T "  

Co ro l lar~  2: A~sume h a~ i n  the  theorem. I f  j b  0 Z6 hyperbol ic  
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14 AMANN - ZEHNDER 

(i. e. has no X~gin~g e,/..genu(tl~), and i f  the ~ e ~ e ~ o n  o~ b| 

o~to the  im~inary  eigenspace o( Jb| /6 d e f i ~ e  (e.g. i f  Jb, 

po~,sea,se6 o ~  one. p~.~ of sX.mple i ~ i n ~ y  ~genv(~.u.~), then the 

Hamiltonian ~s t em h ~  at lea~t one non- t~ iv i~  T-pe~odic soZu;tion 

prou/ded  ~(Jb| n i -2~ 2Z = ~ . 

Indeed, in this case ~o = ~ and we find by Lemma 2, in the 

positive definite case, 

oo .+ 
I =[S| |  +2 Z [S| |  

j= l  

which is greater than zero. In the negative definite case we have 

i -  =[S=i~ | O] + 2 

b) Proof of theorem 2 

oo 

~. {S| | < j r ]  
j= l  

We f i r s t  reformulate the problem as an abstract variational problem in 

a Hilbert space in order to apply the abstract results of I1].  We let  

2~ 
T > 0 and ~ = T  ' 

and consider the Hilbert space H : L2(0,T;R2n ) . In H we define the 

linear operator A : dom(A) c H ~ H by dom(A) = {u e HI(o,T;R2n)I 

u(O) = u(T)} and 

(15) Au = -J6 , ue dom(A) . 

We also define the continuous potential operator F : H ~ H by 

(16) F(u)(t) = h ' ( t ,u ( t ) )  , 
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AMANN - ZEHNDER 15 

whose potential r is given by 

T 
(17) r = I h ( t , u ( t ) ) d t .  

o 

Clearly F is the gradient of ~ , i .e .  @'(u) = F(u) . Writing the 

equation (1) in the form -J~ = h ' ( t , x )  , we see that every solution 

u e dom(A) of the equation 

(18) Au = F(u) 

defines (by T-periodic continuation) a classical T-periodic solution 

of ( I ) .  Conversely,every T-periodic solution of (1) deTines (by 

rest r ic t ion)  a solution u of the equation (18). The equation (18) 

is the Euler equation of the variational problem extr {f(u) , 

u e dom(A)} , where 

(19) f(u) : �89 <Au,u> - ~b(u) , 

or in classical notation 

T 
extr I { � 89  , 

o 

x(O) = x(T) . The following properties of the operator A are readily 

ver i f ied: 

Lo~a 3: The operator A is  s~l fadjoint  and h~ a pu~.e point spectrum 

~(A) = ~2Z. Every eigenualue ~ e ~(A) h~ m ~ p / i ~  2n and the 

eige~pace E(~) = ker(l-A) i6 spanned by the orthogonal has/s: 

t ~ et~Jek = (cos ~t)ek+(sin ~t)Je k, k = 1,2 . . . . .  2n , 
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16 AMANN - ZEHNDER 

where {e k I 1 < k < 2n} is ;the~.to~oxd bo~i~ of R 2n . Inloo~- 

t/euloJt, ker(A) = R 2n tha t /~ ,  Lt  consZs~ of =the constant f~ne.;tion& 

Since h'(t,O) = 0 , the potential operator F satisfies 

F(O) = 0 , and i t  follows from the assumption (5) that 

(20) -Blu-vl 2 < <F(u)-F(v),u-v> <- Blu-vl 2 

for every u,v e H . Introducing the bounded symmetric operators 

Bo,B" e~(H) by 

B o u(t) = b o u(t) , B| u(t) = b| u(t) , 

we derive from our assumption (13), that 

F'(O) = B o and F'(-)  = B , 

where the last equation means lim lul - I  IF(u)-B| = O. 
lul  | 

We f ina l ly  observe that the condition ~(Jb| n iT7/ = (~ of theorem 

2 is equivalent to the statement 0 r ~(A-B ) . 

The estimate (20) for the nonlinearity F allows to reduce 

the problem of finding a nontrivial solution of the equation (18) to 

the problem of finding nontrivial cr i t ical  points of a function de- 

fined on the following f in i te  dimensional subspace Z = PH c H , 

where P is the projection 

B 
P = I dE~ 

-B 
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AMANN - ZEHNDER 17 

onto the eigenspace of A belonging to the eigenvalues contained in 

(-B,B) ; here E~ is the spectral resolution of the selfadjoint 

operator A . We can assume that B @ ~(A) . 

Lemma 4: There are a function a E C2(Z ,R)  and an in jec t ive  cl -malo  

u : Z ~ H Satisfying u(O) = 0 and Im u c dom(A) with the 

f o ~ l ~  propc~ti~ : 

( i )  a(O) = O, a'(O) = 0 ~ d  z E Z 1~ a c ~ C t i ~  point of a, 

i .e .  a'(z) = O, i f  and only i f  u(z) i~ a solution of the 

equation Au = F ( u )  . a / s  of the form: 

a(z)  : ~ <Au(z) ,u(z )>  - ~p(u(z)) 

( i i )  I f  O I (~(A-B) ,  then a s a t i s f i ~  the Palais-Smale 

condition. 

( i i i )  The operators B o and B coyo te  with the projection 

P , and there i~  a ~ t a n t  ~ > 0 such that  

1 <(A-B )z,z>-a < a(z) < �89 <(A-B )z,z> + ~Z 

fo~ every z ~ Z . Moreouer 

a"(O) = (A-Bo)IZ. 

Proof. The proof follows from [11, Proposition 2.1, Proposition 4.5, 

and Len~na 7.2, observing that we have the freedom to n~ke B in the 

estin~te (4) large. 
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18 AJ~ANN - ZEHNDER 

I t  remains to find nontrivial cr i t ical points of the function a,which 

by the Lemma behaves like < (A-Bo)z,z > in a neighborhood of 0 and 

like < (A-B| > in a neighborhood of | . A crit ical point is 

guaranteed by the following crucial lemma, which can be proved using 

the generalized Morse theory developed by C. Conley [5]. 

t~mma 5. A~su~g 0 @ ~(A-B| , then the function a has a nontriuial 

~ poinr i f  

(21) m+((A-B| r [m+(a"(O)) , m+(a"(O)) + m~ 

Proof= See Proposition 9.3 in [ I ]  . 

Observe that in the special case, where, in addition, 0 r ~(A-B o) the 

above condition is simply 

+((A-B| # m+((A-Bo)IZ) . 

Since O@ a(A-B| we have m'((A-B| = dim Z - m+((A-B )]Z) , 

and therefore condition (21) es equivalent to 

m+((A-Bo)IZ ) - m+((A-B| > 0 

or 

m'((A-Bo) IZ)  - m ' ( ( A - B ) I Z )  > 0 . 

We shall show that the left  hand sides of these two inequalities agree 

i+(bo,b| - 2~ with and i (bo,b| , for ~ = T  " Indeed, i f  E(~) 

denotes the eigenspace of A for the eigenvalue ~ e o(A) = ~ ,  

166 



AMANN - ZEHNDER 19 

2~ 
= T  ' we find by Lemma 3: 

E(~)+E(-~):{ ~ (cos Xt)xl+ ~(sin xt)x 2, 0 ~ t ~ T I 

Xl,X 2 e R 2n) . 

Let now ~ = j~ e o(A) , j ~ I. The restrict ion of the operator A-B ~ 

(resp. A - B ) onto the subspace E(~) + E(-~) c H defines a quadratic 

form, which agres with the quadratic form Q(~,b) defined by (8), for 

= j~ and b = b o (resp. b = b ). Therefore, i f  we choose B so 

large that ~(Bo) and ~(B| are contained in (-B,8) i t  follows 

from (11) that 

m+((A-Bo)IZ) - m+((A-B )IZ) = i+(bo,b ,~) 
(22) 

m-((A-Bo)IZ) - m'((A-B)IZ) = i-(bo,b ,~) , 

2x where ~ = T  " Theorem 2 now follows by Lemma 5 and Lemma 4. 

c) Remarks 

Remark 1: There is a curious relation of the above existence theorem 

to the Poincar~-Birkhoff fixed point theorem. We consider a 

Hamiltonian system in 2 dimensions h(t,x) = h(t+T,x) for ( t ,x) e 

R x R 2 , h e C2(R x R 2) , which satisfies 

(23) 
Jh'( t ,x)  = ~~ + o(Ixl)  , as Ixl ~ 0  

Jh' ( t ,x)  = ~'Jx + o((xl) , as Ixl ~ | 

for two real numbers o # | , say o < - . The two linear systems 

= e~ and ~ = ~'Jx represent two harmonic oscil lators with 

frequencies o resp. ~" . One verif ies easily that in this special 
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2~ 
case the conditions i(bo,b ,T ) > 0 and o(Jb| n iTT/ : @, ~ : T ' 

required in  theorem 2, are equivalent to the fol lowing condit ions: 

there is an integer j E 7/, such that 

(24) s O < j r  < a ~ , 

and a" # k~ , for  every kE E .  We shall assume in the fol lowing 

only condit ion (24) which is always sat is f ied i f  a ~ < 0 < a | 

Introducing s3nnplectic polar coordinates 

x I + i x  2 = /~l~e ie , 

the system ~ = J h ' ( t , x )  becomes 

(25) 
= -HR(t,B,R) 

=+HB(t,B,R) 

with H(t,B,R) = H(t,x) periodic in e of period 2~ . The flow of 

(25) gives r ise to measure preserving homeomerphisms of the annulus 

0 ~ e ~ 2x 0 < R < | . In the covering space -= < e < =, R > 0 we 

define the measure preserving map 

r : (e o, R o) ~ (el,R1) = (e(T) - 2xj ,  R(T)) 

where e(t)  and R(t) are solutions of  the equations(25) having the 

i n i t i a l  conditions e(0) = e o and R(0) = R o . Since x = 0 is an 

equi l ibr ium point of x = J h ' ( t , x )  , the "inner" boundary, R o = 0 , 

ren~ins invar iant  under r ,and on R = 0 
o 

o 
(26) e I e 0 Ta ~ 2~j = 2~ ( ~ - = " T - j ) < o  
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by our assumptions (23) and (24). I f  R o # 0 then the corresponding 

circle of radius R o is not necessarily invariant under r , but i f  

R o is sufficiently large we find in view of (23) and (24) 

- e o : T~ ~ - 2~j + 0 ( T  1 ) 81 
' o  (27) 

: (s - j )  + o > o 
o 

Therefore on account of (26) and (27) the twist condition required in 

the Poincar~-Birkhoff fixed point theorem for a measure preserving 

homeomorphism of an annulus is satisfied, [3] ,  and we conclude two 

fixed points for r in 0 < R s R o which by construction give rise 

to nontrivial T-periodic solutions. In order to prove this statement 

we did not require condition (5). Incidently i t  also follows by means 

of this fixed point theorem that @ has inf in i te ly many periodic 

points, which correspond to inf in i te ly many distinct periodic 

solutions having periods nT, n 6 ~ . 

Summarizing we have seen that the condition i > 0 in 

theorem 2 corresponds to the twist condition required in the Poincar~- 

Birkhoff fixed point theorem. I t  has to be said that a genuine 

generalization of this fixed point theorem to symplectic mappings of 

higher dimensions has not been found. Of course, i f  additional assump- 

tions are imposed in the interior such results do exist, see [8] .  

Remark 2: An existence statement similar to theorem 2 cannot be 

expected for general asymptotically linear equations, as the 

following example shows: 
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= -ye + (1-e)x 

= xB + (1-e)y , 

where e = e(r 2) , r 2 = x 2 + y2 , and where 

compact support e(O) = i , B(O) = 0 and 

For every solution of this equation: 

d (x2+y2) = �89 (l_B)(x2+y2) 

which is greater than 0 , i f  x2+y 2 # 0 . Therefore 

the only periodic solution. 

B is a function with 

e(r 2) < 1 for r 2 ~ 0 . 

x = y = O  is 

Re~rk 3: The existence statemen~ so far require the linear 

Hamiltonian systems JboX and Jb=X to be independent of t . 

Although the general time'dependent case is not worked out yet, we 

give a special result. Assume that bo(t ) depends periodically on 

t with period T and assume that b = a I with a constant 

a| E R . We denote by o(Bo) the spectrum of the bounded operator 

Bou(t ) = Bo(t ) u(t) in H . I t  can be shown that i f  there is an 

integer j E 7/ such that either 

~(Bo) < j r  < ~= 

or 

~= < j r  < a(Bo) , 

2. where T = T  ' then there is  a n o n t r i v i a l  T-per iod ic  so lu t ion  of  

i = J h ' ( t , x )  , provided a| ~ ~ # .  In fac t  t h i s  statement is  an 
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immediate application of Corollary 9.5 of [1] .  

4. The Hamiltonian is even 

In the following we shall restr ic t  the class of Hamiltonian systems. 

under considerations even further�9 in order to prove mult ipl ic i ty 

results. We do not only make assumptions on the systems "at O" and 

"at | but also in the " inter ior" .  We f i r s t  assume the function h 

be even in the x-variable and prove the following: 

to 

Theorem 3: Let 

(2B) 

f o r m a l  

l e a s t  i 

period 

h be o~ in  theorem 2 and assume, in  addit ion,  tha~ 

h(t,x) = h(t,-x) 

�9 = i l b  b 2~r~ ( t ,x)  E R x R 2n Then i f  i ~ o" ~ - i  > O, the~e ~e 

nont)~Luio~ pov3~s (x ( t ) , -x ( t ) )  of periodic solutions having 

�9 provided o(Jb ) n i -~-~ = ~ . T 

Proof: I t  follows from (28) that the potential operator F in (16) is 

odd�9 and we conclude from |1] Proposition 3.2, that the function a of 

Lemma 4 is an even function: 

(29) a(z) = a(-z) . 

Following D.C. Clark {4] closely we shall apply minimax arguments 

based on the genus in order to find cr i t ical  points of a . We recall�9 

that the genus g(.) is defined for closed symmetric subsets C of 

Z \ {0} ,  and g(C) is the least integer k such that there exists an 

odd continuous map from C into R k \ {0}; we set g(~) = 0 . This 
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genus has the following properties (see for example [4] ): 

(gl) C I c C 2 implies g(Cl) ~ g(C2) 

(g2) I f  C 1 n C2 = ~ , then g(C I u C2) = max {g(Cl),g(C2)} 

(g3) I f  there exists an odd homeomorphism of C onto the 

k-sphere, then g(C) = k + 1 . 

(g4) I f  Z m is an m-dimensional subspace of Z and 

C n Z m = ~ then g(C) ~ m. 

For the function a in Lemma 4 which now sat isf ies also (29), we 

define: 

(30) ck(a ) : = in f  sup a(C) . 
g(C) ~ k 

Clearly, cl(a ) _< c2(a ) < . . .  , and i f  

(31) -~ < c : = Cn(a ) = Cn+l(a ) = . . .  = Cn+k(a) < 0 

then g(Kc) > k + 1 , where K c : = {z E Zla(z) = c and a ' (z)  = O} 

This assertion is theorem 8 in [4 ] .  The following Lemma is also 

impl ic i t l y  contained in [4 ] .  

L ~ a  6: Let 

Smale ~on~Ction, and ~(0) = O. Assume that  

( i )  Thepte /6  an r-dimensional subspace Z- 

positive number p such t ~  ~(z) < 0 

s~yZn~ lzl-- p. 

E C2(Z,R) be an euen function satisfying the Palais- 

of Z and a 

for ~ l  z e Z" 
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( i i )  there  i s  an s -d ime~iona l subspaee  Z + of Z, such 

tha t  ~ i s  bounded 6~ow on Z + 

( i i i )  r +  s - d i m Z > O  . 

Then -| < Ck(~) < 0 for a l l  k satisfying dim Z - s < k ~ r , and 

h~ r s + r - dim Z nonzero pcb~ (z, -z)  of cr i t ical  

point~. 

Proof: Property (g3) and condition ( i )  imply that there is a C c Z \ {0} 

with g(C) = r such that sup r < 0 and hence Cr(r < O. I f  ~ e R 

we introduce the notation r = r174 Due to condition ( i i )  there 

is ~ E R with eT n Z + = % , hence by (g4), g(r ) ~ dim Z - s . 
T 

Therefore i f  j sat is f ies dim Z - s < j ~ dim Z , and i f  g(C) ~ j 

(such a set exists by (g3)), then sup r ~ �9 and hence cj(r  ~ T > 

-~ . The Lemma now follows from ( i i i )  on account of (31). 

t i ve l y .  By assumption 

- E + E + = Z . Setting 

by (11) 

o E + To conclude the proof of  Theorem 3 we denote by E~, E , ~ , 

= 0,~ the subspaces on which the symmetric operator (A-B~)IZ , 

= 0,~ , is negative def in i te ,  zero, and posi t ive def in i te  respec- 

o(Jb ) n iTZZ : ~ , hence O~ ~(A-B ) and so 

r = dim Eo and s = dim Z - dim E~ we f ind 

r + s - dim Z : dim Eo - dim E~ 

= m-((A-Bo)IZ ) - m-((A-B )IZ) 

= i+(bo,b ,T) �9 
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Assuming i -  > 0 , the assumptions of Lemma 6 are satisf ied for the 

function ~ = a with the subspaces Z- = E o and Z + = E +| . This 

follows from Lemma 4 ( i i i ) .  We conclude that a has i -  pairs of 

nontrivial c r i t i ca l  points, which by Lemma 4( i)  correspond to pairs 

( x ( t ) , - x ( t ) )  of periodic solutions. Similarly, i f  i + > 0 we con- 
+ 

sider ~ = -a and take Z" = E+o ' Z+ = E" Settina. r = dim E o 

s = dim E~ we find this time 

r + s - dim Z = dim E + - dim E + 
o 

= m+((A-Bo)IZ) - m+((A-B )IZ) 

= i+ (bo ,b |  . 

Consequently, by Lemma 6, there are 

solutions and Theorem 3 is proved. 

and 

.+ 
i pairs of nontrivial periodic 

From now on we shall assume the Hamiltonian function h to 

be time independent, ln this case there is no "natural" period for the 

sought periodic solutions given. The function h is an integral and 

we could ask for periodic solutions on a given integral surface. But 

instead of prescribing this integral we look for periodic solutions 

having a prescribed period T . Such periods are described by the 

next theorem. 

Theor~ 4. A6sume h s ~ i s ~  the assumptions of theorem 2, and 

assu~e, in  addition, h even and independent of t . 

Let T be any po,~itiue numb~ sa t~ f y ing  i(bo,b| ~-) > 0 . 
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Then �89 ~ a lower bound for the number of d~nc~, no~ui~Z 

(x(t) , -x( t))  of T-p~odZc soZ~t~on~ of the equation ~ : Jh' (x) , 

provided ~(Jb ) n i ~- 7/= (~ . 

Remark: Theorem 4 does not claim that the periodic solutions found 

are not constant. Additional singular points of the Hamiltonian 

vector field could be among these periodic solutions. I t  is good to 

know that there is always an additional singular point i f  

m-(b| ~ [m'(bo),m'(bo) + m~ (see [ I ]  Proposition 12.5). 

I t  turns out in the proof of  theorem 4, tha t  under f u r t h e r  

a r t i f i c a l  r e s t r i c t i o n s  on h , the per iod ic  so lu t ions are nonconstant. 

In f ac t ,  we shal l  show that  i f  h s a t i s f i e s  the assumptions o f  

theorem 4 and i f ,  in add i t ion ,  

h(x) ~ 0 (resp. h(x) ~ 0) , x E R 2n , 

then i f  i + = i+(bo,b , ~ ) > 0 (resp. i -  > 0) ,  there are at  leas t  

i+ /2  (resp. i ' / 2 )  nonconstant pairs of  per iod ic  so lu t ions having 

per iod T . 

Proof: Since the Hamiltonian vector f i e l d  is independent o f  the t ime, 

wi th  every so lu t ion  x ( t )  also x( t+s)  is a so lu t ion  fo r  every f i xed  

s E R. As a consequence,the equation (18) is i nva r i an t  under a un i ta ry  

representat ion of  S I = {z E C I Izl : I} in H . In fac t ,  denote by 

E T c H the dense subspace of  H cons is t ing  o f  a l l  u E H such tha t  

u is  the r e s t r i c t i o n  o f  a T-per iod ic  func t ion  ~ EC(R,R 2n) , and 
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define for 

(32) 

where 

ue E T 

U u(t) = O(t+s) 
0 

for a l l  t e R 

= e i t s  e S 1 , s e R. 

Since U defines a continuous l inear operator from E T to H , i t  

has a continuous extension which we denote again by U c . Clearly 

~ U : s l .~ (H)  is a strongly continuous unitary representation of 

the circ le group S 1 . Moreover U Ac AU and F o U = U o F for 

o e S 1 . Consequently, i f  u E dom(A) is a solution of (18) i .e.  of 

Au = F(u) , then every element of the orbi t  (~u) is also a solution, 

where 

(~(u) = {U u I o e S 1} 

We now claim that dist inct orbits ~r(u) consisting of solutions of 

(18) correspond to geometrically dist inct T-periodic solutions of the 

equation x = Jh'(x) . Here we call two nonconstant solutions of an 

ordinary di f ferent ial  equation x = f (x)  geometrically not d ist inct ,  

i f  one is a reparametrization of the other, that i s , i f  there is a 

cl-diffeomorphism @ : R ~ R , so that x l ( t  ) = x2(r . Suppose 

that @ is such a reparametrization. Then we claim @(t) = t+s. In 

fact, since Xl = f ( x l )  and x2 = f(x2) we conclude that 

f (x1( t ) ) (@(t)- I  ) = 0 for a l l  t . By assumption the solution x I is 

not a constant, hence f ( x l ( t ) )  # 0 for every t e R , and therefore 

@(t) = I for t e R which proves the claim. 
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Since F 

function 

(33) 

fo r  a l l  

and A commute with the unitary representation, the 

a of Lemma 4 is invariant, i .e. 

a(U z) : a(z) , o E S 1 

z E Z . This fo l lows from [1] Proposi t ion 3.2. Therefore i f  

z * is  a c r i t i c a l  po int  o f  a, then i t s  o r b i t ~ z  *)  = {Uoz* I o e S~ 

consists o f  c r i t i c a l  points o f  a. But by Lemma 4 and the previous 

considerat ions,  d i f f e r e n t  c r i t i c a l  o rb i t s  give r i se  to d i f f e r e n t  

per iod ic  o rb i t s .  

Assume now i = i (bo ,b  ~, ~ )  > 0 , then i t  has been shown in 

the proof  of  Theorem 3, that  fo r  some in teger  ~ the c r i t i c a l  leve ls  

of  r s a t i s f y  

-~ < Cg+l(~ ) s . . .  ~ c~+i(r ) < 0 , 

where r is  e i t he r  equal to a or equal to -a . Let m be equal to 

i i i f  i is even and equal to [ ~ ]  + I i f  i is odd. Then i f  m 

of  the c r i t i c a l  leve ls  are d i s t i n c t ,  there are at  leas t  m d i s t i n c t  

pairs (~(z) u C~'(-z) of  c r i t i c a l  o rb i t s  o f  a ,g iv ing  r i se  to m 

d i s t i n c t  pai rs  ( x ( t ) , - x ( t ) )  of  T-per iod ic  so lu t ions and Theorem 4 is  

proved in t h i s  case. Otherwise there is an in teger  j such that  

c : Cj+ l ( r  : c j+2(r  : c j+3(r  < 0 

and g(Kc(r ) ~ 3 on account of  (31). But fo r  every z E Z, z # 0 , 

g ( (~(z)  u ( Y ' ( - z ) )  g 2 (see 12] Lemma 6.1) .  Therefore by property (g2) 

of  the genus we conclude that  there are i n f i n i t e l y  many d i s t i n c t  o r b i ~  
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in Kc(r ). This finishes the proof of Theorem 4. 

I t  remains to prove the statement in the remark following 

Theorem 4. We need a lemma. Recall the notation of section 3b and 

Lemma 4. 

L ~  Iz A~sume h to be independeml of t . Then u(z m) e Ker(A) i f  

and only i f  z*e  Ker a , and in t /u ls  c~e u(z ~) = z* . Moreover, i f  

z*e  Ker A , then z*e  R 2n (by temma 3) and 

Proof: Assume 

a(z* )  : -Th(z*) .  

u(z*)  e Ker(A) . Since Ker(A) c Z i t  follows from the 

definition of the map u (see 11] Section 3) that u(z:':) = z :': 

Conversely, i f  zme Ker(A) , then by Lemma 3, z* e R 2n is a sonstant 

vector, hence F(z*) e Ker(A) , where F is defined by (16) (note h 

is independent of t ) .  I t  then follows from Proposition 2.1 in [1] 

that u(z*) = z* (since R(ker a) "- S(Ker A) = {0}, in the notation of 

that proposition). By the representation a(z) = ~ <Au(z),u(z)>-r 

of Lemma 4 i ,  we conclude for z*e  Ker A , in view of the 

definition (17) for ~ : 

T 
a ( z * )  : -~ (z* )  : - I  h(z*)  dt  : -Th(z:':) , 

o 

and the Lemma is  proved. 

In order  to prove the statement in  the remark fo l low ing  

Theorem 4 we shal l  assume i - ( b o , b  ,T ) _  > 0 and h(x) < 0 fo r  every 
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x e R 2n . Assume that one of the solutions found by Theorem 4 is a 

constant solution. By Lemma 7 i t  is represented by u(z*)=z* e Ker(A), 

z* a c r i t i ca l  point of a . Since in view of Lemma 6, the c r i t i ca l  

values of a are a l l  negative, we have a(z m) < 0 . On the other 

hand, since h(z*) ~ 0 , we find by Lemma 7, a(z*) = -Th(z*) ~ 0 , 

which is a contradiction. Hence the solutions found are nonconstant. 

The other case is proved s imi lar ly .  

5. Convex Hamiltonians 

For a s t r i c t l y  convex Hamiltonian function h , the system ~ = Jh'(x) 

has many periodic solutions. For instance, every "energy surface" 

{x e R 2n I h(x) = const} carries at least one nonconstant periodic 

solution. This has been proved by P. Rabinowitz {9] and A. Weinstein 

[10]. In contrast to these solutions having prescribed "energy" we 

look for nonconstant periodic solutions having prescribed periods 

and prove the following mu l t i p l i c i t y  result .  

Theorem 5: Suppose h e C2(R 2n) ~ s t r i c t l y  convex with bounded 

second derivative. Assume, in addition, that  

Jh'(x) : JboX + o( Ix l )  , Ixl ~ 0 

Jh'(x) : Jb x + o ( Ix l )  , Ixl ~ ~ 

for ~wo symmetric positive defi~Lte matrices bo,b ~ E ~ ( R  2n) . 

Then i f  T d~ a positive number sa t~ fy ing  i=i(bo,b ~, ~ )  > 

> O,the~e a~e at  leas t  i /2 nonco~tant -periodic solutions of the 
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~gst~ x = Jh ' (x)  , provZded o(Jb| n i ~T ~ : ~ . 

Remarks: We f i r s t  observe that since bo,b ~ > 0 , the index i is an 

even integer. In fact Jb o and Jb| are symplectical ly diagonalizabl~ 

�9 | ~ S O . o o and S | = {~k lek  > 0 , k = 1 ,2 , . . . , n }  , = {lekI~k > 0 , k = 1,2, 

. . . .  n}. Hence by Lemma 2: 

oo 

(33) i+(bo,b| ) = 2 ~ ([S| ~ >_jr] - [S~ ~ >_ jT ] )  
j=l 

(34) i_(bo,b ,r  ) = 2 

This can be rewri t ten as 

co 

( [s~ ~ >jr ]  - l s ~  ~ > j r ] )  . 
j = l  

n 
i + = 2  ~ ( Z 1  - E1  ) 

r eo 

n 
i _ = 2  z ( ~ 1  - ~ 1  ) 

As an i l l u s t r a t i o n  we consider an example in R 2n , n = 6 . We give 

a possible d i s t r i bu t ion  of the normal ~des of the two l inear  syste~ 

at 0 and at ~ ~ the fol lowing diagram: 

o o o o o o 

-T 0 �9 2r 3T BT 

I I X I,' I ,11, I I I I X '  I 
Co c o  ~ co Oo oo 

~6 a l  = ~2 = ~3 = ~4 a5 
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By the above formulars for i+ and i .  one finds �89 = 1+5-1-2-4-7 

= - 8 < 0  and l i _  = 2+3+7-1-5 = 6 . Hence�89 = �89 = 6 . 

I t  should be said that "in general" max{i+,i -} = i ~ 

~ 0 . For instance, let  

= . 0 - = k  ) 6+::  7, (=k =~) , 6 : :  (=k 
I < k < n  - I <  k_<n 

oo  oo  

then clearly i + ~  ~ and i_ ~ - ~  as �9 ~ 0 provided 6+ > 6_ 

a s  

The convexity assumption on h in Theorem 5 can be replaced 

by other conditions. For example the following statement wil l  follow 

from the proof of Theorem 5: Assume h satisfies the requirements of 

Theorem 5 with the convexity assumption replaced by the assumption 

h(x) ~ 0 for every xE R 2n . I f  then i+(bo,b ~, ~ )  > 0 , there are 

at least �89 i+ nonconstant T-periodic solutions provided ~(Jb ) n 

i ~Z ~ ~ : ~ . Here the index i+(bo,b ~, ~T ~) is  given by (33). 

example the in teger  i + is  pos i t i ve  i f  the two systems at  0 

are separated in  the sense tha t  there is  an in teger  j ~ I 

o tha t  ~k < j~ < ~6 

i+ ~ 2n . 

For 

and at 

such 

for every k,6 = 1,2, . . . ,n ; in fact we then find 

Proof of Theorem 5: We have to establish cr i t ical  points of the 

function a E C2(Z) of Lemma 4. Since h does not depend on t , the 

function a is invariant under the unitary representation (32) of S 1, 

i .e.  a(U z) = a(z) , o E S 1 and z E Z . Analogous to the proof of 
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Theorem 4 we shall apply minimax and maximin arguments in order to 

f ind c r i t i ca l  points of a . This time however the function a is not 

even and we replace the genus, which is suited dealing with function- 

als which are invariant under a ~ 2-action,by the Fadell-Rabinowitz 

index for  a special St-action. This cohomological index is in t ro-  

duced in connection with actions of compact Lie groups in [6 ] .  In 

order to real ize the set up of [6] we shall complexify the even 

dimensional subspace Z c H as follows: recal l ing Lemma 3 we take the 

eigenvectors U~,k(t ) = e t~J e k of the eigenvalue ~ E z7/ of A . 

Let o(A) n (-B,B) : {-Tm, -T(m-l) . . . . .  -~,O,T . . . . .  ~m} . The l inear 

maps R 2~  C x I U~k + x 2 u ~ x I + ix  2 define an isomorphism of 
' ~,k+n 

the eigenspace E~ onto C n , hence an isomorphism of Z onto 

C n x . . .  x C n (2m+1-times). Consequently we may assume from now on 

that 

(35) 

The sl-act ion 

Z = C n x . . .  x C n (2m+l-times) . 

U , given by (32), i s  by t h i s  isomorphism ca r r i ed  over 
0 

into the following group action of S 1 on Z : 

(36) o . ~  = ( -m ~-m" a'(m-1)~-(m-1) . . . . .  Co . . . . .  ~ ~m ) ' 

where ~ e S 1 {~ e C I I~I = 1} and where ~ = {~-m . . . . .  ~m)~ Z . The 

fixed point set of this action is the subspace N O = Ker(A) : 

(37) N O = {(0 . . . . .  0,~o,0 . . . . .  O) I ~o e C n} 

Wi th~ 'we denote in the following the family of subsets X c Z \ {0}, 

which are invariant under the sl-act ion (36), i .e .  S 1 �9 X = X. Then 
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the following crucial result is taken fromI6]. 

Lemma 8: Let Z , N c Z , and the s l -ac t ion  be ~ introduced above. 
o 

Then there  X~ a map y : ~ - ~ I  u {~} s a t ~ f y i n g :  

(yO) I f  X = ~ then y(X) = O, i f  X ~ ~ then y(X) _> I .  

( y l )  I f  X,Y E ~ t h e n  y(X u y) < y(X)  + y(Y) . 

(y2)  I f  X,Y E S a n d  i f  r  ~ Y i s  a continuous and 

equivariant map from X into Y , then y(X)  _< y(Y)  . 

Equality holds in  p a r t i ~  i f  @ is  a homeomorphism. 

( y 3 )  I f  X ~ ~ i s  compact, then there i6 a compact n ~ h b o r -  

hood N ~ ~ , such that  y(X)  = y (N)  . 

(y4) I f  X n N O = (~ then y(X) = 

I f  X n N 0 = (~ and X compact, then y(X) < 

(yS) I f  E c Z is aninva~iant  l inear  subspace with dimcE = k, 

and s ~ f y i n g  E n N O = {0}, then y(E n SR) = k for 

every R > 0 . 

(y6) I f  I < y(X) < ~ , then the  orbi t  space y q l  is an 

i n f i n i t e  se t .  

For each n ~ I~ we define the fami ly of subsets I" n = {X E In < ~(X) 

< ~} and define for  a funct ion r on Z the minimax levels Cn(~ ) 

by 
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Cn(r ) = i n f  sup r  , 
X E r  n 

p rov ided ,  o f  course,  t h a t  r n # ~ . I t  i s  obvious t h a t  c 1 ( r 1 6 2  

The bas ic  p r o p e r t i e s  o f  these minimax l e v e l s  are con ta ined  i n  the 

following lemma. 

Lemma 9: Assume ~ ~ C2(Z,R) i6 inua~iant  under the speei~Z s l -ac t i on  

(35) and s a t i s f i e s  the  P a l ~ - S m a l e  condit ion.  Suppose tha t ,  for some 

integers  n and k : 

-~ < c : Cn(r : Cn+l(r  ) : . . .  : Cn+k(r < 0 . 

Then, i f  Y(Kc) < | , we have Y(Kc) > k + 1 , where K c : Kc(~ ) : 

= {~ E Z I ~(~) : c and ~ ' ( ~ )  : 0} ~ the  e ~ b t i ~  s~t  of ~ on the  

/eve/ c .  

In view of Lemma 7, the proof follows almost l i te ra l l y  the 

proof of ({4], Theorem 8), see also ([2], Lemma 4.5). The next state- 

ment is the analogon of Lemma 6 for the special sl-action instead 

of the Z2-action. 

Lemma 10: Assume ~ E C2(Z,R) w/ th  VJ(0) = 0 i s  inua~iant  under the  

s l - ae t i on  (32) and sa t i s f y ing  the  Palais-Smale condition.  Suppose tha t  

( i)  There i s  an i n v ~ m t  subspaee Z" c Z , wi th  Z" n N o = 

: {0} and dimcZ : r , such t h a t  ~(z )  < 0 fo r  

z E  Z" s ~ f y Z n g  l~ I  : p , some ~ x e d  p > o  . 
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( i i )  There i s  an invar iantsubspace  

dimc Z+ = s , such tha t  and 

Z + c  Z w/th N c Z + 
o 

is  bounded below on Z +. 

( i i i )  r + s > dimcZ . 

Then -| < Ck(Q) < 0 for a l l  k e 

and r h a  ~ l e ~ t  s + r - dimcZ 

provided Kck(r ) n N o = Q . 

satisfying dimcZ - s < k_< r , 

dist inct  nonzero c r i t i c a l  orbits 

Proof: For a ~ R we denote by ~a the set ~u-l(-~,a] c Z , and by 

S we denote the unit sphere in Z . By assumption ( i )  there is a 

posit ive a > 0 such that r _< -a < 0 for ~e pS n Z : : Bp , 

hence Bp c r and by (y2) of Lemma 8, y(Bp) _< y(r . Since 

N o n Z- = {O},we have y(Bp) = r by (y5) and therefore cr(~) _< -a<O 

and so Ck(r ) < 0 for k <_ r . In view of assumption ( i i )  we can pick 

< 0 with ~ n Z + = (~ . I f  x : Z-* (Z+) -L denotes the orthogonal 

projection, then x : ~ ~ (Z+)Z\ {0} is continuous and equivariant, 

hence by (y2) and (y5) we find "((ST) --< dimc(Z+) "L = dimcZ - s , since 

N o n(Z+) "L = {0} . Let j > dimcZ - s and assume there is X 6-~such 

that j _< y(X) < -  , then sup r _> �9 . I f ,  in addition, j _< r , 

then there is indeed such a set in view of the assumptions ( i ) ,  ( i i i )  

and on account of (y5). Consequently, cj(r _> z > - -  for dimcZ - s < 

< j _< r and the statement follows from Lemma 9, in case the levels 

Ck(r ) are d i f ferent  and Kck n N o = (~ . I f ,  however, two or more of 

these levels coincide, say they are equal to c , then by (y6) the 

orb i t  space .c// an K c " is i n f i n i t e  set. This finishes the proof of 

/S �9 Lemma 10. 
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In order to prove Theorem 5 we f i r s t  assume i+(bo,b , -~) > 0 and 

o + apply Lemma 10 to the function ~ = -a . Let E~, E , E , a = 0,-, be 

the subspaces on which (B-A)Iz is negative, zero, and positive, 

respectively. These subspaces are clearly invariant under the S 1- 

action since A-B commutes with the action. Set Z- = E- and 
o 

= | , = c Z + since by Z + E + then, by Lemma 4 i i i ,  N O n Z- {0} and N O 

assumption, bo,b" > 0 . Moreover, with r = dimcZ- and s = dimc z+ , 

r + s - dimcZ = dimcE ~ + dimcE ~ - dimcZ 

= dimcE ~ - dimcE ~ 

i +  
= I (bo,b . ,  ) > 0 

Consequently the assumptions of Lemma 10 are met in view of Lemma 4 

( i i i ) ,  and we conclude that -| < Ck(r ) < 0 for al l  k e ~  satis- 

fying dimcZ - s < k ~ r . We shall show that Kck(r ) n N o = 0 . 

n Kck(r then in particular z* e Ker(A) , hence by Assume z* e N O 

Lemma 7, u(z*) = z* e Ker(A) and u(z*) is a constant periodic 

solution, hence a singular point of the vector f ie ld Jh'(x) . But since 

h is s t r i c t l y  convex, the only singular point of Jh'(x) is x = 0 , 

hence u(z*) = z* = 0 and a(z*) = 0 in contradiction to Ck(r ) < 0 . 

Therefore K c (r n No= ~ as claimed, and we conclude, that there 
k 1 .+ 

are at least ~ i nonzero cr i t ica l  orbits of a , hence at least 

1 i + nonconstant T-periodic solutions of x = Jh'(x) . 

If,on the other hand, i ' (bo,b . ,  ~-) > O, one proceeds 
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s imi lar ly .  This time, however�9 one considers the "maximin" levels:  

~k(r = sup in f  r . 
X E r  

n 

The statement then follows from the dual version of Lemma 10 applied 

to r = -a . This finishes the proof of Theorem 5. 

Remark: In Theorem 5 the technical d i f f i c u l t y  caused by the fixed 

point set N O = Ker(A) of the sl-action can be avoided under the 

additional assumption 0 < ~ ~ h"(x) ~ B < | . In fact in this case 

we can define the subspace Z = PH c H d i f fe rent ly ,  namely by 

B 
P = f dE~ + f dE~ 

for some 0 < ~ < min{T,~} . I t  then follows that Z n No = and the 

above sl-act ion on Z is now fixed point free, which s impl i f ies the 

proof considerably. The abstract results in [ I ]  s t i l l  hold true with 

the projections P_ and P+ in there given by 

P = f dE~ + Po ' P+ = I dE~ , 

Po being the projection onto Ker(A) 
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