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EXISTENCE OF THE DISPLACEMENTS FIELD 

FOR AN ELASTO-PLASTIC BODY SUBJECT TO 

HENCKY'S LAW AND VON MISES YIELD CONDITION 

Gabriele Anzellotti and Mariano Giaquinta 

We give "necessary" and sufficient conditions on body and 
traction forces for the existence of the displacements 
field for an elasto-plastic body subject to Hencky's law 
and Von Mises yield condition. 

Let ~L be a bounded domain in 9< 3 and let 

~:Xq_ ~3 represent the displacements field of a 

plastic body occupying the domain _eL in unstrained 

position, then the deformation energy of the body,assuming 

the Von Mises yield condition and Hencky's law hold (see 

[3], [I 5]), is 

~e 

. / L  ..C,. 

where 

u 

and 

is the deviator of the deformation tensor ~(~ whose 
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2 ANZELLOTTI-GIAQUINTA 

components are 

We shall be concerned in this paper with the problem 

of the existence for the field of displacements u of a 

plastic body subject to body forces f in /~- , to a 

traction F on some part ~ of the boundary (Neumann 

conditions) and with a prescribed value g for the dis- 

placement (Dirichlet conditions) on some other part ~D 

of the boundary. We are led then to the problem 

I minimize the functional 

Ko 2 

on 

The analogy between problem (~) and the problem 

of finding graphs of prescribed mean curvature 

f ~ F(Vv) + ~fv + S'~v ~ i..f 

V-- '~ on ~D , V r: 5V(4")..') 

, f:cp  

or, more generally, IVvl~ F(Vv~ ~alVvl*b considered for 

example in [9],[7], is manifest. Therefore one is led to 

use the direct method of calculus of variations, looking 

for a solution to problem C~) in a suitable space P(_CL) 

where the functional ~C~) is coercive and lower semicon- 

tinuous, and where the minimizing sequences are relatively 

compact. Following the analogy, one could try to work in 

the space of the functions u whose first derivatives are 

measures, and more precisely in the space 
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ANZELLOTTI-GIAQUINTA 3 

Unfortunately, no Korn's inequality is available on H I'I 

see [12], therefore the functional in (~) is not 

coercive on p(_CL ) . 

In fact, as suggested in [17], [18], we shall look for 

a minimum point for problem (~) in the space 

P(/]- ) = L'(~e~(/~'~3)(~iV~E~(~)~ ~)is a bounded 

measure ~ ~ = A,~,B 

Our methods will be very close to those used in [7],[9] 

[8] . 

We refer to [18] for an approach to problem (~ by 

duality methods and limit analysis. 

The paper is divided into three sections. 

In section I we collect some properties of the space 

BD(/I) of functions of bounded deformation; this space 

has been introduced in [12], [17], [20]. Our exposition 

will parallel closely the theory of BV functions [2], [10] 

so it will be somewhat different from the quoted ones. 

A comprehensive reference is [11], so we shall not prove 

the results proved there. 

In section 2 we shall give a semicontinuous extension 

the functional 5~(E~ to the space of BD ( /'h ) 

following [7] and we shall relax the Dirichlet boundary 

condition following [8] ,[9],[7]. We prove then that the 

original functional and the relaxed one have the same 

infimum and we give a "necessary" and sufficient condition 

(theorems 2.4 , 2.5) on the forces f , F for the exis- 

tence of a generalized solution to our problem. 

We note that, as it is mathematically clear and physi- 

cally reasonable, the functional in ~ is not bounded 

from below unless we put some "smallness" conditions on f 

and F . 

Our condition for the existence differs from those 

given for the mean curvature equation in [6],[9],[4], and 

the reason why those conditions are not workable here is 

the lack of a coarea formula and of a sharp trace estimate 

for BD functions. 
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4 ANZELLOTTI-GIAQUINTA 

Finally, in section 3 , we shall give a few more 

readable sufficient conditions on f , F for the existence 

of the displacements field, and we shall discuss a few 

questions and extensions. 

I. Functions of bounded deformation 

Let _CL be an open set in ~n For a vector 

valued function u ~ U~(/I,~ ~ we denote by ~) the de- 

formation tensor associated to u . Recall that s is 

the symmetric tensor of order two whose components are the 

distributions 

For a function ~6 �9 �9 

- 

For every open set A c_6l and for every function u 

in ~(Ih,~") we set 

A 

It is well known that 6~) is a vector valued Radon 

measure in _CL if and only if ~(~I < +~ for all 

open sets A c ~_(l ,moreover,in that case, the number 

~AIs C~l equals the total variation in A of the measure 

.6(~ so we can define a set function 

51 
5 

which is a positive (outer) measure in _/L . 
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ANZELLOTTI-GIAQUINTA 5 

DEFINITION - BD(I~_) denotes the linear space of the 

functions u c C(/~,~"~ whose deformation tensor is a 

(Radon) measure of bounded variation in /~_ , i.e. 

where 

_r~ _n_ 

It is easily seen that BD(_o_) is a Banach space 

with the norm I I .  1%SDCn. > and that the space C~(~,~") 

is not dense in BD(_C~) Moreover : u6 BD(/O_) if and 

only if 

is a bounded Radon measure for all ~ 6~ ~ 

The space BD (~O_) has been introduced in [12] and 

studied in [20] , ~17] , [14] , and [11] , where a comprehensive 

account of the theory can be found. 

Obviously, the space BV(fL,J~ n ) , i.e. the space of 

I~ valued functions whose first derivatives are measures 

of bounded variation in _CL , is contained in BD (_Ch) ; 

as we already mentioned this inclusion is strict since no 

Korn's inequality is available in H 1'1 , see [12], [11] 

We have 

THEOREM 1 .I - (lower semicontinuity of the deformation) 

Let u, u h be functions in [~&~I~t,~ ~) with Uh---~ u 

weakl______y, i.e. fo___r each ~ ~ C~(.fL'~ 

then 

Proo_____ff: for every function ~rcC~(..(l,~."~ with l~I~<~ 

we have 
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6 ANZELLOTTI-GIAQUINTA 

and taking the supremum for all ~ the theorem follows. 

q.e.d. 

Obviously,theorem 1.1 also holds for the deviator ~(~) 

of the deformation tensor, we recall that ~D(~ is defined 

as 

We shall now list a few simple facts whose simple proof 

we omit. 

i )  ~ I~(,~I + 516C~)I : 5 16('~)~ for A4,A z disjoint Borel 
4 ,,~. A.~U ~,~. sets 

~l~[('a.')l .~ ~IE('~)I f o r  A 4 c A z 
/%4 A~. 

-~ A k VA k 

ii) let 

then 

Acc_Ch (i.e. A is open, A is compact, Ac_CL ) 

for ~s C~(~"~ with diam(spt~)< dist(A,9_~h) , moreover, 

for every sequence of mollifiers L~%~ there exists 

such that 

A /L 

iii) let ~ be a sequence of mollifiers, then 
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ANZELLOTTI-GIAQUINTA 7 

and for Ac c_Ch 

In particular, using the semicontinuity theorem 1.1 , if 

51~(a)l = 0 
~A 

t h e n  

k-~| A A 

PROPOSITION 1.2 - Let u be a BD(~) function with com- 

pact support, then we have: 

a) (Poincar~ inequality) 

b) (Sobolev-Poincar~ inequality) 

__- 

Proof: due to iii) it is sufficient to show a) and b) 

for smooth functions with compact support in ~ . Then 

a) is almost obvious, for b) see for example [19]. 

q.e.d. 

As already stated, the space C~(~,~BD(/L ) is not 

dense in BD(/I ) , anyway, by iii) , for every function 

u EBD(~L ) there exists a sequence {u~c C ~ ( ~  such that 

s ~ a ~ 

More generally the following is true. 

THEOREM 1.3 - Let ~q_ be an open set in ~<~ and let 
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8 ANZELLOTTI-GIAQUINTA 

U ( BD (A) , then there exists a sequence lu~ c C~,~")nSO(/l) 

such that 

Proof: the idea of the proof is as in [13] and [1] . We 

take a sequence of open sets /I~ /If~ .... I with regular 

boundary, such that 

u ZL~ -- ~L _CL K c c. _0_ K.4 ; K= 

and we Be t  

then we take a sequence of functions ~K with 

(~o c C O (d14] , % = A in -Cl B 

~K = ~ in -(L~K+~3K+~ 

K=d 
i n  

and a sequence of functions ~r~ E C~ C~"~ such that 

Proceeding as in [1] it is now easy to see that one can 

find the numbers T K so that the function 

verifies 

k ..c1. 

and this, together with the lower semicontinuity of the 
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ANZELLOTTI-GIAQUINTA 9 

deformation,proves the theorem. 

Remarks. 1.  If u h is as in theorem 

has 

1.3 

q.e.d. 

then one also 

i) 4~kl%a9_ = ~XI%/t for all h 

(see the existence of the trace in theorem 1.4 , provided 

~i has a Lipschitz boundary) 

ii) 

A A 

for all open sets AcA 

such that 5~6(g~I = 0 

iii) I{s163 - ) I~Li(~l for all ~'i = 4,'-" I~ 
_CL _~ 

iv) 

.0. ..o_ 

2 .  In case u e BD ( /3- ) and ~V~ s [~C..('l.') 

the approximating functions u h such that 

~x < T 

one can find 

also holds. 

Let _cu be a domain with Lipschitz boundary, then the 

trace of u on ~_fh is well defined for each ue BD(JI ) 

as an ~(~/I)~") function. In fact the following theo- 

rem has been proved by Strang and Temam [17] 

THEOREM 1.4 - There exists a linear operator 

such that 

for all 

: . . . . .  ") 

~(~ : ~I~ 

u E BD (~L) r~ C~ The following trace estima- 
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10 ANZELLOTTI-GIAQUINTA 

te holds 

(1.1) ~ 1~(~/I i"K "'4 
)_q. 

c ( rhAb  II'u- II 6DC.O3 

for all i , j and for every ~ C4(~,2 ") moreover, 

following Green's formula holds 

the 

where 9= ('~'I,---, V,) 

9/~ ' and ~t6~) 

is the unit outward normal vector to 

is the i th component of ~(~) . 

Actually one can prove the estimate 

(1.1) ,  I i ~ ( ~ l ~  ~' ~ ~r ~t~c~ +~Cn~I~  

where ~4(n,L) depends only on the dimension n of the 

ambient space and on the Lipschitz constant L of the 

boundary of _CL 

By the same method used in [S] (see theorem 6) for BV 

functions, one can prove the continuity of the trace ope- 

rator in the following sense: if 

[ ~k >41 

S). XL 

then 

~(~k) ~ ~(~) in L ~ C~/=,2 ") 

From now on we shall simply denote ~(~) as ~J~A or mr. 

We shall need in the following an explicit formula for 

the deformation ~IEC~I on an (n-1)-dimensional surface 

where u can be discontinuous. We shall obtain such 

a formula in the next theorem (where we confine ourselves 

to the case ~ is the boundary of an open set). 

Let uE BD(~" ) and let _(3_ be an open set wit~ 
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ANZELLOTTI-GIAQUINTA ~ 

Lipschitz boundary. Set 

41- = trace of ~I~ h on ~/i 

~+ = trace of ~tl~\/h on )/h 

then we have 

THEOREM 1.5 - Let V(x] be the outward unit normal vector 

to )/[ at x and set 

,I 

then we have for all u ~BD(~.) 

, for e ~= Jl~. n 

i) i e;/,~) -- - ~ -qj(~+- ~ - ) g a  "-~ 
"0~ ?D_ 

Proof: i) Write formula (1.2) for u{~L and ul~\/h with 

~ ~ and sum. 

ii) Using Green's formula (1.2) in /L and in ~\31 we 

get for t~. j  6 C~(] l~n)  

taking the supremum of both members for ~1~j ~< d 

obtain 

we 
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12 ANZELLOTTI-GIAQUINTA 

Let now ~h 6 r  be such that 

;.j = 4 I 

4 where we have set U,= [ ~ I * ,~C~,~><-<  1 
suppose moreover that 

and 

For all h we have 

o~ ~,-4 

and going to the limit for ~--~ we get 

I s -c (,u+--,~-~l otg "-~ -< 5 l ec~ l  
~A 3n 

which concludes the proof of 

iii) is obvious. 

ii) 

We shall also need the analogous of theorem 1.5 

the deviator EDen) of g(~) 

Set 

-cD .(b',  = ~:(p3- -g 

q.e.d. 

for 

It is immediate that 

.n. %0_ 

and that 

S 
..Cu 

a taq~ a~ ) 

J~ 

moreover we have 
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ANZELLOTTI-GIAQUINTA ~3 

THEOREM 1.6 - In the hypotheses of theorem 1.5 we have 

also 

~n ~n 

Proof: the same as for theorem 1.5 

q.e.d. 

Let us remark here that one has, for regular functions, 

clb~ 12 J6(~.II ~ '= 16~ 2" § J'-'~-I 
because ~D(~) and ~(~/v~I are orthogonal with respect 

to the inner product 

a.b 2 b 9 = q ~  a~ 

so we get 

_eL _cu 

which holds, by approximation, for all us BD(~L ). 

We also have 

PROPOSITION 1.7- i) Let ~&~n , I~I=4 , f eBV(~O_ ) and 

denote by V~i~ the projection of ~ on the ortho- 

gonal space to o~ , then we have 

where the right member denotes the total variation in _s 

of the ~xJ{ valued measure ( ~# ,V4~ ) . 

ii) L e t uE~(~,~ ~) and set ~v=~.V , ~r=~-~vv then 

we have 

4 

~A %A 

Proof: i) Take a smooth function f and an orthonormal 
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14 ANZELLOTTI-GIAQUINTA 

basis [e4,... ' r of ~n with e4=~ . We then have 

n 

t C,s-fll Z ! + 
= Lj---4 4- 

w h e r e  o(~=H a n d  o(~ = ~ s  = 4 $ =  . . . =  ~ ,  = 0 , h e n c e  

Integrating over /D_ we get i) for smooth functions and, 

by approximation, we get the result for all f6BV(/n_ ) 

ii) Take a point x where V(~) is defined and take an 

orthonormal basis ~e4,...,~ of /~" with e4=V(~ ) , we then 

have V4(x)=4 , ~j(~)=0 for j=2,...,n and 

n -'I ;. �9 Z I. 

Integrating over %-r we get ii) . 

One can also prove the following: 

_n. 

~ i~- ~,~ 

q.e.d. 

The trace operator ~ �9 BD ( Zi ) > ~(D/tj~> is onto, in 

fact every function ~6 ~(D/i~"~ can be extended, by 

Gagliardo's theorem, to a function in H 1'I (/i) (provided 

/D_ has a Lipschitz boundary). For our purposes,see next 

section, a more refined extension result is needed and pre- 

cisely theorem I .8 below. 

Let's first recall a well known fact. Take an open 

bounded set /~ with a class C 2 boundary and set d(x)= 

dist(x ,~/h) for Xe_[h , then there exist a number ~>o 

such that if 0 <dCx~< ~ the following is true: 

i) there exists a unique point UCx)s such that 
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ANZELLOTTI-GIAQUINTA 15 

ii) the function d(x) is differentiable at x 

THEOREM I .8 - Let 4"i_ be an open bounded set with a class 

C z boundary, and let T be a function in [4 C~/Ij~"~ (o__r 

in ~(~,~") , ~ being the intersection of 9/h with an 

open set A ) such that 

v.r., F = 0 on 9A ( on 11 ) 

I 
then there exists a function r  BD(.fl.. ) with d~v~6L~/L) 

such that 

~= ~ on ~/L ( on I-I ) 

and 

for all points ~= X-V~ where X6~/l 

0< h < ~ , moreover 

( ~e~ ) and 

Proof: set 

by a partition of unity argument we reduce to the case of 

~pLq ~ V ~  where V is open and there is a diffeomor- 

phism ~: V - ~ Q  such that 

o ( V n . . ~ )  = Q t  

and the jacobian of 0 ~ is bounded and bounded away from 

zero in V . Set now 
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16 ANZELLOTTI-GIAQUINTA 

and use lemma 1.9  below to get a function~ ~s BD(Q+) with 

it is then easy to see that the function 

is the desired extension of 

q.e.d. 

LEMMA 1 9 Let ~e~- "-~ _,-4, �9 - (JR ~ ) ,then there exists a function 

~ BD( Ix~"IX,)ol ) such that 

ii) ~(x).en = 0 

iii) ~v~) ~ L2([~<~Ix.>o}) 

~X6~" with X~ > o 

moreover, if /I 4 is an open set in ~" and 

~ph~r {x&~"lK, =o ~ we can find ~ so that~p%~c/l 4. 

Proof: take a sequence of functions ~ E C~(~"-~j ~-4 1 with 

and let ~ Tkl be a decreasing sequence of positive numbers 

with "Ch--P 0 . Set 

0 

= I x~-r 

L 

if X~ >7? o 

where ~= (X 4 .... ,X,-4~ . It's easy to check that for a 

suitable choice of the r h we have 
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ANZELLOTTI-GIAQUINTA 17 

and i) , ii) are also obviously verified. 

In case 4~ ~/~4~Ixe~"Ix~=o I we can find the functions 

~h so that ~h~c/14n~x~Ix~2o ~ , hence ~+~x[~] 

and ~x~o,~] c~l 4 if r~ is small. 

q.e.d. 

The last results we are now going to state are Poincar@ 

inequality, a compactness theorem and some corollaries. 

Let ~ be the space of infinitesimal rigid motions of 

~n , i.e. 

~= [ T=Ax +b I b~..~ ~) A is a skew-symmetric matrix I 

THEOREM 1.10 - Let _(D_ be a Lipschitz domain in ~ 

let 

T : 5D(-O.) ~ g 

and 

be any continuous linear function which fixes the elements 

of , then there is a constant c~_r such that 

II,~- T~ll L~&_~ (.r~,) _~_ 

Asuitable function ~ can be obtained as follows: 

Z L=~ 

where x o is a fixed point in ~o_ and 

lo L i c ~ l  : n § ~ ' " 

where 5~(~3=[xIlx-xo%<Rlcc-(i ~ [e4,...,e~ is an 

orthonormal basis in /~ and ~(n) = n-dimensional measure 

One also has the following 
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18 ANZELLOTTI-GIAQUINTA 

COROLLARY 1.11 - Let F be a subset of ~/l with positive 

(n-1)-dimensional measure, then there is a constant r 

such that 

for all u~ BD ( I%_ ) with ul~ =0 . 

Theorem I .10 has been proved by Kohn [11]. 

As for BV functions, see [5], [2], theorem 1.10 J 

together with the E-net argument, yields the following 

compactness theorem, see [11]. 

THEOREM 1.12 - Let /I be a Lipschitz domain. Then the 

inclusion of the space BD ( ~L ) in [P(/L; ~"~ is compact 

for ~ < " 

For a different proof of the compactness theorem see 

also [17] , [20] . 

A simple consequence of theorems 1.10 , 1.12 is the 

following (see also [17] for a completely different proof). 

PROPOSITION 1.13 - Let S be a ~"-valued distribution in 

/~ such that ~(5) is a Radon measure in /I , then S 

is represented by a function u e ~Lc~flj~*~ , that is 

_eL 

Proof: for any given open set A~c-CL we shall prove that 

S is represented in A by a function ~A& ~Al~ and 

this obviously proves the theorem. 

Take an open set A' and a ball BR(Xo~ with 

5K(xo~ A ~ ~ ~cl~ , take then a sequence of mol- 

lifiers ~k and set Sh= 5 ~k �9 Then we have 

5~ II ) 5 weakly in A 

A 

where ~ is as in theorem 1.10 . We also have 
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ANZELLOTTI-GIAQUINTA ~9 

A 

for h large enough, this implies that the numbers 

I~5~-~ (5~I~5D~ are bounded independently of h and, by 

compactness theorem ~.12 (possibly taking a subsequence), 

we have 

5~ 

k01 6 D(BR(Xo)), ~q~ % O, ~(x) = ~(Ix-xol) 

We shall now prove that ~(5~I ~ ~ ~ , that is 

+R and ~A: vA+~ represents S in A . 

Consider a test function ~=(~,.-,~ with q~:... :~ = 0 

we then have 

A 
hence 

and 

A A A 

~ _ : ~  

In a similar way one can show that 

We s h a l l  now p r o v e  t h a t  t h e r e  e x i s t  numbers 

such t h a t  

tij e]~ 

,4 

I n  f a c t ,  t a k e  a t e s t  f u n c t i o n  ~= ( 0 , . . - ,  ~ j , - - - o ~  6 ~ ( S R ( ~ , ~  ) 

with ~jl >o and such that ~j(x-~ is odd in the variable 

(x-xo) ~ and even in the remaining variables, then 

,, > - 
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20 ANZELLOTTI-GIAQUINTA 

where ~ (x- • # o and ( ~ ) follows . 

2. Existence for the displacements field 

We are now going to discuss the existence of a solution 

to problem (~) . 

Unless otherwise stated, -eL will be a bounded conne- 

cted open set in ~" with Lipschitz boundary and V(x) 

will be the outward unit normal vector to ~_r at x . 

Let A I be a bounded open set and call 

we shall suppose that the set /I~=/IuA 4 is connected, 

that ~"-~ (~D n~N)= 0 (where ~"'~ is the (n-1) -dimensional 

Hausdorff measure) and that ~ coincides with the closure 

of its interior. 

The function ~: M. > ~,~) , defined on the space 

M, of the nxn matrices as 

{~ [&l Z if l&[ ~4 

+(a)= l&,- ~ if I al ~4 

n I 
where ~ = [~I{] 4 ..... , , and lalz=~ a~ = Lj=~ 

a convex function of ~ . 

As we said in the introduction, we shall look for a 

solution u to problem (~) in the space P(/D_) 

defined as follows 

, is obviously 

Clearly, s term 3~{v~ is well defined for ue P(/I), 

not so obvious is the meaning of ~ ' -~X~(ED(~)) as the ~j 
are measures and not functions. To get rid of this diffi- 
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ANZELLOTTI-GIAQUINTA 21 

culty we proceed in a similar way to [7]. 

First we define a new function r ~, x[o,~) 

setting 

i f  > 0 

~CL~) : 

AS it is easy to check (see [7]) , ~ is convex and posi- 

tively homogeneous in (t, & ) Now, for any Mn-valued 

measure ~= ~I in /i we consider the (~xM n )-valued 

measure ~= (~o  i [~ i j~ )  where 

c:,(o = a~," = Lebesgue measure in /i , c<~i-: 7~/ '  

and we define 

d~o ~--~'~ ~1~1 
_.Q. ..0,. 

Where the positive measure l~l is the total variation of 

d~o ~I~ are the Radon-Nicodym and the functions ~I ' otlal 

derivatives. 

Using this definition, as a corollary of a theorem by 

Reschetnyak, see [16],[7], we have the following semicon- 

tinuity result. 

PROPOSITION 2.1 - Let u , Uhe BD(/~_) and set 

J -d ) "~ 

Suppose that u h , u weakly, then o~ K > ~ weakly and 

...n.. ._91. 

As far as the force terms are concerned, let us remark 

by now that they are certainly defined if 

f= ~§ Vq , ~ C n , ~  ~1 , q~(~ ,~cn 
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22 ANZELLOTTI-GIAQUINTA 

in which case we have 

I.~. ~ ' ' '" I L IIf4l, l.~ ,I.o.,15D + ,~tlLz ,I ~iv.~.l,L z 

I ~ F " ~ !  ' cCn,SL ~ I"~.USDC.r~.,)IIFI'~c-r,, ) 

where c(nr.CL) i s  the  c o n s t a n t  i n  the  t r a c e  e s t i m a t e  ( I . 1 ) .  
Actually j it can be physically reasonable and formally 

useful to suppose that the force F(x) depends on the 

normal v(x) to ~/L in the following way 

Fj Cx~ = K~.j (x~ v~(x) 
where KLj(x) is a symmetric tensor; in this case we have 

Fj.~.J = KLj "CLi('~ 
because K is symmetric, and 

(2 .1 )  K ~ j r ~ j C ~ =  K~ + t~a~en K 8~j r~j + ..... n 6~i = 

P I) k~ac ~ K 
1,1 

because the  m a t r i c e s  o f  zero  t r a c e  a re  o r t h o g o n a l  to  the  
identity matrix. 

We shall need the following facts. 

and set 

on 

u i on % 
~14\yh-- 

M-4 
for 3i -almost all x e~D 

- ~_ u are funtions on ~D 

PROPOSITION 2.2 - Let uE P( f14 ) 

~L- = trace of 

H ~ = trace of 

then we have 

ii) 

Proof: i) recall that u + and 
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ANZELLOTTI-GIAQUINTA 23 

by the trace theorem 1.4 , and that Green's formulae hold, 

hence, for all ~s C40(A~14 ~ we have 

T'p s ~ X14\ I% 

"I"o --.0-4 

ii) By definition we have 

% 

where 
D 

~IpD = 0 and 

~'.~X M~l-valued measure, but 

On the other hand, by Green's formulae 

that is 

T D ~p 

~i.j c4.) 1 T, D 

and finally we get 

% ~D l'c%"t" ~-)I ] 

= 1 
& 

because ~CO,&) =1&l  
q.e.d. 

We shall now relax the Dirichlet boundary condition in 
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24 ANZELLOTTI-GIAQUINTA 

a similar way to what has been done in [8],[7] for the 

minimum area problem. 

C%) 

minimize the functional 

..CL ..n. - ~  

+ + 

in the class of functions ue P(XI ) such that 

a.V = ~.v on ~D 

where g is a fixed function in F(/14~6H4'4(JI4~ 

If moreover we introduce the problem 

V6. }~(ll4~ , V=O~ in ~4\~ 

0 in ~4\~ 

then, by proposition 2.2 ii) , problem (~ is equivalent 

to problem (~) . In fact, if v& P(_r 4) with v=g in 

-614\~ (or us P(_CL ) with ~v=~.M on T D and set v=u 

in Xl , v=g in /14\~ ) we have 

x~4\/l Jl4x/h 

We want to emphasize the fact that the possible solu- 

tion to problem ~ needs not take the prescribed bounda- 

ry value on ?D , more precisely, the normal component 
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u.v of u will take the value g.v while,in general, 

the tangential component ~r of u will not be equal to 

The following theorem justifies our relaxed form (Pz~ 

or of problem 

THEOREM 2.3 - Let the boundary of _CL be of class C ~ , 

then we have 

~=~ O~]~o ~.v=(~.v o.P D 

Proof: obviously we have 

the converse. Let ~>o and take uE P(/~ ) 

g.v on ~D and such that 

~'~ 3' 

We have (a-l) E ~(?D,~") and ~-%~.v =0 

by theorem 1.7 , we can find a function ~Ep(xl ) 

that 

so let us prove 

with u-v = 

on ~D sO, 

such 

Set then 

where 

~ . V = O  in _CL , " ~ =  ~ , - ~  on FD 

We have ~E P(~L ) , in fact 

V 1 

_0_ .rx -CL _0_ 
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where ~.~TqK ='~('. VK c 0 �9 We a lso  have 

where (~D),~ = [ XeCL} ~iss xs~/l~ < 4/, I and 

~.-> o* 

that is, for k large enough 

and, this holding for all positive S , the theorem is 

proved. 

q.e.d. 

We shall now give a sufficient condition on the forces 

f , F in order problem ~ (or equivalently (~ ) be 

defined and have a solution, this condition is also almost 

necessary in view of proposition 2.5 . We shall suppose 

that F is expressed in the form 

n 

w i t h  H~=~% , ~= HL~ =0 (see ( 2 . 1 ) )  , h e n c e ,  i f  V o 

denotes the space of the traces of functions u~ P(_CL ) , 

we could more precisely allow F to be only a function in 

the dual space of V o instead of being in L~(~,~") 

Then we have 

THEOREM 2.4 - Assume that the functions H~ and p can be 

extended to functions still called H~ j p on ~ inn 

such ~ wa~ that 

H~ = o 

126 



ANZELLOTTI-GIAQUINTA 27 

n 

3. II ~,ll~(n. ) < +m 

(.~j �9 rk35v~ - Fj 
then there exists a solution 

valently (%~ 

Proof: we have 

for some 6. >o 

in  _CL 

o_nn ~N 

u to problem (Pzl or equi- 

N 
-% 

0 D 

hence 

-Q-,1 -/3-t -'fl" 

.,1"1. T D "PD 

If we now extend ~ and ~ to -~4 with no 'disconti- 

nuity' on ~ ,still calling them ~9 and ~ , we get 

where 

- y 

"0"4 -0"4 Xk4 -~ t 

therefore problem (~) is equivalent to problem 
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minimize ~(~) in the class of the functions 

(%)I u~ P( /i 4 ) such that u=g in /14\~k 

Now we have 

(2.2) g(~ < +~ 

and, for all v E P ( 1~4 ) with v=g on ~4\~ 

(2.3) 
- '~4  -I'%,, I 

Let's now take a minimizing sequence {~I c P(n4) with ~=@ 
O 

in _(14\XI then, by proposition 2.2 i) ,we have that 

V~.V ~ ~.v on ~ , and, by (2.2) , (2.3) and corol- 

lary 1.11 , the quantities ll~llBb(~4) ) ~ivvw%l~(n~ ) are 

bounded independently of h . By compactness theorem 1.12 

possibly taking a subsequence, we have 

~iV ~ > ~vV weaMly 

where v e P(Xl4) by semicontinuity, v=g in _CA~\/L and 

V.~=~.v on ~p (see proposition 2.2 i) ) 

It is now sufficient to remark that the functional ~(v) 

is lower-semicontinuous with respect to the weak convergen- 

ce in order to conclude the proof. 

q.e.d. 

Let us remark that problem (~ can always be solved 

in case f=0 , F=0 as one can see directly minimizing ~" 

or just taking R~=0 , ~=o in the preceding theorem. In 

particular we can always solve (~] in case f=0 and 

only Dirichlet boundary conditions are given. 

~HEOREM 2.5 - Suppose u is a solution to problem (~] and 

suppose that ~ C~/h~n C~ then there exist functions 

~] l~,j= 4,-.., n , ~ such that 
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and that R~ ~/~ ) lffl ~ 4 

in _0_ 

on P~ 

Proof: we have for every function ~C~(~,F> with q=O on% 

P 

.. i ~c,~l 
_o_ U =~ 

p 

.n. "P14 
=0 

where # is such that ~(8.>= ~0a') Integrating by parts 
D 

and recalling that ~ ~](~%~j = h~ace(~%~> = 0 we get 

- 

Setting now ~= KodiV&% , t~.j = /~10~[~)1 ) 

choosing suitable test functions 

and 

we get our result. 

q.e.d. 

~O 

3. Additional remarks 

What is essentially needed to solve problem (~> by the 

direct method of calculus of variations, besides the lower- 

semicontinuity of the functional ~ , is a condition on 

the forces f , F that yield a bound of the type 

(3.1) 
X~. /9. 
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We have given such a condition in theorem 2.4 , we 

shall see now some other sufficient conditions that can be 

useful in special cases. 

a) Suppose TN= ~ , or ~N~ and F-0 If ~ " ~4 ~ V~ 

~F~ c/~i then 

II~II + ,~II 

SO that (3.1) is verified in case II~ll ~(~,~,) is sufficien- 

tly small, and the functional ~" is obviously lower- 

semicontinuous. 

A sharp estimate on how small II~{I~(~,~) has to be de- 

pends on the best constant ~ in the Sobolev-Poincar6 

inequality for functions with compact support 

~-4 

32 

While the best constant is the isoperimetric constant 

in case u is a scalar function, it doesn't seem to be 

known in the more general case (3.2) . 

b) Neumann boundary conditions are much better handled if 

term of the type 5~I~A is added to the energy functio- a 

nal (this behaviour is well known for instance for elliptic 

linear equations or for the capillarity problem). In that 

case we look for a solution to 

4~.~ = ~.~ 

, b f f  

on ~ 

One can still proceed as in theorem 2.4 and find a 

-sufficient condition for the existence of a solution, the 

only difference is that the functions (ff~J § are 

now only required to be in ~C~] . But in this case 

another sufficient condition for the existence can be 
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obtained as follows. Suppose 

, , ,oo "T rlz" 
where f4 ~ Lzr ~ , q#~(/i~ (~=0 on ~p K~ h C N,~ ) 

(~+~)~ HVZ(T'N ~) , then we have 

I 1 + ~ ,  I F~ 1 "~ Its ~.~,k. + ,,q,l + 

+ II KIIL,([.pN,)IITJ~I~L~C.pN ~ i- [~+O'll , ll~vll ~, 

where we used the fact (see for example[2~] ) that if 

~6 Lz~/i~ and ~(v,i~, e L~C.D-.~ then ~l.V e H-V/(3)..P- ") 
Recall now that (see (1.1) ' ) 

ll.~v II ~-) 

..r). 

so that we have 

.rN L L~(~,~"I II L~Cn.) 

.-,'l. 

where ~ is any positive number, and in case 

we can choose ~ so that 

.n .  ~ ~ _.n. 

with c4, c2 >o j C~o 

Of course, in order to have a good condition on F one 

needs to know the best value of the constant ~4Cn, L~ in 
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32 ANZELLOTTI-GIAQUINTA 

the trace estimate. More precisely, a sharp condition on 

F would follow from a trace estimate (on smooth domains) 

of the type 

(3.3) l~%<,~la~"" -~ ~ I~I + ~ ( ~ S ~  

Such an estimate seems to be reasonable but we don't know 

whether it is true or not. Actually, one would only need 

to have (3.3) with E(~)  instead of s , notice 

however that the estimate 

i s  f a l s e  i n  g e n e r a l  as we can see t a k i n g  

where ~ X) is the characteristic function of the set 

X4 

~,= Cco~,  ~ ~'3 ~ - ~  

and choosing ~ such that 

In fact we have 

-g-)a 
d" 

%n 3~ 

and it cannot exist a constant ~ such that for all ~>0 

d �9 

TO conclude, we have to remark that in this case the 
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term S ~  
the condition 

is not lower-semicontinuous, anyway, under 

(3.4) ~(n,L~ IIKII~ ~ 4 

the functional ~ on the whole is still lower-semi- 

continuous with respect to ~r convergence (see[9] 

for the area functional). In fact, for ~>0 set 

for almost all ~ we have 

Now, by the trace estimate (1.1)' and (3.4) , we have for 

u , UhEP(.fk )~I~(IL,Ii~") 

K~ 

Supposing now u h ) u in ~(~,~"I ,going to the limit 
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for h--~ 

result. 

and taking arbitrarily small we get our 

c) Finally, by the same methods we have used so far, we 

can also study the case of a deformation energy of the type 

where ~ :~hx ~n > [o,~ is a continuous function 

of (x ,s and a convex function of ~D , and 

holds. We can again define a function 

to get a semicontinuous extension of the functional 

S~(a, ~Ca~ to BD(XI ) , and we can solve a mixed 

boundary value problem with relaxed Dirichlet conditions: 

onA , 

Work partially supported by GNAFA , CNR . 
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