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EXISTENCE OF THE DISPLACEMENTS FIELD
FOR AN ELASTO-PLASTIC BODY SUBJECT TO
HENCKY'S LAW AND VON MISES YIELD CONDITION

Gabriele Anzellotti and Mariano Giaquinta

We give "necessary" and sufficient conditions on body and
traction forces for the existence of the displacements
field for an elasto-plastic body subject to Hencky's law
and vVon Mises yield condition,

Let O be a bounded domain in R and let
u: ——> R® represent the displacements field of a
plastic body occupying the domain .« in unstrained
position, then the deformation energy of the body,assuming
the von Mises yield condition and Hencky's law hold (see
(31, 1151), is

i $ (o) + 5 ;L(dwmu)zdx

where

2
_';_ L% if | €%yl < 4

D
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z if &) 24

| £m)| -

and
2(m) = £ewy — %‘ trace (eu)) L

is the deviator of the deformation tensor €M) whose
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2 ANZELLOTTI-GIAQUINTA

components are

A (e
gijlu) = —[(5‘5 + -5,(—)

We shall be concerned in this paper with the problem
of the existence for the field of displacements u of a
plastic body subject to body forces £ in (L , to a
traction F on some part Tv of the boundary (Neumann
conditions) and with a prescribed value g for the dis-
placement (Dirichlet conditions) on some other part T'D
of the boundary. We are led then to the problem

minimize the functional

A

(ﬂ) Fm)= S¢(E?M)\+ .g‘l S(divu‘,\z . Sf/u . SFM
n o a

"

M:% on T‘°
The analogy between problem (%) and the problem
of finding graphs of prescribed mean curvature

CF(wv) + §fv + Qv — inf , Foy= J4+p?
o o Ty

veny on T‘D , v e BV(Q)

or, more generally, I!Vvi¢ F(VW) ¢alWi+b considered for
example in [9] ,[7], is manifest. Therefore one is led to
use the direct method of calculus of variations, looking
for a solution to problem (%) in a suitable space P(.v.)
where the functional J(4) is coercive and lower semicon-
iinuous, and where the minimizing sequences are relatively
compact. PFollowing the analogy, one could try to work in
the space of the functions u whose first derivatives are
measures, and more precisely in the space

Pa) = BV(,R) {M | divan e [_z(_Q)S
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ANZELLOTTI~-GIAQUINTA 3
Unfortunately, no Korn's inequality is available on H1'1
see [12), therefore the functional in (R) is not
coercive on P(LL) .
In fact, as suggested in [17], [18], we shall look for
a minimum point for problem (F) in the space

P(LL) = {Melf(ﬂ,ﬁla)(divuel.z(ﬂ),&j(u) is a bounded
measure Yij=4,2,3 }

Our methods will be very close to those used in [7],[9]
(8] .

We refer to [18] for an approach to problem (ﬂ\ by
duality methods and limit analysis.

The paper is divided into three sections.

In section 1 we collect some properties of the space
BD(Y ) of functions of bounded deformation; this space
has been introduced in [12],[17],[20]. Our exposition
will parallel closely the theory of BV functions [2], {10]
so it will be somewhat different from the quoted ones.

A comprehensive reference is [11), so we shall not prove
the results proved there.

In section 2 we shall give a semicontinuous extension
of the functional Sé?(iwﬂﬂ to the space BD( (L)
following [7] and we shall relax the Dirichlet boundary
condition following [8],[9],[7]. We prove then that the
original functional and the relaxed one have the same
infimum and we give a "necessary" and sufficient condition
(theorems 2.4 , 2.5) on the forces f , F for the exis-
tence of a generalized solution to our problem.

We note that, as it is mathematically clear and physi-
cally reasonable, the functional in (A is not bounded
from below unless we put some "smallness" conditions on f
and F .

Our condition for the existence differs from those
given for the mean curvature equation in (6],[9],[4], and
the reason why those conditions are not workable here is
the lack of a coarea formula and of a sharp trace estimate
for BD functions.
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4 ANZELLOTTI~-GIAQUINTA

Finally, in section 3 , we shall give a few more
readable sufficient conditions on £ , F for the existence
of the displacements field, and we shall discuss a few
guestions and extensions.

1. Functions of bounded deformation

Let (0. be an open set in R . For a vector
valued function u ¢ L‘,x(ﬂ,lR") we denote by &m) the de-
formation tensor associated to u . Recall that €&mw) is
the symmetric tensor of order two whose components are the
distributions

A /()ML + 94,4’
'OXj oX;

- 2
For a function Q¢ CoR ), (f):ELPiiELj: i...n

;%3_452@\0\&

0x; X

em), @) = ~ iz ,}L(M

For every open set A < €2  and for every function u
in lf,‘ (o, R we set

é’HM)\ = Aup {(ﬁ(u\,({?> ; (fé C:(—Q-,R“SI /;Pt(ch , ‘zs_({?:) <4 5

It is well known that &) is a vector wvalued Radon
measure in (0 if and only if  JJEM) < + for all
open sets Acecl2 ,moreover,in that case, the number

Sl equals the total variation in A of the measure
£} so we can define a set function

B S1E(Y| Bc
B

which is a positive (outer) measure in (L .
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ANZELLOTTI-GIAQUINTA

DEFINITION - BD( (). ) denotes the linear space of the
- 4

functions ue L(ll,ﬂf) whose deformation tensor is a
(Radon) measure of bounded variation in () , i.e.

BD(q) = {me Lo, B | twlgpiay <+°°}

where
] = Swidx + S1eml
Bo(Q) a
It is easily seen that BD(-m™) is a Banach space
with the norm I-Napay and that the space (2, R"

is not dense in BD(.) . Moreover : u€BD(.,L) if and
only if o j 94&
Eun () = oL V(o) = ' W

is a bounded Radon measure for all « éer .

The space BD(f.) has been introduced in [12] and
studied in [20), [17), [14], and [11], where a comprehensive
account of the theory can be found.

Obviously, the space BV(n,R') , i.e. the space of
Eﬁ valued functions whose first derivatives are measures
of bounded variation in . , is contained in BD(.L) ;
as we already mentioned this inclusion is strict since no
Korn's inequality is available in H1’1 , see [12], B1] .
We have

THEOREM 1.1 - (lower gemicontinuity of the deformation)
,, be functions in l&uhl,ﬂg) with u
weakly, i.e. for each -~ e ()
;' .
Lo, 54&k“¥ = S4AbY
o

h—>00 L

— 11

Let u , u h

then

Crem| < Liminf Srecm)
QO h—r a

Proof: for every function ¢e( (a R with 1@<
we have
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6 ANZELLOTTI~GIAQUINTA

Cewd, ) = Lim e, @) & Limw ink Slew

and taking the supremum for all ? the theorem follows.
g.e.d.

Obviously,theorem 1.1 alsc holds for the deviator £%M)
of the deformation tensor, we recall that EWM} is defined
as

o 4 1
£ = MY~ 7 trace (&)

We shall now list a few simple facts whose simple proof
we omit.

i) §li(u)|+ §|E(4A)l = SIE(M)\ for A4;AZ flisjoint Borel
4 2 Avhg sets
Srecn ¢ Grecw) for A A,
Ay Ay
tim Stz = Slecwl  for  AycAL, | helN
h—00 Ay VA,

ii) let A<c< L (i.e. A is open, A is compact, Ac (L )
then

(rewep)l < § Wldx Srecn
A R £

%0, 1
for Y€ C(R" with diam(spt+y)< dist(a,20) , moreover,
for every sequence of mollifiers &’\P‘b]‘ there exists h
such that

Cle syl € Srea) for hyh
A a

iii) let \"l’hls be a sequence of mollifiers, then

(1etury)| —  § tecwl Ve BD(R")
R R
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ANZELLOTTI~GIAQUINTA
and for A<c QL

Lim  Stemandl ¢ Stecl Y e BDQ)
h—>mo A A

In particular, using the semicontinuity theorem 1.1 , if

Steawt = 0
YA
then

B STeCaxrp)l = Steal
A A

hsw

PROPOSITION 1.2 - Let u be a BD(R ) function with com-
pact support, then we have:

a) (Poincaré inequality)

Cimldx £ ¢ n) diam(spta) ieaot
R* N

b) (Sobolev-~Poincaré inequality)

h-4

( Sum_“"'”‘ )T < ¢ $ieawl
ﬂ{lﬂ

Rl’\

Proof: due to iii) it is sufficient to show a) and Db)
for smooth functions with compact support in R" . Then
a) 1is almost obvious, for b) see for example [19].

g.e.d.

As already stated, the space Cw01,$5rwBD(Jl ) is not
dense in BD(<). ) , anyway, by iii) , for every function
u€BD({L ) there exists a sequence {uhgcc""(m“)mﬂ such that

P in U (R RY

SIEOMJ\ —_— SIECuH
R rR*

More generally the following is true.

THEOREM 1.3 - Let (L be an open set in JK' and let
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8 ANZELLOTTI-GIAQUINTA

ueBD((L) , then there exists a sequence {uhkc (s, KMnBD()
such that

Uy —> U in [.4 (.Q.,Rh\)

§recunt —s Srecm]
QL KON

Proof: the idea of the proof is as in [13] and [1] . We

take a sequence of open sets 114,ﬂ2r_“ with regular

!
boundary, such that

Oycc Qs U.QK=_Q

) K= 4

and we set

=Ly Ve = Dakra\ gy y

7

then we take a sequence of functions @ with

n
G € Co (1) , 9, =4 in O,

20 - —_—
Gee €5 (Qaeag) Ra) Pg= 4 in Qg a g,
5

=4
=, Y in
and a sequence of functions ™ € Cf(ﬁ?\ such that
43
Yero |, g e Delmend o

Proceeding as in [1] it is now easy to see that one can
find the numbers T, so that the function

[
= A
My, KZ=4 AY-L‘K* ( ‘f,&
verifies

A
}L\Mk M 411

Slswm < Srecmt s 4
L0

and this, together with the lower semicontinuity of the
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ANZELLOTTI-GIAQUINTA

deformation,proves the theorem.

g.e.d.
Remarks. 1. If uy is as in theorem 1.3 then one also
has
i) Ay, = for all h
L 0N

(see the existence of the trace in theorem 1.4 , provided

£l has a Lipschitz boundary)

ii) 5|5(’lkh“ — S‘EW.)\ for all open sets AcL
A A such that 53 Alsw\l= 0
111)  {regowal — (legont for all  4,j=4,..n
L. n
i) (et —s (et
O oo

2
2. In case ueBD(n ) and divmel (1) one can find

the approximating functions u such that

h

S (div (M—ukﬂzalx <
0

A
[N
also holds.

Let . be a domain with Lipschitz boundary, then the
trace of u on 2fL is well defined for each ueBD(.12)
as an f(DJl,Fw) function. 1In fact the following theo-
rem has been proved by Strang and Temam [17] .

THEOREM 1.4 - There exists a linear operator

Y : BD() —> (o RY)

such that

y ) = Ml_a_n_

for all ue BD(Jl‘)r\C°L5”§€X The following trace estima-
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10 ANZELLOTTI-GIAQUINTA

te holds

1.1) Syl d™ < ¢,y lal

10 BD(N)

moreover, ggf all i , j and for every qe(ﬂ(ﬁ”ﬁ$) the
following Green's formula holds

i oY 19 . _ ; i et
(1.2) ISL(“’—a;L +ﬂ‘5—;%)d«x + ZJS\?S“(M) —ngkf’(x'(uwj +glav,) AW

where V=(v,,..,v,) is the unit outward normal vector to

?0 and y'w) is the 1" component of ym) .

Actually one can prove the estimate

(1.1) " Syl di™ < 4n,L) Sieanl  + %,(Q) Smidx
20 0. 0

where &403L) depends only on the dimension n of the
ambient space and on the Lipschitz constant L of the
boundary of .. .

By the same method used in [1] (see theorem 6) for BV
functions, one can prove the continuity of the trace ope-
rator in the following sense: if

l, AUy ——> in U (ﬂJan)

et — Sz
Lo Ko

then
Yy ——> § () in LU (a,®Y

From now on we shall simply denote JY(#) as ‘M[an'or M

We shall need in the following an explicit formula for
the deformation Sp‘éan\ on an (n-1)-dimensional surface
T where, u can be discontinucous. We shall obtain such
a formula in the next theorem (where we confine ourselves
to the case T is the boundary of an open set).

Let ueBD(R') and let (1 be an open set with
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Lipschitz boundary. Set

1
i

trace of M\JL on oL

ut

trace of Ml_IR"\_n. on 0fL

then we have

THEOREM 1.5 - Let V&) be the outward unit normal vector
to 9l at x and set

Tij(P>= AE(PWJ'*’PJVL) , for Pe_[Rn

T = {Ty 3;;:4,_..;\

then we have for all ueBD(R")

i) S gjm) = — 5 Ty - Ty d
eI WL

i) §recan = 51T (a=a) AR
IR UL

1ii) Creayl = Sreant + Sl + § el
R" L1 m RN

Proof: i) Write formula (1.2) for u{_n_ and u\ﬂ“\

®=41 and sum.

11

with

ii) Using Green's formula (1.2) in . and in R\ we

get for @€ CO(RM

n n
b2 § eijw gy = > Eﬁa-(«n i+ S eiweg -
=14 R" ) J ijet L i R\ J %

- 3wyl gy A
no2

taking the supremum of both members for ,Z’Cf%'j <4 we
{i=
obtain J

Creey ¢ §iTrutanldn”
0 0
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12 ANZELLOTTI~GIAQUINTA

Let now q% € CN(E*\ be such that

h
"j"' (q)bj\ = ) /)Pt ({}L} < Uk
where we have set thi ye R | Aut(%bn3<-%} and
suppose moreover that
q% —_— lﬁﬂﬂ in E(&ﬂJ
) [Tl

For all h we have

W -
STyr=an gy A < Dt + figwt + el
AL v, Q.07 R\,

and going to the limit for h—» o we get
Izl dw™ < §1emw)
un Ry

which concludes the proof of ii) .
iii) is obvious.

g.e.d.

We shall also need the analogous of theorem 1.5 for
the deviator €°wm) of £m) .
Set

TPy = T(P)- —':l— brace (Tp))I = T(p)- Eﬁ-v— I
It is immediate that

§ %y = § Ty AU

O 20
and that
0 )
Sy« Slgldte B)e AT A -

§ ¢ Thw d !
30

moreover we have
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ANZELLOTTI-GIAQUINTA 13

THEOREM 1.6 - In the hypotheses gf theorem 1.5 we have
also

S fetw) = S | T2t ) AW
M M
Proof: the same as for theorem 1.5 .

g.e.d.
Let us remark here that one has, fpr regular functions,
. 2
2
lewl® = 1e%al® + Iﬂ';”—“ll
because £ and (diva)l are orthogonal with respect

to the inner product
n

ab = %—__4 a-.,)-bij
so we get

4,
Sreanl = § i\s"m)l ld"“‘Tl ] ’

oW EeN

which holds, by approximation, for all wue BD(<L ),
We also have

BN 1.
et = e+ 1Tt )t

PROPOSITION 1.7 - i) Let oe®R' , ldl=4 , £eBV() and
denote by V.f the projection of Vf on the ortho-
gonal space to « , then we have

Y,
Sre@dn = § {IV,( f12+ %IV,@HZSZ

Su [N

where the rlght member denotes the total variation 1n N
of the " RXR™" valued measure ( Vf Kﬁf) .

ii) Let ueL(’M.IlR") and set M,=A4V , Mgo= M-,V  then
we have

Sl = § {M’\') + %w:lz}vz
28 2L

Proof: i) Take a smooth function f and an orthonormal
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14 ANZELLOTTI~-GIAQUINTA

basis f{e,,.,e.} of R" with e;=d . We then have

n 2
e = > 4% (<P ) + T e)))

ij=

where o4=4 and «, = = OQ_= ...= 0y =0 , hence

n '1/2. N 4y
el = ((Hed+ 42 e ) = (10 $1aft)®

1=2

Integrating over f). we get 1) for smooth functions and,
by approximation, we get the result for all fe&BV(a ) .
ii) Take a point x where V(x) 1is defined and take an
orthonormal basis {e,..e,} of R' with e,=vix) , we then
have v,(x)=4 , vﬂm:o for j=2,...,n and

n . 2 2
lt(u,x)\z= ﬁ;d%(a Vj+MJVL) = A+ ﬁz-mt(xnl

Integrating over 7L we get ii) .
g.e.d.

One can also prove the following:

4/
Sieent = S {%wsl™+ Sigart]”
Q

O

A7
Sicwt= § {2 al + Fiwg )
0 M

The trace operator Y : BD(.0 ) —> (00, R") is onto, in
fact every function e /(20Q,R") can be extended, by
Gagliardo's theorem, to a function in H1’1(11 ) (provided
£ has a Lipschitz boundary). For our purposes,see next
section, a more refined extension result is needed and pre-
cisely theorem 1.8 below.

Let's first recall a well known fact. Take an open
bounded set (1 with a class C2 boundary and set d(x)=
dist(x ,20L) for xe S , then there exist a number a>o
such that if 0<d(x1<a the following is true:

i) there exists a unique point Uedl such that

dooy = dist (%, Uw)
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ANZELLOTTI-GIAQUINTA 15

ii) the function d4d(x) is differentiable at x
ii1) Vdoo = —v([Uw)

THEOREM 1.8 -~ Let (1 be an open bounded set with a class
C* boundary, and let ¥ be a function in V(RN (or
in (e, RY » T being the intersection of 9fL with an

open set A ) such that

V=0 on 90  (onT )

. 2
then there exists a function ct)e BD( ) with dw(bel_(_()_)
such that

d-¢ on?20 (onT )

and

by) - Vd(y) = 0

for all points g:X~V1T where XeofL { x¢T ) and

o<t<a , moreover
4Pt¢ < {xeﬂ_ \ dm<a1

Proof: set

Q = { yeR |iyca, et n]

+

Q=] yeQ | yn>o}

by a partition of unity argument we reduce to the case of
sptg < Vn2L where V is open and there is a diffeomor-
phism 6: V—>Q such that

o (val) = QF

dﬂ(x) (Vd(x)) =€n for doy<a

and the jacobian of 0 1is bounded and bounded away from
zero in V . Sét now
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16 ANZELLOTTI~-GIAQUINTA

{F(\yh---, Yno) = ? ( 0\—1(%‘)'”) y“-ho))

and use lemma 1.9 below to get a function C\)G BD( Q') with

duvchéL(Q+) 47 ¢ on {xeQlxn=0]} 4) en=0 in Q"

it is then easy to see that the function

b0 = & o

is the desired extension of (10 .
g.e.d.

ned _n-4
LEMMA 1.9 - Let ¢e¢ (JR R ),then there exists a function

$e BD ( {xelR |x,,>a} ) such that

1) D(Rayerr ) Knea, 0) = QR4 Xuca) , 0)
ii) dxr-en =0 ¥xeR" with Xxn >0
iii) divd Lz({xe'lR"Kxno})

. . . n
moreover, if {14 is an open set in R and

sptpce yn {xe}R"\xn =0} we can find d so that aptecq,

Proof: take a sequence of functions VY, € C’:’(,R‘MJ R™) with
N i (R R )

and let {Th} be a decreasing sequence of positive numbers

with T,—0 . Set

0 if Xn ¥ T,

d)(;) Xn) = X
,\ﬂ‘(; Xn-Ty (,%H »\n\{%\ if T, > Xu> Ty

where § =(X4,...,Xn-4) . It's easy to check that for a
suitable choice of the T, we have

SMM + S\e(lb)‘ + S(divd})z < 400

Xy>0 Xy © Xy? ©
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ANZELLOTTI-GIAQUINTA 17

and i) , ii) are also obviously verified.
In case 4pt({)c N4n{xeR"| xa=0} we can find the functions
Y, so that 4pt~fhcwccn4n‘lxeR"\xu>°3 , hence Apt¢chCO,l;]
and Wx[o,t‘a]cﬂ4 if t, 4is small,
g.e.d.
The last results we are now going to state are Poincaré
inequality, a compactness theorem and some corollaries.

Let be the space of infinitesimal rigid motions of
R" , i.e.

J= { T=Ax +b l \’EIRn) A is a skew-symmetric matrix}

THEOREM 1.10 - Let ) be a Lipschitz domain in R" and
let

T: BD(QAYV—— T

be any continuous linear function which fixes the elements
of &, then there is a constant ¢(QT) such that

fa - Tl < (T 1€ cal
4T et (o, R <tam) JSL "

Asuitable function T, can be obtained as follows:

[Ta)w]’ = % Z, (p-ple)ier; + o

4

where X, is a fixed point in . and

oI ) = 0((4) =" § e dy
" Br(%o)

n+4

] __n+4 v v O{
P ) %(n-4)R""* S(M o)y

{yeBeixd | y-€5 >0}

where B.()={x|ix-xi<Rica L | {e, ... en} is an
orthonormal basis in R" and «(n) = n-dimensional measure

of [xeR'| et} ,

One also has the following
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COROLLARY 1.11 - Let T be a subset of 9§l with positive
(n-1)-dimensional measure, then there is a constant c(Q,T)
such that

< c(a,™ Sieml
L

Rt L“/'\'4 (.O—,Rh)

for all ueBD(O. ) with u\T‘=0 .

Theorem 1.10 has been proved by Kohn [11].

As for BV functions, see [5],[2], theorem 1.10,
together with the & -net argument,yields the following
compactness theorem, see [11].

THEOREM 1.12 - Let ) be a Lipschitz domain. Then the
inclusion of the space BD( ) in L(D. R" is compact

{95 P<n-n1 ¢

For a different proof of the compactness theorem see
also [171,(20].

A simple consequence of theorems 1.10 , 1.12 is the
following (see also [17) for a completely different proof).

PROPOSITION 1.13 - Let S be a R'-valued distribution in
L such that 8(5) is a Radon measure in N, then S
is represented by a function ue L‘bc(.(l R™ , that is

(S, =JSIM'%’ for all  ¢eD(0,R")

Proof: for any given open set Acc ) we shall prove that
S is represented in A by a function M€ U(A,.P“\ and
this obviously proves the theorem.
Take an open set A' and a ball BR(X.) with
BR(",\CCAccAICC QO , take then a sequence of mol-
lifiers ~, and set Sp=5*Y, . Then we have

S,—> 5 weakly in A

1S, = (sl € C(AT) glasm

where T‘, is as in theorem 1.10 . We also have
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ANZELLOTTI-GIAQUINTA 19

Ste(sal ¢ Ste(s)y
A A

for h large enough, this implies that the numbers

1S, - T°(S"‘“\BD(A§ are bounded independently of h and, by
compactness theorem 1.12 (possibly taking a subsequence),
we have

Su- (5 — v ellWRY  in U(A,R)

We shall now prove that T,(S,) Re? , that is
S vy *Rand = v,+R represents S in A .
Consider a test function @=(¢,,-, @) with §,=..=¢,=0
©, € D(Bp(x.)), Jo # 0, ©(x) = E(lx—xo|) we then have

<5y,,l{7>'—’ <5} LF>

Con, 0) - (T8, @) —> 3¢

hence
o*sy) §¢, = SIT (s g —> Sva, - <5, ¢)
A A
and

04(8,) —> (EV:%—(S,(q))({%S‘: =4

In a similar way one can show that
_ n
L 0‘(5‘,\ = celR
h—roo
We shall now prove that there exist numbers tijeJE
such that

(%) K. % (p”(skbpj"(sm) = tij
ho o
In fact, take a test function ¢=(0,---,¢j,---,9) € Z)(BR(&\,IR")

with Sl({?jl >0 and such that (Pj(X-K.J is odd in the variable
(""”‘o)L and even in the remaining variables, then

(Tals),9) = 5 (Fsn- P50 Sixxat gy — vl - <5, )
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20 ANZELLOTTI-GIAQUINTA

where S(X-dem #0 and (%) follows .

2. Existence for the displacements field

We are now going to discuss the existence of a solution
to problem (%) .

Unless otherwise stated, {L will be a bounded conne-
cted open set in R" with Lipschitz boundary and V(X)
will be the outward unit normal vector to 0L at x .

Let A1 be a bounded open set and call

T’D= A{ n'b_ﬂ. , T|N = ’O_D.\T‘D

we shall suppose that the set 0O.,=QUA{ is connected,
that W' (TynTy)=0 (where X' 'is the (n-1)-dimensional
Hausdorff measure) and that Ty coincides with the closure
of its interior.
The function ®: Ma—> [o,®) , defined on the space
Mn of the nxn matrices as

2
3l1al if lal <A
C‘>(a)=
A
lat- 5 if lal p4
3 2
where a = iaiji-‘j,,,’___,,‘ , and lalt=2 aj , is obviously

i.j=1
a convex function of a .

As we said in the introduction, we shall look for a
solution u to problem (&) in the space P(.)
defined as follows

PCA) = {«e BO(Q) | diva € ()]
Clearly, the term &£&VMJ%dx is well defined for ueP(f),

)
not so obvious is the meaning of §n¢(E%Mﬂ as the &
are measures and not functions. To get rid of this diffi-
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culty we proceed in a similar way to (7].

First we define a new function 4): Mn x[0,0) [o,0)
setting
_ (2 )t if t>o
dee,a) =
£}|W\ d)(%)t if t=zo
13

As it is easy to check (see [7]) , $ is convex and posi=-
tively homogeneous in (t,a ) . Now, for any Mn-valued
measure M= {/ALJS in O we consider the (R xM, )-valued
measure K= (o,  {«jj}) where

n
«, =4 = Lebesgue measure in N , Xij = My
and we define

Jsfb(/‘} l 35(0\1" 3{33”““‘

okl

where the positive measure |«l is the total variation of

i =L dotiy -Ni
« and the functions Tw1 ! el are the Radon-Nicodym

derivatives.

Using this definition, as a corollary of a theorem by
Reschetnyak, see [16],[7], we have the following semicon-
tinuity result.

PROPOSITION 2.1 = Let u , uhe BD()) and set

« = («() ELJ C&D\) »<> ELJ(ML.))
Suppose that u,——su weakly, then «\—» o weakly and
§b(etw) < Lwink S& (%))
o 7% a
As far as the force terms are concerned, let us remark

by now that they are certainly defined if

f= f4+Vq , ‘5'4&1:‘(!1,1)?") Iqef(n) ,”Pt‘iC—Q-
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Fe (T, R
in which case we have

| St | € nemavatg + Tqua ndivan,

‘ frul € c(n) gy IFL

LY
2 0T

where c¢(n, Q) is the constant in the trace estimate (1.1).

Actually,it can be physically reasonable and formally
useful to suppose that the force F(x) depends on the
normal v(x) to 9fl  in the following way

Fioa = Kij () v (0

where KLJ' (x} is a symmetric tensor; in this case we have
sl = KT
Fj a4 KL} Tijw

because K is symmetric, and

D
2.1 Kq T"j ) = (Ki.j + tra;eK 51}) ('C-Lg> + Mr;v Sij) =
P p trace K
= KLJ- Ty * WY T

because the matrices of zero trace are orthogonal to the
identity matrix.
We shall need the following facts,

PROPOSITION 2.2 - Let ueP(.Qy) and set

A" = trace of u[ on T‘D
trace ot P

4% = trace of ul on T‘D
=== Taan—

then we have
he4b
1) A0V = wx) V(%) for N -almost all xelp

1) SO = Sty | dn
T ™

A
Proof: i) recall that u* and u~ are L~ funtions on [
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by the trace theorem 1.4 , and that Green's formulae hold,

hence, for all ge C‘,(_O.,Q we have

S({W*-v - S QU -V = So\uv(/\uf) + Sdnv(Mq)) +
T'D To _(14\.(1

¢ Sdiviwgy = Sdivimg) =0
Tp Ke W)
ii) By definition we have
1 (“. di dEijmy
D = i
TS.DM&M) ‘U} dlat ' dl )dw

D
where o= ((r, Ea)(ul) is a  (RxM)-valued measure, but

n
= a | = | g%
Lip=0 an \n, el |
On the other hand, by Green's formulae
S E%(M)({; = — S'c'-:j (44,"-446)({2(}%"_1

TD D

that is

ED'LJ'(“)\T'; - J(“ -4 dn

and finally we get
{ geetwy = S b (0, Ll=0) “_))I) 1 Toutay| W

)
T I %u*

§ et )| AN

™

because  (0,a) = la|
qg.e.d.

We shall now relax the Dirichlet boundary condition in
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a similar way to what has been done in [8],[7] for the
minimum area problem.

minimize the functional

31(0.) = Sd)(i”(m) + —;: S(divu)zdx + (fudx  +
a o Y

. CEwd¥W | S\c"(«-%nd%“"
T 7
(Fz_) 4 N ]

in the class of functions ueP(L) such that

=g on Tp

1
where g 1is a fixed function in F(a)nH (n,)

If moreover we introduce the problem

{ ‘j’(M)‘ S¢(E(v3)+ S(dwv) dX""S{-de-i-SFV—-? nf

L1y T
() { vePlan | v=q in AN
- f in L
f= _
0 in A\Q

then, by proposition 2.2 ii) , problem (P;) is equivalent
to problem (%) . 1In fact, if veP(Q,) with v=g in
ONO (or ueP(LL) with A4V =g:.v on Tp and set v=u
in Q. , V=g in O N\{L ) we have

vy = %F vy + 5 S(A«w%) dx + S (%)
_0-4\!1. SN\ S

We want to emphasize the fact that the possible solu-
tion to problem (Pﬁ needs not take the prescribed bounda-
T
ry value on |p . more precisely, the normal component
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u-v of u will take the value g-.v while,in general,
the tangential component M of u will not be equal to
A

The following theorem justifies our relaxed form (R)
or (B) of problem (P) .

THEOREM 2.3 - Let the boundary of (o be of class c* ,

then we have

. |
anf Fw = ant T
€ PO ue Pl
M=% onTp AV =Gy onT)
. ' .
Proof: obviously we have anf B < uf 3 so let us prove
the converse. Let &>o0 and take ueP{ ) with u-v =

gV on To and such that

Ty 2 § + ink Y

A

We have (4-g)€ L (T, R" and (M-cp-v =0 on Ip so,
by theorem 1.7 , we can find a function Ye€P(LL ) such
that

~Nev=0 in O, Y= g¢-# on Tp
Set then
W:M-krlK’\Y

where

Mk (x> = amax (0, 4= x dist (x,200))

We have weP({L) , in fact

SIE(w)l ¢ Stecuyt + 'ZKS‘EW“ + % SWJVUZK +"1’LVJYK \o\x
0. ¢S el .

Sidivw\lé cosk E S(divu)L+S\Ay.vM’gx +5’l,f(divw)ldx}
et n a

L1
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where “Y-V?K =y.vK = 0 . We also have

J) ¢ B+ % _S\)\v('\rj * viytldx + 0(8)

{To)u

where (T'u)ak= {xeﬁ\ dist ( x,20) < % S and

Lim 0(5):0

3ot

G 4% §ivipieviyitdx = §1ctaegid
KR—>® (Tb)& To

that is, for k 1large enough

Fw) ¢ wmFS + o(S) + 28

and, this holding for all positive § , the theorem is
proved.

g.e.d.

We shall now give a sufficient condition on the forces
f , F in order problem (R) (or equivalently (R) ) be
defined and have a solution, this condition is also almost
necessary in view of proposition 2.5 . We shall suppose
that F 1is expressed in the form

F o=~ (Hi+ p&y)v,

with Hy=H; ééHiL=0 (see (2.1)) , hence, if V,

denotes the space of the traces of functions ueP(LL) ,

we could more precisely allow F to be only a function in

the dual space of YV, instead of being in L”(TN,IR") .
Then we have

THEOREM 2.4 - Assume that the functions HW; and P can be
extended to functions still called Hij  p on N in
such a way that

1. Hij= Hii
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2. |HI ‘(LZ].=1HLJ> A~ & for some §£,>0
3. IIFHL( )

Vi(Hi.j*Fsij) -fJ in Q
4.

(H;Jw rSaf)v;: —FJ on T

then there exists a solution u to problem (Fz\ or equi-
valently (%)

Proof: we have

§fu +§F« = S(uwygbj)r () — g(HLj+P5LJ')Eij(M) =
b N

S-St e = Spdiva - Sy T Cu-g) - § (g + S5 Tylg)
o¥ Kol To To

hence

T}“(M) = 84)(5 (w)+ 32 S(dwzw) - SFO{WM -

24 19

P I G S . .
- }lﬂu £5 ) TSDﬂLJ T tu-g) T§D(HL1+F&J)Q(3)

If we now extend Hj and p to {1y with no 'disconti-
nuity' on 1p ,still calling them Hg and p , we get

Y= Jw + Siu chg) + § pdivg - SC“LMSW L

20 n,

where

Teor = § Ge) - Smjujmw £ §diva) - § pdiva

£y £y KW Sy

therefore problem (F,) is equivalent to problem
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minimize g(u) in the class of the functions
(PB) ue P(0,) such that u=sg in O\ O

Now we have

(2.2) 3(3) < +®

and, for all veP(Q,) with v=g on N\N
7 Sig%ors X S(dive)?
(2.3) ) e { leml+ = Stdivv)® | - c(_o.,?)
-2y Ny

Let's now take a minimizing sequence {vhgc P(24) with v,= 3
in O, Q then, by proposition 2.2 i) ,we have that

(/R =%-v on Th , and, by (2.2) , (2.3) and corol-
lary 1.11 , the quantities Wwllgy, I div w i 20, are
bounded independently of h . By compactness theorem 1.12
possibly taking a subsequence, we have

Vi, —> V in lf(_Q,q/.IRM)
div Vi, —> dav v weakly

where veP({l,) by semicontinuity, v=g in ,\ {L and
Ve = % vV on T‘p (see proposition 2.2 i) ) .

It is now sufficient to remark that the functional j(v)
is lower-semicontinuous with respect to the weak convergen-
ce in order to conclude the proof.

g.e.d.

Let us remark that problem (P;) can always be solved
in case f=0 , F=0 as one can see directly minimizing 5"
or just taking Hlj=0 y P=0 in the preceding theorem. In
particular we can always solve (P,_) in case f=0 and
only Dirichlet boundary conditions are given.

THEOREM 2.5 - Suppose u is a solution to problem (P) and
suppose that we CtaynC® (.Q_uTN) then there exist functions
‘H‘J Xi,j: 4oy n r P such that
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V(W +p8y) = in
(4 « p8j) v, =~F; on T,
and that pel(ad It <4

Proof: we have for every function (peC‘(Il,lR“) with (?=0 on]"l>

S(s(teml)zﬁl—— €@ *“%deu divp + Sﬁfw Sﬂgd

a = -y e

where ﬁ is such that ¢(a)=fg030 . Integrating by parts
and recalling that ; E%MDBU = brace (%m)) = 0 we get
n

L, | o g - Sulfot B2
g 0 O

+ K S divan gth?j - Ko SVL(divu S;J'\) Wj + Sﬁq;j + ST'J‘C?.’} =0
3 oie - T
EE(M)
| €%uy|

choosing suitable test functions W we get our result.

) i
Setting now P=K°dek , Hq = ﬂ(li%uﬂ) and

g.e.d.

3. Additional remarks

What is essentially needed to solve problem (%) by the
direct method of calculus of variations, besides the lower-
semicontinuity of the functional 3" . 1s a condition on
the forces £ , F that yield a bound of the type

(3.1) l Sf& + SFu.l £ U-%) (Sé(é"(«))*‘ %5 S(o\ivw)z)
£ T 0

0
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We have given such a condition in theorem 2.4 , we
shall see now some other sufficient conditions that can be
useful in special cases.

a) Suppose Ty=¢ , or Tn¢ﬂf and F=0 . 1f f=f +7Vq
’°th < {} then
S fu \ < 141 el hql,,  Idivad
! o R 8DN) 9 Ela) £(a)
so that (3.1) is verified in case “ﬂ“f(n.mv) is sufficien-
i )
tly small, and the functional is obviously lower-
semicontinuous.
A sharp estimate on how small “ﬁuﬂﬂlﬁf)has to be de-
pends on the best constant in the Sobolev-Poincaré
inequality for functions with compact support

n-a
ﬂ/‘ n
(3.2) (é_“““) £ Ké‘&“"

While the best constant ¥ 1is the isoperimetric constant
in case u 1is a scalar function, it doesn't seem to be
known in the more general case (3.2) .

b) Neumann boundary conditions are much better handled if

a term of the type ixyﬁdx is added to the energy functio-

nal (this behaviour is well known for instance for elliptic
linear equations or for the capillarity problem). In that

case we look for a solution to

"

3 u) + SIMI‘ — 5 anf
n

we P nl(a)

-
th=%~v on Ip

One can still proceed as in theorem 2.4 and find a
-sufficient condition for the existence of a solution, the
only difference is that the functions (m;+P5q)vL—fj are
now only required to be in L(2) . But in this case
another sufficient condition for the existence can be
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obtained as follows. Suppose

f= ﬁ + Vq , Fj= (K +O'S;j)v‘-'
where f,e LZ(IL,R") , qél.l(.n.‘) » 9=0 onT, , Ke Ln(TN,anl)

(q+0‘)e HVI(T'N) . then we have

‘ (4w + §m‘ UMy gl v,
L TN

K ot + lg+et il
! ‘C"(TN) "L‘Cm 1 g4my T A% ()

where we used the fact (see for example[21] ) that if
we (0B and diva € ()  then wmve H%(20) .
Recall now that (see {(1.1)' )

tayly-5 € d3(n) {\Wl\ + ddival (o )\

Ha R

l\t(m\ < oy (nl) S\Eml + () Swn
Uy & T 2 a

so that we have

$5a Sm\ $$ i“ﬂ“,( + i divatl m)g .

ok TN '")

+ o, (n,L) Kl 1€l + comtb (S
! (T, R™) ,SL )

where b is any positive number, and in case

&y (n, L) IKY < A-€,

LTy, R
we can choose ) so that

B 2 2
Fwy+ Swlb » & Siefat + ¢4 Cwnt + <, Ccdiva) - ¢
£ S No¥ e
with €4, ¢, >0
Of course, in order to have a good condition on F one
needs to know the best value of the constant «4(nLl) in

Cy»0

131



32 ANZELLOTTI-GIAQUINTA

the trace estimate, More precisely, a sharp condition on
F would follow from a trace estimate (on smooth domains)
of the type

3.3) Y1 dN < 1%y + cCad S
18 a a

Such an estimate seems to be reasonable but we don't know
whether it is true or not. Actually, one would only need
to have (3.3) with €M) instead of &XM) , notice
however that the estimate

Cimdt™ < Sreant+ c(a) ywi
i 0 0

is false in general as we can see taking

a={xeR | x<o MK = & @ O
2 ' (?T,(

where W x) is the characteristic function of the set

X
Td={xe_0.\ X;_)—-l,:;;—x ; X;>(x4~d)tﬁrx
%= (cosy, aeny) € R . re(oT4)

and choosing ¥ such that

cosy > seny + -—‘7’_2—{

In fact we have

Siiw)l = (AGV\K-P q)d

A
7.

Slul == A cosy

St = Siugl = d cosy
0

pls)
and it cannot exist a constant C such that for alld)O
ws d
deosy ¢ d (eny +—'-_-_—x-) + G5 Ay sy
7

To conclude, we have to remark that in this case the
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term SPNFM is not lower-semicontinuous, anyway, under
the condition

(3.4) % (nLY UK, <4

L]
the functional T on the whole is still lower-semi-
4
continuous with respect to L (n,R"Y  convergence (seel9]
for the area functional). 1In fact, for §50 set

ag = {xe_ﬂ. ‘ dist (x,’&ﬂ)>3}
for almost all ) we have

S lequll =0

33\.8
Now, by the trace estimate (1.1)' and (3.4) , we have for
u, ueP(a)nlaRrM

(i) + 5 (divals (ru - Q) 3 (diva)- SFay, <
£ O TN N 0. TN

< ;Sﬁ (SD(M))-‘- .';s-é(dim)l— _}14)( E%Mm— fii_(sl(ddvah‘jz +

+ S\E(M-Mh\\ + ¢ Stumu) g
o\ny avng

&£ - 4+ S\E(m\ + SO + S(dwuh <
N0y ning

¢ 5 et - Sdﬂe”ww L2 S(ow & (diva) +

.0.5 —-“8

+2 S lenl + Sdvay + 2 ,(, (nnng)
0§ 03

Supposing now U u in U(JL,R") (going to the limit
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for h-wvee and taking § arbitrarily small we get our
result.

c) Finally, by the same methods we have used so far, we
can also study the case of a deformation energy of the type

S ¢(x,£°(~|)) + S(o\im)l

0 Mot
where 47:.:ﬁ.>< Mp —> Lo, ) is a continuous function
of (x ,€*) and a convex function of £° , and

Mial < 1Q(x,a)] € M(4+a)

holds. We can again define a function

d)(x/%ﬂ: if tvo

—

cb(x,\:,a) = .
tf;-; (t)(x,%)t if t=o

to get a semicontinuous extension of the functional
S_n_(\)(&, £°0u) to BD(.LL ) , and we can solve a mixed
boundary value problem with relaxed Dirichlet conditions:

4

S(b(x,sucmh S(div«)l " S&u, + (Fu+ Sz?(x,o,tDcm)d}{".‘_‘_.;;..f
- n a W

(&\ 1T ueP(a)

M.y-.%-y onT'D , %6 P(ﬂq)

Work partially supported by GNAFA , CNR .
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