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A b s t r a c t  

We prove the existence and uniqueness of solution to the nonlinear local 
martingale problems for a large class of infinite systems of interacting dif- 
fusions. These systems, which we call the stochastic McKean-Vlasov limits 
for the approximating finite systems, are described as stochastic evolutions 
in a space of probability measures on T~ d and are obtained as weak limits of 
the sequence of empirical measures for the finite systems, which are highly 
correlated and driven by dependent Brownian motions. Existence is shown 
to hold under a weak growth condition, while uniqueness is proved using 
only a weak monotonicity condition on the coefficients. The proof of the 
latter involves a coupling argument carried out in the context of associated 
stochastic evolution equations in Hilbert spaces. As a side result, these evo- 
lution equations are shown to be positivity preserving. In the case where a 
dual process exists, uniqueness is proved under continuity of the coefficients 
alone. Finally, we prove that  strong continuity of paths holds with respect 
to various Sobolev norms, provided the appropriate stronger growth condi- 
tion is verified. Strong solutions are obtained when a coercivity condition is 
added on to the growth condition guaranteeing existence. 

1 I n t r o d u c t i o n  

Limit theorems for systems of exchangeable diffusions in ~-~d have been exten- 
sively investigated since the original work of McKean [23] on the propagation of 
chaos in physical systems of interacting particles related to Boltzmann's model 
for the statistical mechanics of rarefied gases. In the classical case the limit is de- 
scribed as the solution of a nonlinear deterministic evolution equation known as 
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the McKean-Vlasov equation. In this paper we investigate a related class of ex- 
changeable diffusions for which propagation of chaos fails and the limiting equation 
is a nonlinear stochastic evolution equation . 

In each of these limit theorems, the particles are assumed to exhibit ex- 
changeability of motion, which is built in the structure of their respective drift 
and diffusion coefficients and allows for both convergence and characterization. 
The reader is referred to Gtirtner [15] for some historical background and a bibli- 
ographical survey. A very general version of the weak law of large numbers in the 
case of interacting diffusions is found there, as well as the corresponding propa- 
gation of chaos. Fluctuations and large deviation results as well are the subject 
of active research (for example, see Dawson [i0], Dawson and Ggrtner [ii], [12], 
Brunaud [7], Ben Arous and Brunaud [2]). 

In the present paper, we are interested in extending another classical result 
of probability theory to systems of exchangeable diffusions: the law of large num- 
bers for strongly dependent exchangeable triangular arrays. More precisely, under 
weak growth and monotonicity conditions on the operator valued coefficients, the 
sequence of laws of the empirical measures associated with a triangular array of 
exchangeable diffusions converges weakly (on the appropriate space of trajectories) 
to a measure-valued diffusion, referred to as the stochastic McKean-Vlasov limit 
for the sequence. The law of this stochastic process is characterized as the unique 
solution to the local martingale problem associated with a nonlinear evolution 
operator of McKean-Vlasov type. 

The class of diffusions considered encompasses many of those in [15], where 
the limits are deterministic evolutions in the space of probability measures on 
T4 d. In many cases here, these solutions are not deterministic. The extension will 
readily be seen as a natural  one. 

Recently, Baldwin et al. [1] and Chiang et al. [9] have considered some 
McKean-Vlasov limits of systems of interacting diffusions driven by a noise valued 
in the dual of a nuclear space, whereby obtaining stochastic limits as well. The 
limiting process there exhibits propagation of chaos, a consequence of the weak 
correlation between the particles. In the present framework, the driving Wiener 
processes take their values in much smaller spaces and the stochasticity of the 
limit arises through the strong correlation built in the system of diffusion equa- 
tions, not from the loudness of the noise. There is no propagation of chaos here, 
just propagation of the mixture. 

The reader should consult Graham [17] for an alternate generalization of 
G~irtner's work, to nonlinear diffusions with jumps; the stochasticity of the limits 
there ensues from the non-degeneracy of the jumps in the limit and again propa- 
gation of chaos obtains. 

Building on the work of Bismut [3] and Kunita [20] on stochastic flows of dif- 
feomorphisms on a manifold (about which more will be said in section 3), Borkar 
[5] characterized the measure-valued diffusions associated with the stochastic evo- 
lution of infinitely many particles in a Brownian medium, for the special case 
where the evolution operator has polynomial coefficients. His construction yields 
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strong Lipschitz continuity of the trajectories of a single tagged particle driven by 
the stochastic measure valued solution, a property unlikely to hold for the more 
general class considered in the present paper. 

An alternative approach to Borkar's,  which also allows for a detailed analysis 
of infinitely many  strongly interacting diffusions, this t ime by constructing their 
paths directly on a Brownian sheet, was presented in Walsh [32] and has been con- 
siderably extended by Kotelenez [19]. Here again the strong construction requires 
Lipschitz conditions on the coefficients of the evolution operator. 

The choice we make here to define our processes as solutions to local mar- 
tingale problems allows for existence and uniqueness results to emerge under con- 
siderably weaker conditions than Lipschitz continuity, in parallel with the theory 
of finite-dimensional diffusions, as presented for instance in the book by Stroock 
and Varadhan [27]. 

We next sketch a brief outline of the paper. 
The frequently used notation has been gathered in section 2. 
In section 3, we review and extend some of the results from Ggrtner [15] 

and Vaillancourt [31] pertinent to the tightness of the laws of the ensembles of N 
particles, as their size N grows unboundedly, thereby obtaining the existence of 
stochastic McKean-Vlasov limits. The only conditions required of the coefficients 
governing the evolution of the finite systems at this point are ellipticity, continuity 
and a weak growth condition. Passing references are made to the two degenerate 
cases, partly excluded from our presentation as they are already covered in great 
detail in G~irtner [15] and Kuni ta  [20]. 

In section 4, we prove the uniqueness of solution to the limiting local martin- 
gale problem, for the special class of McKean-Vlasov limits possessing a function 
valued dual, in the sense of Dawson and Kurtz  [13]. An interesting feature of these 
particular McKean-Vlasov limits is that ,  as infinite particle systems, they are in 
duality with none other than  the family of Feller semigroups associated with the 
sequence of finite particle systems which generated them in the first place. Since 
existence of a dual process ensures uniqueness of solution, no additional assump- 
tions are required in this special case, other than those ensuring existence. 

In section 5, we show that  any (probability measure valued) McKean-Vlasov 
limit constructed in section 3 takes its values in the dual of a Sobolev space. In 
fact it is shown there that  the weak topology on the space of probability measures 
M(74 d) is generated by a scalar product. This suggests the possibility of writing 
the McKean-Vlasov limits as Hilbert space valued solutions to stochastic evolution 
equations. We also show in section 5 that  any solution to the local martingale 
problem of section 3 arises as the law of a weak solution to the stochastic evolution 
equation 

/0 (#*,0} = (#8,L(#8)O}ds+ aT(.,y,#8)#8(.)W(ds, dy),VO(.)}, (1.1) 

where {L(#) : # E A/t2} is a class of second order differential operators, ~b belongs 
to the space of test functions 8 and cr is matr ix  valued and reasonably smooth. 
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The meaning of equation (1.1) is made precise in section 5 and involves the con- 
struction of Hilbert space valued cylindrical Wiener processes W~ of Bojdecki and 
Jakubowski [4]. 

In section 6, we use a coupling argument to obtain the distributional unique- 
ness of solution to the above stochastic evolution equation. The local martingale 
probiems associated with McKean-Vlasov limits are therefore well-posed by the 
argument of Yamada  and Watanabe  [33]. Both results are obtained using a rather  
weak monotonicity condition. As a corollary, we derive the preservation of positiv- 
ity for a wide class of evolution equations. Section 7 contains additional information 
about  the smoothness of the values taken by this solution, as well as about  ,the 
continuity of its trajectories with respect to certain Sobolev norms, under stronger 
growth conditions. 

An alternative construction of the MeKean-Vlasov limits as strong solutions 
to stochastic evolution equations in rigged Hilbert spaces is provided in section 8. 
We show how to use the Krylov-Rozovskii [22] results to obtain tha t  the unique 
solution to the local martingale problem of sections 3 and 6 arises as the law of 
the unique strong solution to equation 

t t d f 

i = 1  g=l 

(where superscript , indicates the adjoint to a linear operator) under coercivity 
(which ensures existence) and monotonicity (for uniqueness), plus some smooth- 
ness conditions on a and b. The Wiener process appearing here must take values in 
a space of strongly differentiable functions - -  conditions on its covariance kernel 
will ensure this. Bear in mind tha t  such strong solutions will always live inside a 
Sobolev space and not its dual, so they take their values amongst absolutely con- 
tinuous probabili ty measures and require very strong conditions indeed. However 
we give a natural  example (8.1) of a McKean-Vlasov limit for which explicit calcu- 
lations are readily carried out to illustrate the growth, monotonicity and coercivity 
conditions in sections 6 to 8. 

2 N o t a t i o n  

We will often need the following spaces: 

C(X1, X2), the space of bounded continuous functions X1 --+ X2 with the uniform 
topology, where X ,  is any topological space and X2 is any normed space - -  we 
write C(XJ in the case X2 = 7%; 

C2(T~ a~ the space of real-valued continuous functions with compact  support  which k ~, 2~ 
are twice continuously differentiable; 

C 2 (No), the space of real-valued bounded continuous functions, twice continuously 
differentiable with first and second derivatives all bounded; 
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8, the Schwartz space of smooth functions 7~ d -* 7~ which together with all their 
derivatives are rapidly decreasing; 

8 ' ,  the Schwartz space of tempered distributions, dual to S; 

C([0, c~) : X),  the space of continuous paths [0, c~) --+ X with the topology of 
uniform convergence on compact sets, where X is a metric space; 

J~J(X), the space of probability measures on a metric space X, with the weak 
topology defined by the Prohorov metric (see Ethier and Kurtz [14]) - -  weak 
convergence being denoted as usual by 3 ;  

- /~2  = {"  �9 -A/~(~-~d) : (P, ~2} < (X~}, where ~2(z) : :  1 + ]z[ ~ = 1 + z~ + - . .  + zd 2, 
with the strongest topology coinciding on {# �9 AJ(T~ d) : {#, ~2} < R} with the 
weak topology, for every R > 1 - -  note that  this topology turns 2~42 into a Lusin 
space, for details see Ggrtner [15]; 

l), the set of all continuous functions on Ad 2 of the form r ((#, r where r : ~ --+ 
2 d . is smooth and r �9 C k (7~), 

L2 (X1, X2), the Hilbert space of Hilbert-Schmidt operators from a Hilbert space 
X1 into another X2 (When X2 = 7~, it is omitted.); 

LQ(X1,X2), the space of linear operators B : Q1/2X1 -~ X2 such that  BQ 1/2 �9 
L2(X1, X2), where Q �9 L2(X1, X1) has a square-root; 

H j C H ~ = L2(7~ d) C H - j  a n d  (Hi )  d C (H~ d C ( H - J )  d, t h e  r i g g e d  H i l b e r t  

spaces defined in Section 5 for any j > 0; 

~d  | 7~f, the space of real d • f matrices, with the euclidean norm I " ]; 

(7~ d | 7~d)+, its subspace of symmetric positive definite d • d real matrices (in the 
wide sense). 

We will also need the following notation: 

5z, the unit measure at z E 74d; 
e~ := 1/N N E k = l  (~xk when x = (xl, x2, . . .  , XN) E (7~d)N; 
( , ,  r := f r for r e C(X) and # e M ( X ) ;  
#• dz2) := #(dZl)#(dz2); 
{#(t)} or {]~t}, the canonical process on C([0, c~) : Ad(nd));  
(., .)j, the scalar product on the Hilbert spaces H j and (HJ) d, defined in Section 
5, with ]l" I lj the associated norm; 
A[r the canonical bilinear form pairing A E H - j  (8')  with r e H j (8); 
0i : 8 '  --~ 8 ' ,  the weak partial derivative with respect to the i tt~ coordinate; 
V, the gradient operator acting on C2((7~d) N) for any positive integer N, written 

th as v T  = ~(vTi Ji=x,~N where Vi is the gradient on C 2 (7~ g) acting on the i coordinate. 
All vectors are written in column form. 
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3 Exchangeable  diffusions 

The evolution of the system of N particles will be described using the martingale 
problem formulation of Strooek and Varadhan [27]. Under the appropriate condi- 
tions, the system will form a (7~d)N-valued diffusion with the particles exhibiting 
exchangeability of motion. 

Explicitly, for mappings b : Nd x Ad2 -+ T~ d, a : ~d  x AA2 -~ (~g | ~d)+  
and c : Tr x 5g d x Ad2 --+ (Sg d | Tgd)+, the (diffusion) operator for the system of 
N (exchangeable) particles L(N): C~((~d) N) --+ C((Tid) N) may be written in the 
form 

L(N)r 
N 1 N 

+ 
i=1  i=1  

N 
1 

+ ~  ~ (c(x~, xa, ~ z ) V y V ~ r  
i , j = l  
i.#j 

(a.1) 

Equip space A//2 = {> E A//(T~ g) : (>,~2) < co}, where we denote 992(z) := 
1 § IzI u = 1 + z~ + .-. + z~, with the strongest topology coinciding on {> 
A//(Tr d) : (>, ~o2} < R} with the weak topology, for every R > 1 - -  note that  we 
have >n --~ # in J~/2 if and only if both >n ~ > in A//(~ e) and supn(#~, g)2} < oc 
hold. 

A probability measure p(N) on the Borel subsets of 6"([0, oo):  (~g)N) solves 
the martingale problem started at 7r E A/l((Tcd) N) for operator L (N), if we have 

p(N) o x(0) - t  = rr and, for every choice of r in the domain of L (N), the process 

r  L(N)r ds is a P(N)-martingale with respect to the natural (Borel) 
right continuous filtration on C([0, oo) : (Ted)N). If a solution exists and is unique 
for every rr E 3d( (~e)N) ,  we say that  the martingale problem for L(N) is well- 
posed. 

A similar definition holds with (7~d) N replaced by any metric space X see 
chapter 4 of Ethier and Kurtz [14] for more details. We will also need the concept 
of a martingale problem on more abstract topological spaces below but there is no 
added difficulty there. 

The family {p(N) : 7r E A / / ( ( ~ ) N ) }  will be called (N-) exchangeable if it 

satisfies p(N) p(N) oY 1 for every rc E 3d((TCe) N) and every permutation cr of 
?TO~ 1 

the N coordinates in (Re) N, with K(x(.))(t) := cr(x(t)) for each x(-) C C([0, oc) : 
(Tig)N). Since L(N)(r o cr)(x) = L(N)(r for every choice of or, r and x, the 
following is a particular instance of theorem 10.2.2 of Stroock and Varadhan [27] 
(see also Ggrtner [15]). 
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T h e o r e m  3.1 Assume that the mappings a, b and c above are continuous, with 
a(z, #) - c(z, z, p) strictly positive definite for every choice of z and p, and c 

N such that all matrices of the form (c(xi, xj, z))i,j=l are positive definite for every 
choice of x and N. Assume also that there exists K > 0 such that Trace(a(z,#))+ 
2bT(z,p) z _< K(1 + Izl 2) holds for all z and all measures p with finite support. 
The martingale problem for operator L(N) on C~((T~d) N) is then well-posed on 
C([0, oo) : (~-~d)N) for each N >_ i and its family of unique solutions is exchange- 
able. 

The N particles system may also be viewed in terms of its associated empirical 
p(N) oe~l ,  defined for each probability measure ~rN E M((Y~d) N) process 7 )(N) : = ,  =N 

with a finite second moment, by the canonical mapping eN : C([0, ec) : (7~a) N) 
C([0, oo) : 2t42), with eN(x(.))(t) := e~(t) - -  this measurable mapping is well- 
defined because of equation (3.2) below. No information on the trajectories is lost 
as a result of the exchangeability of motion of the N particles. 

The next theorem characterizes the limit points of {7)(N) : N >_ 1} in the 
sense of weak convergence in the space of probability measures on C([0, oc) : 3//2). 
This requires some explanation as 2512 is a Lusin space but  not a Polish space. 
The following topological results are taken from Ggrtner [15], where the reader 
will find detailed proofs of all statements. 

Equip space C([0, ce) : 3//2) with the strongest topology which coincides 
on C([0, oo) : {# E M ( ~  d) : (#,~2} < R}) with the weak topology for each 
R > 1. In this topology, we have #~(.) ~ #(.) in C([0, oe) : M2)  if and only if 
both weak convergence #,~(.) ~ #(-) in C([0, ec) : M(P~d)) and, for every T _> 1, 
sup~ supt~[0,T] (#~(t), ~2} < co, hold. 

Since the Borel subsets of C([0, oo) : A42) (resp. 342) are simply the intersec- 
tions of Borel subsets of C([0, ec) : 34(7~a)) (resp. 34(74d)) with C([0, oc) : 342) 
(resp. 342), every probability measure on C([0, oo) : M2)  (resp. M2)  has a unique 
extension to C([0, oc) : M ( ~ d ) )  (resp. 34(~d) ) .  We do not distinguish one from 
the other in the notation. 

The definition of weak convergence on the space of probability measures on 
C([0, e c ) :  342) (resp. A42) is the usual one, i.e., {7)N} converges to 7)oo in the weak 
sense if { f  f dPN} converges to f f dT)o~ for all real valued bounded continuous 
functions f on C([0, oc) : A32) (resp. 342). 

Given probability measures {7)N} and 7)0o on C([0, oc) : 332), {7)N} is 
sequentially weakly compact (resp. converges weakly to 7)0o) if and only if 
both sequential weak compactness of {7)N} (resp. weak convergence to 7)0o) in 
33(C([0,0c)  : 34(T~a))) and, for every positive T, the following limit limR__.0o 
SUPNT)N(SUPtc[O,T](p(t),~2 ) > R) = 0, hold. A similar statement holds for se- 
quences of probability measures on Adz, with the supremum over time removed 
from the last condition. 

The operator s : 7? ~ C(342) which generates the process describing the 
evolution of our infinite particle system - -  the stochastic MeKean-Vlasov limit for 
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the sequence of finite systems - -  is defined by 

L(~)r162 := r162162 r162162 
2 

L(#)r := bT(z,p)Vr + 2(a(z ,p)v)TVr w i t h  

and R(#)O(zl,zs) := (Vr162 

Denote by e~ := 1/N N ~ k = l  5~N(t) the empirical process associated with the so- 
lution to the martingale problem of theorem (3.1) and started with distribution 
{rCN E Ad(Ads)}; by p(N)  its law on C([0, oc) : Ads) ; and by E (N), the cor- 
responding expectation. Note that  t >-* (e N, ~2) is a continuous map for each N 
though not necessarily in the limit. 

T h e o r e m  3.2 Assume that the conditions in theorem (3.1) hold. Provided that 
the sequence of starting measures {rcNE Yt4(Jt42)} is sequentially weakly compact 
and verifies suPN E( N) (e N, ~9_ } < 0% the sequence {7 )(N) } is sequentially compact 
in Ad (C([0, oo): YM2)) and all its limit points are solutions to the local martingale 
problem on C([0, oo) : Ybt2) for E(~ : 7) --+ C(J~12). 

For any starting measure rcoo E 2t4(Yt4s), there exists at least one solution to 
the local martingale problem on C([0, oc) : Ads) for s 

C~(7r ~ the process M(r associated with (-, r In particular, for any r C ~ j, 
given by Mr(C):=  (>(t), r - s  (#(s), L(p(s))r ds, is a continuous locally square 
integrable martingale, with quadratic variational process 

j~0 t < M(r >~ = (,(s)• R(,(s))r as. 

The proof is broken into a series of lemmas. 

L e m m a  3.1 Assume that the conditions in theorem (3.1) hold. 
Provided SuPN E (N) (Co N, ~os} < 0% we have 

[ \ 
sup~P(N)( sup (e~, ~0S) >_ R) = lira 0. 

R--+ oo N \ rE  [0,T] / 

Proof :  The stopping times r N := inf{t > 0: (e N, ~s) > R} for R _> 1 ensure 
N N r t A r ~  N r /  N \  ~ -  that MtA~ (~2) := (etA~'  q0S) -- Jo ~% , bye 8 )qou) as is a bounded martingale, 

and the growth condition implies, for every t >_ 0, 

a•0 
t 

o < E(N) (e ,A~ , N  Ps) < E (N) (Co :v , ~o2) + K E(N)(eNsA~, ~S} ds.  
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Gronwall's inequality (see Ethier and Kurtz[14]) yields, for every positive T, N 
and R > 1, 

sup E ( N ) ( ~ ,  ~2) <_ ~K~E(N)(~0~, ~2/. (3.2) 
t~[0,T] 

This implies both 7 )(N) (limR~oo ~-N = oc) =- 1, for each N, and, for every positive 
T and N, 

sup E(~)<~, ~) _< ~K~E(~)(~, ~>. (3.3) 
fG[0,T] 

On the set {~-N < oc}, we have ( e  N , ~2} = R for every N _> 1 and R > 1, because 

of the continuity of trajectories of the empirical process {e) f : t _> 0}. 
This implies, for every positive T, N and R > 1, 

R .  7)(N)@N < T) < E(N)(eNA~,, ~o2 ) . 

Making use of equation (3.2), we get 

7)( N)( 
"tr 

from which the conclusion follows. [] 

L e m m a  3.2 Assume that the conditions in lemma (3.1) hold. Provided that the 
sequence of startin 9 measures {TEN} is sequentially weakly compact, so is the se- 
quence {7)(N) }. 

Proof"  Denote by 7)(4)<),r the law on C([0, T] : [0, R]) of the stopped process 
( e N d ,  qS). By lemma (1.4) of G~irtner [15] and the present lemma (3.1), it suffices 

~ ( N )  l is sequentially weakly compact for every choice to show that the sequence L--0,R,TJ 
of q5 E C~(T~d), R > 1 and T > 0. Using theorem (1.4.6) of Stroock and Varadhan 
[27], all we need to prove is that, for every ~ E C2 (TZd), there is a positive constant 
A = A(% r T, R), invariant under translation of ~ and independent of N,  such 
that ~p((cN ~,  ~b)) + At is a submartingale for all values of N. 

Treating 15((e~, ~b}) as a function of z, the martingale problem for L(N) (the- 
orem 3.1) implies that, for every s , t  E [0, T], 

~( (~ ,~ ,  0)) - ~((~[,~, 0>) + ( ~ ( t )  - ~ (~ ) )  J ~ 2  c(N)j((e~, ~)) d~, 

where 

+ 2 ~ " ( < # ,  r (Vr (a(-, #) -- c(', ", #)) V4)(.)> (3.4) 

and ~N (t) is a continuous local 7)(NR)T-martingale. 
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Since/VI R := {# C/%4(7~ ct) : (#,9~2} < -/~} is a sequentially weakly compact 
subset of M2,  the continuity of a, b and c plus the compactness of support of r 
ensures that  A = SuPN sup~E~R IE(N)9((#, @)l is finite, and translation invariant 

in ~ since E(N) is. Therefore, ~ N ( t ) i s  actually a bounded 7)(N) T-martingale and 
we are done, since we can infer 

r  r - r  r + ( r  - C N ( s ) )  --> - A ( t  - s ) .  [] 

L e m m a  3.3 Assume that the conditions in lemma (3.2) hold. Any weak limit of 
the sequence {7 )(N)} solves the local martingale problem for g(~) .  

Proof: For every choice of # �9 C([0, ~ ) :  A~2) and R _> 1, define 

:= > o :  ( , ( t ) ,  > n } ,  

with ~-R = c~ whenever the set is empty. For every choice o f f  �9 :D, N = 1, 2 , . . . ,  cxD 
and t > 0, the mapping EN(., t)  : C ( [ 0 , ~ )  : M2)  --+ P- defined by 

i 
t A ~ -  R 

JO 

is bounded and continuous in view of the argumentation in the preceding ]emma 
(3.2). Equation (3.4) yields sup~ec( [0 ,~) :~  ) l: zN (p, t) - ~zoo (#, t) I <_ Ct /Nfor  some 

positive constant C, so that  for any weakly convergent subsequence of {7)(N) } with 
limit 7 ) , we have 

for every f,-measurable G E C(C([0, oc):  M2)),  with f ,  the usual filtration at s 

on C([0, co) : Ad2). Since E N is a 7)(N)-martingale for each N _> 1, then E ~ is a 
7)-martingale as well. The argument in the proof of lemma (3.1) may be duplicated 
here to conclude that  7)(limR~oo rR = co) = 1, which completes the proof. [] 

The last two lemmas together imply the existence of at least one solution 
to the local martingale problem for operator Z: (~), for every starting distribution 
7% �9 AA(M2). The last statement of theorem (3.2) is an application of It6's 
formula and the proof of the theorem is complete. [] 

Special attention should be given at this point to the two possible interpre- 
tations afforded by stochastic McKean-Vlasov limits arising respectively from the 
following two degenerate classes of possible limits. In the case c = 0, G/irtner also 
proved that,  under some mild coercivity and monotonicity conditions on operator 
s  the above local martingale problem is actually a martingale problem. It is 
well-posed and its solution is the unit mass along the trajectory of the unique 
solution t~(') to the classical McKean-Vlasov evolution equation 

2 d for every r C Ck(7~ ), given any starting point #(0) �9 Ad2. 
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All solutions to the local martingale problem of theorem (3.2) can therefore 
be viewed as classical, deterministic McKean-Vlasov systems which are randomly 
perturbed by immersion into a Brownian medium, which is highly correlated lo- 
cally and can exhibit relatively slow decay wl~en particles move apart. This physical 
interpretation is made mathematically explicit in the form of operator Z: (~176 by the 
addition of a tagged noise term (with continuous diffusion coefficient c) to each 
particle, in such away that particles lying close together are affected by highly 
correlated noise sources. 

In the degenerate case where a(z, p)-c(z, z, #) is positive definite everywhere, 
but not strictly positive definite for some choices of z and p, the uniqueness of so- 
lution to the martingale problems of theorem (3.1) still holds, provided we assume 
an additional, Lipschitz continuity condition on both b and some square-root of 

N each matr ix  of the form (c* (xi,  x j ,  x ) ) i , j=l ,  with c* (xi,  x j ,  (x)  ~- c(xi ,  x j ,  ~x) when 
i 7s j and c*(xi ,xj ,e~) = a(xi,c~) when i = j - -  see section 5.2 in Stroock and 
Varadhan [27]. 

In particular, when representation c( zl , z2 , p) =- ~ K  j = l  (7( z l '  J '  ~t) O-T ( z2'  J '  ]~) 

holds for some Lipschitz continuous mapping a : 74 d x { 1 , . . . ,  K}  x Ad2 -~ 74a| I 
and a(z, #) = c(z, z, #) holds for every choice of z and #, the martingale problem 
of theorem (3.1) can be seen to arise from the following N-point  motion in a 
stochastic flow in (~a) ,  driven by K independent (7~f)-valued Wiener process 
{Wj : j = 1 , . . .  K} (of. Kunita,  1984): 

/0 xi(t)  = xi(O) + b(xi(s),e~(~))ds + cr(x~(s),j, ex@))dWj(s) .  
3= 1 0 

We can therefore provide a second interpretation of the solutions of the local 
martingale problem of theorem (3.2) under these additional Lipschitz conditions 
on the coefficients, namely as stochastic flows enhanced by an ambient diffusion 
source which acts locally on each particle, solely as a function a of that  particle's 
position and the position of the entire cloud of particles. 

4 Uniqueness using duality arguments 

If we make the restriction that  the coefficients a, b and c of operator Z2 (~ do 
not depend on #, then uniqueness of solution for the local martingale problem of 
theorem (3.2) may be obtained using a duality argument,  without any additional 
condition to those ensuring existence of a solution. Monotonicity is not needed in 
that  case: continuity of the coefficients plus a growth condition will suffice. This 
class of martingale problems is akin to that  studied by Dawson and Kurtz  [13], 
where difference operators play the role of our second order differential operator 
R(p) in generating randomness in the measure-valued trajectories. 
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T h e o r e m  4.1 Assume that the conditions in theorem (3.1) hold and that 
the coefficientsa, b and c do not depend on #. The local martingale problem on 
C([0, oo) : A/12) for s  is then a martingale problem and it is well-posed. 

Proof: We actually prove the unicity of solution on the larger, Polish space 
C([0, oc) : JM(Tgd)), for every starting distribution supported by M2. Because 
of the independence in #, the processes 

- 

are actually bounded/)-martingales, for every F E 2) and every solution 5 ~ to the 
local martingale problem for ~C(~176 This is the first statement. Consider the set 
of all continuous functions on M(Tr d) of the form Ff(#)  := f(TceV fdlz• where 

f belongs to U2((T~a) e) for some g > 1 and #• is the g-fold product of measure 
# C A/t(g d) by itself. For any such Ff ,  operator E (~176 may be rewritten in the 
(dual) form 

where L (~) is defined in theorem (3.1). This means that  the (deterministic) func- 
2 d g  tion valued process started at f E Ck((T~ ) ) which is dual to the limiting em- 

pirical measure process is precisely See(f), where {St g} stands for the Feller semi- 
group for the system of g particles which generated the sequence of empirical pro- 
cesses in the first place! By theorem (3.1), the martingale problem on C([0, oo) : 
Ue>~C2((T~g)e)) associated with the generator given by the family of operators 
{L (~) : g >_ 1} has a unique solution for every starting point f ~ Ue>IC~((7~)e). 
The result then follows from the duality equation for s (see Ethier and Kurtz 
[14]), provided the following integrability condition is satisfied: for every posi- 

2 de  tire T and every f E Ue_>ICk((Tr ) ), there exists an integrable random variable 
c = P(T,f )  such that + _< p. Since 
{8[} is a contraction semigroup, we may select 

P = sup(If(x)l + {L(g)f(x)]) < oo. [] 
m 

5 M c K e a n - V l a s o v  l i m i t s  i n  H i l b e r t  s p a c e s  

From now on we immerse M(T~ a) continuously into 8', the Schwartz space of 
tempered distributions (see TrOves [30]; Holley and Stroock [18]), in order to an- 
alyze the smoothness of the sample paths of our stochastic McKean-Vlasov limits 
more closely. Let h,~(t) := (~rl/22'~n!)-i/2(-l)r~et2/2D~(e -t2) for n = 0, i,... and 

t ~ T~, where Dp denotes the n th derivative with respect to t. Define the }lermite 
function of index n = (h i , n2 , . . .  ,rig) by h~(z) := h~,(z l )  . . . . .  h=~(Zd) for each 
z = ( z l , z2 , . . .  ,Zd) E Tr The set {h~} forms a complete orthonormal system 
in L2(74 d) and satisfies the Charlier-Cram4r [8] upper bound supn, z Ih,~(z)l < 1. 
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SzAsz [28] later proved sup,~, z Ih~(z)l = h0(0) = w-d~4 _ see chapters 7, 8 and 9 
of Szeg5 [29]. The separable Hilbert spaces 

n 

with ]nll := E d i=l hi, provide the dense continuous inclusions 

8 C H j C H ~ = L2(T/d) C H - j  C 8'  

for any real valued j > 0. Remember that  the elements of H j have all their first 
order partial derivatives belonging to H j - 1  for every j E 7~ and that  the inclusion 
HJ C H i is of Hilbert-Schmidt type as soon as j - i > d. We denote by (Hi) / 
(resp. (HJ) d| the Hilbert space of mappings from T/d into T// (resp. T/d | T/f) 
such that  each coordinate belongs to H j. The Charlier-Cram6r bound implies 
both SUpz IVh~(z)] 2 _< (2b l l  + d) and sup~ IVVrh~(z)t  2 _< (21nl~ + d) 2, using the 
well-known representation of the derivative of Hermite functions (d = 1): 

Dlth~(t) = k~)ln'l/2~tn-l(t) - ( - ~ - ) l / 2 h n + l ( t ) .  

The Charlier-Cramhr bound also implies the elementary observation 3A(T/d) C 
H - g - i :  indeed, for all probability measures # E 3//(T/d), we have ]l~tll2_d_l 
E~(21~I~ + d)-d-~<~,h~) <_ C-d-l, with Cj :=  }-~n(2lnll + d) j finite whenever 
j < - d .  Thus every solution to the local martingale problem of theorem (3.2) 
starts and remains inside the dual space H -d-1 with probability one. Further, 
we have continuity with respect to the norm II. ]I-d-1 for every solution as a 
consequence of the following proposition. 

P r o p o s i t i o n  5.1 The weak topology on M(T/d)  is the restriction of the norm 
topology of H -d-1 to its subset 2t4(T/d). 

Proof: Weak convergence of a sequence {#,~} E AJ(7~ d) to p E Ad(T/d) im- 
plies, for every n, lim~__.o~(p~, h~) = (#, h~}. This last statement is equivalent 
to l i m , ~ o o  ] lP-~  - if]j-d-1 = 0 because of the Charlier-Cram~r bound and the 
finiteness of C-d-1.  Convergence in the norm I]' II-d-1 of a sequence {p~} E 
M(7~ d) to p E M(T/d) is also easy. Since S is convergence-determining - -  C~(T/s) 
is actually in the uniform closure of S, see TrOves [30], lemma 15.2 - -  it suf- 
fices to show that  $ is in the uniform closure of the linear span of {h~}. Since 
( E ~  [(r e < C - j  E , ( 2 l n h  + d)J(r < oc holds for any r E H j with 
j > d by the Cauchy-Schwarz inequality, the sequence of continuous functions 
~-~lnli<e(q~, h,~)oh~ E 8 converges uniformly to r for every choice of r E 8. [] 

In fact, a bit more work yields convergence in the stronger, inductive topology 
on 8 of ~l~li<_e(r hn)oh~ to r - -  see formula (A.15) in the appendix of Holley 
and Stroock [18]. 
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Beware: J .4 (~  d) is not closed with respect to the norm ]t" II d 1, since con- 
vergence in this norm does not imply tightness in Ad(~d).  

An immediate consequence of proposition (5.1) is that  all solutions to the 
martingale problem of theorem (3.2) are in fact probability measures on C([0, oo) : 
H d- l ) .  The rest of the paper  is devoted to proving uniqueness and regularity of 
solution on that  space. 

P r o p o s i t i o n  5.2 In addition to the conditions of theorem (3.1), assume that, for 
every choice of R > 1, there exists KR > 0 such that 

]a(z,p)l + Ib(z,p)l _< K R ( I +  Izl 2) 

holds for all choices of z C T{ d and p E M R = {# E Ad(T{ a) : (p,~o2) <_ R}.  For 
any solution 7 9 to the local martingale problem for s  started at a random point 
Po satisfying E(#o, ~2) < oc, 

M t : =  E ( 2 l n l l  + d) -d 2Mt( fn ) f  ~ 
rt 

d--2 
where f~ = (2lnll+d) ~ - h n ,  defines an H d-2_valued continuous square-integrable 
local martingale. 

Proof: Recall from the proof of lemma (3.3) the localizing sequence of stopping 
times {~-R : R > 1}, defined by ~-R := inf{t > 0 : (#(t),p2} > R}. For each 

2 d O E C k ( ~ )  and any solution 79, define Mt (r and Qt(r the local 79-martingales 
associated with the process (Pt,r and its square, by Mr(C) := (Pt,r  

- f o ( P s , L ( # ~ ) r  and Qt(r := Mt2(r - < M(r  >t. The first observation 
is that  the same property holds for each r E S under the additional growth con- 
dition on a and b - -  we need not assume the compactness of support  of r for the 
local martingale property to remain, because any smooth function with rapidly de- 
creasing derivatives can be approximated uniformly, together with a finite number 
of its derivatives, by a sequence in C~(Tgd). 

2 d Indeed, let {r E C k ( ~  ) be such an approximating sequence for some r C 
8,  so that  both  {MtA~R(r and{Qfa~R(r are square-integrable martingales 
for every n _> 1 and R > 1. 

Writing [-Ioo for the sup-norm on C(T4d), and by extension on the spaces of 
vectors and matrices with coordinates valued in C(Tgd), we get 

sup IM~.~(r - M ~ ( r  
te[0,T] 

f TA~-R 
< Ir - r  + (~. ,  I L ( ~ ) ( r  - r d~ 

gO 

_< [ r  - r  + / ~ R T ( I V ( r  - r  + I V V ~ ( r  - * ) 1 ~ ) ,  

this last inequality the result of the definition of TR. The martingale property for 
MtA~-R(') and the fact that  it remains well defined and square-integrabte in the 
limit follow at once. 
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The conditions of theorem (3.1) implicitly ensure that  any bound on a carries 
over to c, since ]c(zl, z2, #)12 _< Trace(a@1, #)) Trace(a(z2, #)) holds for all za, z2 E 
7~ a and # E YVl(~d). The additional growth condition on a implies 

]c(zl,z2,#)] 2 <_ dK~(1 + ]z112)(1 + Iz2t 2) 

for all choices of Zl,Z2 E 74 d and # E AJ n. 
Therefore, the martingale property for Q remains valid in the limit, with 

< M(r  >~= ft(p(s)X2, R(p(s))r ds, in view" of 

sup 
t@[O,T] 

< sup I M ~ ( r  - M ~ ( r  
te[0,T] 

+2 sup ] M , ~ ( r  I sup ] M , ~ . ( r 1 6 2  
tC[O,T] tE[O,T] 

+gdKnR2TIV(r  - r ( IV(r  + IV( r  �9 

The Charlier-CramSr bound plus Doob's martingale inequality applied to 
MtA,~ (r together yield, for every R > 1 and T > 0, 

te[0,T] 

<_ 4E[[MTA~Rll2_g_2 

= 4 E ( 2 [ n [ 1  + d)-d-2E < M(hn) >TA~R +411P0112 d--2 
n 

f TA'rn 
_< 4 v ~ c R ~ ( 2 1 ~ l a  +d)-d-21VhnlLE ffo (~s,~2)2ds+nC_d_2 

f t  

<_ 4v~KnR2TC-d 1 + 4C-d-2 < co. 

Writing supe for the supremum over all choices of s, t ~ '[0, T] satisfying It - s I _< 5, 
we also get an upper bound for Esupe  IIMtA~R -- MsA~-R [1--d--2"2 . 

(2[Tt[1 @ d ) - d - 2 F ,  s u p  M t A T R ( h n )  - M s i T n ( h n ) )  2 

]nil<_ i 5 

-[-Esup E (2lnll + d)-d-2(MtA~-n(hn) - -  M s A ' r R ( h n ) ) 2 "  
6 1~11>i 

Since the second term is bounded above by 

d ~ - d - 2 M  2 (h  ~ 4 E  sup ~ (2lnll @ j tA~-l~' n] 
tE[0,T] Inh>/ 

<-16(v~KRR2T + l) E (2lnla + d)-d 1, 
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which goes to 0 as i --~ c~, it suffices to show that the first term can be made 
arbitrarily small for each fixed i. The weak continuity ofMtA~R, i.e., the continuity 
of the real-valued martingale MtA~R(hn) for each n, is immediate from the conti- 
nuity conditions on the coefficients of operator L(.) -- see the beginning of this 
proof. By a theorem of Paul L~vy, the continuous martingale MtA~R (hn) possesses 
a continuous time change which turns it into a Brownian motion stopped at ran- 
dom time < M(hn) >~R. L~vy's modulus of continuity for Brownian motion(see, 
e.g., McKean  [24]) guarantees  the uniform cont inui ty  of MtATR (hn) and completes  
the  proof. [] 

We now s ta te  the  par t icular  form which coefficient c must  take in order to ob- 
ta in  a s tochast ic  integral  representa t ion  for our processes. P~ecall t ha t  a cylindrical 
Wiener  process W in  (HJ) f is defined as a mapp ing  W : f~ x [0, oo) x (HJ) f --~ 
such tha t  Wt (h) := W(. ,  t, h) is a real-valued s t andard  Brownian mot ion  for every 
h in the  unit  ball of (HJ) f and W(w, t ,  .) is co-almost surely linear on (Hi) f for 
every t E [0, ec). Here f~ s tands  for a (possible) enlargement  of C([0, ec) : 2M2). 
The  weak cont inui ty  of W in (Hi) f is immediate .  

The  s tochast ic  integral  N = f X dW of a progressively measurab le  process 
X valued in the  space of Hi lber t -Schmidt  opera tors  L2((HJ) f,  H k) with respect  
to a cylindrical Wiener  process W in (Hi)  f is wr i t ten  as follows (see MStivier 

and Pel laumai l  [25]): Nt :=  ~ n ( 2 t n h  + d ) J ~ X s ( h ~ ) d W s ( h n )  or equivalently 

Nt[r := E (2lnl  + d)J Xs(hnD)  dWs(h ). 

T h e o r e m  5.1 Assume that the mappings a : T~ d x Ad2 --~ (7~ d | T~d)+,b : T~ d x 
~V[2 __+ ~r~d and ~ : ~]~d X ~P ~d •  2 ~ ~]pd@~r~f are continuous and that a and b satisfy 
the growth conditions of theorem (3.1) and proposition (5.2). Assume that the map- 
ping c(zl, z2, #) = (cr(zl,., #), aT(z2,., #))-d-2 is .such that a(z, #) - e(z, z, #) is 
strictly positive definite for each z C Tt d and]u C flA2 - -  here we mean that element 
cij of matrixc is given by eij (Zl, z2, #) = Ee=l (~i,~ (Zl,.,/~), crj,e (z2, ", #))-d-2.  For 
any solution ~ to the local martingale problem of theorem (3.2), started at a random 
point #0 satisfying E(#o, ~2} < cx~, there exists on some enlargement of the ambient 
probability space a progressively measurable process Xs E L2((H-d-2)  f,  H -d-2) 
and a cylindrical Wiener process W in (H-d-2)  f such that Mr(e)  - M0(r  = 

xs dW3 [r holds for evew r e S. 

R e m a r k  5.1 Notice that the positivity condition on c in theorem (3.1) is auto- 
matically satisfied here. 

Proof: Firs t  define process Us E L2(H -d-2,  (H-d-2) f) densely on its domain  
by U8(r := f a T ( z , ' , # 8 ) V r  for all r e 8.  I t  is clearly progressively 
measurable;  so is its adjoint  Xs = U* E L2((H-d-2)  f ,  H-d-2) .  We first show tha t  
Us and Xs are indeed valued in the  appropr ia te  space of Hi lber t -Schmidt  opera tors  
prior to t ime  ~-R, i.e., as long as #s belongs to M R. 
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Standard operator theory (see,e.g., Gelfand and Vilenkin [16]) yields that  the '  
Hilbert-Schmidt norm of U8 (and therefore also that  of Xs) is given by: 

~ ( 2 l n l l  + d)-d-2l[gs(hn)ll2_d_2 
n 

= ~ ( 2 ] n ] 1  + d)-d-2(21m]l + d)-d-2(Us(h~),h,Og 
m,n 

_< ~--~.(21nll + d)-d-2flVh~(z)12[la(z,.,#~)ll2_d_2 #8(dz) 
r t  

<_ c-d-x f 
< C-d-1/Trace(a(z,#8)) #s(dz) 

<_ C-a-IKRRx/d 

where we obtain the first inequality via Pubini's theorem, the second one with the 
Charlier-Cram6r bound, the third one via the assumption of positive definiteness, 
the fourth one because of the growth condition of proposition (5.2) on a, together 
with the assumption s < 7-R. 

Notice that  we have just proved that  or(z,., #8) belongs to  (H-d-2) d| for 
every z and s < ~-R, so that  c is indeed well defined. Note also that  Us as a 
compact linear operator has a unique extension to a]] of H -d-2 which remains of 
Hibert-Schmidt type. 

Finally we prove that  the tensor cross-variation process verifies 

f 
t A ~ ' R  

< <  M >>tA~R= XsU8 ds. 
J0 

Let {f~ = (2lnll + d)(d+2)/2hn} denote a complete orthonormal basis of H -d-2. 
The scalar cross-variation < M(f,~), M(f~) >tA~-R is given by 

f tA'R(# 22, R(p~)(f,~ | f~))ds 
J0 

t A T R  

= f f (V fm(Z l ) )Tc ( z l ,Z2 ,# s )V fn ( z2 )  x2 tt 8 (dzl dz2) ds 
dO 

= 

JO 

[ t A ~ ' R  

= (X~Us(f.~), f~ ) -d -2  ds. 
dO 

T h e r e f o r e  Mta~rR @ Mta~-,~-- < <  M >>~A~-R is an  L2(H -d-2 ,  H - d - 2 ) - v a l u e d  m a r -  
t inga le ,  with 

TY~ ~ T~ 
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and 

pLA'r/~ 

tATR 

= Xs Us ds. 
dO 

Summarizing: X is a progressively measurable process with values in 
L2((H-d 2)f, H d 2) and M a continuous square integrable local martingale val- 

ued in H d - 2  with tensor cross-variation << M >>t= f~ XsX~ ds. Bojdecki and 
Jakubowski [4] (generalizing Yor [34]) construct a cylindrical Wiener process W 
in (H d-2) f  o n  a (possibly extended) probability space supporting both M and 
X,  such that  M = f X dW. [] 

C o r o l l a r y  5.1 Any solution to the local martingale problem of theorem (3.2) is a 
"weak solution" of the stochastic evolution equation 

/o' /o'i (Pt, r = (#~,L(#s)r crT(.,y, ps)ps(.)W(ds, dy),Ve(.)}. 

6 U n i q u e n e s s  

Denote by II  e : S t -~ $ the projection operator defined by 

he(x) := ~ x[h.]h~ 
r~h_<e 

and define the seminorms I1" [Ij,e on S t with j E 7~ and ~ > 0 by 

rlXlIJ,~ :--PIH~(x)ll~ = ~ (2r~ll + d/X[h4 2 
r~h_<e 

Consider the following condition on the operator s 

6.1 Weak Monotonic i ty  Condition 

For some j ~ ~ ,  there exists positive constants kj and gj such that,  for every 
integer ~ > gj and every probabilities #, ~ C A42, we have 

d)5 (2( .  - . ,  h~)E(., L(.)h~t  - (., L(-)hn/] (2J~[1 + 
% 

Inl~<e 

< ~ j l l , - - I I J ,~ .  
The purpose of this section is to prove the following. 
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T h e o r e m  6.1 In addition to the conditions of theorem (5.1), assume that 
monotonicity condition (6.1) holds. The martingale problem of theorem (3.2) has 
at most one H -d-l-valued solution (and therefore a unique Ad2-valued solution), 
for every random starting point #o satisfying E(p0,  P2} < oc. 

R e m a r k  6.1 The theorem remains true under condition (6.1) with gj = 0% pro- 
vided both series involved are convergent. 

Proof: Let  (f~i, (bc~)t>0, Pi), i=1,2,  denote  two complete  filtered probabil i ty  spaces, 
each respectively suppor t ing an JM2-valued continuous process #i and an 
(H-d-2)f-valued cylindrical Wiener  process W ~ ( independent  of p~), such that ,  for 
each pair (W i, pi) ,  the  law of the second coordinate  solves the  mart ingale problem 
of theorem (3.2) while the first coordinate  indicates the cylindrical Wiener  process 
in (H  -d 2)I driving the basic mart ingale M i associated with pi and exhibi ted in 
theorem (5.1). 

Any Hi -va lued  cylindrical Wiener  process W is H J - g - L e o n t i n u o u s  almost 
surely in par t icular  in the case of interest here j = - d -  2 the proof  is exact ly  
along the lines of tha t  of proposi t ion (5.2). We can therefore restrict  ourselves to 

O(-2d 3) ~ - d - - 1 )  1 = , (Set)t>0 (Y~)t>0 (-Tt)t>0, this last the case t21 = t22 ~of x _ = _ = 

o( -2d-3)  t2~ - g - l ) ,  wi th  the shor thand  nota t ion  the canonical Borel fi l tration on o ~] x 

:= c ( [ 0 , o o ) :  

Denote  by {Bm : i >_ 1} C /3(a(f -2d-3) • H - d - l )  a sequence of countable 
O(-2d 3) H d 1 part i t ions of ~ f  )< into Borel  sets satisfying bo th  the conditions: 

tim~--,oo sup i diam ( B ~ )  = 0 holds and { B ~  +l : i _> 1} refines { B ~  : i > 1} for 
every ra _> 1. 

Given any two such solutions (W ~,#~), i=1,2,  to equat ion (1.1) with re- 
0( -2d-3)  H-d-1  spective law Pi o n  (2Ft)t>_o, define the maps E i : t2i --+ o.f x by 

E i ( W i , # i )  := (Wi ,#{ )  and then  define a sequence of approximate  couplings 
P ~  ~ 3~l(t~t x f~2) by 

Prn ( c)  := E FJPl x P2 [ ~C~Bm (~I )~B~ (~2) ] / P1 o (~,1)-1(/~r~) . 

i 

With  the  nota t ion P lo (E1)  -1 = P2o(E 2) 1 _ ~, lemma (5.15) of Ethier  and Kur tz  
[14], which extends to abst ract  spaces the corresponding result of Yamada  and 
Watanabe  [33], yields the weak convergence of probabilit ies P ~  ~ P~ E Ad(f~l • 
f~2), where the coupling measure P~ is such that ,  for all A1, A2 E B(gh • f~2), we 
have 

P.(A1 x A2) = ] E P1 [(SA 1 [E 1 = X]J~ P2 [(~A2 [~2 Z] le(dx).  

In part icular ,  P.(A1 x ft2) = PI(A1) and P . (g t l  • A2) = P2(A2) confirm tha t  P .  
is indeed a coupling measure.  
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The above coupling also yields, for all B1, B2 C B(f~-2d-3)), 

P~(B1 • a F  d-l) • ~2 • a~ -d-~)) = .((Bx n B2) • H d_z), 

so the coupling measure is such that a common Wiener process is driving this new 
(coupled) process. 

Denote by 17d,/21 and/22 the first (and third), second and fourth coordinates 
of the canonical process on f~l x f~2 with law P~. Then clearly, for any bounded 
measurable functions f ,  g : f~l x f~2 --* Tr we have: 

EPu [ f ( ~ r / 2 1 ) ,  g ( [ /~ , /22) ]  = 

/ EP1 [f(W 1 ' #1)] (Wz, #~) EP2 [g(W2, #2)t (W 2, #02) X] X] l l (dx)  . 

It is immediate from this equation that  both pairs (I/F,/2t) and (I/F,/22) solve the 
stochastic evolution equation (1.1). Moreover, for every R > 1, t _> 0 and r E S, 
we have (since P.(/2~ =/22) = 1 and with TR = "c A A -r~) 

~tATR 
- (#~, ds = - ( , ~ , L ( , ~ ) r  

ftATn r * 

As in the proof of theorem (5.1), superscript * here again indicates the adjoint to 
the operator that  sends r to the mapping in brackets. 

ItS's formula for the semimartingale e--%t@lA~_R -2 -- StA,R, r reads 

- -  StArR, r  

e-k j8  /21 -2 ~2 - s ~ ,  r </2~ L ( / 2 1 ) r  -2  -- 2 ( ~ , - < s ~ , L ( s ~ ) r  d~ 
./0 

ftA~-n 
+ Jo ~ -k ' l l / ~ r ( z '  '/2~)Vr (d~) - f~T(z,. ,  ~)Vr d~ 

f t A r R  ]~'Je--kJs(/21s -2 - - S ~ ,  r  

J 0  

f rAy'F; --kjs l~l  ~2 
+ 2 e ~s~ - s ~ , r  ' 

./0 

~(z,.,/2~)Vr (~)  - f~(z , . , /2~)vr  ~(d~) dw~(r 

which, after an application of condition (6.1), yields that the positive process 
_/22 12 is bounded above by a (positive) martingale. Hence, for 

every t _> 0, every E > gj and every R > 1, there holds successively I1~1~ - 
# ~ a ~  I lj,e = 0 and then St-1 = St~2 P~-almost surely. [] 
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Consider (1.1) as a stochastic evolution equation over H -d-1. This means, 
in particular, that  a, b and cr should now be defined over H -d-1 instead of Jt42: 
assume tha t  the mappings a : ~ d  • H-d-1  __~ (T~d | ~d)+, b : T~ d x H -d-1 ~ T~ d 
and cr : 7-4 d x T~ d • H -d-1 --* ~d | T~f are continuous and denote their respective 
restrictions from H -d-1 to AJ2 by a l ~ ,  bl~ ~ and crl~ ~. 

We have the following positivity principle, which extends that  in section 7 of 
Pardoux [56] - -  see his pp. 152ff. 

C o r o l l a r y  6.1 Assume that a i ~ ,  bl~ ~ and Crl~ 2 satisfy all the conditions of the- 
orem (3.1). Provided distribution uniqueness holds for equation (1.1) over H - d - l ,  
the unique solution .started in the positive cone Ad2 remains inside that cone for 
all positive times. 

7 S o l u t i o n s  w i t h  s m o o t h  v a l u e s  a n d  

r e g u l a r i t y  o f  p a t h s  

Consider the following growth condition on operators L and R. 

7.1 

For some j E T~, there exists constants 0 _< kj < oc and 0 < gj _< oo such that ,  for 
every integer g _> gj and every probabili ty # E Ad2, we have 

# 2  E (2lnll + d)J( 2(#'h~>(#'L(#)h'}  + {#• < kj(1 + II IIj,s). 

P r o p o s i t i o n  7.1 Under condition (7.1) and the conditions of proposition (5.2), 
every solution to the local martingale problem of theorem (3.5), started at a random 
point #o satisfying both ELlp011 ~ < oo for that value of j in condition (7.1) and 
E(#o, qo2} < ec, belongs to 3//(6([0, oo) : Hi-e) )  for every c > 0 and satisfies for 
every T > o both sup~[0,T] EII.,II~ < ~ and P(sup~c[o,~] It.~11~ < ~)  = 1. 

Proof: The proofs of propositions (5.1) and (5.2) ensure tha t  all processes of the 
form {(#~, r : t >_ O} are continuous semimartingales with common localization 
sequence for all choices of r E S. With the notation Oj,s(t) = e-~J (t/~'~) (1 + 

Ij,e), It6 's  formula therefore holds for each of the continuous semimartin- 
gales {Oj,e( t)  : t >_ 0}: for all choices of 0 < s < t < T < oc, R > 1 and f _> O, we 
have 

2e -kj"  ~ (2lnll + d)J (~ ,  hn>(tz., L(/~)hn} dv 
I~ll_<z 

e--kJv E (2]n]1 +d)J(#Xv2'R(#v)hn}dv 
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- [tA:-Rkje--k;~( 1 + II~vll~,e)dv 
d sA~-A 

ftA'cR 
+ 2 E (21nll+d)J e k~(#~,h~)dM,(h,~) .  

Condition (7.1) implies that Oj,e(t) is a continuous, positive supermartingale for 
every g large enough, and subsequently there holds 

s + E l l ~ l l ~ , e  < ekJt( 1 + EIl~011~,e). 

First let g increase to infinity to get (via monotone convergence) 

1 +  sup E l l p ~ ] l J  _<e~'Z(l+ZllP0ll~) ; 
tE[0,T] 

then let R increase to infinity to obtain suptE[0,T] EII~t]I ~ < oo. 
Doob's inequality reads, for every x > 0, 

P(  sup Oj,e(t) > x) <_ x-lEOj,e(O). 
te[O,T] 

Since {Oj,e : g _> 0} is an increasing sequence, it follows by monotonicity 

P( sup ~<m OM~) = oo) = P( ~m sup OMt) = oo) = O, 
t<0,T] e o o  ~<0,r] 

provided the underlying probability space is complete. 
The unique limit Oj(t) = e kJ(tf~R)(1 + IlPtA~RII~) is then also a positive 

supermartingale. This implies P(supec[0,Tj II#tA~,~ll~ < oc) = 1 for every R > 1 
and therefore also P(sup~<0,~l ll~l[~ < ~ )  = 1. 

Finally, let e denote some arbitrary positive number and notice that, by 
analogy with the proof of proposition (5.2) and using the same notation supe for 
the snpremum over all choices of s, t E [0, T] satisfying I t -  sl _< (5, for every i there 
holds: 

sup 
a I I,~A~-R '~ 

_< ~ (21<1 + d) j-~ sup((~A~,  h~) (~sA~, h~}) 2 
5 Inla <i 

+4(2i + d) -~ sup II~A~IIJ, 
te[0,T] 

so the [1" I Ij-~-c~ of #t follows from the weak continuity of #t and the 
finiteness of I I~tt I Ij. [] 

R e m a r k  7.1 In view of proposition (5.1), the case j - d  - 1 does not require 
the additional condition (7.1). 
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8 S t r o n g  s o l u t i o n s  w i t h  s q u a r e  

i n t e g r a b l e  d e n s i t i e s  

We next show that  the well-posed local martingale problem of theorem (6.1) 
may arise by way of an associated stochastic evolution equation, which has a 
unique strong solution, under some additional conditions. This equation (8.1 be- 
low) should be viewed as the forward Kolmogorov equation corresponding to the 
backward Kolmogorov formulation provided by the local martingale problem of 
theorems (3.2) and (6.1). 

Given is a symmetric positive definite trace-class (or nuclear) linear oper- 
ator Q = (Qk)f=l : (Hw) f --+ (HW) f - -  such an operator always possesses 
a Hilbert-Schmidt square-root Q1/2 E L2((H~) f, (Hw)f). The trace of Q on 

f --w 1/2 (H~) f is given explicitly by ~ , e = l  ~-~-n(21n]~ +d) ]]Q~ (h~ee)l]~ < oo, writing 

{ee :g = 1, 2 , . . . ,  f}  for the canonical basis in T~ f.  An (HW)/-valued Wiener pro- 
cess W = (W1, W2, . . . ,  Wf) with covariance kernel Q is defined as a (strongly) con- 
tinuous (H~)f-valued martingale started at 0 with quadratic variation < W >t--  

= tl~l/2 , (< Wk, We >t)s given explicitly by < Wk, We >t [r •] ~q]k q), Q~/20)~" 
For details of its elementary properties, consult Yor [34],M@tivier and Pellaumail 
[25], Krylov and Rozovskii [22]. 

We assume w >_ 0 here and for the rest of this section, to ensure that some 
sense can be made of the diffusion term in equation (8.1), which in our case (equa- 
tion 1.2) involves pointwise multiplication of its solution Pt with the driving Wiener 
process Wt. 

Let (t2, 5 c, (St),>0, P)  be a complete filtered probability space with a right- 
continuous filtration and an (H~)/-valued Wiener process W on it with covariance 
kernel Q. Let V c H ~ C V* denote rigged separable Hilbert spaces, with the 
respective norms Ill lily -> I1' II0 >- I l l  I/Iv*- 

Consider the stochastic evolution equation 

/0 10 #s = #o + A(p~)dv + B(p~)dW(v),  (8.1) 

where A : V --* V* and B : V ~ LQ((H~)I ,H ~ are assumed to be continuous, 
and W denotes an (HW)Y-valued Wiener process with nuclear covariance kernel 
Q : (H~) f ---* (HW) f. Here, LQ((H~) f ,H ~ is the space of linear operators ~ : 
(HW) y --* H ~ such that  �9 o Q1/2 E L2((H~) f, H ~ holds. 

A strong solution to equation (8.1) is a H~ process # defined on 
[0, ec) x ft, strongly continuous in H ~ with respect to t, 5ct adapted, satisfying 

for every T > 0 the inequality E f J  II[#tl]l~ dt < oc, and verifying (8.1) in the 
sense of equality in V* for all t E [0, oo) on a set of total probability in f~, i.e., for 
every r c V, we have almost surely 

= + + B( 8) dW(s) [r 
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We need the following set of conditions. 

8.1 Coercivity and Monotonicity Conditions 
There  exists K > 0 and w > 0 such tha t ,  for all r r r C V, we have 

1o IIIA(~)lllv* ~ K(1 § 
2. 2A(r162 +1 ~/2 B(r IL~<(~'~>~ H0> + ~111r --< K(R + I1r 

2 3. 2(A(r - A(qb2))[r - r + I ] (B(r  - B(r )~Ho) 

_< K[[r - r 2. 

Condi t ion (8.1.1) is a growth condition, while conditions (8.1.2) and (8.1.3) 
are respect ively  called coercivi ty and monotonic i ty  for opera to r  E(~)  in the  liter- 
a ture  on par t ia l  differential equations.  Under  all of the above conditions, Krylov  
and Rozovskii  [22], ex tending  results of Pa rdoux  [26], prove t ha t  equat ion (8.1) 
possesses a (pathwise) unique H~  s t rong solution #, for every s ta r t ing  dis- 
t r ibut ion  satisfying Ell~01l ~ < oc; and tha t ,  for each T > 0 and some constant  

LT > 0, there  holds Esupt_< T II~ll0 2 + E l0  ~ IIl~lll~dt _< LTE[I#o[I~. Note also 
tha t  monotonie i ty  condit ion (8.1.3) is used solely in the  proof  of uniqueness; it is 
not required in the proof  of existence of a s t rong solution. 

We will app ly  this result  wi th  w = 1, V = W1'2(74 d) and V* = W-~'2(74 a) 
where W1'2(7~ d) = W 1'2 is the  Sobolev space with  inner p roduc t  

(~, v)1,2 = (~, v)0 + z_. axe' axe)~ 
i=1 

and associated norm 

11~111,2 = 

Note tha t  W ~,2 D H 1. Also W1,2N342 C H ~ (of. Holley and Stroock [18] (A.17)). 
Also note tha t  if u E W 1'2 and 9 is bounded  and has bounded  continuous deriva- 
tives then  the  pointwise p roduc t  9u also belongs to W 1,2 and 11g~111,2 _< Kllullx,2 
for some cons tant  K (el. Brezis [6] Prop.  IX.4). 

We first need to specify the class of coefficients a, b and c a l I o w i n g  for a 
representa t ion  such as (8.1) for the unique solution to the local mar t ingale  p rob lem 
of theorems (3.2) and (6.1) - -  such a representa t ion  will be made  explicit in the  
remarks  preceding theo rem (8.1). 

8.2 Coercivity Hypotheses  for McKean-Vlasov 

a d y4d H - d - 1  1. Assume tha t  mappings  a = ( i j ) i , j= l  : X --> (T~ d @ T~d)+, 
= b d Ted H - d - 1  ~ d  b ( i ) i=l  : x --~ and fl = (/3~e)~=1 ..... d;e=] ..... f : T~ d • 

H - d - 1  --4 T~d@ T~.f are bounded  and continuous; and tha t  their  restric- 
t ions to 7~ d x W 1'2, denoted respect ively by a lwla  , blw1, 2 and fllwl,2, 
together  wi th  their  derivatives Oj (a I w1,2 )ij, cgj (b I wl.~ )J and cgj (flIw,~l)is, 
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are continuous in the norm I1' 111,2 and belong to C ( ~  a x wl ,2 ) ,  for 
every i , j  1 , 2 , . . .  ,d  and g 1, 2 , . .  f ,  where d = = .,  (Oj)j= 1 denotes the  
gradient with respect  to the first (~a-valued)  coordinate.  This implies 
t ha t / 3  = supz,~(I/~(z , #)1 + maxi,k lO~ik(z, #)1) < oc. 

r f ~ d  ~ d  ~-~f ,~f  2. Assume tha t  r = ( k~)k,~=l : x --~ | is a mapping of the 
form r~z(zl,z2) = ~-~,~r~enh~(z~)h~(z~) for some double sequences 

{rk~ '~ E 7~ : m, n} satisfying bo th  ~ f  ,~n k,e:l ~ , ~  ]rke [ < ec and 

f 
Q E ~ (21nIl @ d ) - l ( E ( 2 1 ? T t l !  @d)a/2 lrr~nt )  2 

k,~=l n m 

3. Assume the following weak ellipticity condit ion on a: for every z E 7~ d 
and # E H -~-1 ,  the following lower bound  holds 

,4 := inf Ora(z,p)O > 
O~T~d:lOl=l 

e d 7~d T~d H - d - 1  4. Assume tha t  e = ( i j ) i , j = l  : X X ---+ (T4 d | 74d)+ can be 
wri t ten  bo th  as in theorem (5.1) for some a (when c is restr icted to 
fl/12 C H - d - l )  and in the form 

C(Zl, z2,/.t) :=/7~d (/~(Zl, ~t)r(zl, z)) (fl(z2, , ) r ( z 2 ,  z)) T dz. 

R e m a r k  8.1 The condition f m n  ~-~k,e=l E ~ , ~  Irke I < oc in hypothesis (8.2.2) 
serves two purposes. First, it ensures that r is a continuous mapping, by way of 
the Charlier-Cramdr bound - -  actually, since it also holds that 

f ~,van 2 Ek,g=l  E m , n  "he < oc, we see that r is a continuous Hilbert-Schmidt kernel 
0 d over (H ) ( f f  Ir(zl,z2)l 2 dzldz2 < oo). It also implies that IIr(z, ")11~ is finite for 

every z E T~ d, a necessary condition for hypothesis (8.2.3) to hold. 
Note that hypotheses (8.2.1) to (8.2.4) together imply all the hypotheses of 

theorem (5.1): all matrices of the form (e (x i , x j , ex ) )~=l  are positive definite for 
every choice of N and x E (7-4d)N; and a(z, # ) - c ( z ,  z, #) is strictly positive definite 
for each z E ~'~d and # E fl42, because of the bound 

f f d 

~=1 k=l i=1 

The  smoothness conditions (8.2.1) on a and b allow us to define the adjoint  L*(p) : 
W 1'2 --~ W -1'2 to opera tor  L(#)  appear ing in theorem (3.2): 

(#)4 = - V  r ( r  + 2 VT (aT ('' #)Vr  (8.2) L* 

d d 
1 

= - + Z 
i=1 i,j 



224 Donald Dawson and Jean Vaillancourt NoDEA 

We set the nonlinear drift operator to A(#) = L*(#)#. 
Define Q1/2 E L2((H1) f, (Hi) f) by QU2W(z) = f r(z2, z)W(z2) dz2. Finally, 

define the diffusion operator t3 : W 1,2 -4 LQ((H1) f, H ~ by 

d f 

i= l  k-----i 

for every W = (W~, W~, . . . ,  Wj-) ~ (H~) s. 
Note that  in this case equation (8.1) takes the form (1.2). 

T h e o r e m  8.1 Assume that hypotheses (6.1) and (8.2.1) to (8.2.4) holc~ that op- 
erators A and ]3, defined respectively by expressions (8.2) and (8.3), are contin- 
uous and that the process verifies both E]lp01] ~ < oc and P(#o E A42) = 1. Let 
B := 4d2.[~ ~. I r A  > BQ, then equation (8.1) possesses a strong solution, the law 
of which solves the well-posed martingale problem on C([0, co) : A42) of theorem 
(6.1); and the positivity principle of corollary (6.1) extends to equation (8.1). 

Proof: One verifies at once the growth condition (8.1.1) as follows. For # ~ W 1,2 

IIA(~)11-1,2 = sup I(A(~)~,O)0r 
IlqSlll,2_ <1 

d 1 
= sup ](-EOi(#bi( . ,#)) ,r  + ~E(Oj(ai,j( ' ,#)Oi#),r 

11r i=l 

g 

--  sup I ~ ( ~ b d . , ~ ) , 0 ~ r  
Pie[h, ~-<1 i=i 

_< K l b l l l , ~  

for some constant K. 
Hypothesis (8.2.2) implies that both operators Q~/2 and B(p)Q 1/2 are indeed 

of Hilbert-Schmidt type. For the former we calculate 

l lgl/2l 2 ]LI((H1)I,(H') ]) 

f 
i/2 h e 2 

k,g=l 

f 

k,g=l n m 

f 

k,g--1 m,n 

f 2 2 
E E (2]~]1 - ] - d ) - l ( E ( 2 I m l l  @ d ) l /  [rr~gn]) " 

k,~=l n m 
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For the latter, we get, writing once again {ee : ~ = 1, 2 , . . . ,  f}  for the canonical 
basis in 74/, 

IIB(~)Q~/~ I [L2((H~)Y,H ~ 
f 

= Z(21"l  , + d) - 1 Z  lIB(~)Q'/'(h-~)l/~ 
n g 1 

f d f 

n g=l  i=1 k= l  m 

f d 

d f E ( 2 [ n [ 1 - } - d ) - i  E E l l E  fkrns 
n k,~ 1 i=1 m 

/ 
, d~l/21p mnl~2 _< 4d2f~211#[l~2 ~ ~ ( 2 l n l l  + d )  l ( E ( 2 1 m l l  + 2 , kt '2, 

k,g=l n m 

with the last inequality via the Charlier-CramSr bound. 
We next verify the coercivity condition (8.1.2). For p C W 1'2 

A(#)[p] = (n*(p)p,p)o 
d 

1 
= - ~ (a~ (,b~ (., ,)) ,  p)o + ~ ( ~  Oj (<J (, ,)O~p), p)o 

i=1 i,j 

d 
1 

= ~((pb~(-,  p)), O~,)o - ~(~(a~. j ( . , , )O~,) ,  Oj,)o 
i=1 i,j 

<_ -AII.II~,2 +b11.11011.1tl,2 + (A/2)ll.llg 

where g = SUpz,, Ib(z,~)l < oc. Then 

2A(#)[#] + [[B(p)Q 1/2 2 

_< ( - A  + sQ  + ~)11.11~,2 + 2bll~ll011~lll,2 + A]II~II~ 

provided that  0 < ~ < A - BQ. This yields condition (8.1.2) 
The above stated theorem of Krylov and Rozovskii [22] yields the existence 

of a strong solution p~. Since its trajectories are continuous in H ~ its law solves 
the local martingale problem on C([0, e~) : H ~ for operator s --I t6 's  formula 
actually implies that,  for every smooth r and every r E S, the real valued process 
~((#t,  r - ~ 12(~176162 r ds is a local martingale. 

Indeed, for each # E W L2, operator B(p) defined above is densely defined on 
(H~ f and therefore possesses an adjoint B* (p) : S --+ (H 1)f defined by B* (p)r = 
--#/3T( ., #)Vr in the sense of (W, B*(p)r = (B(p)W, r 
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For each r ~ S, the real-valued local martingale ( f oB(# , )dW(s ) ) [ r  has 
quadratic variation equal to 

f0' f0' IIQI/NB*( ,AOII ds = O ds .  

Just as in proposition (5.2), the associated W 1'2-valued local martingale Mt = 

fo B ( p~ )dW( s )  is actually a square-integrable martingale here since hypothesis 
(8.2.1) implies supR KR < oo. 

Since condition (8.1.2) with w = 1 and v~ = 0 implies condition (7.1) with 
j = 0 and gj = ec we have for the unique solution P to the martingale problem of 
theorem (6.1) and proposition (7.1), that the canonical process on C([0, ec) : 3//2) 
then takes its values in the space H~ surely for each t _> 0. The one- 
dimensional marginals of P must therefore necessarily coincide with those of the 
law of the strong solution. [] 

E x a m p l e  8.1 To complete this section we give a simple example on the 'real line. 
We take Lr = a2Ar and d = f = 1. 

Consider a map ~ E C ( H  -2) and a sequence {r~} C 7~ such that 
~n>_o(2n § 1)3/2]r~] < ~ holds. Select the diagonal Hilbert-Schmidt kernel 

r(Z1,Z2) = E r n h " ( z 1 ) h n ( z 2 )  E C(']Pt- 2) 
n___O 

and note that Q is here indeed diagonal: Q(hn) = r~h~ for all n > O. Define 

O-(Z1, Z2,~t ) = /~(].t) E ( 2 n  § 1)3/2r~hn(zl)h~(z2) E C(TZ 2 • H -2) 
n>0 

and note that both the definitions of c coincide." 

n>_0 

I f  we make the additional assumption 

2 2c~2fl~ 

n>O 

for all # E M2 ,  then all the hypotheses (8.2) follow. Hence, proposition (5.2), 
theorem (3.1) and theorem (5.1) are satisfied. Hypothesis (6.1) is satisfied as well, 
if we add a Lipsehitz condition on /3: for all # ,u  there holds [fl(#) - /~( , ) ]2  _< 
k j I [ # -  ,[]2a_ 3. Therefore both, theorems (6.1) and (8.1) hold in this case. 
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