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O R B I T S ,  W E A K  O R B I T S  A N D  L O C A L  C A P A C I T Y  O F  O P E R A T O R S  

Vladim~r Miiller 

Let T be an opera tor  on a Banach space X.  We give a survey 
of results  concerning orbits  {T'~x : n = 0, 1 , . . . }  and weak orbi ts  
{ ( T ~ x , x  *) : n  = 0 , 1 , . . . }  o f T  where x E X and x* E X*. Fur the r  
we s tudy  the local capaci ty  of opera tors  and prove tha t  there  is a 
residual  set of points  z E X with  the p roper ty  tha t  the  local capaci ty  
cap(T, x) is equal to the global  capaci ty  cap T. This is an analogy to 
the  corresponding result  for the  local spectra l  radius.  

I N T R O D U C T I O N  

Let T be a bounded linear opera tor  act ing on a (real or complex) Banach space 

X and let x E X.  The  orbit  o f x  under the  opera tor  T is the sequence { T n x  : n = O, 1 , . . . } .  
The proper t ies  of orbi ts  of different points  may  differ very much - -  the orbi ts  of some points  

may  be "regular" while other  points  may have very "irregular" orbits .  

Many deep results and problems of opera tor  theory may  be formula ted  using 

the notion of orbits ,  For example,  T has no nontr ivial  invariant subspace if and  only if the 

orbi t  of each non-zero vector x C X spans the whole space. Similarly, T has no nontr iv ia l  
closed invariant  subset  if and only if the  orbit  of each x 7 ~ 0 is dense; in this  case all orbi ts  

are ex t remely  irregular.  
Analogously,  weak orbits  under T are sequences {(Tr~x, x*) : n = 0, 1 , . . . }  where 

x E X and x* E X* are fixed. This not ion is also closely re la ted  to the  invariant  subspace 

problem - -  the  main  idea of the celebrated Scot t  Brown technique is the  const ruct ion of 

a weak orbit  wi th  very definite propert ies.  

Many results for bo th  orbits  and weak orbits  have their  paral le l  for continu- 

ous one pa rame te r  semigroups of operators .  In  this context ,  orbi ts  are closely re la ted  to 

s tabi l i ty  results  for semigroups of operators .  

In  the  last section of this paper  we s tudy  also polynomia l  orbits .  By the poly-  
nomial  orbi t  of x C X we mean the set { p ( T ) x  : p polynomial}.  A p a r t  from the invariant  
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subspace problem this notion is closely connected with the notion of capacity of operators 
introduced by P. Halmos. 

The aim of this paper is to give a survey of results concerning orbits, weak 
orbits and polynomial orbits of operators. We always try to construct all types of orbits as 
regular as possible. Many results concerning orbits of operators on complex Hilbert spaces 
may be found in [2]. For results concerning semigroups of operators see [14]. 

Denote by s  the set of all bounded linear operators acting on a Banach 

space X. We say that  a subset M C X is residual if its complement X \ M is of the first 
category. Clearly a subset M C X is residual if and only if it contains a dense Gs-set. 

I. O R B I T S  IN  C O M P L E X  B A N A C t t  S P A C E S  

In this section X will be a complex Banach space and T E s  It  is known 
that  there is a residual set of points x C X with the property that  the local spectral radius 
rx(T) = limsup~__,~ IIT~xN 1/~ is equal to the spectral radius 

r (T)  : n--,oolim IIT~<II~/'< = i~f  IIT~Itl/L 

see [15], [5]. In particular, for x in this residual set, there are infinitely many powers such 
that  HTnxH is "large". Moreover, by [9], there are always points x E X such that  HT~xi] 
is "large" for all powers n > 0. 

More precisely, we have the following results: 

T H E O R E M  1.1. Let T e s  let (an)n>_o be a sequence of positive numbers 
such that a~ -+ O. Then: 

(i) the set of all x E X with the property that 

]]TnxH _> anJiT~H for infinitely many n's 

(ii) 
is residual. 
Let k > O. Then in each ball in X of radius greater than max{aj  : j >_ k} there 
is a vector u such that 

]iTnu]I > a~r(T ~) (n > k). 

In particular, there is a dense set of points x E X with the property that [IT~xiJ >_ 
a~r(T ~) for all but a finite number of n 's. Further, there exist points x E X 
such that IIT~xH >_ a~r(T ~) for all n >__ O. 

PROOF.  (i) For k C N set 

Mk = {x E X: there exists n ~_ k such that IiTnxlI > a~llTnH}. 

Clearly Mk is an open set. We prove that Mk is dense. Let x E X and c > O. Choose n _> k 

such that  a~s -1 < 1. There exists z E X of norm one such that  HT~zN > a~s-lHTn H. 
Then 

2a~lig~H < IIT~(2~z)N < IIT~(x + ez)]l + ] l T ~ ( x -  ~z)l I 
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so tha t  ei ther IITT~(x+cz)H > a~IlT"ll or I lT~ (z -~z ) l l  > anllT~lt. Thus either x-}-cz ~ 2]z_r~, 
or z - e z  E M~ so tha t  dist {z, Mk} _< e. Since x and e were arbi t rary,  the set J/I~: is dense. 

By the Baire category theorem the intersect ion [-]k~=l 9/Ik is a dense G~-set, hence 

it is residual. Clear ly  each x E ~]~:=1 N k  satisfies IIT =tl > a llT ll for infinitely many  n's .  

In  par t icular ,  for aN = n -1 we ob ta in  

rx(T) : l imsup  IIT~xll ~/~ > limsup = r(T) 
~ - - - +  OO 7~ - -+  OO \ n ] 

for alt x in a residual  subset of X.  [] 

COROLLARY 1.2. The set {x E X :  limsup~__,~ tlT'~xII~/~ = r ( T ) }  is residual. 
The set {x E X :  liminf,~__.~ IIr~xlI 1/~ = r ( T ) }  is dense. In particular, there is a dense 
subset of points x E X with the property that the limit lim~__,~ IIT~zll~/~ exists (and is 
equal to r(T)) .  

Theorem 1.1(ii) was first proved in [9]; for Hilbert  space opera tors  see also [2]. 

The existence of the l imit  lim~--,oo IITnxll ~/n was also s tudied in [1]. In  general  it is not  

possible to replace the  word "dense" in Corol lary  1.2 by "residual".  

E X A M P L E  1.3. Let H be a separable  Hilbert  space with an o r thonormal  basis 

{ej : j  = 0 , 1 , . . . }  and let S be the backward  shift, Seo=O,  Sej =ej_~ (j>_ 1). Then  

r(S)  = 1 and the set {z E H : liminf~__,c~ ]lS~xiI 1/~ = o} is residual. In  par t icu lar ,  the  

set {x E H : the  limitlimu-~o~ IISnxll ~/~ exists} is of the first ca tegory (but  it is always 

dense by Corollary 1.2). 

PROOF. For ]c E N let 

M~ = {x E X : there exists n > ]~ such tha t  IIS~xll < k-~}. 

Clearly M~ is an open subset of X. Further, Mk is dense in X. To see this, let x E X 
oo and ~ > 0. Let z = ~ j = o a j e j  and choose n k k such tha t  ~ y = , i a j l  2 < c 2. Set 

Y = ~ j = o  a j e j .  Then ]IY - xil < ~ and Shy = 0. Thus y E Mk and M~ is a dense open 
o o  

subset  of X .  By the Baire category theorem the set M = Nk=o M~ is a dense G5-subset  

of X ,  hence i t  is residual.  

Let x E M.  For each k E N there is nk k k such tha t  IiS~kxll < k -nk so tha t  

liminf._   IIS xll /" = 0. Since set  { x  e H : limsup._   IIs-xll /- = r ( x )  = 1} 
is also residual,  we see tha t  the set {x E H : the  l imit  lim,~--,oo ]lS~xI] ~/~ exists} is of 

the first category. [] 

It  is also possible to combine condit ions (i) and (ii) of Theorem 1.1 and to ob ta in  

points  x E X wi th  I]Tnxl] > a~. ]IT'll for all n; in this  case, however, there  is a res t r ic t ion  

on the sequence (a~). The next lemma and its corollary essentially improve the es t imates  

of [2], Propos i t ion  2.B.2. 

L E M M A  1.4. Let X , Y  be complex Banach spaces, let TT~ E s  (n = 
1, 2, . . . )  be a sequence of operators, let a~ be positive numbers such that z-,~=l~N-~~176 (C~nj'12/3 < 
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1/4. Let x E X .  Then there exists ~ E X such that I1~ - xil < 1/4 ~ d  IIr~,~,ll _> ~tlT~II 
f o r  al l  'n >_ 1. 

PROOF.  Without  loss of generality we can assume tha t  all operators  Tn are non- 
zero. Choose 6 > 0 such tha t  (1+5)  2no~ c~/s < 1/4. Set Sn : (1+6)C~/3 (n : 1, 2 , . . . )  

so tha t  ~=~~ s~ < 1/4. For each n find z~ C X of norm one such tha t  IIT~z~l I _> 
(1 + 6)-111T~ II. 

The proof  will be done in several steps. 

A. For each k C N there are complex numbers A 1 , . . . , i n ,  I~1  < e~ (n = 
1 , . . . , / { )  such tha t  

k 

n ~ l  

Proof. Fix/~ C N. Write 

A = {,~ = (A1, . . . , , ~ k ) E  Ck : IAnl _< e~ (n = 1 , . . . , I t ) } .  

k For A E A set u~ = x + ~-:~=l Anzn. 

For j = 1 , . . . , k  let Ay = {A e A : ]lTju~] I < ajllTjl[}. Let 1 < j < k and 
suppose tha t  A,A' 6 Aj where A = ( l l , . . . , A k )  and A' = ( A I , . . . , A j - I , A } , A j + I , . . . , A k ) .  
Then 

I~,J- :xgI(1-F 6)-~llrjl l ~ I),J-ASI. i lTjzjll-~ I IT j (~-~ ' )11 ~ IITj~II-F IITj~kll < 2~jll~ll 

so tha t  IAj - A~. I < 2aj(1 + 5). Thus, for fixed A1, . . . ,  l j - 1 ,  A j + I , . . . ,  Ak, the set {u C C : 
(Az , . . . ,  Aj_I,  z,, A j + I , . . . ,  lk )  E Aj} is contained in a ball of radius 2aj(1 + 5). 

k 2 Let # be the Lebesgue measure on A. Then #(A) = I],~=l(~re~) and, by the 
Fubini theorem, 

# ( h i )  < 47r(1 + 5)ea~. 
l<n<k Ej 
n#] 

Thus 
k k 

u > r > o. 
j = l  j = l  

Hence there exists ,~ E A \ U ~ =  1Aj. In other words, u = ux satisfies IFTs~ H _> ajlITjll (j = 

1 , . . .  k) and I l u - x [ I  < 2  k k . . . .  1 ta~l ___ E ~ = I  e. < 1/4. 

B. The set M = { x + E = % l  a~z=:  Ia~l _< ~= (~ = 1, 2 , . . . )}  is total ly bounded. 
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Proof. We must show that  for each r] > 0 there is a finite rl-net in M .  Find 

k E N such that  En%k+l en < ?7/2. Set 

k 
( n =  1 , 2 , . . . , k ) } .  

Clearly Mk is compact  so tha t  there exists a finite set F C Mk such tha t  dist {u, F }  <_ 77/2 
for all u E M~. Clearly F is the required r/-net for M.  

Proof  of L e m m a  1.4. By  A, for each/~ E N there is uk E M with 

IIT   II a llT, dl (n = 1 , . . . ,  

By B, there is a convergent subsequence (uk~) of (uk). Denote by u E X its limit. Clearly 

]I u - x H < limsupj__+oo I]uk, - xl] <_ ~n~176 an < 1/4 and 

fitful[ ~ a~tIT~l[ (n = 1, 2 , . . . ) .  

[] 

COROLLARY 1.5. Let T E s  Let (a,~)n>_o be a sequence of positive numbers 

satisfying ~C~=o a 2/a < oo. Then there is a dense subset L C X such that, for each x E L, 

there is k E N with 

NT~xll > ar~llTn]l (n > k). 

Further, there are points x E X such that I]T"xH > an]lT~II for all n > O. 

oo 2/3~ 3/2 
PROOF.  Let x E X and e > 0. Find k E N and s such tha t  4 ~r~=k a,~ ) < 

t a,L T h e n  oo o.12/3 s < e. Set a,~ = - - .  ~ , ~ = k - ~  < 1/4 so that ,  by L e m m a  1.4, there exists 

u E X with I l u -  ~ll < 1/4 and IIT~ull _> a ' l lT~l] (n > k). Thus I l s u - x l l  < 

and IlT~(su)ll >_ adlT=ll  (n _> k). [] 

A bet ter  es t imate can be obtained using the essential norm. For T E Y.(X) and 
a dosed subspace M C X denote by T I M  the restriction T I M  : M --+ X .  For T E s  
let HTII~ = inf{NT[Ml[ : M C X, e o d i m M  < oo}. This quanti ty belongs to "measures of 
non-compactness" since HTI]~, = 0 if and only if T is compact  (for more details see [8]). 
For Hilbert  space operators  IITIlu is equal to the essential norm ItTII~ : inf{tlT + K I I :  K e 
]C(X)} where ]C(X) denotes the ideal of all compact  operators  acting on X.  

The following l emma (see [10], Lemma  1) is a useful technical tool in many  
constructions. It  plays the role of the "orthogonal complement" in general Banach spaces. 

LEMMA 1.6. Let F be a finite dimensional subspace of a Banach space X ,  let 
c > O. Then there exists a closed subspace M C X of finite codimension such that 

Ill + >_ ( 1  - ma {ilflt, 1I II/2} 
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for  all f E F and m C M.  

T H E O R E M  1.7. Let T E s  let (a~)~>o be a sequence of positive numbers 
satisfying E~=o a~ < co. Then each ball in, X of radius greater than 2 ~-~n~__o a~ contains 

a point u such that 

IlT~ull _> anllT~ll, (n : O, 1, . . . ) .  (1) 

PROOF. The statement is trivial if dimX < oo. Suppose that X is infinite 

dimensional. Let x E X and E > 2 oo We show that there is u E X such that ~n:0 an. 
flu - x H < s and (I). Let 6 > 0 satisfy (i + 6)ao + 2(1 + 6) 3 ET=I an < e. We construct 

inductively a convergent sequence (Uk)k>O whose limit will satisfy the required conditions. 

Let uo E X be any vector satisfying lluo - xl[ = a0(l + 6) and flu01[ >_ ao(l + 6) (for 

example, Uo = x + ao(1 § 6)z/llxll will do). 
If  uk E X has already been constructed then set Ek = V { T n u k  : 0 <_ n <_ 

k + 1}. By Lemma 1.6, there is a closed subspace Yk C X of finite codimension such that  
(~;~+1 k lie + yll -> (1 + 6) -~ max{llell, Ilyll/2} for all e e Ek, y E Yk. Let Z~ = ,  ,,--o r-]i=o T - 'Y j .  

Clearly codimZk < oo so that  there is Zk+ 1 E Z k of norm one such that  IlTk+~zk+lll > 
( l + 5 ) - l l l T k + l ] l  u. Clearly TSzk+l E Yi for all s < k + l  and j < k. Set uk+l = 
uk + 2(1 + 5)3ak+lzk+l. Then tluk+l - ukll = 2(1 + f)3ak+l so tha t  the sequence (uk) 

(x] constructed in this way is Cauchy. Denote by u its limit, u = u0 + ~ k = l  2(1 + 5)3akzk. 

Clearly  Ilu - xll _< Ilu0 - xll + 2(1 + ~)3 E ~ % ,  ~k < ~ and IIull > (1 + e ) - l l b o l [  > ~0. For 
each n > 1 we have 

o~ 

HTnu]]= Tn( un+ E 2(a+6)3akzk) >(l+6)-111Tnunl] 
k = n + l  

= (1 + 6)anllT'%~lt >_ anl lTnl l , .  
[] 

If X is a Hilbert space then it is possible to take in the previous proof Yk = E~ .  
The sequence (zk) is then orthonormal  and it is possible to obtain a bet ter  result, which 
improves [2], Theorem 2.A.7 (compare also Remark 2.A.8 of [2] with the just proved 
Theorem 1.7). 

COROLLARY 1.8. Let T be an operator on a Hilbert space H.  Let (a,)~>_o be a 
oo 2 sequence of positive numbers satisfying ~n=o  an < oo. Then in each ball of radius greater 

( than ~~176 a there exists a point x such that IITnxll _> anllTnl[~ (n _> 0). Further, 

there exists a dense subset L C H such tha t /o r  each x E L there is k E N with 

IITnxll > anllTnlle (n > k). 
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Another result which is true for Hilbert space operators is the following theorem, 
see [2], Corollary 3.6. We give an alternative proof  which can be adapted to Banach space 
operators. 

LEMMA 1.9. Let H be a Hilbert space, let T E s  be a non-nilpotent operator. 
Then there exists x E H such that 

PROOF. We distinguish two cases. 

A. There exists a subspace M C H of finite codimension such that  IIT~IMll <_ 
1 51IT=II for infinitely many n's. 

Let { f l , . . . ,  f r}  be an or thonormat  basis in M • Let A = {n E N :  IIT~IMll < 
IIIT~H} , so that  A is an infinite set. For j = 1, r set 5 ' �9 "~ 

Aj = (n  E A:  ]IT~fjfl > ~-~lIr~[I}. 

r r A We show that  ~Jj=l Aj = A. Suppose on the contrary that  there is n E A \ Uj=I  j. Let 
r 

x ~ ~, Ilxll = i and ItT~zll > ~IIT~II. Write x as x = ~ j = l  a j f j  + u where a j  E C and 

~ M.  Then l~jl -< 1, IM] -< 1 and 

[IT~zlI < ~ [ajl" IIT~fyll + IIT~II _< ~ ~'IT~I' + ~"T~'I = 65-IIT~II, 
j= l  

r 
a contradiction. Thus A = Uj=I  Aj and there exists j E {1 , . . . ,  r} such that  Aj is infinite. 

Hence 
IIT"fjll > ~ IIT~fjIl > ~ 1 
IIT~II IIT~I----- F _ ~ = oo. 

n = 0  "rI, E A  i ~ 6 A  i 

1 n B. For each subspace 21// C H of finite codimension, IIT~IMII > 5115" II for all 

but  a finite number of n's. 

We construct inductively a convergent sequence (zk) C H and an increasing 
1 sequence (nk) of positive integers such that  [IT"~xklt >_ ~ .  IIT~Jll (j <_ It). Then the 

. l i T  ~ j  II for all j ,  so that limit x = limk-+oo xk will satisfy IIT~II _> 

E t]T~zH > ~ > = oc. 
j = l  j = l  

Let nl  = 1, x l  E H,  [[xll[ = 1 and [ITz~[I > [ITI[/2- Let k e N and suppose that 
we have found xk C H and ~ < ~ < --. < ~k such that IIr~zkll > ~llr"~ll (j < k). 

Let 
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Clearly codim7Vf < oo so that there are nk+l  > n~: and a vector U~+l E M of norm one 

such that IIT~+~+lll > �89 Then 

T ~ + ~ ( x ~ §  ]~§  - - - -  U k + l )  § T~k+~(xk ~k+1h > 21IT~+~Uk+lll 
~§ ] -- k+l 

> l i t  ~+~ II 
- k + l  

~+~ ~k+~ wi l l  satisfy I IT~+~=k+~l i  > ilT~+~ll so that  either xk+z : xk + -E47 or x k + l  : x k  - -  ~ - -  2 ( k + z )  �9 

Fur ther  T ~  xk J_ T~J ut~ + l (j < k) so t ha t  

IIT~JXk+lll >_ IIT~Jxkll >_ 2~IIT~;II ( j  < k). 

Let (xk) be the sequence const ructed in the  above described way. For m < k we have 

- = ~{=m+l ~" Thus the sequence (Xk) is convergent and  its l imit  x satisfies 
the required condition. [] 

T H E O R E M  1.10. Let T be a non-nilpotent operator on a Hilber~ space H.  Then 
the set { x  E H :  )-]~--o l iT~II } IIT~II -- O0 is residual. 

co IIT~II k}. Clearly P R O O F .  For k E N let M k = { x  E H : ~-]n=0 IIT~II > Mk is open. 
To show tha t  Mk is dense, let x E H and e > 0. By the previous l emma there  is u C H 

such tha t  ~=0~176 IIT~II -- oc. Clearly we can assume tha t  Ilull = e. Then  

I IT~(x+~) l l  I IT~(x -~ ) l l  2~-L' ~ I IT~II  
~=o 1IT'll + I~EII -> 

- -  --OtD 

so tha t  ei ther x + u  or x - u  belongs to Mk. Thus Mk is an open dense subset  of 

X and M = Ak~__0 Mk is residual.  The  points  of M satisfy the required proper ty .  [] 

For Banach space opera tors  the  previous s ta tements  are not true: 

E X A M P L E  1.11. There  are a Banach space X and a non-ni lpotent  opera to r  
oo IIT~xll 

T E s  such tha t  )-]~=0 lIT-li < oo for all x E X.  

P R O O F .  Let X be the  gl space wi th  the s tandard  basis {e0, e z , . . . } .  Let T E 
s  be the weighted backward shift defined by  Teo = 0 and Tek = ~,-T-}/k+l'~2̂ ~k--1 (k _> 1). 
For n C N we have 

o (?% > k), 
Tnek= (kH.1) 2 (?% < ~;) 

(k_nj_l)2 r 

and IIT~II : (?% + I) 2. Thus r(T) : I. 
oo 

Let x 6 X, x : ~k=0 ~kek where ~=0 Ic~kl < oo. Then 

oo ~ oo oo k (k + I) 2 
IIT~xll _ I~kl(k + 1) 2 : ~ I~kl ~ (?% + 1)2( k - ~  + 1) 2 �9 Z IIT~II ]~ (n + - 1 ) ~  --W~- 1) 2 k:o n : O  n : O  k : n  n : O  
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We have 

k (k + 1) 2 [k/2] (k + 1) 2 k 

( n + l ~ - ( ~ - - n + l ) 2  = ~o  ( n + l T G - n + l ) 2  + E 
n = O  = n = [ k / 2 ] + l  

r 
[k/2] 4 k 4 v - ,  1 4~ 2 

-< E--(n+l) 2 + E (k-n+1) 2 - <8LG:/- = 3 ~=o ~=[k/B]+l i=I 

Thus 

(~+1) 2 

(n + 1 )2 (~  - n + 1) 2 

~ 4~2  411xll~ 2 HT"xt ] < l kl. 3 - 3 
n=o HTnH k=O 

m < O O .  

[] 

R E M A R K  1.12. Let H be a Hi lber t  space, let T E s  be an non-ni lpotent  

operator and let c < 2. Using the method of proof of Theorem 1.9 it is easy to check that 

the set 

oo} 
x e H:n/=_o \ ]lTn H ] : 

is residual. For c -- 2 the statement is not true; an example will be given later. For Banaeh 

space X and T 6 s it is possible to show that 

{ } x~X : z_,\~] =oo 
n:O H H 

is residual for all c < I. By the previous example, this is not true for c -- I. 

II .  O R B I T S  I N  R E A L  B A N A C H  S P A C E S  

The main  technical  difficulty in generalizing the results of the previous section 

to the real case is the  lack of approximate  eigenvahes.  Most of the results tha t  do not  use 

approximate  eigenvalues remain  unchanged in the  real case. This is t rue for Theorem 1.1 

(i), Lemma 1.6, Theorems 1.7, 1.8, 1.10 and Remark  1.12. Because of different geometry  

of the  real  line Theorem 1.5 is modified in the  following way: 

T H E O R E M  2.1. Let T be an operator in a real Banach space X .  Let (a~)~>_o 

be a sequence of positive numbers satisfying }-~n~=o a 1/2 < o5. Then there is a dense subset 
L C X such that, for each x 6 L,  there is k E N with 

]lT~xl[ > an]IT~ll (n > k). 

Other  results  can be proved in the  real  case by using the complexificat ion of a 

real  Banach space. Let  X be a real  Banach space. Set Xo = {x + iy : x,  y E X } .  Define a 

norm in Xc by 

I l x + i y H = i n f ~ l a j + i f l j ] . l l x j l l  (x, y E X )  
j = l  
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where the infimmn is taken over all n E N, ~j,~j E R and xj E X such that ~j_1(c~j + 

i/3j)xj = x + iy. With naturally defined algebraic operations, Xc is a complex Banaeh 

space called the complexification of X. It is easy to see that 

max{lIxll,  Ilyll} < II ~ + iylt < llxll + Ilyll (z, y e X) .  

Let T be an operator on X. The complexification of T is the operator Tc E 

E(Xc) defined by Tc(x + iy) = Tx + iTy (a,y C X). Clearly ]ITII < IiTciI <__ 2[ITII. 
By the spectrum of T we understand the spectrum of its complexification T c. Similarly 

we define the spectral radius r(T) = max{IA I : A c cr(Tc)} = limn~oo HTnH I/n. In the 

same way we use for operators in real Banach spaces the essential spectrum Cre(T ) = 

cre(Tc) : {A E C : Tc - I is not  Fredholm},  the  essential spectral  radius re(T)  = re(To) = 
max{hi  : A e Co(T)} and the upper semi-Fredholm spectrum ~ ( T )  : ~ ( T ~ )  : {A e 
C : T~ - l is not  upper  semi-Fredholm}.  Equivalently,  A E (r~e(T) if and only if, for each 
subspace M C Xc of finite codimension, (To - A)[M is not bounded below. Recall  tha t  

a~(T) c o-~(T), see [7]. 
The proof of Theorem 1 (ii) (the existence of vectors x with []TnxN large for all 

n) is based on the  existence of approx imate  eigenvalues and thus it can not  be used in 

the real case. In [12] it  was proved for real  Banaeh space operators  under  an addi t ional  

assumpt ion tha t  r (T )  = 1 and T is power bounded  (sup~ IIT~II < oo). We prove a variant  

of this  result in general.  

L E M M A  2.2. Let X be a real Banach space, T E s  l e t r (T )  = 1, a E ~e(T),  

tal = 1. Then there is a positive constant C (depending only on a )  with the following 
property: for each n E N and each subspace Y C X of finite codimension there exists a 
vector y e Y of norm one with IITJyll _> c ( j  = 0 , 1 , . . . , n ) .  

P R O O F .  There  is k C N such tha t  min{l~Y-ll,  Ic~J+~-ll,.. . ,  [a~+k-1l} _ 1/6 
for all j ~ N.  This  is clear if c~ = e 2~u with t rat ional;  if t is i r ra t ional  then  the set {aJ : 

j = 0, 1 , . . . }  is dense in the unit  circle so tha t  there  is k C N such tha t  {1, a ,  a 2 , . . . ,  a k} 

is a 1/6-net  in the  unit  circle so tha t  the  same is t rue also for the set {a  j ,  a J + l , . . . ,  aJ+k}. 

Set C : ( 6 m a x { l ,  IITII, lIT211,.--, IITkll}) - t .  We have oe E a~e(T)  C ~ ( T ) .  
Let n E N and let Y be a subspace of X of finite eodimension. Let Xc = X + i X  be the 

eomplexification of X and Yo = Y + iY .  Clear ly  Y~ is a subspaee of finite codimension in 
Xc. Then there exists a vector z e Y~ of no rm one such tha t  IITJz - ~Jzl] <_ 1/6 (j = 

o, 1 , . . . ,  n + k ) .  Express  z = u + i v  for some u, v c Y. Then either l[ull >_ 1/2 or IIvll _> 1/2. 
Wi thou t  loss of general i ty  we can assume tha t  [bII >_ 1/2. 

Let j _< n. F ind  j '  C { j , j  + 1 , . . . , j  + k} such tha t  la j' - 11 < 1/6. Then  

I ITYu  - ull _< I l r f z  - zll < HTJ'z - J z l l  + b J ' z  - zll _ 1/6 + 1/6 = 1/3 

so that 

Further []TJ'uII < [ITJ'-ilI . IITJuiI so that lIT&If > 
_ _ 611TY,-3 ii 

IITS'uIl >_ [lull -HTY~ - ull _> 1/2 - 1/3 = 1/6. 

_> C for all j < n. [] 
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The next result is a weaker form of Theorem 1.1 (ii) for real Banach spaces. 

THEOREM 2.3. Let X be a real Bausch space, T < s  let (a=),~>o be a 

sequence of positive numbers, a,~ -+ O. Then there exists a dense subset L c X with the 

property that for  each x E L there is a constant c > 0 with 

[tT~xll ~ c .  a ~ r ( T  ~) (n = O, L . . - ) .  

PROOF.  By replacing a~ by sup{aj  : j _> n} we can assume that  an '% 0. We 

can also assume that  r (T )  = 1. 

We distinguish two cases: 

A. ~ ( T )  < 1. 

Find a E or(T) with lal = 1. Then  a is an isolated eigenvalue of T~. Let M c X~ 

be the corresponding spectral subspace and let P be the Riesz projection onto M. Then  

d i m M  < oo and (To - a ) i M  is a ni lpotent  operator. 

Suppose that  w be a non-zero vector in M.  Let k E N satisfy (T~ - c~)kw = 0 

and (To - a ) k - l w  # 0. Let Q E s  be a projection satisfying Qw = w and 

e (ker(T~ - ~ ) ~ - I l M )  -- 0. 

Then  Q(Tr - a ) T J - t w  = 0 (j = 1, 2 , . . . )  so tha t  QTJw = aQTJ~-lw.  By induct ion we 

get QT~w = aJQw = aJw for all j _> 0. Thus 

IlT~wll > I IOl l -~ lJ I  �9 Ilwll = IIQll-~llwll ( j  _> 0). 

Set Z = {z ~ X=:  Pz # 0}. F o r z  ~ Z we have ][T~Pzll = iIPTJzl[ <_ I[Ptl.l[T~zl] 
so that 

IIPzll 
llT~zll _> IIPII-IIIT~Pzll _> II~ :~ell (J -> 0). 

Clearly Z is an open dense subset of Xc. It is sufficient to show that Z A X is dense in X 

since all vectors y E Z M X satisfy 

IlPv[I > o. 
inf{lITJyll : j = o, 1 , . . . }  > IIPII. IIQll 

Let x C X and c > 0. Let u , v  E X ,  u + i v  7s 0 and T c ( u + i v )  = c~(u+iv) .  Then 

u + iv E M so that  P ( u  + iv) = u + iv r O. Thus either P u  r 0 or P v  r O. Consequently 

at least one of the vectors x, x + Eu, x + r is in X M Z and X N Z is dense in X (in fact 

X A Z is also open so that  it is even a residual subset of X).  

B. r~(T) : 1. 
Find a E cry(T) with [a[ = 1. Let G be the constant from the previous lemma. 

F ind  an increasing sequence rn,  < rn2 < - . .  such that  am~ < 2-0+1) .  Let x E X and 

e > 0. We construct inductively vectors xj (j  = 0, 1 , . . . )  in the following way: 
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Set x0 = x. If j _> 1 and x j - 1  E X has a l ready been const ructed then let 
E j  be the  finite dimensional  subspaces defined by E j  = V { T ~ x s  : n = O , . . . , m j ,  s = 

0 , . . o , j  - 1}. By Lemma 1.6 find a subspace Yj C X of finite codimension sat isfying 

lie + yll -> max{llell/2, Ilyll/4} (e ~ /~ j , y  c 5 0  and a vector ~. e ~ of norm one such 
- -  e u j  tha t  tlT~ujll > C (n = O , . . . , m j ) .  Let x j  = x j - 1  + -53-. Clearly the sequence (x j )  

oo z u  i const ructed  in this  way is convergent; denote its l imit  by u = x + ~ j = l  25 �9 We have 
- -  oo e u j  

II~-  xll < E j : ~ l ] ~ - I t  = ~. 

Let j _> 1, n c N and m j  < n < m j + l .  Then 

k 
us ~ 1 n 

s = j + 2  

j+l  Ce Ce = l im i ( u s )  l e l ]Tnuj+l l l  > _ _ >  
k-~oo~ Tn ~ + c ~ N  > s 2J+~ - S -2J+~- - -g -an '  

s : l  

Thus IIT~u][ > -~-a~ for all n _> m l  so tha t  there  there is a posi t ive constant  c wi th  

IlT~ull >_ c . ~  for all n _> 0. [] 

Consequently, Corol lary 1.2 remains  t rue for opera tors  in real Banach spaces. 

COROLLARY 2.4. Let T be an operator acting on a real Banach space X .  

Then the set {x E X : l imsupn IIT~zllt/~ = r (T)}  is residual and the set {x  E X : 
l iminfn  IlT~xll 1/~ = r(T)} is dense in X .  

COROLLARY 2.5. Let T be an operator acting on a real Banaeh space X ,  let 

(an)n>_o be a sequence of positive numbers such that SUPn an < 1 and limn an = 0. Then 
there exists a norm-one vector x C X such that IITnxll >_ ~n~(T ~) for  all n _> 0. 

P R O O F .  Wi thou t  loss of general i ty  we can assume tha t  r (T )  = 1 and 1 > ao >_ 

a l  _> " ". Let  e be a posit ive number  sat isfying I > (1 + e)a0. For n > 0 set 

bn = m a x { a i ~ . . . a i ~ ( l + e ) ' ~ :  m C N,  i l  + - . . i , ~  = n}. 

Clear ly  bn+k > bnak(1 + ~) (n, k > 0). Fur ther  limn bn = 0. Indeed, let 5 > 0 and choose 
j such tha t  a j (1  + e) < 5 and (a0(1 + e))Y < 5. Let n > j2 and bn = a i l "  . a i~ (1  + e ) 'L  

Then  either is < j for all s or there is s with is > j ;  in bo th  cases it is easy to verify tha t  

bn < 5. Thus bn -+ 0 and by Theorem 2.3 there exists a posit ive constant  C and a vector  

u C X such tha t  IlTJull > C -  by ( j  = O, 1, .). Set C' = infj  fIT311 _ ..  ~ > 0. F ix  k such tha t  

IIT~ull < C ' (1  + e). Set x = T k u  bk ~ .  Then Ilxll = 1 and 

iiT~zt I _ I lTk+~ul l>  C ' - b ~ + ,  
rITkull - C ' ( l + e ) b k  a n  

for all n > O. [] 
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I I I .  W E A K  O R B I T S  

Some results concerning orbits  remain  true also for weak orbits.  An exampte is 
the s ta tement  of Theorem 1.1 (i): 

T H E O R E M  3.1. Let T be an operator in a (real or" complex) Bausch space X ,  

let (a,,)n>_0 be a sequence of positive numbers such that an -+ O. Then the set of all pair's 
(x ,x*)  E X • X* such that 

I(T~x,x*)l ~ a~llT~ll for infinitely many n's 

is residual in X x X*.  In particular, the set 

{(x ,x*)  ~ X x X * :  l imsup l (T~x ,x*)[  ~/'~ = r ( T ) }  

is residual in X x X*.  

PROOF.  (i) For k C N set 

M~ = {(x ,x*)  E X x X * :  there exists n > k such tha t  I(T~x,x*)l  > a~tlT~ll}. 

Clear ly  Mk is an open subset  of X x X*. We prove tha t  M~ is dense. Let x E X,  x* E X* 

and e > O. Choose n > k such tha t  a ,  < e 2. There  is a vector u E X of norm one such 

tha t  IlTnull > ~IIT~]I  . Let  u* e X* satisfy ilu*ll = 1 and (T~u ,u  *) = IlT~ull . We have 

I(T~(z  + eu),x* + cu*)i + l<T~(x + r x* - ~*>1 

+ [(T~(x - eu),x* + ~u*)[ + [(Tn(x - cu),z* - cu*>[ 

_> <T~(E~+ ~ ) , ~  * +x*)  + ( T ~ ( ~  + ~ ) , ~  * -~*}  

+ (T~(su - x), eu* + x*) + (T" (eu  - x), eu* - x*} 

: 1 4 ( T ~ , ~ * > I  : 4~11T%11 > 4a~llTnll. 

Thus there is a pair 

such tha t  I(T~y,y*)l > a~lITnll . Hence (y,y*) E Mk and Mk is dense in X x X*. 
(2O 

By the Baire category theorem the intersect ion M = 0 k = l  M~ is a residual  
subset of X x X* and all pairs (y,y*) E M satisfy I(T~y,y*)l > a~llT~ll for infinitely 

many  n's.  In par t icular ,  for au -- n -1 we obta in  tha t  

(IIT~II] ~/n 
l imsup  l(r"y, y*)ll/~ >_ t imsup  -- r (T)  

n ~ c ~  n - - *  o o  \ ?2 / 

for all pairs (y,y*) in a residual subset of X • X*. [] 
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The weak version of Theorem 1.1 (ii) is an open problem. It  may  be s t a ted  as 

follows: 

P R O B L E M  3.2. Let T be an opera to r  on a complex Banach space X,  let (a~) 

be a sequence of posit ive numbers such tha t  a~ -+ 0. Do there exist vectors x E X and 

x* E X* such tha t  
[(Tnx,x*)[ > a~ . r ( T  ~) 

for all n = 0, 1 , . . . ?  

For real  Banach spaces this is not true,  see [12]. 

A posit ive answer was shown in [12] for posit ive operators  on Banach lat t ices 

and for non-uni ta ry  isometries on Hi lber t  spaces. We show a posi t ive answer for Coo 
opera tors  (i.e., T ~ -+ 0 and T *~ --+ 0 s trongly)  on Hi lber t  spaces. Opera tors  of this class 

p lay  an impor t an t  role in the results  concerning the existence of invariant  subspaces for 

contract ions wi th  rich spect rum,  see e.g. [3], [4]. I t  is an interest ing question whether  it  is 

possible to obta in  these results using the weak orbi ts  ins tead of the Scott  Brown technique. 

L E M M A  3.3. Let T be an operator on a complex Hilbert space H such that 
1 e or(T), IIT~xll --+ 0 and IlT*~xl[ -+ 0 for all x E H .  Then, for all e > O, 5 > O, n E N 
and each subspace M C H of finite codimension, there exists a vector z C M of norm one 
with 

Re (TJz ,  z) > 1 - 5 (j  < n), 

Re (TJ~, ~) >_ - ~  (j > n). (2) 

PROOF. By the uniform boundedness  theorem we have SUPn [ITn[] < oo so 

that r(T) = limn--,oo llTnl] Un < i. Since I E a(T) we have r(T) -- I. Further I is not 
an eigenvalue of T since T n --+ 0 strongly. This implies in particular that H is infinite 

dimensional. Since ~(T) \ ire(T) contains only isolated eigenvalues in the unbounded 

component of C\c%(T), we have I ~ ~e(T). Clearly i E 0ae(T) C ~Tre(T)- This means that 
for all 5 > 0, k E N and M C H,  c o d i m M  < co there is a vector z E M of norm one such 

tha t  ll~Jz - zll <_ 5 (o < j <_ k). Hence Re (TJz,  z) = Re (z, z) + Re (TJz  - z, z) > 1 - 5. 
Denote by A the set of all e > 0 for which (2) is t rue for all 5 > 0, n E N and 

M C H,  c o d i m M  < co. Clearly e E A implies (e, co) C A. Fur ther  A is non-empty  since 
T is power bounded  (clearly supn []Tn][ E A). We show tha t  e E A implies ~ E A. Hence 
inf A = 0 and A = (0, co). 

Suppose tha t  e E A. Let n E N,  5 > 0 and M C H,  c o d i m M  < oc. We may  

assume tha t  5 < 1. By the assumpt ion there is z E M of norm one such tha t  

Re(TJz ,  z) > l - 5  (y < n), 

Re (~Jz, z) > -~  (j > n). 

Since l imj~oo IITJzll = 0 and limj-~oo IIT*Jzli = 0 there exists m > n such tha t  tlTJz]t <_ a/6 

and []T*Jzll < e /6  for all j > m. Consider the subspace Y" = (V{z, T z , . . . , T m z } )  • 
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Clear ly  c o d i m Y  < co. Let Y '  = M ~ f~'~ T - J Y  Since c o d i m T - J Y  < oo for all j ,  we j=0 
have c o d i m Y '  < oo. By the a s s u m p t i o n  there  is u E Y '  of n o r m  one such tha t  

Re (TJu, u} > 1 - 6 (j < m), 

Re (TJu, u) _> -~ (j > ~). 

Since TJu 6 Y for j = 0, 1 , . . .  ,m ,  we have TJu • T i z  for all i , j  <_ m. In  par t i cu la r ,  u • z 

z+~ T h e n  v E k/i and  Nvll : 1. and  IIz + ult = v ~ .  Set v = 7 "  

For 0 <_ j _< n we have 

1 
(Re {TJz, z) + Re (TJu, u)) > 1(1  - 6 + 1 - 6) = 1 - 5. Re (TJv, v) = ~ 

For n < j < m we have 

1 - a  - 3 ~  
Re (TJv, v) = ~I (Re <TJz, z} + Re <Tiu, u)) _> ~(-e + 1 - 6) -> -2- > --4 

Final ly ,  for j > m we have 

Re <Tiv, v> = ~ (Re <TJz, z} + Re (Tiu ,  u> + Re <Tiz, u} + Re <TJu, Z>) 
1 1 ( - e  - 3 3c > ~(-IITJzll-E-IITJzll-  [IT*~zll) > ~ g~) - 4" 

Since 6, n and  M were arb i t rary ,  we have ~ E A. Hence (2) is t rue  for all e > 0. [] 

C O R O L L A R Y  3.4. Let T be an operator actin 9 on a complex Hilbert space H 
such that 1 E ~(T) ,  T~z  -+ 0 and T*~x --+ 0 for all x E H.  Let (a~)~>_o be a sequence of 
positive numbers such that 1 >  ao >_ al > _ ' "  and a~ -+ O. Then there exists x E X of 
norm one such that 

R e ( T n x , x }  > a~ (n = 0 ,1 , . . . ) .  

c 2 

P R O O F .  Let  x / ~  < d < 1 and  s = ~ -  d 2. F i n d  mo E N such t h a t  area < -4. 
F i n d  a vector  uo E H of n o r m  one such tha t  R e ( T ~ u o , u o )  > ~ for all  n _< mo and  

Re (T~uo,  uo) _> -4-- for all n > too. Set xo = duo. We cons t ruc t  induc t ive ly  sequences 

(u~), (xk) C H and  a n  increas ing sequence (ink) such tha t  the  l imi t  x = limk-~oo xk will 

sat isfy the  requi red  condi t ions .  
Suppose  t h a t  k _> 1, m ~ - i  E N a n d  vectors  u o , . . . ,  uk -1 ,  xo, .  �9 �9 xk-1  E H have 

a l ready  been  cons t ruc ted .  Choose m k >  ink-1 such tha t  

s 

am~ <_ 2k+3, 

E 2 
lIT~x~_lll__ ~ and 

62 
I[T*"xk_liI < 2k+s 
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for a l l n  > ink. Let 2Yfk = ~]~--~o T - j ( V { T ~ u i  : 0 < i < k - l , 0 _ <  n_< ink.}• Clearly 

1 ( n < m ~ )  and codim Mk < oo. F ind  uk E J/rt~ of norm one such tha t  Re {T'~uk., u~;) > -~ 
R e ( T " u k , u k )  > - g  ~ (n > ink). T h e n T ~ u ~ ; •  a n d u ~ ; . L T ~ u ~  (n_< m k , i  < ~). In 
par t icular ,  uk • ui. 

Set xk = x~_~ + ~75/~_. Clearly the sequence (x~) const ructed in this way is 
cr d2 ~ z2 _ convergent. Denote  by x its l imit ,  x = duo + Ui=~ 2~/~ �9 Then IIxlP = + F.,=l ~ - 

d ~ + e  ~ = 1 .  For n _< mo we have 

(DO 

\ 2i/2 , 2i/2 __ dYRe (T~uo,uo) _> a0 _> a~. 
i=1 

For m0 < n _< m l  we have 

Re (T~x,  x) = Re (T~xo, xo) + Re \ 2i12 , 2il2 / 
i = 1  

-dYe 2 1 ~ e 2 e 2 
- -  m >  - - >  > a ~ .  

> 4 + 2 / = 1  - 2 ~ - 4 a r e a  

Let k > 1 and m k <  n < m~+l .  Then 

/ eT~ui  eu 5 ) 
! 

i , j = k  

r C2 
-> -IIT x -lH - IlT* x -lll + Z  :ae u0 

i= k  

2c 2 c 2 ~ c 2 
_> -- 2k+----- ~ + ~Re2 (T~uk'  uk) + ~ ~-Re  (T~u~, ui) 

i = k + l  

3C 2 1 ~ C 2 C 2 

--2k+-'-- ~ + ~ ~ 2i -- 2k+3 ~ an. 
i = k + l  

[] 

The next result ,  which is something between the s ta tement  of Theorem 3.1 and 
Prob lem 3.2, is a general izat ion of [12]. We need the following 1emma: 

L E M M A  3.5. Let X be a real or complex Banach space, T E ~ ( X ) ,  r e ( r )  = 1, 
no E N ,  e > O, m E N .  Then there are numbers no < nl  < " .  < n ~  such that, in each 
subspace M C X of finite eodimension, there exists a vector x E M of norm one with 

II T ~ x - x l l - < ~  0 = 1 , 2 , - - . , ' ~ ) .  

P R O O F .  Suppose first t ha t  X is a complex Banach space and T E s  Let 
I e cry(T), ]I] = 1. Then A e ~r=e(T). F ind  s e N such tha t  s > no and [A s - 11 < c /2m.  
Then 

1~, "j - 11 = IZ  - 11. i )d (J -~ )  + ~ . o - . )  §  § 11 _< e / 2  
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for j = 1 , 2 , . . . , m .  Let  x E M be a vector of norm one sat isfying ]lTSJx - MJzll << 
e /2  ( j  = 1 , . . . , m )  so tha t  I]TSJz- all <_ IIT~Jz- l~Jxll + IIASJz- xll _< e. This finishes 

the  proof  in the complex case. 
In the real case consider the complexificat ion Xc of X and Tc C s 

As in the complex case find a vector z E Mc of norm one and s > no such tha t  

I I T ~ J x -  xll < ~/2 ( j  = 1 , . . . , m ) .  Let x = u + iv where u,v  C X .  Then 

II~lI + Ilvll _> 11511 = 1 so tha t  max{llull, Ilvll} >_ 1/2; wi thout  loss of general i ty  we can 

assume tha t  Ilull >_ 1/2. Set y - II~ll" Then y E M,  IIYll = 1 and I ITSJy -y l t  = 

~I@HIIT'J~- ~l l -< 2tl T~j~ -511 _< ~ (J = 1 , . . . , m ) .  [] 

T H E O R E M  3.6. Let X be a real or complez Banach space, T E s  and let 
(aj)j>_l be a sequence of positive numbers with aj --+ O. Then there exist x c X ,  x* E N* 
and an increasing sequence (nj) of positive integers such that 

ne(T~J~,x *) >_ aj.  r(T) ~ 

for all j >_ 1. 

PROOF.  Wi thou t  loss of general i ty we can assume tha t  r(T)  = 1 and tha t  

1/16 > a0 > a l  _> " ". We dist inguish two cases: 

A. Suppose tha t  T ~ does not tend to 0 weakly, so tha t  there are x E X,  z* E X* 

and e > 0 such tha t  I(T'~x,z*)[ >_ c for infinitely many  n's.  

In the real case I(T~x, x*}I < max{Re  (T~z,  x*), Re (Tnx, - x* )  }; in ti le complex 

c a s e  

](Tnx, x*)l _< v ~ .  max{t{e {Tnx, x*}, Re (T~x, is*), Re (Tr~x, -x*} ,  Re (Tnx, - ix*}  }. 

In bo th  cases there are cl > 0 and x~ E X* such tha t  Re (T~z,  x~) >_ cl for infinitely many  
powers n. By considering a sui table mul t ip le  of x~ we get the s ta tement  of the  Theorem.  

B. Suppose tha t  T '~ --+ 0 weakly. 
Using the uniform b oundedness theorem twice it is easy to show tha t  sup{ll T'~II : 

n = 0, 1 , . . . }  = M < oo. Fur ther  T n --+ 0 weakly implies tha t  there  are no eigenvalues of 

modulus  1, i.e., r~(T) = 1. Let s = 8M.  F ind  numbers mk C N such tha t  0 = m0 < m l  < 

m2 < --- and 
1 

aj  < 16s2 k (/c > 0 , j  > m~). 

We construct  inductively sequences (u~)k>0 c X ,  (u~)k>o c X* and an increasing se- 

quence of posit ive integers (nj) in the  following way: 
Set u0 = 0 and u ;  = 0. Let k >_ 0 and suppose tha t  u 0 , . . . , u ~  E X,  u ; , . . . , u ~  E 

k ui  X* and numbers n l , . .  . ,  n ~  k have a l ready been constructed.  Wri te  xk = }-~i=1 sV=_~ and 

k ~; F ind  qk such tha t  I d * 1 xk* : E i=I  s'-*" <T Xk,Xk} I _< ~ (d _ > q~). Find  numbers  

nine+l , . . . ,  n,,~k+, satisfying the proper t ies  of Lemma 3.5 such tha t  

max{nm~., qk} < r~,~k.+l < n ~ + ~  < . . .  < n,,~k+ ,. 



Mfiller 247 

Let Ek = V{Tr~u~ : 0 _< j __ rnk+l ,0  < i < h}. By L e m m a  1.6 there exists a subspace Yk 
of finite codimension such that  

lie + yll ~ max{llell/2, IlYlt/4} (e ~ E~,y ~ Y~). 

Let ~ + ~  e Yk n ( v { T * ' ~  ' : 0 < j < -~k+~, 0 < i < k } ) l  be a veetor of norm one such 
that 

tlTnJuk+l - uk+zll < 1/16 (ink < j < ink+l).  

Find u~+ 1 e Ek ~ such tha t  IbLlll = 1 and 

?.t * ( k+l, uk+l) = dist {uk+l,  Ek} _> 1/4. 

Note tha t  (T~Jui, u~+l) = 0 and ( T ~ u k + l ,  u~') = 0 for all i < k and j < mk+l .  Continue 
oo X *  (x3 zt* the inductive construction and set x = ~ i = 1  ~ ~--" E~=I S i-I " s~--_ ~ and 

To show tha t  x, x* and the sequence (ni) satisfy the required properties,  let 
> 0 and m k <  j < ink+l, We have 

R e ( T ' ~ x ' x * > = R e  T ' ~ r  i - ) , x k +  s'  I 
i = k  i = k  

1 n~ �9 ~, I nj �9 
= R e ( T ~ x k , x ~ }  + s-ff~Re(T uk+l,uk+ j + ~ ~ R e ( T  u~+l, ui+l) 

i = k q - 1  

1 1 . ~-~ M 
_> ----16S2 k + s-- ~ (~e (Uk+l, Uk+l) -- Re (uk+1 -- T n~ Uk+l, u~+1) ) - 2_~ --~2i 

i = k + l  

i ~ 1 I 2 M  I 

>- 7~(-~o +4 16 -~ ) >- ig2~ ~ >-~j 
[] 

COROLLARY 3.7. (el. [16]) Let X be a real or complex Banach space, let 
T e L(X) ,  1 <_ p < o~, r(Z) r O. Then the set 

~ 0  

is residual in X x X* .  Consequently (see [17]), the set 

O 0  7~ 

x C X : z_~k r(TnS ) = c o  
n ~ f )  x J 

is residual in X .  

PROOF .  For k E N set 

: A_~\ r ( T  n] > k . 
r ~ O  x z 
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Clear ly  Mk is open in X • X*. To show that  M~ is dense, let z d X,  x* G X* and c > 0. 

By the previous l emma for a sui table sequence (a~) there are u E X and u* C X* such 

~ = 0  ( = oo. Clearly we can assume tha t  IIv, II < e and ]tu*ll < r Since 

(](T~u'u*)l)  ) = I (T~(u+x)  ,u* ) + (T~(u+x)  ,u*-z*)4r(T~) 

+ (Tn(u -4r( T~)x)' u* + x*) + (Tn(u 7 (  x), u* - x*) p 

{ I(T~(u + z ) ,  u* + z*)I I (T" (u  + x) ,  u* - ~*)1 
< max  r(T~ ) , r(T,~) , 

I<Z~'(u - x), u* + x*)l I (T~(u  - z ) ,  u* - z*)l ]P, 
r(T ~) ' 7(-~-~ f 

oo (l<T"y,v*)l'~ p we have tha t  ~ n = 0  ~(T-) J = oo for at  least  one pair  

(~, y*) e { ( z  + ~,~* + ~* ) , (x  + ~,~* - ~*), ( ~ -  ~ ,x* + ~ * ) , ( ~ -  ~ , z*  - ~*)} .  

Thus i~/k is dense in X x X* and 

{ } M = A M k =  ( x , x * ) e X x X * : z _ _ ~  \ ~ ( ~  =oo 
k n = 0  ~ / 

is residual in X x X*. 

The second statement can be proved similarly (or we can use the fact that 

the canonical projection X • X* -+ X maps residual subsets of X • X* onto residual 

subsets  of X) .  [] 

T H E O R E M  3.8. Let X , Y  be complex Banach spaces, T~ E s  (n = 

1,2,. . .) .  Let (an) be a sequence of positive numbers satisfyin9 ~ = 1  a~/a < 1/4. Let 
B C X ,  B* C Y* be balls of radii equal to 1/4. Then there exist x E B and y* E B* such 
that 

I (T~z ,y*) l  >_ aAIT~ll 

for all n = 1,2, . . . .  

PROOF.  By Lemma 1.4 there exists x E B such tha t  ILT~xll _> a~/211T~ll for all 

n. Consider opera tors  S~ : Y* -+ C defined by S~y* = (T~z,y*) (y* E Y*). Clear ly  
1/2 llS~II = IIT~xll >_ a~ LIT~II for all n. Using Lemma 1.4 again there exists y* C B* such 

t ha t  

= s * a~/211S~ll>_ 

for all n = t , 2 , . . . .  [] 
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COROLLARY 3.9. Let X be a complex Banach space, T ~ s  and let 
(a~)~>o be a sequence of positive numbers satisfying V'~176 a ~/~ z--~n=0 n < oo. Then there is a 
dense subset L C X x X* with the followin 9 property: for all pairs (x, x*) ~ L there is 

k ~ N such that 

I<T"x,~*>l > ~,IIT~II (~ > ~). 

If X is a real Banach space and T ~ s  then the condi t ion ~ an ~/3 < oo 
must  be replaced by  ~ a~ ~/4 < oe (cf. Theorem 2.1). 

COROLLARY 3.10. Let X be a real or complex Banach space, let T ~ s  

Then the set {(x,x*)  ~ X x X* : liminfn--.oo I(T~x,x*}[ ~/~ = r (T)}  is dense in X x X*.  

There is a Hi lber t  space H and a non-ni lpotent  opera tor  E X A M P L E  3.11. 

T ~ s  such tha t  

I ( T n x ' y ) l  < oo 

for all x, y E H.  

P R O O F .  For k ~ 1 let H~ be the  (k + 1)-dimensional Hi lber t  space with  an 

or thonormal  basis e k 0 , e k l , . . . ,  eke. Let Sk C s be the shift ope ra to r  defined by 

Skeko = O, S k e k j  = e ~ , j - 1  ( j  >_ 1). Set H = EDk~=~ Hk and T = Ok~176 21~-Sk. Then 

lIT-II = 2 - - ~  for all n. 
k k 

Let k E N and xk, Yk E Hk, xk -~ ~ j = 0  ajekj ,  Yk = ~ j = o  fljekj. Then 

) 
n=O n=O j = 0  n=O j=O j=O 

k k--1  
1 

n ~ 0  n = 0  

O ~  
Let x , y  E H,  x = ~ ~  xk , y = ~-~k=l Yk where xk ,yk  E Hk. Then 

.=o IIT~It - z_~ tlT~II n = 0  k = l  
0<3 OO 

�9 �9 [lYkll 2 = 3[]xll. l]y[] < oo. 
k----I k:l k=l 

[] 

oo { IIT~llh2 
R E M A R K  3.12. In  the previous example  we have ~ = 0 \  IITN] ] < cc for all 

x E H.  Indeed, using the no ta t ion  of the previous example,  for xk C Hk we have 

n=O j = 0  n=O 
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oo  and for x = O k = l  xk C H we have 

,:2<3 

: ~ V ~ l l l T ~ x k l I ~  ~ 
2_, t IIT~II ,s . , ~ t  IIT~I ) 
n = 0  k = l  n : 0  

oo  

~-~ 3llxk.ll 2 : 3tlxll 2 < ~ .  
k = l  

R E M A R K  3.13. Using the method of Lemma 1.9 it is possible to show that  for 
each Hilbert space operator T E s  and all c < 1 there are vectors x, y E H with 

oo  
V '  (I(T~x,_Y> ] h c 
s  t NT"N / : o o  

(one can even get y ---- x). For Banach space operators this is true for all c < 1/2. 

IV.  L O C A L  C A P A C I T Y  

In this section we replace the powers of an operator by the set of all polynomi- 
als. All Banach spaces are supposed to be complex. Denote by P~ the set of all monic 
polynomials of degree n (by monic we mean that  the leading coefficient is equal to 1). For 
T e s  we write eap~T = inf{llp(T)II : p e 7~} and the capacity of T is defined by 

cap T = .--~olim (cap.  T) Un : i~f(eap.  T) 1/", 

see [6]. Clearly the capacity is related to the spectral radius, capn T < HTnH for all n and 
c a p T  _< r(T). 

For T E s  x E X and n C N write eap , (T ,x )  -- inf{Np(T)xi] : p c P~}. 

In general the limit lim~-§ (cap~(T, x)) 1/~ does not exist; the local capacity cap(T, x) is 
defined by 

: l im sup  (cap~ ( r ,  x) )  . cap(T, x) 1/~ 

By [6], eap T = cap o-(T); recall that  the classical capacity of a nonempty compact  subset 
K C C is defined by c a p K  = l i m , ~ ( c a p ,  K)  1/=, where c a p ~ K  = inf{HPllK : p C P~} 
and IIPNK = sup{Ip(z)l : ~ ~ K}. Since or(T)\~%(T) consists of some bounded components 
of C \ o-e(T) and at most countably many isolated points, it is easy to see that  cap ~e(T) : 
cap c'(T). 

A nonempty compact  subset K C C is called algebraic if p(K) = {0} for some 
nonzero polynomial p. 

The basic results for local capacities are similar to those for the spectral radius. 

T H E O R E M  4.1. Let X be a complex Banach space, T E s  and let c > O. 
Then: 

(i) the set of all x C X with the property that 

cap~(T, x) > (n + I) -(2+~) (cap T) ~ for infinitely many n's 
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is residual. In particular, the set 

{x E X :  c a p ( T , x ) =  l imsup(cap~(T ,x ) )  U~ = c a p T }  

is residual. 
(ii) there is a dense subset R C X with the property that, for each x E 1~, there 

exists k E N with 

cap~(T, x) > (n + 1)-(2+e)(cap T) n (n _>/~). 

In particular, the set {x  E X :  lim~__+~ (cap~(T, x))L/~ = cap T}  is dense. 

PROOF.  (ii) is a reformulation of [10]. To show (i), we need the following lemma: 

L E M M A 4 . 2 .  Let T E s  x E X ,  ~ > 0 and k E N .  Suppose that the set 
K = c%(T) is not algebraic. Then there exists n >_ k such that the set 

L = { y  e X :  lIY - ~11 < 7, llp(T)Yll > (n § 1)-(=+~)llPlb for all p with degp ~ n} 

is a non-empty open subset of X .  

PROOF.  Choose n > k such tha t  (n + 1) -~ < v(1-v) For a polynomial  p(z)  = 
- -  4 " 

~i~=o a iz  i set [p[ = ~ i ~ 0  ]nil. Since K is not an algebraic set, the norms I" ] and t]' IlK are 
equivalent on the set of polynomials  of degree _< n so tha t  there exists a constant  e > 0 
such tha t  Ipl < c .  ]Ip[IK for alI polynomials  p with degp _< n. 

We prove tha t  the set L is open. Let y E L. By a compactness argument ,  there 
exists 6 > 0 such tha t  Ilp(T)yH > 6 + (n + 1) -(2+7) for all polynomials  p with degp  < n 

and [IPLIK = 1. 
5 

Let y '  E X ,  IlY' - xll < V and HY' - Yll < c:m~x(1,11TIl~} " Let p(z)  = ~ = o  aiz~ be 
a polynomial  with IIPIIK = 1. Then 

Hp(T)(y' - y)[I ~ ~ 2  I~d" IITII~IlY ' - Yll <- IPl max{ l ,  I IT I I , - . - ,  I IT IP}"  flY - Y'II < 
i=O 

and 

IIp(T)y'II >- HP(T)yll - IIp(T)(y ' - y)[I > 6 + 
1 1 

6 -  (n+ 1)2+v (n+ 1) 2+v" 

Thus y '  E L. 
It  is sufficient to show tha t  L is non-empty.  Set E = V{x,  T x , . . . ,  T~x} .  By 

[10], Lemma  3 there exists u E X of norm one such tha t  

1 - 7 7  
IlP(T)(e + u)lt -> 2 ( n 7  1) 2 r~(p(T)) 
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for all e E E and all polynomials p, degp <_ n. Note that  

r~(p(T)) = max{lpI : p c Cre(p(T))} = max{Ip(A)[ : A E o-~(T)} = tIPlIK. 

Set y = z + ~ .  Then IIY - zfl = 7/2  < 7 and, for all polynomials p of degree _< n, 

- 3 2 @ ;  i)2 llPIIK > (n + 1)~§ IlPllK- 

Hence y E L. 

Proof of Theorem 4.1 (i). If Ge (T) is an algebraic set then cap T = cap cre (T) = 0, 
so tha t  the statement is trivial. Suppose that  the set K = cry(T) is not algebraic. Fix 

e > 0 .  For e a c h k E N l e t  

Mk = {y E X : there exists n > k such that  cap~(T,y)  > (n + 1) -(2+~) cap~ K} .  

For each z E X and r/ C (0, e) let n = n(x,7, k) >_ k and L = L(x,7, k) C X be as 
constructed in Lemma 4.2. For y E L(x, 7, k) we have 

cap~(T, y) = inf{ltp(T)yll : p c P~} _> inf{(n -F 1)-(=+~)llpll:~ : p c p l }  

> (n + 1) .(2+7) cap~ K > (n + 1) -(2+~) cap~ K. 

Thus U~,v L(x, rh l{) C Mk and U~,~ L(x, 7, k) is an open dense subset of X.  Hence Mk is 
residual for all k and so is the intersection Nk Mk. 

F o r k E N a n d y E M t h e r e i s n _ > k w i t h  

capn(T, y) > (n + 1) -(2+r eapn K. 

In particular, for y C Nk~__l Mk we have 

cap(T, y) = lim sup(cap~ (T, y))l/n_> lim sup (cap~ K ) l / n =  cap K = cap ere (T) = cap T. 
~---~ OO n - - - *  OO 

The opposite inequality cap(T,y)  _< cap T is always true. [] 

Example 1.3 shows that  in general we can not expect to have 

l iminf(cap(T, y))l/r~ = cap T 

for all y in a residual set. Thus (ii) cannot be improved. 

R E M A R K  4.3. The statement of Theorem 4.1 can be generalized to commuting 
n-tuples of operators. The analogue of the second statement was proved in [11]; the 

analogue of part  (i) can be proved as above. 
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