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ORBITS, WEAK ORBITS AND LOCAL CAPACITY OF OPERATORS

Viadimir Miiller

Let T be an operator on a Banach space X. We give a survey
of results concerning orbits {7z : n = 0,1,...} and weak orbits
{{T™z,z*) : n =0,1,...} of T where z € X and z* € X*. Further
we study the local capacity of operators and prove that there is a
residual set of points z € X with the property that the local capacity
cap(T, z) is equal to the global capacity capT. This is an analogy to
the corresponding result for the local spectral radius.

INTRODUCTION

Let T be a bounded linear operator acting on a (real or complex) Banach space
X and let z € X. The orbit of z under the operator T is the sequence {T"z : n = 0,1,...}.
The properties of orbits of different points may differ very much — the orbits of some points
may be “regular” while other points may have very “irregular” orbits.

Many deep results and problems of operator theory may be formulated using
the notion of orbits, For example, T has no nontrivial invariant subspace if and only if the
orbit of each non-zero vector x € X spans the whole space. Similarly, T has no nontrivial
closed invariant subset if and only if the orbit of each = # 0 is dense; in this case all orbits
are extremely irregular.

Analogously, weak orbits under 7" are sequences {{T™z,z*) : n = 0,1,...} where
z € X and z* € X* are fixed. This notion is also closely related to the invariant subspace
problem — the main idea of the celebrated Scott Brown technique is the construction of
a weak orbit with very definite properties.

Many results for both orbits and weak orbits have their parallel for continu-
ous one parameter semigroups of operators. In this context, orbits are closely related to
stability results for semigroups of operators.

In the last section of this paper we study also polynomial orbits. By the poly-
nomial orbit of z € X we mean the set {p(T)z : p polynomial}. Apart from the invariant
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subspace problem this notion is closely connected with the notion of capacity of operators
introduced by P. Halmos.

The aim of this paper is to give a survey of results concerning orbits, weak
orbits and polynomial orbits of operators. We always try to construct all types of orbits as
regular as possible. Many results concerning orbits of operators on complex Hilbert spaces
may be found in [2]. For results concerning semigroups of operators see [14].

Denote by £(X) the set of all bounded linear operators acting on a Banach
space X. We say that a subset M C X is residual if its complement X \ M is of the first
category. Clearly a subset M C X is residual if and only if it contains a dense Gg-set.

I. ORBITS IN COMPLEX BANACH SPACES
In this section X will be a complex Banach space and T' € £(X). It is known

that there is a residual set of points z € X with the property that the local spectral radius
72 (T) = limsup,,_, ., [|T™z||*/™ is equal to the spectral radius

r(T) = lim ||T™||"/" = inf | T/,
e o] T

see [15], [5]. In particular, for z in this residual set, there are infinitely many powers such
that ||T"z| is “large”. Moreover, by [9], there are always points € X such that ||T"z]]
is "large” for all powers n > 0.

More precisely, we have the following results:

THEOREM 1.1. Let T' € L(X), let (an)n>0 be a sequence of positive numbers
such that a, — 0. Then:

(i) the set of all £ € X with the property that
1T™x|| > an|/T™| Jor infinitely many n’s

is residual.
(i3) Let k > 0. Then in each ball in X of radius greater than max{a; : j > k} there
is a vector u such that

1T"ul| > anr{T™) (n>k).

In particular, there is o dense set of points x € X with the property that ||T"z|| >
anr(T™) for all but a finite number of n’s. Further, there exist points © € X
such that |[T"z|| > a,r(T™) for all n > 0.

PROOF. (i) For k € N set
My = {z € X : there exists n > k such that | T"z| > a,||T™||}.

Clearly M}, is an open set. We prove that My, is dense. Let z € X and € > 0. Choosen > k
such that ane™ < 1. There exists 2 € X of norm one such that ||T%z|| > a,e~||T™|.
Then

20, [T < I T™(2e2)|| < NT™(z + £2)|| + [T (z — e2)|
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so that either ||T™(zx+¢€2)|| > an||T™| or [T™{z—ez)l| > a,||T™]|. Thus either z+¢cz € M,

or £ —ez € My, so that dist {z, My} < £. Since x and & were arbitrary, the set M, is dense.
By the Baire category theorem the intersection [y, My is a dense G-set, hence

it is residual. Clearly each z € (5., M satisfles || T™z|| > a,||T™|| for infinitely many n’s.
In particular, for a, = n~? we obtain

n 1/n
r5(T) = limsup ||T™z||*/™ > limsup(ﬂ—?n—u) =r(T)

n—00 n—00
for all z in a residual subset of X. |

COROLLARY 1.2. The set {z € X : limsup,_, o, |T"z||Y/" = r(T)} is residual.
The set {z € X : liminf, .o |T"z|[*/™ = r(T)} is dense. In particular, there is a dense
subset of points x € X with the property that the limit limy_,oo || T™z||Y/™ exists (and is
equal to r(T)).

Theorem 1.1(ii) was first proved in [9]; for Hilbert space operators see also [2].
The existence of the limit lim,_,o [|[7™z||*/™ was also studied in [1]. In general it is not
possible to replace the word “dense” in Corollary 1.2 by “residual”.

EXAMPLE 1.3. Let H be a separable Hilbert space with an orthonormal basis
{ej : 7 =0,1,...} and let S be the backward shift, Seq =0, Se; = e¢;—1 (j > 1). Then
r(S) = 1 and the set {z € H : liminf,_ ||S™z[|*/™ = 0} is residual. In particular, the
set {x € H : the limitlim, .o ||S™z||*/™ exists} is of the first category (but it is always
dense by Corollary 1.2).

PROOF. For k € N let

My = {z € X : there exists n > k such that ||[S"z|| < k™"}.

Clearly M} is an open subset of X. Further, M} is dense in X. To see this, let z € X
and ¢ > 0. Let = Y22 aje; and choose n > k such that 372 o[> < €. Set
y= Z;};Ol ajej. Then |ly — z|| < e and S™y = 0. Thus y € My and My is a dense open
subset of X. By the Baire category theorem the set M = (poq My is a dense Gs-subset
of X, hence it is residual.

Let x € M. For each k € N there is ng > k such that ||S™z|| < k™ so that
lim inf, o [|S™z||Y/® = 0. Since the set {x € H : limsup,_,, [|S*z|l*/" = r(9) = 1}
is also residual, we see that the set {z € H : the limit lim,_.o ||S™z||*/™ exists} is of
the first category. 0

It is also possible to combine conditions (i) and (ii) of Theorem 1.1 and to obtain
points z € X with ||T™z|| > a,, - ||T™|| for all n; in this case, however, there is a restriction
on the sequence (a,). The next lemma and its corollary essentially improve the estimates
of [2], Proposition 2.B.2.

LEMMA 1.4. Let X,Y be complex Banach spaces, let T, € L(X,Y) {(n =
1,2,...) be a sequence of operators, let a,, be positive numbers such that Y oo (0 )?/? <
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1/4. Let z € X. Then there exists u € X such that |ju — z]| < 1/4 and | Ty > an||T0 ||
for allm > 1.

PROOF. Without loss of generality we can assume that all operators T, are non-
zero. Choose § > 0 such that (1+6) > 0, axl® < 1/4. Set e, = (1+6)a2/® (n=1,2,..))
so that 3 " e, < 1/4. For each n find 2z, € X of norm one such that |[Thz,| >
(1+6) T,

The proof will be done in several steps.

A. For each k € N there are complex numbers A1,..., A, |An| < &, (n =
1,...,k) such that

T, (ac + zk: )\nzn)

n=1

Proof. Fix k € N. Write

[ >anllTall (n=1,....k).

A={A=0p.., ) €CF M| <en (n=1,..., k)

For A € A set uy, =z + Z’;:l AnZn.

For j = 1,...,klet A; = {X € A: ||Tju,| < a;||Tj||}. Let 1 < j < k and
suppose that A, X € A; where A = (Ay,..., ) and N = (/\1,...,/\j_l,)\;-,/\j+1,...,)\k).
Then

Ag = N1+ 8) T < Xy = X511 T3] = 1T (ua —wn)ll < [ T5ual + [ T5uh | < 204175

so that |A; — Xj| < 2a;(1 +§). Thus, for fixed A1, ..., Aj=1, Aj41,-.., Ag, the set {v € C:
(AL, oo Ao, B A1, .-, M) € AJ-} is contained in a ball of radius 2a;(1 + §).

Let p be the Lebesgue measure on A. Then u(A) = Hﬁ=l(w5i) and, by the
Fubini theorem,

_ 4aZ(1+6)?

u(Aj) < 4n(1 +6)%a? H (meh) = —Eg——ﬂ(A) < 4a§/3#(A)-
1<n<k J
n#Ej

Thus
k k
u(A\ U Aj) > ,u(A)(l - 4Za§/3) > 0.
j=1 =1
Hence there exists A € A\U?=1 Aj. In other words, u = uy satisfies ||Tjul| > a;||T]| (G =
L. k)and lu—=f| < 8 Ml < F_ e, < 1/4.

B. Theset M = {z+3>>7 Xpzn: Ml <en (n=1,2,.. )} is totally bounded.
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Proof. We must show that for each n > 0 there is a finite n-net in M. Find
k€ N such that 33>, e, <1n/2. Set

k
My = {a:—!—}:/\nzn:l)\n] <én (n:l,Z,,..,k)}.

n=1

Clearly M}, is compact so that there exists a finite set F' C My, such that dist {u, F'} < n/2
for all u € My. Clearly F is the required n-net for M.

Proof of Lernma 1.4, By A, for each k € N there is ux € M with
Touell 2 aallZall (R =1,..., k).

By B, there is a convergent subsequence (u,) of {(uz). Denote by u € X its limit. Clearly
o — ) < Timsup, oo e, — 7l < T30, € < 1/4 and

”Tnu“ > an“Tn“ (’I’L = 1, 2, .. )

a

COROLLARY 1.5. LetT € L(X). Let (an)n>0 be a sequence of positive numbers
satisfying > oo g a2/® < co. Then there is a dense subset L C X such that, for each z € L,
there is k € N with
177 2 anllT"|] (2 k).

Further, there are points © € X such that ||T"z|| > a,||T™|| for all n > 0.

: ] 2/3 3/2
PROOF. Let z € X and € > 0. Find k£ € N and s such that (4 Y e O ) <
s < e Setal, =%, Then >, a’*/3 < 1/4 so that, by Lemma 1.4, there exists

8

u € X with [lu— 2| < 1/4 and |T"ul| > a,IT*| (n > k). Thus |[su—z| < ¢
and ||[T7(su)|| = a 7™ (n = k). |

A better estimate can be obtained using the essential norm. For T € £(X) and
a closed subspace M C X denote by T|M the restriction T|M : M — X. For T € L(X)
let |T}|, = inf{||T|M]|| : M C X,codim M < oco}. This quantity belongs to “measures of
non-compactness” since ||T||, = 0 if and only if T' is compact (for more details see [8]).
For Hilbert space operators |7}, is equal to the essential norm [T}l = inf{{|T+K||: K €
K(X)} where K(X) denotes the ideal of all compact operators acting on X.

The following lemma (see [10], Lemma 1) is a useful technical tool in many
constructions. It plays the role of the “orthogonal complement” in general Banach spaces.

LEMMA 1.6. Let F be a finite dimensional subspace of ¢ Banach space X, let
€ > 0. Then there ezists a closed subspace M C X of finite codimension such that

|17 +mll > (1 —e) max{[|£[}, lmll/2}
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forall fe F andme M.

THEOREM 1.7. Let T € L(X), let (an)n>0 be a sequence of positive numbers
satisfying S oo an < co. Then each ball in X of radius greater than 23,7 an contains
a point u such that

IT™u]l 2 anl| T, (n=0,1,...). (1)

PROOF. The statement is trivial if dim X < oco. Suppose that X is infinite
dimensional. Let z € X and € > 23 - jan. We show that there is w € X such that
llu — z|| < € and (1). Let § > 0 satisfy (1 + 8)ao + 2(1 + 6)* Yoo, an < &. We construct
inductively a convergent sequence (uy)r>o whose limit will satisfy the required conditions.
Let up € X be any vector satisfying |{lug — z]] = ao(l + 6) and ||uol] = ao{l + 8) (for
example, ug = z + ag(l + 8)z/||z|| will do).

If ur, € X has already been constructed then set Ex = \{T"u, : 0 < n <
k +1}. By Lemma 1.6, there is a closed subspace Y3 C X of finite codimension such that
lle+ 9l > (1 + 6)~  max{|lel], lyll/2} for all e € By,y € Yi. Let Zx = Yoko Ny=o T™°Y;.
Clearly codim Z;, < oo so that there is zx11 € Zj of norm one such that [|7%% z,.;]| >
(1 + &)~ T*+Y|,. Clearly T%z;41 € Yj for all s < k+1and j < k. Set upyr =
ug, + 2(1 + 6)3apy12k41. Then [upys — uxl| = 2(1 + 6)3ak41 so that the sequence (ug)
constructed in this way is Cauchy. Denote by u its Nmit, u = ug + > 5oy 2(1 + §)3ag2k.
Clearly |ju — x|} < |luo — =}l + 2(1 + 6)* Y 1, ax < € and [luf] > (1 + 8) 7 luo|| > ao. For
each n > 1 we have

2ol = T (et 3 200+ 6P| > (14 T
k=n+1
=1+ 5)—1i ™ (un_l +2(1 + 6)3anzn) H > (—1+T5)_—2HT" (2(1 + 8)%anzn) ||

= (14 8)an||T" 2]l = an||T™| -
0

If X is a Hilbert space then it is possible to take in the previous proof Y;, = Ei-.
The sequence (zz) is then orthonormal and it is possible to obtain a better result, which
improves [2], Theorem 2.A.7 (compare also Remark 2.A.8 of [2] with the just proved
Theorem 1.7).

COROLLARY 1.8. Let T be an operator on a Hilbert space H. Let (an)n>0 be a

sequence of positive numbers satisfying > oo a2 < co. Then in each ball of radius greater

1/2
than (Zoo az) there exists a point T such that ||T"z|| > a,||T™||e (n > 0). Further,

n=0 "n

there exists a dense subset L C H such that for each x € L there is k € N with

1Tz = anlI Tl (n 2 k).
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Another result which is true for Hilbert space operators is the following theorem,
see [2], Corollary 3.6. We give an alternative proof which can be adapted to Banach space
operators.

LEMMA 1.9. Let H be a Hilbert space, let T € L(H) be a non-nilpotent operator.
Then there exists x € H such thal

PROOF. We distinguish two cases.

A. There exists a subspace M C H of finite codimension such that |77 M| <
H|T™|| for infinitely many n'’s.

Let {f1,..., f-} be an orthonormal basis in M*+. Let A = {n eN: ITMM]] <
|71}, so that A is an infinite set. For j = 1,...,7 set

T 1 H
A= {ne A [T7f] = )T}
We show that | Jj, 4; = A. Suppose on the contrary that there is n € A\ Jj_, 4;. Let

v € H, ||zl| = 1 and [Tz|| > §||T™||. Write z as z = 3> _; a; f; + u where a; € C and
uw€ M. Then |a;| < 1, |lul| £1 and

77 < 3 lagl - 74+ 17l < |2+ 31T = ST

a contradiction. Thus A = [, 4; and there exists j € {1,...,r} such that A; is infinite.
Hence -

T 17" f511 Z 1T"fll o 5~ L

2. | T 2 2 5

B. For each subspace M C H of finite codimension, ||[T™|M|| > 3]|T™|| for all
but a finite number of n’s.

We construct inductively a convergent sequence {xx) C H and an increasing
sequence (ng) of positive integers such that 1T x| > 1 NT™ | (j < k). Then the

limit 2 = limy_, o 23 will satisfy [|[T% 2|l > 55 - [|[T™ ] for all 7, so that
Tl o <~ 1Tl o 1
Z ) o=
;) 7] > Z 2 2%

Let ny = 1,21 € H, ||z1)| = 1 and ||Tzq|| > [|T]|/2. Let & € N and suppose that
we have found z € H and ny < np < --- < ng such that [Tz > 2][IT"JH (5 < k).
Let
M= T‘S(V{Tf:ci <G S 1< SR

s<ng
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Clearly codim M < oo so that there are ngy1 > ng and a vector ugy; € M of norm one

such that || T™+1ugqq| > Z||T™+||. Then
Ukt Ugo1 2T upy || (1T |
oo ) o~ ) ATl
H Tty + E+1= 7 k+1 T k+1
3 71
so that either zgx11 = 25 + 1/2:11 Or Tp41 = Z’jll 2T(k+1)”'

Further T™xp L T™upyy  (§ < k) so that
" - | R )
1Tzl 2 1 T™ ]| > ZHT N G<k).

Let (z) be the sequence constructed in the above described way. For m < k we have
lzk — zm||? = Zk_m+1 #- Thus the sequence () is convergent and its limit z satisfies
the required condition. O

THEOREM 1.10. Let T be a non-nilpotent operator on a Hilbert space H. Then

the set {x €eH:Y 2, ””:,;z”” = oo} is residual.

PROOF.For ke Nlet My ={z € H: Y .., llf;f“” > k}. Clearly My, is open.
To show that Mk is dense, let z € H and £ > 0. By the previous lemma there is u € H
such that » 7 Illj;qnlh” = c0. Clearly we can assume that ||ull = e. Then

1Tz + w)|| Z 177 (z — )] 77|
Z 259 =
[ = R 2 P = e
so that either z + u or z — u belongs to My. Thus Mj is an open dense subset of
X and M = ﬂzozo My, is residual. The points of M satisfy the required property. O
For Banach space operators the previous statements are not true:

EXAMPLE 1.11. There are a Banach space X and a non-nilpotent operator
T € £(X) such that 307, Icdl < co forall z € X

PROOF¥. Let X be the £; space with the standard basis {eq,e1,...}. Let T' €
L(X) be the weighted backward shift defined by Tey = 0 and Te;, = (-k;g—l)zek_l (k> 1).

For n € N we have
n 0 (n > k),
= 2
€L ‘(%%'Tek—n (n S k)

and ||T"|| = (n + 1)%. Thus r(T) = 1.
Let z € X, 2z =Y 1o, areg where > po || < co. Then

o lakl(k +1)2 (k+1)2
§§(n+1)2(k—n+1)2 Z’ "'Z (n+1)2(k —n-+1)2°

n=

n
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We have
i k+1) :“”2/2] (k +1)? . i (k +1)?
i+ 12k -n+1)? A (n+1)2(k—n+1)? nleT41 (n+1)2(k—-n+1)2
[k/2] k ©0
4 4 1 47?
<Y tmr 3 <5 -4
- 2 - 2 — 2
— (n+1) n:[k/2]+l( n-+1) P 3
Thus

O

REMARK 1.12. Let H be a Hilbert space, let T € £(H) be an non-nilpotent
operator and let ¢ < 2. Using the method of proof of Theorem 1.9 it is easy to check that

the set .
e §0EY -}

is residual. For ¢ = 2 the statement is not true; an example will be given later. For Banach
space X and T € L£(X) it is possible to show that

7" =] }
reX: ( = 00
{ Z =l )
is residual for all ¢ < 1. By the previous example, this is not true for ¢ = 1.

II. ORBITS IN REAL BANACH SPACES

The main technical difficulty in generalizing the results of the previous section
to the real case is the lack of approximate eigenvalues. Most of the results that do not use
approximate eigenvalues remain unchanged in the real case. This is true for Theorem 1.1
(i), Lemma 1.6, Theorems 1.7, 1.8, 1.10 and Remark 1.12. Because of different geometry
of the real line Theorem 1.5 is modified in the following way:

THEOREM 2.1. Let T be an operator in o real Banach space X. Let (an)n>0
S/

be a sequence of positive numbers satisfying > oo an’ - < 00. Then there is a dense subset

L C X such that, for each x € L, there is k € N with
1Tz = anlT*||  (nZ k).

Other results can be proved in the real case by using the complexification of a
real Banach space. Let X be a real Banach space. Set X, = {z + iy : 2,y € X}. Define a
norm in X, by

|z + iyl = inf » |y + i8] llzsll (39 € X)
j=1
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where the infimum is taken over all n € N, a;,5; € R and z; € X such that Z;’:l(aj +
i8;)z; = = + dy. With naturally defined algebraic operations, X, is a complex Banach
space called the complexification of X. It is easy to see that

max{||zl}, lyll} < llz + iyl < =l + ] (z,y € X).

Let 7 be an operator on X. The complexification of 7" is the operator T, €
L(X.) defined by Te(z +iy) = Tz + Ty (z,y € X). Clearly |T]| < [|Te]| < 2T}
By the spectrum of T we understand the spectrum of its complexification 7. Similarly
we define the spectral radius 7(T) = max{[A| : A € ¢(Te)} = limp—oo [|T7]|™. In the
same way we use for operators in real Banach spaces the essential spectrum oc.(T) =
oe(T.) = {A € C: T, — X is not Fredholm}, the essential spectral radius r.(T) = r.(T:) =
max{|A] : A € 0o(T)} and the upper semi-Fredholm spectrum o,e(T) = 0,e(Te) = {A €
C : T, — ) is not upper semi-Fredholm}. Equivalently, A € a..(T) if and only if, for each
subspace M C X, of finite codimension, (T, — A)|M is not bounded below. Recall that
90e(T) C o7e(T), see [T].

The proof of Theorem 1 (ii) (the existence of vectors z with ||T"z}| large for all
n) is based on the existence of approximate eigenvalues and thus it can not be used in
the real case. In [12] it was proved for real Banach space operators under an additional
assumption that 7(T") = 1 and T is power bounded (sup,, ||T"|| < co). We prove a variant
of this result in general.

LEMMA 2.2. Let X be a real Banach space, T € L(X), letr(T) =1, a € 0.(T),
lal = 1. Then there is a positive constant C (depending only on o) with the following
property: for each n € N and each subspace Y C X of finite codimension there exists a
vector y € Y of norm one with |[T7y|| > C (j=0,1,...,n).

PROOF. There is k € N such that min{|af — 1], |a? ™1 —1],..., [ad*F—1|} < 1/6
for all j € N. This is clear if & = > with ¢ rational; if ¢ is irrational then the set {a :
J=0,1,...} is dense in the unit circle so that there is k¥ € N such that {1,,0?,...,a"}
is a 1/6-net in the unit circle so that the same is true also for the set {a7, a?*?,... oI tk},

Set C = (6max{1,||T||,|T2l,---, |T*|}) " We have & € 80o(T) C oe(T).
Let n € N and let Y be a subspace of X of finite codimension. Let X, = X + 71X be the
complexification of X and Y, =Y +4Y. Clearly Y; is a subspace of finite codimension in
X.. Then there exists a vector z € Y, of norm one such that |77z — o?2|| < 1/6 (j =
0,1,...,n+k). Express z = u+v for some u,v € Y. Then either [|uf| > 1/2 or |Jvf] > 1/2.
Without loss of generality we can assume that [Ju]] > 1/2.

Let 7 <n. Find j' € {j,j +1,...,j + k} such that |o¥ — 1] < 1/6. Then

177w —ul| <192 —2|| < |1T9 2 — o 2| + lo? 2 — 2| < 1/6 +1/6 = 1/3
so that
177 ull 2 fluf) = 177w — u] > 1/2 - 1/3 = 1/6.

Further ||79'u|| < [[T9'~9|] - ||T9u|| so that |T9u| > sy 2 Cforall j < n. O
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The next result is a weaker form of Theorem 1.1 (ii) for real Banach spaces.
THEOREM 2.3. Let X be a real Banach space, T € L(X), let (an)n>0 be a

sequence of positive numbers, a, — 0. Then there exists a dense subset L C X with the
property that for each © € L there is o constant ¢ > 0 with

1T7z|| > ¢ anr(T™) (n=0,1,...).

PROOF. By replacing an, by sup{a; : j > n} we can assume that a, \, 0. We
can also assume that 7(T') = 1.

We distinguish two cases:

A r.(T) < 1.

Find o € o(T) with || = 1. Then « is an isolated eigenvalue of T,. Let M C X,
be the corresponding spectral subspace and let P be the Riesz projection onto M. Then
dim M < oo and (T, — a)|M is a nilpotent operator.

Suppose that w be a non-zero vector in M. Let k € N satisfy (T, — a)fw = 0
and (T, — a)*~*w # 0. Let @ € L(M) be a projection satisfying Quw = w and

Q (ker(T, — a)* M) = 0.

Then Q(T. — )T 'w=0 (j=1,2,...) so that QT/w = aQTI *w. By induction we
get QTw = ofQuw = oJw for all § > 0. Thus

17wl > QI | wll = I vl (>0

Set Z = {z € X.: Pz # 0}. For z € Z we have [T Pz|| = | PT{z|| < | P||-||T¥]]
80 that 1P
z
TSR Jj = 0).
wrer Y20
Clearly Z is an open dense subset of X.. It is sufficient to show that Z N X is dense in X
since all vectors y € Z N X satisfy

1722 > | P|~HITZ P2l >

Pyl
Pl

Let z € X and € > 0. Let u,v € X, u+iv # 0 and T,(u-+iv) = a{u+iv). Then
u+1v € M so that P(u+iv) = u + v # 0. Thus either Pu # 0 or Pv # 0. Consequently
at least one of the vectors =,z + eu,z +ev is in X N Z and X N Z is dense in X (in fact
X N Z is also open so that it is even a residual subset of X).

inf{||79y||: § = 0,1,...} > IR > 0.

B.r.(T) = 1.
Find o € 0.(T) with |a| = 1. Let C be the constant from the previous lemma.
Find an increasing sequence my < mgy < --- such that an; < 2=U+) | Tet z € X and

¢ > 0. We construct inductively vectors z; (j =0,1,...) in the following way:
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Set 9 = z. If j > 1 and z;—; € X has already been constructed then let
E; be the finite dimensional subspaces defined by E; = V{T™z; : n = 0,...,mj,s =
0,...,5 —1}. By Lemma 1.6 find a subspace ¥; C X of finite codimension satisfying
lle +yll > max{|le||/2,|lyll/4} (e € Ej,y € Y;) and a vector u; € ¥; of norm one such
that {|T%u;]l > C (n = 0,...,m ). Let z; = z;_1 + SF. Clearly the sequence (z;)
constructed in this way is convergent denote its limit by u=z+ Yy =1 Ezuj. We have
lu—el < 252, 5 =

Let j > 1,n €N and mj <n <mjyq1. Then

IT™u] = lim (72, = Jim HT (x1+l+e Z )H > lim —||Tnzj+1[l

1 el|T™ 41| S Ce Ce
2741 = g.9j+1 = g

= lim

Ap.
k-—»ooZ‘ ™

T"(a:—}—ez )

Thus [|[T™u| > $fa, for all n > my so that there there is a positive constant ¢ with
lT"u]] > ¢- ap for all n > 0. O
Consequently, Corollary 1.2 remains true for operators in real Banach spaces.
COROLLARY 2.4. Let T be an operator acting on a real Banach space X.
Then the set {x € X : limsup, |[T"z||"/" = r(T)} is residual and the set {z € X :
lim inf, ||[T™z||Y/™ = r(T)} is dense in X.
COROLLARY 2.5. Let T be an operator acting on a real Banach space X, let

(an)n>o0 be a sequence of positive numbers such that sup,, a, < 1 and lim, a, = 0. Then
there ezists a norm-one vector x € X such that |T"z| > a,7(T™) for all n > 0.

PROOF. Without loss of generality we can assume that 7(T) =1 and 1 > ag >
ay > ---. Let € be a positive number satisfying 1 > (1 + €)ag. For n > 0 set

bn = max{a; ---a;, (1+e)" :meN,i1+ - iy =n}.

Clearly bpir > bpap(l+¢) (n,k > 0). Farther lim, b, = 0. Indeed, let § > 0 and choose
J such that a;(1+¢) < § and (aop(1 +¢))? < §. Let n > j2 and b, = a;, -+~ a;, (1 + €)™
Then either 15 < j for all s or there is s with i; > j; in both cases it is easy to verify that
by, < 4. Thus b, — 0 and by Theorem 2.3 there exists a positive constant C and a vector
u € X such that [|[T9ul| > C-b; (j=0,1,...). Set C' = inf, %’—I > 0. Fix k such that

By Eqy
lll;k L<c'(i+e). Set o= Hg—kuﬂ Then |jz|| = 1 and

| TE+mu C’ - bpen

Trgl| =
I} [Tl = C'(1+ e)bp =

for all n > 0. a
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III. WEAK ORBITS

Some results concerning orbits remain true also for weak orbits. An example is
the statement of Theorem 1.1 {i):

THEOREM 3.1. Let T be an operator in a (real or complez) Banach space X,
let (an)n>0 e a sequence of positive numbers such that a, — 0. Then the set of all pairs
(z,z*) € X x X* such that

{Thz, z*)| > an |7 for infinitely many n’s
is residual in X x X*. In particular, the set

{(z,2*) € X x X* : limsup [(T"z, z*)|*/™ = r(T)}

-0
is residual in X x X*.

PROOF. (i) For k € N set
My = {(z,z*) € X x X*: there exists n > k such that [(T"z,z*)] > an | T}

Clearly M, is an open subset of X x X*. We prove that My, is dense. Let z € X, z* € X*
and € > 0. Choose n > k such that a, < £2. There is a vector © € X of norm one such
that ||7™ul} > 2 |T™||. Let u* € X* satisfy ||u*|| = 1 and (T™u, u*) = ||T™u|. We have
KT™(z + eu), ™ + euw™)| + (T (z + eu), z* — eu™)|
+ [(T™(z — eu),z* + eu™)| + [{(T"(z — eu), =¥ — eu™)
> (T {eu+z),eu* + 2") + (T (eu + z),eu” — z*)
+ (IT™(eu — z), ev* + z*) + (T™(eu — @), eu™* — )
= |4(T™eu, eu*)| = 4€2||T™u|| > da, || T

Thus there is a pair
(y,v") € {(:c +eu, ¥ +eu), (z + eu, ¥ —eu®), (v — eu, ¢ + eu?), (z - eu, z¥ — Eu*)}

such that [Ty, v*}| > a,||T"]||. Hence (y,y*) € My and My, is dense in X x X*.

By the Baire category theorem the intersection M = (7., Mj is a residual
subset of X x X* and all pairs (y,y*) € M satisfy [(T"y,y*)| > a.||T"|| for infinitely
many n's. In particular, for a, = n~! we obtain that

T\ 1/n
lim sup [(T™y, y*)|*/™ > 1imsup(“—n—“>

n—oQ kU aud e o]

= r(T)

for all pairs (y,y*) in a residual subset of X x X*. 0
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The weak version of Theorem 1.1 (ii) is an open problem. It may be stated as
follows:

PROBLEM 3.2. Let T be an operator on a complex Banach space X, let (a,)
be a sequence of positive numbers such that a, — 0. Do there exist vectors z € X and
z* € X* such that

Tz, z*)| 2 an - 7{(T™)

foralm=0,1,...7
For real Banach spaces this is not true, see [12].

A positive answer was shown in [12] for positive operators on Banach lattices
and for non-unitary isometries on Hilbert spaces. We show a positive answer for Cgg
operators (i.e., T™ — 0 and T*" — 0 strongly) on Hilbert spaces. Operators of this class
play an important role in the results concerning the existence of invariant subspaces for
contractions with rich spectrum, see e.g. [3], [4]. It is an interesting question whether it is
possible to obtain these results using the weak orbits instead of the Scott Brown technique.

LEMMA 3.3. Let T be an operator on a complex Hilbert space H such that
1e€a(T), Tz} = 0 and |[T*"z|| — 0 for allz € H. Then, for alle > 0,6 >0, n e N
and each subspace M C H of finite codimension, there exists a vector z € M of norm one
with )

Re(T7 2, 2)
Re(T72z,z2)

1-4 (JS”)7
—€ G >mn).

(2)

2
2

PROOF. By the uniform boundedness theorem we have sup, [|T™| < oo so
that 7(T) = limp—eo ||T™]|¥™ < 1. Since 1 € o(T) we have r(T) = 1. Further 1 is not
an eigenvalue of T" since T™ — 0 strongly. This implies in particular that H is infinite
dimensional. Since o(T) \ o(T) contains only isolated eigenvalues in the unbounded
component of C\o.(T), we have 1 € g.(T). Clearly 1 € do(T) C 0xe(T). This means that
forall § >0,k € Nand M C H, codim M < oo there is a vector z € M of norm one such
that |79z — 2] <6 (0 <j <k). Hence Re(T7z,2) = Re(z,2) + Re (T2 — z,2) > 1 6.

Denote by A the set of all £ > 0 for which (2) is true for all § > 0,7 € N and
M C H, codim M < co. Clearly ¢ € A implies (g,00) C A. Further A is non-empty since
T is power bounded (clearly sup,, ||T"|| € A). We show that ¢ € A implies 3¢ € A. Hence
inf A =0 and 4 = (0, c0).

Suppose that ¢ € A. Let n € N, § > 0 and M C H, codimM < oco. We may
assurie that ¢ < 1. By the assumption there is z € M of norm one such that

Re (192, z)
Re (T9z,2)

1-6 (7 < n),

2
> —£ (j >n).

Since limj—.oo [|T72]| = 0 and lim;j—,o0 [|7*7 2]| = O there exists m > n such that |77 2]} < £/6
and [|T*z]] < /6 for all § > m. Consider the subspace ¥ = (V{z, Tz,...,Tmz})J'.
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Clearly codimY < co. Let Y/ = M N ﬂ;”:o T—9Y. Since codimT 7Y < co for all §, we
have codimY”’ < co. By the assumption there is u € Y’ of norm one such that
Re (T9u, u)
Re (T7u, u)

1-6  (5<m),

>
z—e  (3>m)

Since TVu € Y for j = 0,1,...,m, we have TJu L T%z for all 4, j < m. In particular, u 1L z
and ||z + ul] = V2. Set v = sty Then v € M and ||v|| = 1.

) N
For 0 < 5 < n we have

1

Re <Tj7),'l)> = *2—

2|

(Re (T%, z) +Re (TIu,u)) > =(1-6+1—-68) =1-36.

For n < 5 < m we have

—

Re (T, v) = %(Re (T97,2) + Re (Thu,u)) 2 2(-e+1-6) > == > ;ff

]

Finally, for 7 > m we have

Re (T9v,v) = = (Re (T9z, z) + Re (T7u,u) + Re (T72,u) + Re (T7u, 2))

[N
—
W
(9%
&

—(~||TJZH —e = [T2l| = |T2]l) 2 5(~¢ - ze) = =

Since 6,n and M were arbitrary, we have % € A. Hence (2) is true for all e > 0. O

COROLLARY 3.4. Let T be an operator acting on o complez Hilbert space H
such that 1 € o(T), T"z — 0 and T*"z — 0 for all x € H. Let (an)n>0 be a sequence of
positive numbers such that 1 > ag > ay > --- and a, — 0. Then there exisis x € X of
norm one such that

Re(T"z,z) > an (n=0,1,...).

PROOF. Let \Jag <d < lande=+1— d?. Find mg € N such that g, < 52.
Find a vector up € H of norm one such that Re (T™uq,up) > % for all n < mp and
Re (T™ug, uo) > =F . We construct inductively sequences
(ux), (zx) C H and an increasing sequence (my) such that the limit z = limg,co 25 will
satisfy the required conditions.

Suppose that k > 1, mg_; € N and vectors ug, . . ., Ug—1, %0, . - ., Tk—1 € H have
already been constructed. Choose my > my_1 such that

2
Gy < pYE=g

2
"

£
mk_ln S W and

1 €
1T 261l < 3235
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for all n > my. Let M = ﬂ;"z’“o T3 (V{T”ui 0<i<k~-1,0<n< mk}l), Clearly
codim My, < oo. Find uy € M, of norm one such that Re (T™ug, ug) > % (n < my) and
Re (T™ug, ug) > —% (n > myg). Then T™up L u; and ux L T%u; (n < my,2 < k). In
particular, uy L u;.

Set Tx = zp_1 + 5/ Clearly the sequence (zy) constructed in this Way is
convergent Denote by « its limit, z = dug + >332, 5%. Then |lz]]® = d> + 302, & =
d? + &2 = 1. For n < mg we have

o0
T"u; ey
Re (T"z,z) = Re (T™dug, dug) + ZRe <§§;/2i, 2532> > d®Re (T™ug, ug) > ag = ay,.
i=1

For mg < n < my we have

o0
n o eT™u; euy
Re Tz, z) = Re (T"z0, zq) + ,_EIR6<W’W>
—d?2? 1 X e? | g2
Z 4 +§§ —iZZZangan-

Let £ > 1 and mg < n < mp41. Then

eT™u; euy
Re(T"z,z) = Re (T"zg-1,z) + Re (T™(z — Tp—1), Tp—1) Z Re <—2—;7§—3,2]—/2>
3,j=k

o 2
*71 £ i3
2 [T sl = | Tzl + i Re (T i, wi)

i=k
2¢2 2, &2
2 ~oxi3 + Re (T ug, ug) + Z ERe (T™ug, ;)
i=k-+1
32 1 X g2 s S
2 gty 25 =g 20
i=k+1

O

The next result, which is something between the statement of Theorem 3.1 and
Problem 3.2, is a generalization of {12]. We need the following lemma:

LEMMA 3.5. Let X be a real or complex Banach space, T € L(X), 7.(T) = 1,
ng € N, ¢ > 0, m € N. Then there are numbers ng < ny < --- < n,, such that, in each
subspace M C X of finite codimension, there erists a vector x € M of norm one with
ITHz—zl|<e (j=1,2,...,m).

PROOF. Suppose first that X is a complex Banach space and T' € £(X). Let
A € 0e(T), |\ = 1. Then A € 0re(T). Find s € N such that s > ng and |A° — 1| < &/2m.
Then

T 1 = A = 1] A0 0D 1) < /2
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for j = 1,2,...,m. Let € M be a vector of norm one satisfying ||T%z — A\¥z| <
e/2 (j=1,...,m)so that [|[T%z — z|| < [Tz — A¥z| + |A\¥z — z|| < e. This finishes
the proof in the complex case.

In the real case consider the complexification X, of X and T, € £L(X,).
As in the complex case find a vector x € M. of norm one and 5 > ng such that
T3z ~z|| < e/2 (j = 1,...,m). Let £ = u+ iv where u,v € X. Then
llull + llvli = |l=|| = 1 so that max{|ju|,||v||} > 1/2; without loss of generality we can
assume that [lu| > 1/2. Set y = pir. Then y € M, [yl = 1 and [Ty ~ y|| =
H—}LﬂHT”u—uH <2T9z —z|| < e (J=1,...,m). O

THEOREM 3.6. Let X be a real or complez Banach space, T' € L(X) and let

(aj)j>1 be o sequence of positive numbers with a; — 0. Then there ezist z € X, z* € X*
and an increasing sequence (n;) of positive integers such that

Re{T™ z,z*) > a; - r(T)™
for all 3 > 1.
PROOF. Without loss of generality we can assume that r(T) = 1 and that
1/16 > ag > a1 > ---. We distinguish two cases:
A. Suppose that T™ does not tend to 0 weakly, so that there are 2z € X, z* ¢ X*
and ¢ > 0 such that [(T"z,z*)| > ¢ for infinitely many n’s.

In the real case |(T"w, z*)| < max{Re (T"z,z*), Re (I™z, —z*) }; in the complex
case

(T7z,z*)| < V2 - max{Re(T"z,z*),Re (T"z,iz"),Re (T"z, —z*), Re (T"z, —iz*) }.

In both cases there are c; > 0 and z% € X* such that Re (T"z,27) > ¢, for infinitely many
powers n.. By considering a suitable multiple of ] we get the statement of the Theorem.

B. Suppose that 7™ — 0 weakly.

Using the uniform boundedness theorem twice it is easy to show that sup{||T™] :
n=0,1,...} = M < co. Further 7" — 0 weakly implies that there are no eigenvalues of
modulus 1, i.e., 7o(T) = 1. Let s = 8M. Find numbers my € N such that 0 = mg < my <
my < --- and

1652k
We construct inductively sequences (ug)r>0 C X, (ug)p>0 C X™ and an increasing se-
quence of positive integers (n;) in the following way:

Set ug = 0 and uf = 0. Let k > 0 and suppose that ug,...,ux € X, u,...,ug €

X* and numbers n1,...,n,, have already been constructed. Write zx = Zle s%7 and
Ty = Ele s—f‘-_‘} Find g such that [(T79zg,z})| < —1—6—235 (7 > qgi). Find numbers
Nmy1s+ - > oy, Satisfying the properties of Lemma 3.5 such that

max{nmk,q/c} < My +1 < Momp+2 < e Ty
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Let By = V{T™u; : 0 < j <my41,0 <4 < k}. By Lemma 1.6 there exists a subspace Y},
of finite codimension such that

lle + yll = max{llel|/2,[lyll/4} (e € Ex,y € V).

. . i
Let ugy1 € Y N (V{T*”fu;‘ 0L < mp,0 <0 < k}) be a vector of norm one such
that

l‘T"juk+1 - uk+1|] < 1/16 (mp <j< Mgt1)-
Find uf,, € Ef such that [ju} ]| = 1 and

<uk+1,uz+1> = dist {uk+1,Ek} > 1/4.

Note that (T™ us, uf ;) = 0 and (T™ ugq1,w ;-*) =0 forall : <k and j < myy;. Continue
the inductive construction and set z = 3.72; ¥y and z* = 372, .
To show that x, z* and the sequence (n;) satisly the required properties, let

k>0 and mp < j < mgyr. We have

Re (IT™ z,z*) = Re <T”J zx + Z UZH ) zh +

E3
Uip1 >
i=k

st

SILMS

) " 1
ZRe<Tn].'L'1g,"Ek)+ R (T Uk+lauk+1 + Z Re<T Uit1s z+1>

z—-k-}-l
1 1 . - ) = M
i “‘1—6—87,6‘ + ;ﬁ(Re <’uk+1,uk+1> — Re ('u.k+1 -7 Juk+1,uk+l)) - Z ;E
i=k-+1
1 1 1 1 2M 1
> (- - = I — > a.
2wt g )2 gE 2y

0

COROLLARY 3.7. (cf. [16]) Let X be a real or complex Banach space, let
TeL(X),1<p<oo, r(T)+#0. Then the set

{@a)exxxe: 2(%1‘)” - )

is residual in X x X*. Consequently (see [17]), the set

{rex: () =)

is residual in X.

PROOF. For k € N set

My = {(m,x*) €X x X*: i(%ﬂ)p > k}



248 Miiller

Clearly My is open in X x X*. To show that My is dense, let z € X, z* € X* and ¢ > 0.
By the previous lemma for a suitable sequence (a,) there are u € X and u* € X* such

o, o\ P
that ZZOZO(HLT(%:)—M) = co. Clearly we can assume that ||u]| < ¢ and |ju*|] < £. Since

(;(Tnu, u*>1)p _ ’(T“(u—l— 2t + o) (T™u+ ), u — o)

r(T™) 4r(Tn) * 4r(T™)
N (T™(u—z),u* +z*)  (T"(u—z),u* —z%) "
(T 4 (T™)
(T ) et (@t 5 o)
< e [, B
HT"(u —z), v + 27)] [(T"(u —3),u" — z7)| }p
r(T") ’ r(Im) ’

ny )i\ P
we have that Y oo (ET—(%J)J) = oo for at least one pair

(yuy*) € {("I" + u, z* + ’U'*)7 (37 + U, Tt~ U/*)u (l' - ’U,,I* + U*)7 (I - u,:z:* - U*)}

Thus My, is dense in X x X* and

M:ﬂMk = {(x,m*) EXXX*:{Z(MY :oo}
k

n=0

is residual in X x X*,
The second statement can be proved similarly (or we can use the fact that

the canonical projection X x X* — X maps residual subsets of X x X* onto residual
subsets of X). 0

THEOREM 3.8. Let X,Y be complex Banach spaces, T, € L(X,Y) (n =
1,2,...). Let (an) be a sequence of positive numbers satisfying > oo, al® < 1/4. Let
B c X, B* CY* be balls of radii equal to 1/4. Then there exist x € B and y* € B* such
that

(T, y*) = an||/Tnl]
foralln=1,2,....
PROOF. By Lemma 1.4 there exists z € B such that ||Tnz| > afl/zﬂTn[[ for all
n. Consider operators S, : Y* — C defined by S,v* = (Tnz,y*) (y* € Y*). Clearly

15l = | Tuz|| = ai/?||T,) for all n. Using Lemma 1.4 again there exists y* € B* such
that

(Tom, y")] = 1Say™ ]| 2 az/ IS0l 2 anl| Tl

forallm = 1,2,.... 0
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COROLLARY 3.9. Let X be a complex Banach space, T € L(X), and let
(an)ns0 be a sequence of positive numbers sotisfying > oo o an'/® < co. Then there is a
dense subset L C X x X* with the following property: for all pairs (z,z*) € L there is
k € N such that
(T2, 5 2 aall T (12 )

If X is a real Banach space and 7 € £(X) then the condition 3 a,? < oo
must be replaced by Y a,'/* < oo (cf. Theorem 2.1).

COROLLARY 3.10. Let X be a real or complex Banach space, let T € L(X).
Then the set {(z,z*) € X x X* : liminf, o [(T7z, z*)|"/™ = v(T)} is dense in X x X*.
EXAMPLE 3.11. There is a Hilbert space H and a non-nilpotent operator
T € L(H) such that
Z ! T x,y
=il

for all z,y € H.

PROOQF. For k > 1 let Hy be the (k + 1)-dimensional Hilbert space with an
orthonormal basis ego,€r1,...,erx. Let Sp € L(Hy) be the shift operator defined by
Skeko = 0, Skekj = €k,j-1 (_7 Z 1). Set H = @Zczl Hk and T = @I?;l 2%5}; Then
17| = 2= for all n.

Let k € N and z,yx € H, zr = Z?:o Qj€kj, Yk = E;?:O ,Bjekj. Then

n? k—mn

2 /kn 1/2
Z K |fglg“l1c;||yk>l - 2’“”‘20‘””@! <> 2n(k by (Z |04 ) K (;0 lﬂjfz> /

< ol nyknzw 5 < ] - nykn(1+22n)<3nxkn gl

n=0

Let 3,y € H, Z = poy Tk, ¥ = 9 pey Yk Where zp,y, € Hg. Then

!<T $7y KT xkaykn
Z 1] 'ZZ il

n=0 n=0 k=1
e 1/2 b 1/2
<3 3l el <303 boel?) - (30 losl?) ™ = 3l - ol < .
k=1 k=1 k=1
]
o 2
REMARK 3.12. In the previous example we have Zfﬂ(”ﬂnﬁ”) < oo for all

z € H. Indeed, using the notation of the previous example, for z; € Hj we have

S () - S G (S o)) = X gyt <
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and for z = @j.; xx € H we have

;(H) =;7§(l',mﬁ”) < 3 3llel? = 3l < oo

REMARK 3.13. Using the method of Lemma 1.9 it is possible to show that for
each Hilbert space operator T' € £(H) and all ¢ < 1 there are vectors z,y € H with

2Tz, )N
Z(Kuwnyl) -

n=0

(one can even get y = z). For Banach space operators this is true for all ¢ < 1/2.

IV. LOCAL CAPACITY

In this section we replace the powers of an operator by the set of all polynomi-
als. All Banach spaces are supposed to be complex. Denote by P} the set of all monic
polynomials of degree n (by monic we mean that the leading coeflicient is equal to 1). For
T € L(X) we write cap,, T = inf{||p(T)|| : p € P}} and the capacity of T is defined by

capT = nllnrolo(capn )™ = i%f(capn Ty/™,

see [6]. Clearly the capacity is related to the spectral radius, cap,, T’ < ||T™|| for all n and
capT < r(T).

For T € £(X), v € X and n € N write cap, (T, z) = inf{||p(T)z| : p € P}}.
In general the limit lim, .00 (capn(T, :c))l/ " does not exist; the local capacity cap(T, z) is
defined by

cap(7T, z) = limsup (capn (T, x))l/n.
n—+0Q

By [6], capT = cap o(T); recall that the classical capacity of a nonempty compact subset
K C C is defined by cap K = lim,_,(cap, K)Y/™, where cap,, K = inf{||p||lx : p € P}}
and ||p||x = sup{|p(2)| : z € K}. Since o(T)\ 0e(T) consists of some bounded components
of C\g.{T) and at most countably many isolated points, it is easy to see that cap o (T) =
capo(T).

A nonempty compact subset K C C is called algebraic if p(K) = {0} for some
nonzero polynomial p.

The basic results for local capacities are similar to those for the spectral radius.

THEOREM 4.1. Let X be a complex Banach space, T' € L{X) and let € > 0.
Then:

(i) the set of all x € X with the property that

cap,, (T, z) > (n + 1)) (cap T)™ for infinitely many n’s
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is residual. In particular, the set

{z € X : cap(T, x) = limsup(cap, (T, z))l/n =capT}
15 residual.
(ii) there is a dense subset R C X with the property that, for each x € R, there
exists k € N with

cap,(T,z) > (n+1) "+ (capT)*  (n > k).

In particular, the set {z € X :lim,—. (cap, (T, :z:))l/n =capT} is dense.

PROOF. (ii) is a reformulation of [10]. To show (i), we need the following lemma:

LEMMA 4.2. Let T € L(X), z € X, n > 0 and k € N. Suppose that the set
K = 0.(T) is not algebraic. Then there exists n > k such that the set

L={yeX:l|ly~al|l<n|pTyll > (n+1)"Fp|x for all p with degp < n}

is a non-empty open subset of X.

PROOF. Choose n > k such that (n+1)7" < "(—14——"2. For a polynomial p(z) =
S s asztset |p| = Y1 |osl. Since K is not an algebraic set, the norms |- | and |- ||x are
equivalent on the set of polynomials of degree < n so that there exists a constant ¢ > 0
such that |p| < ¢ ||p|lx for all polynomials p with degp < n.

We prove that the set L is open. Let y € L. By a compactness argument, there
exists § > 0 such that ||p(T)y|| > 6 + (n + 1)~ 3+ for all polynomials p with degp < n
and ||p||x = 1. .

Let y' € X, ||y — =] < pand ||y -y < m{—f—w}— Let p(z) = 3.1, cz® be
a polynomial with ||p||lx = 1. Then

B =0l <3 loal - IT10 — 91l < ol mas{ L T, o, I -y = ) < 6
and
(T2 Iy = 1) =~ D > 6 + s 8 = =y
Thus ¢’ € L.

It is sufficient to show that L is non-empty. Set E = \/{z,Tz,...,T"z}. By
[10], Lemma 3 there exists u &€ X of norm one such that

[T+ 2 g tre(e(T))
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for all e € E and all polynomials p, degp < n. Note that

re(p(T)) = max{|ul : p € oe(p(T))} = max{|p(N)| : A € 0o(T)} = [lpllx.

Set y =z + Bt Then fly — z|| = n/2 < n and, for all polynomials p of degree < n,

——s

(T )y = ng(T)(%x +u)l| 2 % 2(1—“")3HPIIK > ﬁ

n+1

Hence y € L.

Proof of Theorem 4.1 (i). If o.(T") is an algebraic set then cap T = cap 0. (T) = 0,
so that the statement is trivial. Suppose that the set K = o.(T) is not algebraic. Fix
€ > 0. For each £k € N let

My = {y € X : there exists n > k such that cap,(T,y) > (n+ 1)~ 3+ cap, K}

For each z € X and n € (0,¢) let n = n(z,n,k) > k and L = L{z,n,k) C X be as
constructed in Lemma 4.2. For y € L(z,7, k) we have

cap,,(T,y) = mf{{[p(T)y] : p € Pi} 2 inf{(n+ 1) C*Vjp|lx : p € P}
> (n+1)"CMcap, K > (n+ 1)~ ) cap, K.

Thus me L{z,n, k) C My and Umm L(z,n,k) is an open dense subset of X. Hence M is
residual for all k and so is the intersection {7}, M.
For k € N and y € M there is n > k with

cap, (T,y) > (n + 1)~ cap,, K.

In particular, for y € (7, My we have

cap(T, y) = limsup(cap,, (7, y))/™ > lim sup (cap, K) 1 cap K = cap o (T) = capT.
n—roQ n—oo
The opposite inequality cap(T,y) < capT is always true. l

Example 1.3 shows that in general we can not expect to have

lim inf(cap(T,y))*™ = cap T

n—oo

for all y in a residual set. Thus (ii) cannot be improved.

REMARK 4.3. The statement of Theorem 4.1 can be generalized to commuting
n-tuples of operators. The analogue of the second statement was proved in [11]; the
analogue of part (i) can be proved as above.
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