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The explicit form of all possible variants of the Green formula is described for a 
boundary value problem when the "basic" operator is an arbitrary partial differ- 
ential operator with variable matrix coefficients and the "boundary" operators 
are quasi-normal with vector-coefficients. If the system possesses a fundamental 
solution, a representation formula for the solution is derived and boundedness 
properties of the relevant layer potentials, mapping function spaces on the bound- 
ary (Bessel potential, Besov, Zygmund spaces) into appropriate weighted function 
spaces on the domain are established. We conclude by discussing some closely 
related topics: traces of functions from weighted spaces, traces of potential-type 
functions, Plemelji formulae, CalderSn projections, and minimal smoothness re- 
quirements for the surface and coefficients. 
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6.5. On the smoothness of solutions and coefficients 
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I n t r o d u c t i o n  

Let f~+ C ]R n be a domain with a smooth boundary 0f~ + = J ,  f~- := ]R~\f~ + and let 
if(t) = (ul(t) , . . . ,  v~(t)), t �9 Y be the outward unit normal vector (see Fig.l). 

X~ 

X2 

Let "y~ denote the trace operators on the boundary: 

7~u(t) := lim u(x). 
x ~-t 

xEf~:t:,tEd~ 

We consider a boundary value problem of the form 

A(x, Dx)u(x) = f(x), x C f~• 
(o.1) 

~/~bju(t)=gj(t), j = 0 , . . . , c o - 1 ,  t � 9  co_<m, 

with a partial differential operator (we call it a "basic" operator) with N x N matrix coef- 
ficients 

A(x, Dx) := E ac~(x)02' aa �9 C~176 NxN) (0.2) 

and with a quasi-normal system of "boundary" operators 

bj(t, Dt)= E bj,~(t)O?, bjaeC~176 r o d < m - - l ,  j = 0 , . . . , c o - - 1  

I~l<mj 

with vector-row coefficients of length N. Extending arbitrarily the "boundary" operator 
:b  1"raN-1 system {bj}jw=-01 to a DIKICHLET system t JJj=o , it is possible to find then unique system 

*re .~rng-1 of "boundary" differential operators L 3Jj=o such that the GREEN formula 

mN-1 

~2+ j = 0  y 
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r lmN-1 holds (see Theorem 1.6) with the formally adjoint operator A* to (0.1). The system lcjlj=o 
is a DIPdCHLET system if and only if the "basic" operator A(x, Dx) is normal. 

Moreover, if the "basic" operator is normal, it is possible to prescribe parts of both 
~h ~kN--1 ~C ~(rn-k)Y-1 

s y s t e m s  l ~ J J j = 0  and l JJj=kN , if they are both DIRICHLET systems, and find missing 
parts in a unique way such that the GREEN formula (0.3) holds. 

For a formally self-adjoint operator of even order m = 2g a simplified GREEN 
formula is proved separately (see Theorem (1.7)). 

The GREEN formula (0.3) was proved in [Tal, Ta2] for a rectangular system of 
"basic" operators with g x k matrix coefficients with an injective principal symbol (see 
[LM1, Ch.2, Theorem 6.1] for scalar elliptic operators (i.e. N = 1) and [Rol, RS2] for 
elliptic AGMON-DOUGLIS-NIRENBERG systems; see also the survey [Agl, w All the 
investigations mentioned in [LM1, Rol, P~S2, Tal, Ta2] are based on local diffeomorphisms 
which replace the domains ~• by the half-space N~. The present approach is direct and relies 
on the partial integration formulae (1.23)-(1.24), which follow from the GAUSS divergence 
formula and the STOKES formula for differential forms. Other important ingredients are the 
special GREEN formula with the normal derivatives Bj = @ as "boundary" operators (see 
Theorem 1.10; for similar formulae, the interested reader may also consult [CP1, CW1, Dil, 
Sel]) and Lemma 4.7 (see [LM1, Ch. 2, Lemma 2.1] and [RS2, (11)] for the scalar case). 

Moreover, the approach is constructive and allows us to write the "boundary" differ- 
[c rx D ~'l'mN--1 ential operators t j~ , xJJj=o in explicit form (see Theorem 1.11) provided the "bound- 

fb  (x D ~mlV-1 ary" operators t J~ , x/Jy=o are fixed. The algorithm is purely algebraic and involves 
only the coefficients of the differential operators A(x, D~) and Bj(x, Dx). 

Let us note that explicit formulae were previously known only for the symbols of 
the operators c-(x,D~), j = 0, . ,mN - 1 (cf. [Tal, w J ' '  

In order to demonstrate an essential application of the Green formula, let us assume 
that A(x, Dx) has a two-sided inverse on the entire space N n 

A(x, Dz)FA(x,D~)= I, FA(x, Dz)A(x, Dx) = I ,  

i.e. the operator has a fundamental solution. As is well know, this entails that A(x, Dx) is 
elliptic and (for n > 2) it has even order m = ord A = 2g. We "insert" the distributional 
SCHWARTZ kernel V~,x(y) = X~(x -y)ggA(X, y) of the fundamental solution FA(x, D~), suit- 
ably truncated near the diagonal set x = y into the GREEN formula (0.3). Making c --+ 0 
yields a representation of the solution u(x) to the elliptic equation A(x, Dx)u(x) = f(x) in 
the domain f~+ 

2g--1 

= + ( 0 . 4 )  

j = 0  

where Xa~ stands for the characteristic function of fF- C ]R n. The operators 

Na• := L •  [-3gA*(Y' X)] T ~(y)dy = ~•  OKA (x; y)~(y)dy , 

s IT Vir  ) := Ci(T , D~-)~(x,  7-) ~('r) d,-J, j = 0,. . . ,  2g 

(o.5) 

are the volume (NEWTON) and the layer potentials, respectively (see (3.3)-(3.7)). 
The layer potentials V0,. �9 V2~-1 extend functions defined on the boundary into 

the domain and their continuity properties have essential applications in many investigations. 
A partial list includes potential theoretic methods (see [CW1, DNS1, Gul, KGBB1, Lol, 
MMT1, Sell etc.), a priori estimates of solutions of BVPs (see [CW1, DNS1, DN1, Gr3, LM1] 
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etc. and Corollary 3.4), full asymptotic expansions of solutions to crack-type and mixed 
BVPs for elliptic partial differential equations (see [CD2]). 

As a particular case of Theorem 3.2 we can formulate the following (see w for the 
definition of the BESSEL potential I~r (g~• BESOV B~,p ( J )  and other spaces). 

T h e o r e m 0 . 1  L e t s E N ,  l < p < o o ,  1 _ < q < o %  # j =  ordCj < o r d A = 2 g .  The layer 
potentials 

_ s + 2 s  1_ ,-~--r-,. 
v j  : j = 0 , . . . , 2 e - 1  (0.6) 

are all continuous when either :g~ ( J )  = N ( J )  or N? e ( J )  = l~,p ( Y ) .  

Theorem 0.1 is proved with the help of Lemma 4.8, which has independent interest. 
It allows the representation of the layer potentials in (0.5) in the form of volume potentials, 
i.e. pseudodifferential operators (PsDOs). For the sake of this introduction, below we record 
a slightly particular case of this lemma. 

L e m m a  0.2 Let s > O, s ft N, k = 0 ,1 , . . . ,  1 < p < co, 1 <_ q <_ co. Let A(x,D~) in (0.2) 
be a normal operator det ~ '( t ,  ~7(t)) r 0 for all t E Y and have order ord A = m. 

For a DIRICHLET system {Bj}jmo ~ of "boundary" differential operators of order 
m - 1 with C~-smooth  N x N matrix coefficients there exists a continuous linear operator 

s + m - l +  k _ - - _  %1 (0.7) ~i~ : --P,P 
5 = 0  

such that 
~ s - l + k  

7 ) B y ' q )  = ~y, A ~ r  E Hp,~o c "(f~+) (0,8) 

for j = O , . . . , m -  I and arbitrary �9 = (~o, . . . ,~ ,~-1)  E 
m - 1  
| a s+m-~-5 ( 5 0 .  --p,p 

5 = 0  

A similar assertion is proved in [LM1, Ch.2, Theorem 6.1] for the scalar case; see 
also [LM1, Ch.2, Lemmata 2.1 and 2.2] and [Hr2, Theorem 1.2.6]. Our proof is carried out 
for matrix-valued operators, it is more transparent and the spaces involved are more general 

~s,m ro• well). (we consider weighted spaces ~p,loc~o j as 
Theorem 0.1 can be derived from the results on PsDOs with the transmission prop- 

erty (see [Bol, Grl, Gr2, Jo2, RS1] and the survey [BS1, Theorems 2.17, 2.21]). The approach 
suggested here is different, works for weighted spaces and seems to be simpler. It has con- 
sequences which are perhaps difficult to obtain by the methods suggested earlier (see, e.g., 
w167 6.3-6.5 below). 

In w 1.1 we discuss the GREEN formula (0.3) and related topics. Namely, we recall 
the definitions of normal operators, DIRICHLET systems of operators and formal adjoint 
BVPs (see [LM1]), and we also introduce systems of quasi-normal operators. BVPs with 
quasi-normal "boundary" operators include mixed-type problems arising in elasticity, the 
diffraction of electromagnetic waves and many other problems in mathematical physics. Our 
main results are Theorems 1.6 and 1.7, dealing with GREEN'S formula. The proofs are 
deferred to w167 5.1, 5.2. In w 1.2 we set the stage by discussing several prerequisites, such as 
the GUNTER and the STOKES tangential derivatives, and various partial integration formulae 
for a domain and on the surface, respectively, based on the GAUSS divergence formula and 
the STOKES formula for differential forms (see Lemma 1.8). A particular GREEN formula 
is proved in Theorem 1.10 for arbitrary "basic" operators when the "boundary" operators 
are given by the normal derivatives Bj = @. In Theorem1.11 we find the explicit record for 
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D "~l'mN-1 the "boundary" operators (cj(z, xJJj=o in the GREEN formula (0.3) when the extended 
DIRICHLET system { b j ( x ,  1D 3 l m Y - 1  ~JJ j=0  is fixed. 

r,k In w 2 we define the BESSEL potential ~-~:~oc(h-~), the BESOV ]B'p,q,loc(~ ) and the 
ZYGMUND zr'k(~ --T) spaces with weights. 

In w 3, relying on the GREEN formula for an elliptic differential equation (provided 
the "basic" operator has a fundamental solution), a representation formula for a solution 
is derived. The result on the continuity of the layer potentials, intervening in the afore- 
mentioned representation formula of solutions, as well as of more general potential-type 
operators is also formulated (cf. Theorem 0.1). 

More concretely, we prove the continuity of layer potentials from the boundaryBESSEL 
potential H~(Y) and BESOV spaces ]Bp,p(J), ]B~,q (~,cp) (including ZYGMUND spaces Zs(~, ~)  

--- B~,oo (•)) into appropriate weighted BESSEL potential spaces ~:koc (h--~) as well as BESOV 
r,k spaces ]B'p,q,zo c ( f2) ,  defined both in the exterior ~ -  and the interior ~+ of the surface J (see 

Theorem 3.2). In the last part of this section, a priori estimates for solutions of the BVP 
(0.1) are obtained when the "basic" operator is hypoelliptic (see Corollary 3.4 and Remark 
3.5). 

In w 4 a basic auxiliary result, i.e. Lemma 4.8, is proved. This lemma plays a crucial 
role in the proof of Theorem 3.2 in w 5.3. 

In w 5 we present the proofs of Theorems 1.6, l.T and 3.2. 
In w 6.1 we prove that the generalized layer potentials, involving integral operators 

with supersingular kernels on the boundary surface, have well defined traces on the boundary 
of the domain, when interpreted as classical PsDOs. Such interpretation of supersingular 
integral operators is necessary because they encounter in many problems of mathematical 
physics (e.g. derivatives of the double layer potential for a second order differential operator) 
and does not exist in usual sense. 

In w 6.2 we extend the trace theorem (see also Theorem 4.6) and the basic Lemma 
4.8 to functions in weighted spaces. 

In w 6.3 we prove a theorem on the CALDER6N projections, related to the GREEN 
formula (0.3) and the corresponding layer potentials (0.5). Its essence is that the operators 
P~d := •  for j ---- 0 , . . . ,2~ - 1 are proved to be projections (PAj)• 2 = P~Aj, 
PAj + P + j  ---- I in the spaces ]~ ( J )  and ~p,q ( J ) .  

In w we establish the PLEMELJI formulae (the jump relations) for the layer 
potentials. 

In w 6.5 we indicate how to substantially weaken the smoothness assumptions on 
the boundary 5 z = 0f2 • of the domain and on coefficients of the differential operators. Such 
results are important especially in the context of the recent progress in the theory of BVPs for 
differential equations in domains with LIPSCHITZ boundaries. These investigations are based 
on results for layer potentials on LIPSCHITZ surfaces (see [Kel,Ke2,MMP1,MMT1,MT1] and 
the literature cited therein). Most recent and general results in this direction are obtained 
in [MT2]. 

Most of the above-mentioned results on the GREEN formula, layer potentials, the 
PLEMELJI formulae under minimal restrictions on the boundary manifold and coefficients 
are known for second order equations (see [MMT1, MT1, MT2] for recent results). Less is 
known for higher order equations (see [CP1, CW1, Dil, Grl, LM1, Rol, Sell). CALDERON 
projections have been investigated in [Sell (see also [CP1, CW1, Grl,  Dill). 

Acknowledgements :  The author thanks E.Shargorodsky who suggested the first 
version of Theorem 2.2 and Lemma 4.8, as well as the results of w 6.4. E.Shargorodsky, 
M.Mitrea and F.-O.Speck also had made many valuable remarks while reading the manuscript. 

The investigation was supported by grants: 
a) INTAS 9 6 -  0876; 
b) Academy of Sciences of Georgia 1.2.97. 
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1 T h e  G r e e n  f o r m u l a  a n d  b o u n d a r y  v a l u e  p r o b l e m s  

1 . 1 .  T h e  GREEN f o r m u l a  for  q u a s i - n o r m a l  B V P s .  Let f~+, Of~ = J and 
~(t) be the same as in the Introduction 1) and consider a partial differential operator with 
N x N matrix coefficients 

The operator 

A(x,D~) := ~ a~(x)O~, a~ �9 C~(~•  
/~L<m 

(1.1) 

A*(x, Dx) = E (--1)~O~[a~(x)iTI' (1.2) 
I<<m 

where ~,T denotes the transposed matrix to ~ ,  is the formal adjoint to A(x, D~) with respect 
to the sesquilinear form 

f~:k 

Def in i t ion  1.1 
o n J  ff 

inf[det~io(t,g(t))[~O, rE J ,  [ ~ [ = 1 ,  

where ~o(r ~) denotes the h o m o g e n e o u s  p r inc ipa l  symbol of A 

:= x �9 fl• r �9 x" .  
I<=m 

(see [LM1, Ch.2, w 1.4]). The operator A(x, D~) in (1.1) is called n o r m a l  

(1.3) 

(1.4) 

The condition (1.3) means that the surface Y is not characteristic for the operator 
A(x, D~). Normal operators contain, as a subclass, elliptic operators on the surface 

i n f l d e t ~ 0 ( t , ~ ) l ~ 0  foral l  t E ~  c~, ~ E S  n-l,  (1.5) 

where S ~-1 := {~ �9 R n : I~1 = 1} is the unit sphere in Rn; these two definitions coincide for 
operators with constant coefficients since the unit normal vector g(t) runs through the entire 
unit sphere if t ranges over the closed smooth surface J .  In fact, the surface J = 0n  + 
is the boundary of the domain ~+ and thus any connected part  of this boundary can be 
continuously deformed to the unit sphere. If we suppose that  the unit normal, while ranging 
over the surface Y ,  leaves some (obviously open) domain on the unit sphere uncovered, we 
end up with a contradiction. 

Let us consider a BVP with mixed conditions 

{ A(z ,  Dz)u(x) = f(x) ,  x �9 11 • (1.6) 

~Sbju(t) = gj(t), j = 0 , . . . , c o - 1 ,  t �9 J ,  co <_ m N ,  

where A(x, D~) is the "basic" operator, defined in (1.1) and 

bj(t, Dt) = E bj~(t)O~, bj~ �9 Cr162 N) (1.7) 
]al<_raj 

1)0primal smoothness constraints on 0~ = Y will be discussed later on in w 6.5. 
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are "boundary" differential operators with vector-row coefficients of length N and ord bj = 
mj < m - 1 .  

Together with (1.6) we will consider the boundary value problem with the formal 
adjoint "basic" operator  

h*(x, D~)v(x)  = d(~), 

~Y5 cmN-J- iv  (t) = hj (t), 

x E  f~:L, 

j = 0 , . . . , w *  - 1, t E Y  
(1.8) 

(see (1.2)); here co* < 
differential operators 

mN, ord cj = #j < m -  1, and cj(t, Dt) are some "boundary" 

cj(t,D,) = ~ cj,o(t)0g, 
laL<#j 

ej,~ E Coo(J, C N) (1.9) 

with vector-row coefficients of length N. 
A particular case of BVP (1.6) is the following 

A(x, Dx)u(x)  = f (x ) ,  

*SBj~( t )  = aj(t) ,  

x E f2 • 

j = 0 , . . . , g -  1, r E  J ,  
(1.10) 

where 
Bj(t, Dr) = E bj~(t)O~, bj~ E C~176 C NxN) 

la[<_rnj 

are "boundary" operators with N x N matrix coefficients and ord B j  = m j  ~ m --  1. The 
formal adjoint BVP of (1.10) can be written in the form 

A*(x, D~)v(x) = d(x), 

vScm-~_,v(t) H,(t), 

x ~ f~:L, 

j = O, . . . ,g* - 1, t E J  
(1.11) 

(see (I.2)), where g* _< m and Cj(t, Dr) are some "boundary" differential operators 

Cy(t, Dt) = E cj,~(t)cg~, 
lal_<**j 

%. E Coo(J, C u• 

with o r d C j = # j < m - 1 .  
The BVPs (1.10) are encountered, e.g., in elasticity, when the displacement or the 

stress fields are prescribed (these BVPs are denoted there by I ~ and by I I  • , respectively). 
The BVPs (1.6) also cover the mixed problems of elasticity when the normal component 
of the displacement and both tangent components of the stress fields (III+ BVP) or the 
normal component  of the stress and both tangent components of the displacement fields 
(IV a: BVP) are prescribed (see [KGBB1, w167 1.8-1.10]). 

D e f i n i t i o n  1.2 A system (Bj(t,  Dt )} j~  of differential operators with matrix N x N coeffi- 
cients is called a DIPdCHLET system of order k if all participating operators are normal on 
J (see Definition 1.1) and, after renumberin9, ordBj  = j, j = 0, 1 , . . . ,  k -  1. 
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A system of differential operators {bj(t, n ~lkN-1 �9 -'tJSy=0 with row-vector coefficients of 
length N is said to be a DIRICHLET system of order k if 

{by (t, Dr) }~: N-z = ~o {Byftt, Dtssj=o~'ik-' 
where {by(t, D x~kN-1 tlSy=w is a DIRICHLET system and .~o is a constant k N  x k N  matrix, in- 
terchanging rows. 

Defini t ion 1.3 A system {bj(t, D ~ - 1  tHj=o is said to be q u as i -n o rm a l  sys t em if: 

i. the principal homogeneous symbols by,0(t, ~(t) ), j = 0 , . . . ,  w - 1  evaluated at the normal 
vectors ~ = if(t) are linearly independent vector-rows for all t c J on the boundary; 

ii. operators b0(t, Dr ) , . . . ,  b~_~(t, Dt) with equal order are, at most, N .  

L e m m a  1.4 For any arbitrary quasi-normal system of operators {bj(t, Dt)}~-~, ord bj < 
m - 1, there exists a non-unique extension up to a DIRICHLET system 

{By(t, Dr) }7=~' = 3~o{bj(t, Dt)}?=~ -1 

of order m with some constant m N  x m N  matrix ~ o .  

Proof .  Let us select among the "boundary" row-operators {by(t, Dt)}y~=-~ those 
with equal orders mj  and add to the selected rows new rows of differential operators of the 
same order in such a way that the resulting N x N matrix-operator By (t, Dr) will have linearly 
independent rows in the principal homogeneous symbol ~j,o(t,  if(t)), i.e. will be normal. 
Next we extend the system {By(t, Dt)}J,_-0 up to a DIRICHLET system {By(t, D t ) } ~  1 of 
order m by adding normal operators with missing orders (say, mk .. c9~(t) , k = g + l ,  . , m - l ) .  

As the concluding step we rearrange rows in the extended system {by (t, Dt)}jm= N-1 
with the help of some matrix ~0  which has entries 0 and 1 to get a DIRICHLET system 
{By(t, m - 1  Dd}j=0 �9 

Defini t ion 1.5 (1.8) is called formal ly  adjoint  to B V P  (1.6) if there exist two systems of 
"boundary" differential operators 

bj(t, Dt) = E bj,(t)O~, ck(t, Dt) = E Ck~(t)O~, 

bja, C k a E C ~ 1 7 6 1 7 6  j , k = O , . . . , m N - 1 ,  

r It D .,'~w*--I which are extensions of systems {by(t,D~)}j~=~ and t c y t ,  t )b=o , respectively, such that 
the GREEN formula 

raN-1 

~__ j = 0  j 

holds 2) with u, v E C~176 • CN). 

2)The integral jf is used to underline that integration is performed over the closed surface Y. 
,9" 
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For BVP (1.10) and its formal adjoint (1.11) the GREEN formula (1.12) takes the 
form 

m--1 

f~• j = 0  

where the "boundary" differential operators {Bj(t,  Dtjsj=0~m-1 and {c~(t, Dd}j=0m-1 have N x N 
matrix coefficients. If (1.8) is formally adjoint to BVP (1.8), then 3) 

mj + pj = m -  1, j = 0 , . . . . c o -  1. (1.14) 

Since the DmICHLET systems participating in the GREEN formulae (1.12) might 
differ from the DIRICHLET systems in (1.13) only by some rearrangement of rows (cf. (5.1)), 
we will address most frequent more convenient formula (1.13). 

T h e o r e m  1.6 If either {bj(t,  ~'tn J~lmN-1Ij=0 or {cj(t, Dt)}jm=~ -1 is a fixed DIRICHLET system of 
"boundary" operators, then the GREEN formula (1.12) holds, then the related system (re- 
spectively, {e3(t, n ~mN-1 {bj(t,  mN-t ~tJsj=o or Dt)}j=0 ) is unique and BVP (1.8) is formally adjoint 
to (1.6). 

The related system raN-1 {cy(t, Dt)}j=0 (the system {bj(t ,  r~ "~'lmN-1 respectively) is a ~t~ t ) y j=O , 

DIRIOHLET system if and only if the "basic" operator A(x, D~) is normal. 
I f  the "basic" operator A(x, D~) is normal, co = kN, co* = ( m - k ) N ,  the related sys- 

tems {bj(t ,  n "~lkN--1 {§ FI " ~ l ( m - k )  N - 1  ~Jt]yj=O , {CrnN-j-lp, ~'tJSj=O are fixed and one of them is quasi-normal, 
then the GREEN formula (1.12) holds if and only if both of them are DIRICHLET systems 
ord bj = ord CmN-j-1 = j (of order k and m - k, respectively). The extended systems 
{bj/4 D ~lmN-1 and {cj(t, r~ ~mN-1 

U', t J y j = O  ~'tJH=0 in (1.12) are then DmICHLET systems (of order m) 
and are unique. 

The proof is deferred to w 5.1. The first part of the Theorem for scalar elliptic 
operators has been proved earlier (see [LM1, Ch. 2, Theorem 2.1]) and for elliptic AGMON- 
DOUGLIS-NIRENBERG systems-in [Rol, RS1]. The most g~neral case, to our best knowledge, 
is considered in [Tal, Ta2], where the "basic" and "boundary" operators have "rectangular" 
k x g matrix coefficients and the "basic" operator has an injective principal symbol. 

It is well-known that  if A(x, D~) is scalar (N = 1), is elliptic and has real valued 
coefficients (or complex valued coefficients and n > 2) than it is proper elliptic and has even 
order ordA(x ,  Dx) = m = 2g (see [LM1, Ch.2, w167 1.1]). Although for the non-scalar case 
(N = 2, 3 , . . . )  matters  are different (see w 6.6), many elliptic systems arising in applications 
(to, e.g., elasticity, thermo elasticity, hydrodynamics) have even order. Let us consider some 
simplification of GREEN'S formula for such systems, especially when the system is formally 
self-adjoint. 

Assume that  the operator in (1.1) has even order m = 2g. Then, it can be repre- 
sented in the form 

A(x, D~) = ~ (-1)l"lO~a~,z(x)a~, a,,~ e C ~ ( a  - ~ , C  Nxy) (1.15) 

lal,151_<~ 

(the representation is not unique) and with it one associates the following sesquilinear form 

~ ( u , v )  := f ~_~ [ao,,(y)a~u(y)]T a$v(y)dy, u,v e Cg~(~-~,e~). (1.16) 
n• I~l,l~l_<l 

3) (1.14) follows, e.g., from the formulae (1.38) for "boundary" operators {Cj (t, Dt)}'~=~ 1. 



13 6 Duduchava 

T h e o r e m  1.7 For an arbitrary "basic" differential operator (1.15) of even order 2~. and an 
arbitrary DIRICHLET system {Bj(t,  Dt)}~2_lo of order ~ of "boundary" differential operators 
with matrix N x N coefficients there exists a system {Cj(t ,  e-* Dt) } j=o of "boundary" operators 
with ord Bj ~- ord Cj = 2 e -  1 such that 

g-1 

f(*u)T~dY • Z / (Cju)%v+37,  u,v ~ C~(~--~, C~). (1.17) s~(u, V) 

f~• j=0  y 

If A is formally self-adjoint, A = A*, we get the followin9 simplified GREEN for- 
mttla 

g-1 

ft:t: '= j 

The proof is deferred to w 5.2. A slightly different proof in the scalar case, N = 1, and for 
elliptic operators can be found in [LM1, Ch. 2, w 2.4]. 

1 . 2 .  P a r t i a l  i n t e g r a t i o n  a n d  t h e  s p e c i a l  G r e e n  f o r m u l a .  Let us 
consider "extended" normal derivatives 

a~(x) := if(x). V = s V :---- (81, . . . ,On) ,  X E ]~n, j = 0 ,1 , . . .  , (1.19) 
k=l 

where zT(x) = (u l (x ) , . . . , - n (x ) ) ,  x e ] R  n is some C~ vector field which coincides 
with the unit normal vector field on J and stabilises to the unit normal vector to the 
coordinate hyperplane xn = 0 in a neighbourhood of infinity: zT(x) - ~7(~) := (0 , . . . ,  0, 1) 
when Ixl > R for a sufficiently large R. 

A first order linear differential operator 

n 

ft(x) �9 v := ~ h~(~)O~, ft(~) = (h~(x),.., h~(~)) (1.20) 
k = l  

can be applied to arbi trary function p E C ~ (37) defined only on the surface 37 if the operator 
ft(x) �9 V is tangent, i.e., the directing vector f~(x) is tangent to 37: 

vt e J ,  J( t ) .  ~(t) = 0.  

In fact, then we can write 

f~(t)- ~'~p(t) := lim qo(t -t- Aft j( t))  
~-+o A , ~ e C  ~(37), 

where Afty(t) is the projection of the tangent vector Aft(t) onto the surface 37 (the projection 
is correctly defined for small IAI < r 

The following two classes of tangent operators are of special interest for us the 
G/JNTEI~ ~3 and the STOKES ~/j,k derivatives: 

2~  := ( 2 , , . . . ,  2 ~ ) ,  ~ j  := oj - ,j(x)o~(~) = ~ .  v ,  

~ ' ,  :=  [~zj,~]~• Jzj,~ : :  ~,j(x)o~ - ~,~(x)oj = ~ j , ~ .  v .  (~.21) 
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It is easy to ascertain that  the corresponding directing vectors are tangent to ~ :  

Y ( t ) - ~ . ( t ) - - Y ( t ) . ~ , k ( t ) - - O ,  t e ~ .  

Only n - 1 out of n derivatives ~ , . . . ,  ~ and out of n ~ derivatives ~t'~,~,..., ~',~,,~ 
are linearly independent and the following relations are valid: 

~ : : -  ~ , ~ ,  ~ : 0 ,  
k = l  k = l  (1.2~) 

JZj,k = - g k  - . k ~ j ,  ~Zj,j = 0, ~Zj,~ = - JZk , j .  

The tangent derivatives ~ j  were introduced in [Gul, w while J~j,k for n = 3 in 
[KGBB1, Ch. V]. The derivatives ~ j ,k  are natural entries of the STOKES formula (1.27). 

L e m m a  1.8 For a first order differential operator (1.20) and for a "tangent" differential 
operator 

a = Z g.(x)~: = ~ g ~ ( x ) ~ ,  �9 e a t 
I~t<k Ir 

(see (1.21)-(1.22)) the following formulae hold: 

fI~(x) vl ~ ~(~)d~ = • ~ ~(~)~(~)E~(<~v(~)~j- [E~(~)l~v. ~(~)~(~)d~, (12~) 
1 2  

ft:i: J f~• 

/ [Gu(7)]Tv(T)  d ~ J  =/uT(~')-GTyv(v) d ~ Y ,  (1.24) 

Y Y 

w h e r e  

e;~ = ~ [(~);~]~ = ~ [(~z~);~]~ , (1.25) 
lal<_k lN<k 

(~j) :~( :~)  = - ~ ~,~oj~,~(:~) + , 9 ~ ( ~ ) ,  (~ ,~) ;~u(x)  = -Jzj ,~u(~)  = ~'~,~u(~). 
k = l  

in particular, 

/ [G~(y)] ~ v(y)dy = / [~(y)]~ G*~(v)d~, (1.26) 
f~• ft• 

where the adjoint operator G* is defined as follows (cf 4). (1.25)): 

lal_<k !Bl<k 

4)It is worth to underline that the formally adjoint operators ~], ~'~k on the domains ~2 • (see (1.26)) 
and the "surface" adjoints (Nj)), (~'j,k)) (see (1.25)) differ by a lower order terms (@j))u = ~ u  + hju, 
(d,(j,k)*e,u = ./Zd~,kU + f~,~u, where hj and fj,~ are functions. 
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2;~(x )  = -o j~(~)  - o;-(~),~(~) , ~zj:~(~) = - o ~ , ~ ( ~ )  + o y ~ ( ~ )  , 

Proof .  Formula (1.23) is a direct consequence of the GAUSS formula on divergence 

(see [Dil], [Sil, 4.13(4)]) which yields 

To prove the first formula in (1.26) we apply (1.23) and note that  Y(t).Y(t) -= 1. For 
the second formula in (1.26) it suffices to take a first order tangent operator G(D)  = f~(t)V, 
apply (1.23) and note that  fz(t)- Y(t) - 0. 

It suffices to prove formula (1.24) for the generators ~ j  and ~/j,k- To this end we 
recall the STOKES formula 

/ ( J Z j , ~ , ) ( ~ - ) d J  = / [ . j ( ~ ) ( O ~ , ) ( ~ )  - , ~ ( ~ ) ( O j u ) ( ~ ) l d J  = O, y, k = 1 , . . . ,  n .  (1.27) 

J Y 

This formula is well-known for n = 2, 3 (see, e.g., [Dil, Sil]). In general, for n = 2, 3 , . . . ,  
(1.27) follows from another STOKES formula on external differential forms 

f dw = O, 

J 

o r d w =  dim J - 1  

(see [Scl, (VI.7;3)], [Cal, Ch. III,w 4.10]). In fact, it is easy to verify that  

ujdJ  = (-1)J-l Adxm 
mCj 

(see [Sel, (VI.6;48)] for a detailed proof). With this formula at hand the integrand in (1.27) 
can be represented as a total differential 

JffjkUd,ff p = ( - - l ) J - l ( 0 k  u) AdXrn - - ( - 1 ) k - l ( O j u ) A d x m  = d ((--1)J+kuAdXrn'~ 
m:fij rock \ ' m:~j,k ] 

for j > k and we get (1.27). Since d-z'k,j = - ~ , k ,  ~'k,k = 0 (see (1.22)), (1.27) is proved for 
all j ,k  = 1,. . .n.  
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From (1.27) we derive the following rule of partial integration for the generator d/j,k 

J 5 ~ 5~ 

J 

where (~//jk)~ = -~ / jk  = d'g'kj and (1.24), (1.25) are proved for the generators ~/jk. Invok- 
ing the relations (1.22) we find 

k=l k=l 

which yields (1.24) for another generator ~j. ,, 

Exa mple  1.9 Let 

A(x, Dx) := ~ aj,k(x)ajak, aj,k C C~176 -~, C N• 
j,k=O 

be an arbitrary second order o[erator with variable coefficients and consider the DIRICHLET 
problem (An = f in ~+ and 7yu = 9 on 5 p) or the NEUMANN problem (An = f in ~+ and 

aj,kt]j~/~Ok u = g on 5~) .  Applying the partial integration (1.23), we arrive at G R E E N ' 8  
j,k=O 
formula (1.13) with 

B0(x, D~) = I ,  

Co(z, D~) = I ,  

Bl(x,D~)u(x) = ~ aj,k(X)Vj(X)Oku(X), 
j,k=O 

Cl(X, Dx)u(x) = - ~ uk(x)Oja;,k(x)u(x), 
j,k=O 

for the DIRICHLET problem and with 

Bo(x, Dx)u(x) = ~ aj,k(X)Vj(x)Oku(x), Bl(x, Dx) = I ,  
j,k=O 

Co(x, Dx)u(x) = - ~ uk(x)Oja],k(x)u(x), Cl(x, Dx) = I ,  
j,k=O 

for the NEUMANN problem. 

Thus, via partial integration (see (1.23)) we can obtain the special GREEN formula 
for an arbitrary "basic" operator (not necessarily elliptic; cf. the foregoing Example 1.9). 
But it is not certain that "boundary" operators in the obtained formula are normal even if 
the "basic" operator is elliptic. On the other hand, the normality of one of two systems of 
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"boundary" operators is necessary in order to replace them by arbitrary system of "bound- 
ary" operators of our choice (see w 5.1). For this reason we derive the special GREEN formula 
in Theorem I.i0. 

The operator A(x, Dx) in (1.1) can be written in the form 

m - 1  

A(x, D~) = ~o(X, ~(~))a~%) + ~ A~_j(:~, ~)~{~) 
j =0  

m-1 

= ~o(~, J(x))a~%) + ~ .~m_;(x, ~)~(~) ,  (1.28) 
j=0 

A~(~, ~ ) =  ~ o ~ : ~,~(~)Jz~, ~ , ~ ( ~ ) ~  = ~.k(~,-z~) ~ -o 

Ial<k I~l<:k 
, .//Z: ~''~ . . . / ~ , ~ , , ~  

aEl~0  , /~el~0 •  x E ~  ~=, k = l , 2 , . . . , m ,  

where ~0(x, ~) is the homogeneous principal symbol (see (1.4)) and the derivatives 0~(x), ~y, 
J/fj,k are defined in (1.19)-(1.21). 

T h e o r e m  1.10 Let A(x, D~) be defined as in (1.1) and 

Bk(t, Dt) := O~(t), Ck(t,D,) := ~ (O*(t))J-k-lA~,_j(t, ~t)  
j = k + l  

m - - k - 1  n 

* j * . (o~(,)) A ,~_ j_k_ l ( t ,  ~ ) ,  a;~(tp(t) :=  - ~a~,,k(t)~(t). 
j = 0  k = l  

(1.29) 

Hence the GREEN formula (1.13) is valid. 

Proof .  Applying (1.26) we find the following: 

(Au)T~dy = • [7>0~u] 7 ) ( O ~ ) J - k - I A ~ _ j v d , ~  + u~ A*vdy 
f l •  k=O j = k + l j  ~t • 

m - 1  

+ k TT:-~Ckvd, J uT~-~vdy. 

k=0  5~ 12 • 

The GREEN formula (1.13) for BVPs (I.I0), (1.11) with operators (1.29) is proved. ,, 

BVP (i.I0) with the normal "boundary" operators Bk = c9~, k = 0,..., m - I, is 
called the DIRICHLET problem. 

The GREEN formulae (1.13) with operators (1.29) can be found in [Sel, (5.3)], [Tvl, 
Ch.III, (5.41)], [CW1, (1.5)], [CPI, Dil]. This special formula is a crucial component of the 
proof of Theorem 1.6. 

1.3. About "boundary" operators in the Green formula. Next 
we discuss the problem of finding "boundary" differential operators {Cj(t, Dt)}~o  1 in the 
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GREEN formula (1.13) in explicit form, provided the DIRICHLET system {Bj(t, Dt)}?=o 1 is 
fixed. 

m N - 1  Similar formulae hold for the "boundary" differential operators {ej(t, Dt)}j=0 in 
the GREEN formula (1.12). 

Since {Bj(x, D ~ ) } ~  1 is a DIaICHLET system, to simplify the representation for- 
mulae hereafter, we suppose (cf. (1.14)) 

o r d B j = j ,  o r d C j = m - l - j ,  j = 0 , . . . , m - 1 .  (1.30) 

Let us introduce, for convenience, the following vector-operators of length m: 

i0.~_1 }r I)(m)(x'D~) :=/ .  ~(~)"" .,O~(~),I, , 

B(m)(x, Dx) := {B0(z, D~), . . . ,  Br~_l(x, Dx)} r , (1.31) 

c(m)(x, Dx) := {Co(x, Dx), . . . ,  Cm-, (x, D~)} q- �9 

When applied to a vector-function they produce longer vector-functions, e.g., 

B('~)(x, Dz)u := {Bj(x, Dx)u}jm=o I . 

Then the GREEN formula (1.13) takes the form 

f ((h~)T.~-~T.h*,)d~=i/(~('%)~.e(m)vdJ, (1.32) 

while the representation (1.28) acquires the form 

A(x, Dx) = [.~(m+l)(x, ~ ) ]  T. 5(m+l)(x ' n~), (1.33) 

A(m+l) (x, D~) := {ag0(x, g(x)), Al(x, ~ ) , . . . ,  Am(x, ~x), }r , 

where "." denotes the formal scalar product of vectors. For the DIRICHLET system B('~)(t, Dr) 
we introduce the m x m lower-triangular matrix-operator 

b (~x'~) (x, ~ )  = 

~o ,o (x ,  ~(x) )  0 . . .  0 
BI,o (x, ~ . )  ~l,o(X,/7(x)) . . .  0 

Brn-l,o(X, ~x) Bm-l,l(X, ~x) " ' '  ~-@m-l,0( x, /~(X)) 

(1.34) 

with the entries Bj , k (X  , ~ x )  representing "tangent" differential operators of order j - k, 
compiled of matrix coefficients of the representations 

j-1 
Bj(x, Dx) = ~.~j,o(X,J(x))@(x)§ , ~x)0~(x) , k  (1.35) 

k=O 

where ~j,0(x, ~) stands for the principal homogeneous symbol of Bj(x, Dx) (j = O , . . . m -  1; 
cf. (1.28)). 
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Invertible block matrix-operators of type (1.34) will be referred to as admissible 
operators (cf. [191, w 4]). 

Since the entries of the principal diagonal in (1.34) are non-degenerate in the vicinity 
of J 

de t~ j ,o ( z ,g (x ) ) r  j = 0 , . . . , r n -  1 

(we remind that  the operators Bj(t ,  Dr) are normal), b(mX'~)(x, ~x) is admissible on Y :  

[b(m• ~ ) ] - 1  = 

~ ; ~ ( x ,  J(x)) o . . .  o 
Bl,o(X,-@x) ~f~,~ (x,/7(x)) . . .  0 

f im-l ,O(  x, ~x )  f i r a - l , l (  x,  ~ x )  " ' '  ~'@ml-l,0(X, /~(X)) 

(1.36) 

flj,k := - 2 ~  (x, g(x) )Bj,k(X, ~x )~ ,~  (x, J(x) ) . 

The set of admissible matrix-operators is an algebra: finite sums, products and 
even inverses (when meaningful) of admissible matrix-operators are admissible again. 

The representations (1.35), in the notation introduced above, can be written in the 
form 

B(m)(x, Dx) = b(mxm) (x, ~x)~)(m)(x, D~) . (1.37) 

T h e o r e m  1.11 Let the DIRICHLET system B(m)(x, Dx) be fixed and suppose that the con- 
vention (1.30) holds. Then the system C(m)(x, D~) in the GREEN formula (1.13) (see (1.31)) 
is found as follows 

(mxm) * -1 T , ).(.,..)] 4 (138) 

where (b(mxm))~ (x, ~ )  denotes the "surface" adjoint to b(mXm)(x, ~ )  (see (1.24), (1.25)), 

while (A(mxm)) * (x, ~ )  is the formally adjoint (see (1.26), (1.25)) to the following lower- 
triangular matrix-operator 

A (~• ~ )  = 

So(x, ~(x)) o . . .  o 
Al (x ,~x )  do(X,g(x)) . . .  0 

Am_.(x, ~x) A~_3(x, ~ )  . . .  0 
Am-l(X, ~x) Am-2(x, ~x) "'" ~0(x,  ~7(x)) 

(1.39) 

Cf.e [Sel, (7a)], [Grl]) compiled of "tangent" differential operators of the representation (1.28) 
also (1.33)); gm in (1.38) is the skew identity matrix of order m: 

m = 

0 0 . . .  0 1 
0 0 . . .  1 0 

0 1 . .-  0 0 
1 0 --. 0 0 

(1.40) 

Proo f .  The proof is a byproduct of the proof of Theorem 1.6 (see w 5.1). ., 
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R e m a r k  1.12 If  a boundary operator Bj(x, D~) has order ordBj > m - 1, by using repre- 
sentations (1.28) for the "basic" operator and representation (1.35) for a "boundary" opera- 
tor Bj(x,  Dz) then the boundary values %~Bj(t, Dt)u(t) of a solution to the "basic" equation 
A(x,  D~)u = f in (1.10) can be found provided the boundary values of the normal derivatives 

• m - 1  • m - 1  
{% O~(t)u(t)}j= o are known (or, due to Lemma 4.7, if the datae {% Cj(x, Dz)u(t)}j= o are 

known for some DmICHLET system {Ci(x, D~)}~=~). Details can be found in [Hr2, ~ 20.1]. 
Therefore the orders of the "boundary" operators By(x, D~) in (1.10) are restricted: ord Bj _< 
m -  1 for all j = 0, ldots, g -  1. 

2 Spaces 

We proceed by recalling several definitions and properties of function spaces from [CD1, Trl, 
Tr2] which are going to be needed in the sequel. 

S(II~) denotes the SCHWA~tTZ space of all rapidly decaying functions and S'(R ~) 
- the dual space of tempered distributions. Since the FOURIER transform and its inverse, 
defined by 

and (2.1) 

are continuous in both spaces S(]~) and S'(N=), the convolut ion opera to r  

a(D)~ = W~ := @-~a@9~ with a e $'(R~), ~ �9 S(]~) (2.2) 

is a continuous transformation from S(]i~) into S'(K ~) (see [Dul, DS1D. 
The BESSEL potential space ~ (R n) is defined as a subset of S'(~ '~) and is endowed 

with the following norm (see [Trl, Tr2]): 

Ilul~(x~>II := [I<D>%ILp(R~)I[, where <~)~ := (1 + I~1=)-~. (2.3) 

For the definition of the BESOV space Bp,q(N ~) (1 _< p _< c% 1 < q < oc, s C N) see 

[Trl]: the space ]~p,p (R n) (1 < p < ~ ,  s > 0) coincides with the trace space 7+,~H~+~(R~_ +1) 
(~_+1 := ]Rn | ~+) and is known also as the SOBOLEV-SLOBODE(~KII space W~(]~n). It is 
known also that ]~,2 (~ ~) = E~(~ n) for s > 0 (see [Trl]). 

8 n The space ~ ,oo(N ) for s > 0 coincides with the well known ZYGMUND space 
Zs(]~), while for s C ]R + \ N both ~ , ~ ( R  ~) and Z~(~ ~) coincide with the HOLDER space 

The space ~][~(N~) is defined as the subspace of ]~(]~)  of those functions ~ C 
~][~ (]~), which are supported in the half space, supp F C N~_, whereas ~]~(N~) denotes the 

quotient space ]~(~_)  -- ]H~(~)/]~(N~_), R ~ - := ~n \ R~_ and can be identified with 
$ 

the 
space of distributions ~ on ~_ which admit extensions g~ e ~-~ (]Rn). Therefore r+]~ (N ~) = 

g 

(N~_), where r+ = r~_ denotes the restriction from ]~ to the half-space R~. 

The spaces ~,q (~_) and ~,q (]R~_) are defined similarly [Trl, Tr2]. 
Next we define the BESSEL potential space with weight, (see [CD1, w [Esl, w167 

and 26]). 
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Let s ~ 1R, m ~ No and 1 < p < co; by E[~ ,~~ (N~_) we denote the space of functions 
(of distributions for s < 0 ) endowed with the norm 

:= ._ .  I I x~ lq ;  (~• (2.4) 
k=0 

Obviously, E[~,~ '~) = 14[~(R'~). The space 1B~;~ (R~) is defined in a similar way: 

m 
s,rn n k s •  n I1~1~;,~ (~+)11 := Y~ Itx.~l~;,~ (N+)II 

k=0 

Let 

qi'~176 := FI ~;,~(R;),  ~; ;7(R;) :=  FI ~;:7(R:) (2.~) 
mENo rnENo 

with an appropriate topology which turns them into FRESHET spaces. 
Let J - / b e  a compact,  C~176 n-dimensional manifold with a smooth bound- 

ary F := OJ-[ # 0. The spaces ]K~ (~z'), ]~ (J-I), ]B;,q (../z'), ~;,q(~g'), ][~,m (dZ'), ]HI~ 'm (d'Z'), 
8~m 8~m ~) e ~p,q (~t  ~) and It~,q ( ~ ' )  can be defined by a parti t ion of unity { j}j=~ subordinated to some 

covering {YJ}~=I of y/Z" and local coordinate diffeomorphisms 

~j : x j  ~ 5 ,  x j c ~ : ~ ,  j = l , . . . , e .  

In particular, for a compact domain f~+ C N ~ and non-compact  f~- = 1R ~ \ ~+  
8~m the spaces IH~'m(ft• ]~'m(f2• ]H[~,co m ~ ~ ,m • ( a ) ,  ]Bp,q,,oc(a ) etc. are defined as described above. 

For a compact  domain [2 + the subscripts corn and loc can be omitted. 
From the embedding theorems of SOBOLEV we get that  

s,oo ~ T  s,oo ~ -T  ~;,q,,oc(~ ) C r ~, ,o~(~ ), c ~ ( ~  ~) (but C~(~-~) ,  

~(x) =~(1)  as �9 c m ,  I~l ~ o ~  (2.6) 

whatever the parameters  ~' E R and 1 < p < oo are. 
Let L(N1, N2) denote the space of all linear bounded operators between the B aNaCH 

spaces, A :1~1 --+ X2. 
The next two theorems summarise some results on interpolation (see [BL1, Tr2]), 

which will be used later on. 

T h e o r e m  2.1 Let Int[X~, X2] denote one of the interpolation methods either the real [X~, X2]~,q 
or the complex (X,,• (see [BL1, Tr2]). Then 

X' = Int[~C'l, G ] ,  X" = IntrX','L 1,-~,~"1 (2.7) 

imply 
L(X',  X") C L(Xl,  Z';) r l  L(X~, : q ) ,  

i.e., the boundedness A : X~ --+ X~' and A : ~ -+ ~ implies the boundedness A : X' -+ :4" 
provided the spaces N' and X" are properly interpolated (see (2.7)). 
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T h e o r e m  2.2 (see [BL1, w167 Let 

s = ~ s l + ( 1 - 0 ) s 0 ,  S, So, Sl ~ R ,  
1 fl 1 - 0  1 0 

-- + - - ,  l <_p, po,pl <_oc, - + _ _  
P Pl Po q q~ 

and ~) - := O i f  r = oc. Then 
r 

0 < t g < l ,  
1 - - 0  

, 1 <_ q, qo, ql <_ oc 
qo 

81 8 [~0  (]~/~), ]Hip 1 (~)]  ~,q -- ]~;,q (~/j~) (]I~S00 0 (~/][)' ]l~Sll 1 (~/~)) 0 ~-- ]I~;,q (1~/~) , p ,q P ,q 

where M = f~+ C R ~ or M = ~ /  is a smooth manifold. 

The same interpolation results (2.9) hold for  the spaces % ( M )  and ~p,q(M) 
has the boundary 01~ ~ ~. 

(2.s) 

(2.9) 

Let us point out that  a slight modification of the proof allows one to establish 
results, similar in spirit to those discussed in the theorem above, for weighted spaces ]H~ ,k (M), 
~ , k  (M), ~,k -,,k B;,q (NI) and ~p,q (M), where k is arbitrary integer. 

Let us agree to denote by N~'m(M) (by %'re(M)) the following spaces 

8 , m  ~ 8 ~ m  either ~'m(N[)  or 1~p,q (N D (either l~'m(M) or ~p,q (M)) ,  (2.10) 

where 1 _< q < oc is arbitrary. 

3 Representat ion of solutions and layer potentials  

Throughout  the present section we assume that the differential operator A(x, D~) in (1.1) 
is invertible on ]R ~ or, in other words, has a fundamental solution (see [Hr2, w 4.4]), which is 
understood either as the inverse 

FA : A-I(X,  Dx) :  CcO~rn(]~n) } ~,(]~n),  

A(x, Dx)FAqo : FAA(X, Dx)p : g), qD 6 C~(f~•  

or as the distributional SCHWARTZ kernel ~A(X, y) : C ~ ( N  u) --+ ~'(]R n) of the operator F A 
(see [Hr2, Theorem 5.2.1]) 

A(x, Dx)~A(X, y) = 5(z -- y)IN (3.1) 

with 6(x), IN, standing for the DIaAC function and the identity N x N matrix, respectively. 
The distributional kernel ~ a  (x, y ) i s  also called a fundamental matrix (for A ( x ,  n~)) .  

We suppose that  A(x, D~) is elliptic with even order, ord A = m = 2 g  (see w 6.6). 
Then the inverse FA = FA(x, Dz) is a pseudodifferential operator s) with a symbol from the 
HSr{MANDER class S-re(f2 • R =) (see, e.g., [EgS1, Hr2, Sbl, Tvl]) .  This yields the inclusion 
sing supp ~/a  = Ax,~ or, in other notation, 24/A 6 C~((1R ~ | ]R ~) \ Axe). 

S)See w 4.1 for some elementary information about PsDOs. 
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Moreover, if A(x,  D~) is hypoelliptic (see w 4.1) a fundamental solution FA(x, D~) 
is a PsDO as well and 6) sing supp ~ A =  A~,. 

Since A(x, Dx) has a fundamental solution FA, the adjoint operator A*(x, Dx) in 
(1.2) has it, too, and 

FA. = F ~ ,  ~/A* (X, y) = [JT(A(y, X)]V, (3.2) 

where JC~A �9 (z, y) is the SCHWARTZ kernel of the fundamental solution FA. of the adjoint 
operator. 

As a first application of the GREEN formula (1.13) we can gel the representation 
of a solution of BVP (1.10). For this purpose let us consider v~,~(y) = :g~(x - y)3~/A.(y, X), 
where algA. (x, y) is the kernel of the fundamental solution FA. (see (3.2)) and X~ E C~(R'~), 
X~x)  = 1, )t~(z) = 0 for Ixl > e and Izl < e/2, respectively. Inserting each vector-column 
of(the N x N matrix v~,~(y)into the GREEN formula (1.13), sending e --+ 0 and recollecting 
the result as a vector, we find the following 

2g-1 

(5(x - ")IN, u) = Xa• (x)u(x) = Na•  + E VJT~  B j u ( x ) '  x e f2 • , (3.3) 
j=O 

f~• a• 

where Xa• is the characteristic function of f~• C tR n and 

Y Y 

= E i O ] J c ' * ( x ' r ) c ;  ( T ) p ( T ) d r J '  j = 0 , . . . , 2 g -  1 (3.5) 

(cf. (1.9), (1.11)) are the layer potentials. 
The integrals in (3.3)-(3.5), as well as the similar ones considered later (see (3.11)) 

are understood as the functionals ~A(X, '), (Cg~A(Z)(X,') etc.) with a parameter :c C R n 
applied to the test function p(~-) (to c5(T)~(7)). 

Summing up (3.3) for the domains f2 =~ we get 

2~--1 

u(x) = FAf (z )  + E Vj[B ju l ( x ) ,  (3.6) 
j=0 

: =  .y v(t) - t e y ,  �9 e x \ y = n + u n - ,  

where f = Au a+aa- = Au ;z%y and 

FAqD(X) := N f l - v ( x ) +  Nfl+v(z) = f ~(A(x, y)~(y)dy  (3.7) 

6)Almost all results of the present and forthcoming sections are valid for hypoelliptic operators, but 
operators might have odd order m = 2~ + 1. Operators with odd order can be found also among properly 
elliptic systems (terminology from [Agl, LM1, Roll; see w 6.6 and [Hrl, w 4.1], [Tvl, Ch.1, Theorem 2.2]. 



Duduchava 147 

is the fundamental solution of A(z, Dx). 
The pseudodifferential operators a(x, D) and b(x, D) are called locally equivalent 

at x0 E R ~ if 
inf IIX [a(., D) - b(., D)] I N ( ~ ) I I  -- 0, (3.8) 

X 

where the infimum is taken over the set of all smooth functions X E C~(IR ~) which are equal 
to the identity, X(x) - 1, in some neighbourhood of x0. The local equivalence at x0 is usually 
denoted as follows 

a(x, D) ~ b(x, D) 

(see [Stall) and we refer to [Dul] for the elementary properties of this local equivalence. 

L e m m a  3.1 If the operator A(x,  Dx), defined in (1.1), has constant matrix-coefficients an = 
const, then the fundamental solution FA = FA(D) exists provided ~) A(D) ~ 0. If, in 
addition, the symbol 

~ ' (~) :=  ~ ao(-i~) ~, ~ e R  ~ 
t~l<m 

is elliptic, dets~'(~) 7~ 0 for all I~I >- R, then the fundamental solution FA = FA(D) is a 
convolution 

F , ( D )  = @r [N-I(~)] (3.9) 

and the SCHWARTZ kernel Of FA(D) depends on the difference of the arguments, J(A(x, y) = 
( x  - y ) .  

In the general case of non-constant coefficients, a fundamental solution FA : C~ (R ~) 
--+ ~'(]R~)) and the convolution operator FAo(X0, D), which is the fundamental solution of 
the principal part Ao(xo, D) (see (1.4)) with coefficients frozen at Xo (cf. (3.9)), are locally 
equivalent 

FA ~ FA(xo, D~) (3.10) 

at an arbitrary point Xo C ]R ~. 

Proof.  All claims, except (3.10), can be found in [Hrl, w167 3,4], [Hr2, w 11]. 
Local equivalence (3.10) follows from the obvious equivalence A(x, D~) ~ A(xo, D~) 

(see [Dull) and from the elementary property: if operators are locally equivalent and invert- 
ible, the inverses are locally equivalent as well. 

If A(x, D~) is hypoelliptic and has a fundamental solution, we can only indicate 
the symbol of the fundamental solution, which is the symbol of a parametrix (see w 
In particular, the principal symbol of the fundamental solution coincides with the inverse 
s~0-~(x, ~) of the principal symbol of A(x, Dx). 

If A(x, Dx) has constant matrix-coefficients but is not an elliptic operator, the con- 
dition sing supp ~ = A~. might fail (see [Hr2, w 10.2]); if this is the case, the fundamental 
solution FA is not a pseudodifferential operator. 

Let/3 E l~0 and consider the following generalised layer potentials 

G(t, Dr) = ~ c~(t)O~, co ~ C~176  Jd~Z)(x, y):= (x - y)ZJ~/A(X, y). (3.11) 
I~l<u 

7)Fundamental solutions exist also for operators with analytic coefficients aa(x) (see [Jol]. 
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If G0(t, Dr) = I and fl = 0, then we get the single layer potential 

= V r  V0r = ~ ( ~ , ( x ,  ~ ) r  (3.12) V~~ 

5; 

T h e o r e m  3.2 Let f l  E 1~0, s E ]~, 1 < p  < oo, 1 < q < oc, m = 21, A(x,  Dx) be elliptic with 
a fundamental matrix ~UA(X, y). The generalised layer potential V ~  ) with # = o r d  G < 23, 
k = O, 1 , . . . ,  oo, has the following continuity properties: 

~s+2~-l-t~+]~l+ ~-,k.~. 
v ~  ) :  ~(Y)--+G,~o~ " t"~), (3.~3) 

: ~ ; , p ( J )  ---+G,~o~ " ~U~)I I~,~,~o ~ ( a~ ) ,  (3.14) 

s 2)s+m~- 1-~,+lfq + ~,k (~•  : ~;,~(J)--+ ~,~,,o~ 4z ). (3.15) 

The result also holds for the Bessel potential spaces ]~ ,q ( J )  with p = 1, oc, 1 <_ q < 
oo provided s > O. In particular, it holds for the ZYGMUND spaces (the case p = q = oo): 

V ~ ) :  Z ~ ( J )  > Z '+2 l - l - '+ lZ l 'k (~) .  (3.16) 

The proof is deferred to w 5.3. 

R e m a r k  3.3 I f  the operator (1.I) has constant matrix coefficients a~(x) = const,  the re- 
striction # = ord G < 23 in Theorem 3.2 turns out to be superfluous. 

v(~) well defined even for k > 23+ ]ill. In fact, the potential operators--o#j = 0=kj V(z) are 

Moreover, a potential-type operator G(x,  Dx)V (~) (see (3.11) for G(x,  D~) ) is well defined for 
arbitrary # = ord (3 E N and restricted to the surface, 7~G(x ,  D~)V (z) can be interpreted as 
a pseudodifferential operator of order - 2 3 +  1+#- ] /31  on 5 ~, although it has a hypersingular 
,~ernel when -23 + 1 + # - Ifll > o (,~ee w 6.U. 

C o r o l l a r y  3.4 Let s E ]~, 1 < p < oo, 1 < q < co, m = 23, k = 0, 1 , . . . , o 0 ,  A(x, Dx) be 
elliptic and have a fundamental solution. Then any solution u(x) of the system 

A(x, D~)u = f ,  f E ]K~ - 2 g ' k ( ~ ) ,  

f E ~q2e'k(~2• (or f E Z~-2e'a(~ -T) with s - 23 > O )  satisfies a priori estimates 

2~-1 • . S- k-j,k 1 
Ilul]E,k(K~)ll _< M Ilfl~-2~,'~(~)ll + ~ II'v.~Gul]~p,p" (J) l l  , 

j=0 [ 23--I 1 .k ] 
- -  • �9 s -  ~-/, 

IM]~,;;~(~-)II _< M Ilfl~,7~,k(~+ll + ~ 1I '7~ul~,~ (,~)ll (3.17) 
j=0 

( i i~ 'z"~(~>l i -< M[i i f iz ' -~"~(~>l i  + E , , , , /9~ ,z ' -s ,%~)  . 
j=O 

Similar estimates hold for the domain ~ - ,  although we should replace 'u with XU 
where X ~ C~~ is an arbitrary smooth function with a compact support. 
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Proofi The proof follows from Theorem 3.2 and the representation formula (3.3). 

Rema rk  3.5 When the operator A(x, D~) is hypoelliptic and has no fundamental solution, 
then a parametrix RA(x, D~) can be used instead (see w 4.1 below). Specifically, inserting the 
truncated SCHWARTZ kernel of the parametrix into the GREEN formulae similarly to (3.3) 
we get the following representation for the solution of the BVP (1.14): 

2~--i 

Xa• = Na• + ~ Vj%~Bju(x) + Tu(x),  x e t~ ~ , (3.18) 
j=0 

where the operator T has order -~z .  From Theorem 3.2 and the representation formula 
(3.18) we get the following a priori estimate 

2~-1 �9 s--L-j,k 1 
(3.19) 

s-2~,k + for arbitrary m = 1, 2 , . . .  (el. (3.17)). Similar inequalities hold for the spaces lB~,q (f2 ) 
and Zs-2~,k(~ -Z) (with s - 2g > O) as well. For the domain f~- we should replace u by Xu, 
X E C~( f l - )  (see Corollary 3.4). 

Rema rk  3.6 Different a priory estimates have been proved, e.g., in [LMf, Ch.2, w 4]. In 
contrast to (3.19) they contain half as many traces 7 ~ a ~ u ,  j = 0 , . . . , m -  1 in the right- 
hand side. They are used in [LM1, Ch.2, w 5] in order to establish the FREDHOLM property 
of BVP (1.14), provided the SHAPIRO-LOPATINSKU conditions hold. 

4 A u x i l i a r y  p r o p o s i t i o n s  

4.1. On pseudodifferential operators. If the convolution operator in (2.2) 
admits a continuous extension 

W~ L,(R ~) + L,(R~), 

we write a C Mp(]R ~) and call a([) a (FOURIER) Lp-multiplier. Let 

M(")(R ~) = {(~)"a(() :a C Mp(Rn)} , u E R, 

where (~} is defined in (2.3). It is easy to observe, that the operator 

w ~  : -+  

is continuous if and only if a C M(")(R n) (cf., e.g., [DS1, CD1]). 
If O~a E M('-k)(N ~) for all k = 0 , . . . ,  m, then W ~ is continuous between weighted 

spaces 
w ~  --+ ..... (xn) 

(see [CDI, Theorem 1.6]). 
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As an example we consider the BESSEL potential operators 

W<~ F = <Dy : ~'m(]l{~) > Z:~ . . . .  (]R~), 

0 Wir162 = r + ( D n  - i (D'>)~ : l~'m(N~) > :K~ . . . .  ( ~ ) ,  

N 
0 Wi~.+i(~,)). --- (Dn J- i<D'>) r : ~p ,m( ]~ )  > ~ . . . . .  (~{~), r E R 

(4.1) 

(cf. (2.10)), where r+ is the restriction operator (from ]~n to ~_), while t is an arbitrary 
extension of a function ~ E :K~'m(~_) to e~ E Y~'m(R) (a right inverse to r+). The above 
considerations lead to results which are independent of the particular choice of the extension 
and restriction operators. In fact, r+(D~ - i(D'))~9~_ = 0 for ~_ E ~,m(]~_) due to the 
PALEY-WIENER theorem on the FOURIER transforms of functions supported on half spaces. 

The operators in (4.1) are isomorphisms for arbitrary r E ~ and the inverse iso- 
morphisms are <D> -~ and (D~ 4- i(D'>) -~ (see, e.g., [CD1, w 

The next theorem is a slight modification of the 1VIIKHLIN-HORMANDEI~-LIZORKIN 
multiplier theorem. The proof can be found in [Hr2, Theorem 7.9.5] and [Srl]. 

T h e o r e m  4.1 I f  the inequality 

[~O~a(~)[<M<~) ~, ~ E R  ~, [/3[_< [2] +1 '  ~_<1,  

holds for some M > O, then a E N M(") (]Rn) " " 
l < : p < c ~  

Let a E M (")(N~). Then the operator 

W~ := r+a(D):  ~f~ (]i{~) --~ 1~-" (]I{~) 

is continuous. If a symbol a(x,~) depends on the variable x and a E C(N~,S'(Nn)), the 
corresponding operator (see (2.2)) 

a(x, D)9~(x) = W~ := (~(2~a(x ,  ~)~y_~o(y)) (x), ~ E $(N n) (4.2) 

is called a pseudodif ferent ia l  ope ra to r  (in brief PsDO). Here C(fl, •) denotes the set of 
all continuous functions a : f / -+  ~ .  Let Mp(S's-')(]R ~, ]R ~) denote the class of symbols a(x, ~) 
for which the operator in (4.2) extends to a continuous mapping 

a(x, D) :  ]~(R n) -+ ITS-" (R ~) 

and M (") (R", N~):= m M( .. . . .  )( R~ , ~ ) "  
sER 

T h e o r e m  4.2 Let No := {0, 1,. . .}.  / f  the estimates 

/ l~O~O~a(z,~)ldx < M~(~> ", ~ E R ~ (4.3) 
R n  

hold f o r s o m e M a  > 0 a n d a l l a , / 3 E l ~ 0 ,  lfll~ [2] +1 , ~ -  1, then a E ~ M(u)(Rn,Rn). 
l < p < c ~  
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Moreover, if (4.3)holds for all fin = O, 1 , . . . a n d  ,13'[ <_ [2] + 1, the PsDO 

a(x,D) : ]~'m (]R~) --+ ]~- 'rn (N~) 

is continuous for arbitrary m ~ No. 

Proof .  The first part is proved in [Sh2, Theorems 4.1 and 5.1] and the second part 
in [CD1, Theorems 1.6]. ., 

If the estimates 

IO~O~a(x,~)l ~ C~,z,~(C) ~-'z. , ~ e ]~, x e K, C ~ ]~ ,  ~ , ~  e ~0 

hold for all compact K C ~--T, we write a C S"(~ +, N n) and call S"(~ • ]~)  the HSI~MANDER 
class. If rn is the restriction to ~ C N~ and a E S"(~ +, N~), the operator 

-~,m v . . . .  ~ o •  (4.4) ra• Dz) :~ ,com(f~  • > "to,lo~ ~"~ J, s C ]R, l < p < oo 

(see (2.10)) is continuous. 
The matrix-symbol J ( x ,  ~) (and the corresponding operator A(x, Dz)) is called 

hypoelliptic s (  E NS'"~ (l] • IR ~) = 1ESu'"~ • lI{ ~ if the following hold: 1,0 k ~ ) 

a) C~,K [~(~ _< Io-(z,~)l _< c~,,~ Ir x e K ,  

b) t[O~'O~o-(x,~)] o--~(x,,O[ _< C.,z,Kl,~l-I'~l, ,~ e X'~ 

for all multi-indices a, 13 C l~0 and all compact sets K C Q+ (see [Hrl, w 4.1], [Sbl, w 5]). If 
hypoelliptic, A(x, D=) has a parametrix 

RA(X, D~)A(x, Dx) : I - Tl(x, D~), A(x, Dx)RA(x, D,) : I - T2(x, Dz), 

where the PsDOs T1 (X, Dx) and T2 (x, Dx) have order -c~,  i.e. are continuous from :~,~o,~ (~+) 
into C~(~• 

In [Hr2, w 7), [Sbl, w 5] the symbols of parametrices are written explicitly, expecially 
for classical PsDOs (see [Sbl, w 5.5]). We remind only the fact that the principal homogeneous 
symbol of a parametrix coincides with the inverse to the principal homogeneous symbol of 
the operator (~A)p~(X, :) = ~ ; : ( x ,  :) = d0-1 (x, :). 

Corol lary  4.3 Let A(x, Dx) be hypoelliptic with the symbol ~ e ]HIS ' ' ~  (]~n Nn ) and A(x, Dx) 
have a fundamental solution. Then the generalised fundamental solution 

(cf. (3.7)) is continuous 

F~)u(x) :: f ~(')(x, y)~(y)dy 
~n 

(see (2.10)) provided ~ C 1~o, p, s C N, m C No, 1 < p < oe. 

(4.5) 
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Proof. The symbol of PsDO F~)(D) reads as 

~[~)(x, ~) = ( - i0J~ . (z ,  ~) 

where ~ a  (z, {) is the symbol of a parametrix Ra (x, Dx) of the hypoelliptic operator A (x, Dz) 
and ~A ES-"(]R~,~ ~) (see [Sbl, w Therefore ~ i  z) ES-~-IN(]R~,]R~) and continuity 
(4.6) follows from Theorem 4.2. ,. 

Remark  4.4 The generalised volume potentials 

:= f JKaO)(x, y)u(y)dy (4.6) N~.)u(x) 

(cf. (3.s)) are continuous, as usual P~DOs  of order - 2 ~  - I~1, between the spaces 

fl:t: : -- 'p ,com~ J ~ "%,loc \ ~  )"  

Since the symbol of these operators are rational functions, they possess the transmission 
property and are also continuous in the following sense 

N(Z) ~ 'm (t2~3 ---4 ~+2t+lBl'm 

(see [BS1, 13ol, GH1, RSI] for details). 

Lemma 4.5 Let Y = OfF be C~176 and 

a ( x ,  ~ )  ~- a~ , ( x ,  ~ )  Jv ap_l (X,~)  ~ - " .  Av a , - k ( x ,  ~ )  ~- " . . , 

au_k(X,)~) = A"-ka,_~(x,~), x e f~ +, ~ E ]R n, A > 0  

be a classical N x N matrix-symbol a E ~.q~"(f~• ~) with p < -1 .  Let ~ ( x , y )  be the 
~CHWARTZ kernel of the corresponding PsDO a(x, D) and 

v ~ ( ~ )  := ~ ~ ( z ,  ~ )~ (~)dJ ,  E (4.7) 
5~ 

be the corresponding potential-type operator, i.e. the restriction of the domain of definition 
of the PsDO a(x, D) to the boundary J = Of~• 

If  ~ < - 1  the trace 

7~V~( t )  = ay(t, D)9(t) = f JKa(t,T)~O-)d~ c~, t e J 

J 

from the domains t2 + and t2-, respectively, coincides with the direct value of the potential- 
type operator (4.7) (i.e. with the full restriction of PsDO a(x, D) to J )  and represents a 
pseudodiff erential operator 

ay(t, D): ~_~,m(j) __4 ~2~-~-~,m ( ~ ) .  (4.8) 
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with the full classical symbol 

a:( t , ( )  = s  a:,.+,_~ E S"+'-~(J,~ ~) 
k=0 

and the principal symbol 

a:,p~(~j(x), ~') := aj , ,+l (~ j (x ) ,  ~') 

j = 2 ~ d e t / ~  (0, z) av(xJ(x)'/ffgl(O'x)T(~"'~)) d'~' 
- - O 0  

xcU~. 

Here Jx~ (t) denotes the JACOBIAN and 

~y := (det  with :-- 

denotes the square root of the GRAM determinant of the local (coordinate) diffeomorphisms 
x j  : Uj -+ Vj, j = I, 2, . . . , N of Uj c R ~-1 to Vj C ~, ~ .  

I f  v = - 1 ,  the restriction of the potential type operator (4.7) 

a : ( t ,  Dt)p(t) := f J~d~(t,T)~(r)d~J, t E Y 

5~ 

to the surface is understood in the CAUCHY principal value sense (cf. (6.30) below) and 
a y ( t, Dr)~(t) represents a CALDERdN-ZYGMUND singular integral operator 5. e. a y (t, Dr)p(t) 

~ V  is a PsDO of order 0); The traces 7~ ~ and the restriction aN(t, Dt) are related as follows 

1 
7~Va~(t) := ~-~iapr(t, ff(t))~(t) + ay( t ,  Dt)~( t ) ,  t e ~ ,  (4.9) 

where if(t) is the outer unit normal vector at t E J and apr(t,~), ~ C N n, denotes the 
homogeneous principal symbol of a(t, D). 

Proof .  The proof, including a detailed description of the lower order terms of the 
asymptotic expansion of the symbol of a PsDO on the manifold Y ,  can be found in [CD1, 
w 1.4, Example 2] with two differences. First, the proof in [CD1] is carried out for pure 
convolution operators with symbols a(~) but it can be extended to the case of PsDOs with 
classical symbols a(x,~) by minor modifications. Second, for the coefficient in (4.9) there 
has to be quoted a (different) formula from [Es1, (3.26)]. 

A different proof of (4.9), including the formula for the coefficient, can be found in 
[MT1, Appendix C]. ,, 

4 . 2 .  O n  t r a c e s  o f  f u n c t i o n s .  Let us recall the following theorem on traces, 
which will be generalised later in Theorem 6.4 for weighted spaces. 

T h e o r e m  4.6 The trace operator 

• o,• ~,:L k,:~ o,• + ~,+ • " C ' 3 ~  --~) ( 4 . 10 )  2 k u : =  { 7 :  u, :=  7 , ~ ,  u e 7..~ u , . . . , 7 :  u}, 7 :  7.~, 7 j  := , 
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_ _  s _ l - _  �9 

~ =  : ~-~,to~(a • ---+ ~ ~p,p' ' (5 / ) ,  1 < p < oc,  
j=o 

S_L_'  
• Q ll~p,q ~ s(Sz),  l<_p ,q<_oo  

j=0 

is a retraction, provided m E No, k < s - 1/p, i.e. is continuous and has a continuous 
inverse from the right, called a eoretraction: 

k s - L - "  

( ~ ) - ~  | ~; , /  ~(J) --+ ~,~o~(~), 
j=o (4.11) 

k _ k _ '  s • 

j=O 

Proof .  The proof can be found in [Trl, w 2.7.2] .. 
The next lemma generalises [LM1, Ch2, Lemma 2.1], proved there for the scalar 

case (see also [RS2, (11)]. 
L e m m a  4.7 Let 

Q(rn)(x, Dx) := {Qo(x, D x ) , . . . ,  Qm-l(x, D x ) }  T , 

d('~)(x,D~) := {Go(z,D~), . . . ,  Gm_~(x, Dx)} T 

be two DIRICHLET systems on S; z. Then 

Q(m) (x, D~) n(mxm)(~ 

(4.12) 

(4.13) 

,-,(mxm)., where ~4G ix, 2~) is the admissible matrix and thus invertible (see (4.15), (4.16), (4.18) 
below). 
Proof.  The following representations are similar to (1.28), (1.33) 

Qj(z ,  D=) (~(j+l)~ t , D x ) ,  = -~j ~x, 2=) .  13 (j+~)~z 

where 

Gj(x, D~) ~(5+1) 'x = j t , ~ ) ' [ J ( J + ~ ) ( x , D ~ ) ,  j = O , . . . , m  1, 

(~(J+l)'x 2 : . . . .  , j t , =) {Oj,/z, 2~), Oj,~(~, 2~), ~ ( ~ ,  ~(~))}T 

(4.14) 

d ( J + • ) ( z ,  2~) := {%,(~,  2~) , . .  %,1(x, 2 ~ ) , ~ ( x ,  ~(x))} T 

Therefore the lower-triangular matrix-operators 

q(m• = 

g(mXm) (x, 2~) ---- 

~o,0(~, J(x)) 0 . . .  0 
Q1,0(X, 2 x )  ..~1,0 (X, /~(X)) ' ' "  0 

qm-l,O(X, 2x) qm-13(x,-@z)"'-..@m-I,0(X.K(X)) 

%,o(~, J(x)) o ...  o 
G~,o(x, 2~) .~,o(X,Y(x)) . . .  0 

Gm_~,o(X, 2=) G~_~,~(~, 2=) ... ~,~_~,o(~.J(~)) 

det ~ (x )  r O, 

(4.15) 

(4.16) 

detogj(x)#O,  t E Y ,  j = O , . . . , m - 1  
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are admissible (see (1.34), (1.36)) and 

(~(m)(x, D=) = q(mXm)(x, ~)D(m)(x,  D~), G(m)(x, Dx) = g(mXm)(X, ~)13(m)(x ,  D=). (4.17) 

From (4.15)-(4.17) we get (4.13) with the following admissible matrix-operator 

-1 ~ac~(r~• ~.):= q(mX'~)(x, ~)[g(m• ~)] (4.18) 

(cf. (1.35), (1.37)). 

L e m m a  4.8 Let s > O, s f~ N, 1 < p < co, 1 <_ p,q < co and A(x,D~) in (1.1) be a normal 
(not necessarily elliptic) operator; let further {Bj(x ,D ~lm-~ xjjj=o be a DII~ICHLET system of 
order rn - 1. Then there exists a continuous linear operator 

ra-1 ] ~ s + m - l - j  s+m-- l+k  - -  

j=0 --P'P 

~.~TJ: @ --p,q k ~ ]  > ]~p,q,loc p (~-~4- 
j=O 

(4.19) 

such that 

75Bj~a~=~o j ,  j = 0 , 1 , . . . , m - 1 ,  

~ s - - l + i  _ _  ~ s - l + i  

(4.20) 

(4.21) 

for arbitrary 

* = ( ~ o , . . . ,  ~om-1) E 
j=0 --P'P j=0 

Proof .  Let us recall the following property of the space ~ ( f t •  

fg(~• = {~  e r4(a• ~[~  = o}  (4.22) 

1 (cf. (2.10)) which holds under the constraints _1 + g < # < _ + g + 1 (see [Trl] and [Shl, 
P P 

Lemma 1.15]). Due to (4.22), the condition (4.21) can be reformulated as follows 

~ A g ~  = { ~ 5 ~ A ~ r  ~5•162 = 0, 
1 

0 < s - k - - < l ,  kEN0 (4.23) 
P 

(cf. 1 
(4.10)). For 0 < s < -,  the condition (4.23) may be omitted. The operators 

P 

Bm+j(x,D~) :=6O~(~)A(x, Dx),  o r d B m + j = m + j ,  j = 0 , . . . , k  
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are normal 

~,~+j,o(t, ~(t)) = - i  v~(t) S~o(t, J(t)) = (-i)J~o(t ,  g(t)), 

det~.~m+j,0(t, zT(t)) 5~ 0, t C cp, j = 0 , . . . , k  

and combining them with the above DIRICHLET system I~(m) (x, D~) we get a new DmICHLET 
system t3('~+k+l)(x, D~). Therefore 

13('~+k+l)(X, D~) = b (('~+k+l)x(~+k+l)) (x, ~)I~('~+a+~)(x, D~), (4.24) 

and b(('~+~+l)x('~+~+l))(x, N~) is admissible (see (1.34), (1.36)). By defining 

520 : =  (~0, . . . ,  ~o,,-1, 0 , . . . ,  0 
(k+l)-times 

~ k  N~+,~-I-j ( j ) ,  (4.25) --p,q j=0 

we can match conditions (4.20) and (4.23) (which replaces (4.21)) and reformulate the prob- 
lem as follows: let us look for a continuous linear operator 

such that 

s+m+k+ 1 _ _  

j=0 

s + m + k +  ~- - -  "~ 
~ o :  j=o 

(4.26) 

7~13(m+k+l) ~o52o = b ((m+~+l) • (x, ~x)7~l~('~+k+l) ~o52o 

b((m+k+l)• • 52 (4.27) = ~ x ) ~ + k + l ~  o = 520. 

Here we have used the fact that b ((m+k+l)x(m+k+l)) (x, ~ )  is a "tangent" differential operator 
and i ~,• (of. (4.10)). Thus, 

,~mx+k+l• ~;~0520 = [b ((m+k+l)• (x, ~x)]-1 520 

and it remains to apply a coretraetion (4.3): the function 

s+m+k+ ~ - -  
~0520  ~- ~-al+k+l [ b ( (m+k+l)x (mTk+l ) )  (X, ~x)]--1 520 e % , l o t  (~-t-) (4.28) 

s+m+k+ k _ _  
(in ]~p,q,loc "(f~• solves equation (4.27). " 

Let us consider the following surface di-funetion 

(g| v)y:= f g(T)7.~v(r)d~-Y, geC~~ rECk~177 (4.29) 
i ]  

J 
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and its normal derivatives 5(~ ) := 0)by: 

: = f g ( T ) 7 ~ ( ( 0 * ) k v ) ( T ) d r J ,  k = l , 2 , . . . ,  (4.30) 

J 
/ t  

j = l  

Obviously, supp (g | 5(~ )) = suppg C J for arbitrary k E No. 
The definition (4.29)-(4.30) can be extended to less regular functions (i.e. not 

necessarily C~).  More precisely, the following lemma holds. 

L e m m a 4 . 9  Let l < p < ~ ( l < q < o c ) , s < 0 ,  g E ~ , p ( y )  (or g C ~p ,q(J ) ) .  Then 

~-~-~,~ ~ ~. ~-~-~,~ ~ ,  ( ~-~-~,m ~-~ ~ 
g| ~,~o~ ( a ) H  B .  .... ( ) g |  .... ( ) ) ,  

where p~ = p / (p  - 1) and k, m C No are arbitrary. 

Proof .  We concentrate on the case g E ]I$~,p (Y) since the case g E B~,q ( J )  is very 
similar. 

The distribution 9 | 5(~ ) in (4.29) and (4.30) is a properly defined functional on the 
space ~-~+k(~• where, for conciseness, ~ ( ~ •  denotes either H~(~ • or ~ , , ( ~ •  (see 
Theorem 4.6). Moreover, relying again on Theorem 4.6 on traces we get the inequalities 

s - s + k +  
I(g | 5(~ ), v)l < ck(g)llgl~,p(bp)llllvl~, " (~+)[1, 

- - S  1 

I(g | 5~), ~)1 _< c~(g)llgl~b(J)llllx~l~, +k+7(~-)ll, 

where X E C~(gt-)  is a cut-off function, which equals 1 in the neighbourhood of Y C ~- .  
, k  ~ ~ s - k - ~  - -  

Therefore, by duality, g | 5~ ~ E Xp corn ~ (~• 
To prove the result for the' weighted spaces let us note that 

02pro(x) = ~,  pm-k(x) , 

O~pm(~) = ~ ( - l ? m !  (4.31) 
j=~ j!(k - j)! (div ~(x))k-Jp~-~(x),  .~, k ~ No, 

where p = p(x) := dist (x, J ) ,  x C ~+. In fact, if tx ~ ~ is a point for which the distance 
p(x) := dist (x, J )  = dist (x, t~) from x ~ ~• to the boundary ~ is attained then 

O~(t~)p(x) = lira p(x + h~(G)) - p(x) = 1 
h--+O h 

because p(x+  h~( t=) ) -p (x )  = h due to the obvious equality x - t z  = p(x)~(tz) .  For arbitrary 
m, k ~ No the first formula in (4.31) follows by a standard approach and is used to prove 
the second one. 
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Now we apply definition (4.30): 

(p~(g | 6(fi)), v)y := f g(z)7)( (O~-)k p~v)(T)d~J 
J 

j=o ~ 9(~-)7~,[(-0~ divg)e-JP(O})Jv](~-)d,Y (4.32) 

Y 

[ Y 

O, i f  g > k. 

According to the the portion of the lemma we have proved so far, J(g | 6~ )) E 
~ s - k + g -  ~ , m  m _  ~ s - k -  ~ , m  - -  
:~p,co~ p (~+) and the inclusion g | 6(~ ) E ~p,com p ( ~ )  for arbi t rary m E N follows 
from the definition of the weighted space. 

Particular cases of the foregoing lemma are well-known: e.g., see [Esl] for L2-case, 
m = k = 0 and [DW1, Gr3, Shl,  Tail] for Lp-case and again m = k = 0. 

As a direct application of definition (4.29) we can write the generalised layer po- 
tential (3.11) as a volume potential 

v~ ~(~)=(~/ f [G(y, D~LP)(y, ~)]~ (~| =: F~!~(~ | ~)(~), .~ ~ a ~. (423) 

1 
The representation (4.33) has only one shortcoming: p| r X~,to ~(~• for s > P' 

even for ~ E C ~  (i.e. Lemma 4.9 is precise). In fact, locally J can be interpreted as 
~ - '  and ~• r~. Then 1 | ~o-, = ~(~) r ~ , ,oo(~)  if ~ > - 1 / ~ '  (see [~sl] for ~ = 
and [Trl, Tr2] for 1 < p < oo). 

5 P r o o f s  

5.1. P r o o f  o f  T h e o r e m  1.6. It suffices to prove the theorem for the particular case 
of the BVP (1.10) and the corresponding GREEN formula (1.13) because of the following 

oJ=l argument. First we extend the system {by(t, Dt)}j=o of "boundary" differential operators 
u p  to  h D I R I C H L E T  system 

{Bj(t,  m-1 Dt)}j=o = 3~0{bj(t, ~'tjfj=o Y )  ,lrnN--1 

of order m (see Lemma 1.4). If the GREEN formula (1.13) is proved we get tha t  

m - 1  raN--1 

/ ( ( A u ) T ~ - - U  7 A*v)dy= • E f (BSu)~Cjvd~y= • E / (bju)Tc-~d~'5~'  (5.1) 
~ j=0 y j=o y 

where {cj(t, n ~ - ~ N - Z _ ~ T ~  C r t m-1 ~'t)Ij=O --J'~O l j~ , Dt)}j=o is a decomposition in rows. 
Thus, we can concentrate on BVP (1.10) and the corresponding GREEN formula 

(1.13). Moreover, we suppose that  this choice of extension is made and B(m)(x, Dx) (see 
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(1.31)) is the fixed DII%ICHLET system of order m - 1. Without  loss of generality we can 
suppose that  ordBj  --- j, j : 0 , . . . , m  - 1; otherwise we have just to renumber these 
operators. 

In Theorem 1.10 we have already proved the GREEN formula 

f [ (A~)~-  ~TA--~ dy = ~:/(5(~)~) ~. d(~)---~ d J  (5.2) 
f~• 5 ~ 

(see (1.32)) with the special operators I)(m)(x, D~) defined in (1.31) and 

G(m)(x, D~) := {G0(x, D~) , . . . ,  Gin-1 (x, D~)} T 

(5.3) 

(see (1.29)) with skew identity matrix S~,~ = S,~ (see (1.40)) and the formally adjoint matr ix-  
. m--1 

operator (A('~xm)) * (x,N~) to (1.39). I3 ('~) = {@}j=o is a DIRICHLET system. Due to 
Lemma 4.7 

~)(m)( t ,  D t )  = [ ( b  (re• ( t , ~ t ) J - l ~ ( m ) ( t  , D r ) ,  t e ~ (5.4) 

(see (1.36)). Inserting (5.4) into (5.2), taking into account (5.3), and applying the partial 
integration formula (1.24) we get 

f [(A~)T~- ~TA--~ dy = •  ~ �9 d(m)v d J  
a 4- j 

J 

J~ 
(5.5) 

where (](m)(x,D~) is defined by (1.38) and is unique. Due to this formula the operators 
Ck(t, Dr), k = 0, 1 , . . . ,  m - 1 are normal iff the matrix d J ( t ,  Y(t)) on the main diagonal of 
the block-matrix (A(m• ~ ) ) *  is invertible for all t E 27*, i.e. iff the "basic" operator 
A(x,  D~) is normal (see Definition 1.1). 

If the DIaICHLET system {Cj(t,  Dt)}~=~ 1 is fixed (instead of {Bj(t ,  D t ) } ~ l ) ,  the 
proof proceeds similarly with a single difference-instead of A(x,  D~) the proof starts with 
the formally adjoint operator A*(x, D~). 

Now let us suppose that  the "basic" operator is normal and that  the systems 
rC rt D "~]rn-k-1 {bj(t, Dt)}k:~ and ~ .~-j- l t  , t)Ij=o are fixed. 

If one of them is a DmICHLET system (of order k or m -  k, respectively,), we extend 
it up to a DIRICHLET system {Bj,o(t, Dt)}~o 1 (or {Cj,o(t, Dt)}~=~ 1) of order m and write 
the GREEN formula (1.13) (see (5.5)) Next we replace the system {C,~-j-l,0(t, n ~m-k-1 �9 x~'t}Ij= 0 , 

D ~k-1 (1.14), (1.30)) by the fixed ord Cm-j-l,o = j (or the system {Bj,o(t, tjsj=o, ord Bj,o = j; see 
system { C m _ j _  1 m - k - 1  k - i  (t, Dt)}j=o (by the system {Bj(t ,  Dt)}j=0, respectively) with the help of 



160 Duduchava 

a matrix [c(('~-k)x(('~-k))(t, @t)] T transposed to an admissible s) (with an admissible matrix 
b (kxk)(t, ~t), respectively; see Lemma 4.7). Another part of the system remains unchanged. 
The relation between the entire systems has the form 

c~m)(t, Dr) = C(mxm)(t, ~t)c(m)(t, Dr) (B~m)(t, Dr) = b(mxm)(t, .@t)Btm)(t, Dt)), 
where the participating block-matrices are defined as follows 

0 (t ,  T = 0 

and by It we denote the identity matrix of order s 
Inserting the obtained representations into the GREEN formula we find 

f~• J 

J Y 

Due to the structure of the relation matrix c (~x~) (t, ~,),  the first part of the transformed sys- 

tem t3 (~) := [c (=• r g ~ )  remains unchanged and coincides with the system {Bj(t, Dt)}~-~ 
fixed at the beginning. 

Similarly, if the system {Bj,o(t, D ~k-1 U.rj=0 is changed, the second part of the trans- 

formed system e (m) := [b ('~xm)] T e ~ m ) i n  the GREEN formula remains unchanged and coin- 
cides with the second part {Cm-j-](t, Dt)}jm=m_k of the system fixed at the beginning. 

The uniqueness of the full DIRICHLET systems {Bj(t, Dt)}~n=~ 1 and {C~ (t, Dt)}jm=o 1 
follows from the proved part of the theorem. In fact, after one full DIRICHLET systems is 
fixed and another one is chosen, we can replace the chosen full DIRICHLET system by a new 
one with the help of an admissible matrix. If the admissible matrix is not identity, it will 
change the fixed full system. 

Assume that {bj(t, D \ l k N - 1  (or (m-k)N-1 tIfj=O {CmN-j(t, Dt)}j=o ) is not a DIPdCHLET sys- 
tem. Then (see Definition 1.2): 

i. if the linear independence of rows is missing, then the GREEN formula (1.14) can not be 
valid because, by the first part of the Theorem, both systems of "boundary" operators 
must be DIRICHLET systems; 

ii. if one or several orders are missing, then the structure of the connection matrix 
(c (mx'~) (t, ~t) (of b ('~xm) (t, ~t), respectively) does not allow to maintain fixed parts 
of "boundary" systems in the GREEN formula. " 

5.2. P r o o f  of  T h e o r e m  1.7.  If we apply (1.26), we get 

sC(u,v) := / E [a",~(Y)O~u(y)]T o~ v(y)dy 
a• I'~1,1~1 -<g 

g-1 

=f(A )TVe   f(ej )T j eJ, N) 
n• J=~ 5 ~ 

s)It is easy to ascertain that the relation between DIRICHLET systems with diminishing orders is established 
by a transposed (and therefore upper triangular) admissible matrix; see Lemma 4.7. 

01) 
frr~- k 
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I - - i  ~ ~ -1  with some systems {Bj}j= 0 and {Cj}j=0, which we can not control and, therefore, can not 
change. Therefore we start again and proceed with the help of the representations 

IN 
- ~,o~ )u~(~:)+ Ebz , l~ l_ j (X ,~x)~(: ) ,  bz,0(x) = ffZ(x):= uCl(x)...UZn"(X) 

j = l  

(fl E No; cf. (1.28)); by inserting them into (1.16) and applying (1.26) we get 

IZl 
f E o T := [a,~,~(x)O;u(y)] Ebz , lZI - / (Y '  @y)6C(y)v(y)dy 

a~ lal,131- <e y=o 

]e],IBI<g j=0 f i •  

e j - 1  / E f  "--k-lT = [A(y, Dy)U(y)]-fv(y)dy i E (--1) k [el , j (  T, D~)u(T)] r ~(r) v( )dr5 ~ 
it=l = j=0  k=0 y 

e-1  

f~+ j=0  5~ 

because we can not get anything different in the first group of summands than in (5.6). 
Thus, we get the GREEN formula (1.17) with special "boundary" operators Cj = C2,j and 

�9 " ~ - 1  Bj = ow~(y) (j = 0 , . . .  , ~ -  1). Now we can apply (5.4) with m = e and replace {~(u)}j=0 in 

(5.7) by another DIRICHLET system {Bj}~:~ (see (5.5)), which gives us the claimed formula 
(1.17). 

If A is formally self-adjoint, A = A*, then s~'(u, v) = ~r u) and from (1.17) 
written for pairs u, v and v, u we get the simplified GREEN formula (1.18). �9 

5 . 3 .  P r o o f  o f  T h e o r e m  3 .2 .  Due to Theorem 1.6 we can suppose that  the GREEN 
,fC.(x D ~12e-1 formula (1.13) is valid and let t s~ , ~JJj=0 be the DmICHLET system, participating in 

formula (1.13). Without  loss of generality we can assume that  ord Cj -- 2 s  ord Bj - 1 = 
2s - j  - 1 (see (1.14)). Due to Lemma 4.7 we have that  

/z 

G(x,  Dx) = E G~_y(x, ~)Cg_t-y- l (x ,  D~), (5.8) 
j=0  

G , ( z , m , )  = E eL(x)m: ,  �9 e a k = 1 , 2 , . . . , , .  
I~k<k 

Then (see Lemma 1.8) 

V ~  qo(x) ,----,d L @~)n~C2e_j_I(T, D~-)JC~. (x, T)] 
j=0  
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and it suffices to concentrate on the case of generalised layer potentials 

(see (3.5), (4.33)). Let us consider the symbol 

of the PsDO F ~  (see Corollary 4.3), where ~A(x ,~ )  is the symbol of the fundamental 
solution of A(x,  Dz). If qa �9 ~ , p ( ~ ) ( ~  e ]~,q (Y) )  and s < 0, then 

-~ -  _ 4 , o o  . . . .  _ 4 , ~  - -  

where p'  = p/(p - 1). From (5.9) and (4.4) we derive the continuity results (3.13)-(3.15) for 
s < O .  

Next we take s > 0, s ~ N. We define the operators 

~,~ := ~%, % := (0,...,0,~,0,...,0), 

where ~ stands at j - th  place and ~.~ is from Lemma 4.8 (see (4.12), (4.14)).Easy to ascertain, 
that  these operators and their composition with A, considered between the following spaces 

~s+2t-mj-l(j~ _ s+2g-l+ ~ 

~+u-,u -1 j _~+:e-l+ ~ . ~ .  (5.10) 
: ~;,~ ( ) )%,., ,o~ (~), 

~,~ (J) ~ ~,~o~ "(i~), 
A~;~  j : s+2g-mj -1  ~ s - - l +  k 

~s+2e-mj-1 ( c~ ~_1+~ (5.11) 
: ...~p,q ( ' J ]  ) ]~p,q,lo p ( ~ )  

are continuous. Moreover, 7 ~ B k g j  = 0 for k r j and 7 ~ B j g j  = [. 

Let us consider v(Z)(y)~,~ := ) l~(x- y)3g:(A~.)(y, x), where J~/A* (X, y) is the kernel of the 
fundamental solution FA.(X,D~) and X~ �9 C~ X~(x) = 1, Xe(X) = 0 for Ix] > c and 
[x[ < e/2,  respectively. By inserting 

into the GREEN formula (1.13) and sending c --+ 0, similarly to (3.3) we find the following 

•  = - ( ~ )  _ N~,)A~y(Z(x) ~(~)~,~(~) 

+ ~ f c~My)(x- y:-~ (5.12) 

or 
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(see (4.6) for N(Z)), where ~ ~ C~(N~),  and X~ ) ca~,  caz ~ e (x) = 0 for/3 r 0, X~ )(x) = X• 
x ~ f~• (j = 0 , . . . , 2 g -  1). 

Applying Remark 4.4 and Lemma 4.8 from (5.12) we derive the following continuity 
results: 

TNs+2s -1  ( ~  ~ s+2~-~j - I •  -~ . . . . .  s+2~-~j -Z+l~]+ ~- . . . .  
v~ ~) : ~, ,  ~--~ --+ ~,~o~ "/~z=) A ~,~,~o~ "t~=), 

s+2s - 1  ~ s + 2 s  
: ~,~ (~) ~ %~,,o~ (h--~). 

(5.1a) 

Since mj + #j = 2g - 1 (see (1.14)), (5.13) implies the continuity 

V~ ~) : ~, ,~(5 ~) > ~,~o~ ~=)ll~p,p,~o~ ~ ) ,  
s+2s -~+1~1+ ~- 

: l~;,q(~) > ll~p,q,to ~ "(f2 • j = O , . . . , 2 e -  1, 
(5.14) 

provided 

s > 2 g -  po _ 1, s 5~ 2 g -  mj + k, k C N, #0 := ra in{#0, . . . ,  ~2s (5.15) 

Continuity in (5.14), in its turn, yields the following continuity 

~r -;+lPl+Z,k - -  s+2~-m -1+1,6[+ ~,k/~-x-, 
v~ -~) : ~ ; , . (J )  >~,~o~ " ( ~ ) ~ B . , ~ o ~  ~ t - ~ ,  

: ~;,~(y) >~,~,,o~ (a• 
(5.16) 

because /3 E No is an arbitrary multi-index in (5.14) and pkVJZ) = V~ y'z"+k) in local 
coordinates, in which pa(x):= [dist (x, j ) ] k  = x~. 

The continuity (3.14), (3.15) for s < 0 and the cases (5.16) is proved. The missing 
cases in (3.14), (3.15) are filled in with the interpolation (2.9). The continuity (3.16) follows 
almost automatically. 

Let us consider the remaining case, i.e. the continuity (3.13) for s > 0. We recall 
that  (3.13) has been proved for s < 0, while the continuity (3.13) follows from ~.14) for p = 2 

r,k ~ ~2,k and s > 0, because B~,2(J  ) = ~ ( 5  z) and Be,e(f~ ) = (f~• (see w At this stage, we 
only need to observe that  the desired continuity claim follows from the first interpolation 
result in (2.9). .. 

6 C o n s e q u e n c e s  a n d  r e l a t e d  r e s u l t s  

6 . 1 .  T r a c e s  o f  g e n e r a l i s e d  p o t e n t i a l s  o n  t h e  b o u n d a r y .  Let A(x, Dx) in 
(1.1) be an elliptic differential operator with even order m = 2g and FA = FA(x, D) be its 
fundamental solution. Jg/A (x, y) is the corresponding SCHWARTZ kernel (i.e, the fundamental 
matrix of A(x, D~)). 

Let us consider a P o t e n t i a l - t y p e  operator 

V (z) (x, Dx ~ B(x,  D~)V(Z)C(t, ~t) x E ~• B,ct j : =  , , t E J z = 0 f ~  + (6.1) 

where V (z), /3 E 1~0, is a generalised single layer potential 

v(%(x)  := / ~(e)(x, ~)~(~)dJ  (6.2) 
J 
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(cf. (3.12), (3.11)) and 

B(x,  D~) 

c( t ,  2,) 

E b~(x)O~, b ~ C ~ ( f ~  •  x ~ f l  •  
Ic~[~m (6.3) 

are some differential operators of orders m, # = 0, 1 , . . . .  C(t ,  ~t)  is a tangent differential 
operator and it can be restricted to the boundary Y (see (1.21)-(1.22)). 

T h e o r e m  6.1 Let t9 E No ~, s E ~, 1 < p < oc, 1 <_ q <_ oo, m , #  E No. Then the 
potential-type operators 

_ s+2~- l - - rn -#+l~]+ ~,k . . . .  

V(Z)Bc(x D~) : ] ~ , p ( J )  ----+ ]b!~,lo c " [~t=), (6.4) 

s - s + 2 ~ - l - m - , + P Z l +  ~ - , k - ~  - , ( 6 . 5 )  

are continuous for all k = 0, 1 , . . . ,  oo. 
• ~,(Z) [~ D~) exist and are classical pseudodifferential oper- Moreover, the traces I ] v B , c ~ ,  

ators with symbols 

N 

• .~7(Z) (t {) t e J ,  r 6 ]~ (6.6) x (~) ,t ~ ~ ~ ~(~)~ ~(t, ~) ~ . . , ~ . ~ + , , ,  
k=O 

where N E No is arbitrary and ~(~) r§ ~) are homogeneous of order -2~  + 1 + m + # - J i l l -  
k (k = 0, ~ , . . . ,N) .  

The result is also valid for s > 0 and 1 < p, q < oo. In particular, it is valid ]'or the 
ZYGMUND spaces (the case p = q = oo): 

V (z) I"x D~): Z ' ( J )  ~ Z~+2~-l-m-~+t~'l'k(~ • (6.7) 
B , C \  ~ 

Proo f .  Continuity in (6.4), (6.5) and (6.7) follows from Theorem 3.2 and we 
'• ~'(Z) (~ D ~ Without  loss of generality we can suppose shall concentrate on the traces r jVB,c<~ , xj. 

C(x,  9x) = I because a composition of classical PsD0s  is classical. Decomposing B(x,  D~) 
similarly to (1.28) 

B(x, D,) = s B(2~-k)(x, 9~)a~(~), 
k=0 

where B(k)(x, --~x) is a tangent differential operator of order k, we find 

m 

V~)(x, D~) = ~ B(~-k)(x, .~)V~Z)(x, D~), 
k=0 

{~) n~ V(~)(x, D~). (6.8) 9~Z)(x, D~) := Vo~(~)(x, D~) : :  ~(~) 

If k ---- 0~ i,..., 2s 1 the generalised potentials V(Z)(x~ D~) are PsDOs due to 
Lemma 4.5 and the traces 7~%r~Z)(x, Dz) are well defined classical PsmOs on ~ .  
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Let us consider the representation 

2 g - i  

A ( x ,  Dx) = ago(x, ~ 2e ~(x))o~(x) + Z h2~-k(~, ~)0~(x) (6.9) 
k=0 

(cf. (1.28)), where ~0(x, () is the principal symbol of A(x, D~) (cf. (1.13)) and 

A~(t,~t)= }-'~ aj,.(t)@F, t e J  j=o ,1 , . . . , 2e -1  
I,~l<j 

are tangent differential operators. Since J~a(x, y) is the kernel of the fundamental solution, 
we get 

h ( x ,  Dx))~"(e ) (x ,  y) = A(x, Dx)(x - y)eggA(X, y) 

= (X -- y)~A(x, D,)Jd'A(x,  y) + E(x, Dx)Jc"a(x, y) (6.10) 

= (x - y)Za(x - y) + E(x, D~)~/a(x, y) = @hoa(X - Y) + E(x,  D~)~)g'a(x, y) 

(el. (3.1) and (6.9)), where 

0, if / ~ = 0 ,  

E(x ,  D~:) = 2e-1 
~)0~(~) ,  if ~ # 0 

k=0 

and ordEj  = j .  On the other hand, by invoking (6.9), we find 

2g--1 

A ( x ,  Dx)3g'(~)(x ,y)  = sC0(z, ~ 2e ~ (~) ~(~))o~(~)~ (x, y) + ~ ~ G~,~.,(x, ~j~ 'a ~(~) ~(~)~ , ,.,,~ 
k=o ~_<~ 

= @l,o5(X - y) + E ( x ,  D z ) J d h ( x , y ) .  (6.11) 

Now we recall that  A(x, Dx) is elliptic, which implies detago(x, ff(x)) ~ 0 in the 
neighbourhood of the boundary 5 ~ (see (1.5)). This ensures solvability of the equation (6.11) 
and we find: 

2e (~) O . ( ~ ) ~  (x, y) = 5je,, o 5(x - y) [No(x, ~(x))]< 
2g--i 

H2~_~,~(~, 2~)a~(~)~t (~, y). (6.12) 
k=O "r_<5 

Applying the mathematical induction and invoking (6.12) we obtain the represen- 
tation 

2g-1 

--~j~(~)~o~ (~,v) (6.13) 
k=0 v<5 

for arbitrary m = 2g, 2g + 1, �9 �9 �9 . 
The representation (6.13), inserted into (6.8), shows that  all generalised potentials 

V~)(x,  Dz) have traces on Y which are classical PsDOs (see [CD1, w 1, Example 2]). ,, 
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R e m a r k  6.2 The representation (6.12) for ~ = 0 is well known in the literature (see, e.g., 
[KGBB1, w 6.7] and [Nal]). 

R e m a r k  6.3 In the definition of the potential-type operators V (z) rx, Dz~ in (6.1), C(t,  ~t)  B,C~, ] 
can be an arbitrary classical pseudodifferential operator on the boundary 5 ~. 

6.2. T h e  trace  t h e o r e m  for w e i g h t e d  spaces.  The next Theorem generalises 

m 

u e CF(u • 

Theorem 4.6. 

T h e o r e m  6.4 The trace operator 

• r 0,r 1,• k , •  ~ U : =  (~'~ U,~/~ U,...,~yy U}, 

(~ee (4.10)) i~ a r e t r a c t i o n  

s ,m ~ k s -  L _  " 

~ : E,,oo(a ) - ~  | ~ , / ' ( Y ) ,  j=0 
s _ L _ '  ~,,~ - ~  ~ ~ , ~  ~(J),  

j=0 

(6.14) 

1 
provided 1 < p, q < oo, m E N0, k < s - - and has a coretraction. 

P 
We will present two different proofs of this assertion. 
P r o o f  1. If m = 1 ,2 , . . .  the continuity results in (6.14) follow directly from 

Theorem 4.6 since ]~,,oc ( ~ )  and ]~v,q,,o~ ( ~ )  are subspaces of ]E~,,o ~ ( ~ : )  and of ]~,q,,o~ (~1• 
respectively. 

To find a continuous coretraction ~ k  I we use the representation formulae (3.6), 
setting there Au(x)  = 0: 

~ l ( 7 ~ u ) ( z  ) := u(x) = E {[Ve+jBj] u(x) - [VjBt+j] u(x)} (6.15) 
j=0 

for x E ~+ U ~t-. Now the continuity of ~ 1  follows from Theorem 3.2. 
P r o o f  2. Let us dwell on the case of the half-spaces ~ •  = ]t~ and k = 0, because 

the cases k r 0 and of arbi trary domains ~•  can be treated as in [Trl, Theorem 2.7.2, Steps 
6-7] and [Trl, Theorem 3.3.3]. 

s R n  Let us recall an alternative definition of (equivalent) norms in the spaces IB;,q( ) 
and N ( ~ )  = F;,2(~n): 

II~l~;,~ (a  ~) II = It {2sJ'~-I)(:j'-~(P}7=O n , (  ~'~ , ~'q)II (6.16) 

(see [Trl, w167 2.3.1,2.5.6], where 

Xj E C~(Xn) ,  suppx0 c (x e ~n : Ixl < 2}, 

oo 

suppx j  C { x E ~ "  : 2 j-1 < Ix] <2J+1} ,  E X y ( X )  ~ 1. 
j = 0  
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where 

In [Trl, w 2.3.1, Step 5] the coretraction ~ o '  is defined as follows 

~;'~(~', x,,) = ~ ~-'~;~-~or 
j=0 

(~.~7) 

Cj(An)=r j e N ,  r 1 6 2  

supp r E (0,1), suppr  E (1,2), 5,~-'r = ~ ' -1r  = 1. 

Then ~.~-1r = 2J which yields (~o'~O)(x', 0) = r 0). We proceed as in [Trl, w 2.7.2- 
(30)] 

x ~;i=, ~, (~)~,-~, [~ (y')] }~=0 eo (L~ (R=)) 

= 6 1  {2('+~)Jc~A-nLxn ~)~m)()~n)~;LxtXj(x)~y'--+At[~9(Yt)]};o~q(Lp(I~n))= 

_, ~ gq (L,(R~)) = 

where r  O~r Similarly we find 

m --1 s+m+k IIx,,~i ~1~,, "(~:=)11 -< OIl {2=J~- 'x j~}~=o IL,,(a",e~)ll _< QI I~I~(~") I I .  

C o r o l l a r y  6.5 Let s > O, s f~ N, 1 < p < oo (1 <_ p,q <_ oo) and A(x,D~) in (1.1) 
be a normal (not necessarily elliptic) operator; let further {Bj(x, D ~ ) } ~ '  be a DIPJCHLET 
system of order m (see Definition 1.2). 

Then for arbitrary k e No there exists a continuous linear operator 

m - ,  s + m - j - ,  ~ + m - - l +  ! 'k 
~(k): | B;,~ (J)  >%,,oc " (a• j=O 

such that 

s+m_l+i ,  k -~---~,~ 
9(~>: %' ~=+=-J-'(Y) ---* %,q,,oc " (a , ,  j=0 --P'q / 

7 ~ B j g ( k ) ~  = qoj, j = 0, 1 , . . . , m  - 1, 

for arbitrary 

~ s - l +  !,k - -  
A ~ ( k ) O  e I~ , ,o  c ~ (f~• 

m-I  l~s+m-J -1 ( . ~  @ --p,p , , - - /  
j=O 
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P r o o f .  The proof emploies Theorem 6.4 and proceeds as in Lemma 4.8. 

6 . 3 .  T h e  C a l d e r d n  p r o j e c t i o n s .  Throughout  this subsection it is assumed 
that  the conditions of Theorem 1.6 hold and the GREEN formula (1.13) is valid. Let 

s+j+ L } 
• Hp P(a • A(x ,D~)p  0 , H~ ,• (A, Bj, ,90) := 72~Bj(p : ~ ~ , = 

(6.18) 

are defined as follows 

~4 ( J )  = ~ ' -  (A, Bj, J )  �9 g?+ (A, Sj, J ) ,  (6.19) 
_ s ,-  ~ '+(A,  Y ) ,  ]~;,q ( J )  - 13~,,q (A, B j, 5") @ Bp,q 

~ , - ( A ,  Bj, J )  N]E~,+(A, Bj, J )  = 0, B;,q (A, Bj,~, G) N]~;,q (A, Bj, cJ) = 0 (6.20) 

hold and the corresponding CALDER6N projections 

P•  E~ '• (A, Bj, J ) ,  
�9 ~ : ~ ( J )  > (6.21)  ,,• : ]~;,q (~.O) ____} ~;,q (A, BS, J) 

P~,i = +7f~BjVj  for j = 0 , . . . , 2 e -  1. (6.22) 

P r o o f  (see [Sel, Lemmata 5 and 6] for a simpler case). We will prove (6.19)- 
(6.20) for the BESOV spaces. For the BESSEL potential spaces we have to prove only the 
continuity property (6.21) while the others (including (6.22)) follow from the embedding 
B~,q ( J )  c ~ ( J )  for I < r < p < ~ ,  1 _ q <_ o~, s c ~.  

First we note that P ~ j  are PsDOs of order O (see Lemma 4.5). The continuity (6.21) 
follow from the boundedness of PsDOs (see, e.g., Theorem 4.2) provided the inclusions 

, ~,• B; ,q(y)  (6.23) Im P~Aj c ]E~ '• (A, B j, J )  c I~  ( J )  Im P ~ j  c ]~p,q (A, Bj, J )  C 

hold; here ImP~na denotes the image in appropriate spaces. The inclusions (6.23) follow 
because AVjp(x)  = 0 for x E ~2- U f~+ and j = 0 , . . . ,  2g - 1. 

Inserting u = PjqD, f = Au = A ~ j ~  (cf. (5.10), (5.11)) into (3.3) we get 

2~-I 

Xa+~jqo(x) = Na+A~j~D(x) + E VkBk:C~J~(x) = N n + A ~ j v ( x )  + Vj~(x)  (6.24) 
k=0 

for all j = 0 . . . . .  2g - 1 and all x C f F  U f F .  Since the first summand in (6.24) and its 
derivatives are continuous across the surface J 

( 7 ) 0 ~ N a + A ~ j ~ ) ( t )  = (7+0~Nfl+A~a~jT)(t) t e J ,  a e N~0, 

B~,q (A, B j , J )  := 7 ~ B j ~  : ~o C ]~p,q ( f ~ ) ,  A(x,D~)~D = 0 

f o r j  0, .,2~ 1, s E N ,  l < p < o o ,  l < q < o o ,  where • = .. - _ _ 7~u  denote the traces (see 
Introduction). 

T h e o r e m  6.6 The decompositions 
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by invoking (5.10), (5.11) we get 

(7~BkV/~)(t) - (7)BkVj~o)(t) = Bk~j~( t )  = 5k~(t) ,  (6.25) 

where j, k = 0 , . . . ,  2g - 1. Formula (6.25) yield 

P~.j9 + P+flo = v~,SjVjqo - ",/)BjVj~ = ~9, ~ e ~p,q(J) (6.26) 

and with (6.21) they imply (6.19). 
To prove (6.20) (for the BESOV spaces) let us apply formula (6.24), written for the 

homogeneous equation f = Au = A.~j~  = 0 and a similar one for the outer domain ~- :  

X a ~ g j ~ ( x ) = •  ~ = 0 , . . . , 2 e - 1 ,  x e a - u a  +. 

Taking the sum, applying the operator Bj and invoking (5.10), (5.11) we find the represen- 
a~-}- tation of a function @ E ]~p;~ (A, B j, J )  N ~,q (A, Bj, Y )  

~ ( x ) = B j V j [ ~ ] ( x ) ,  j = 0 , . . . , 2 g - 1 ,  x e f F U f ~  +, (6.27) 

where [@](t) := ~/~@(t) - 7)~( t ) .  Thus [~o](t) = 0 on J implies p(x) = 0 for all x e ]R ~. 
From (6.20), (6.23) and (6.26) we get that P~Aj are projections: 

' =  ( *J + P L )  = (e A j) P.~,j P+ P+ III 

E x a m p l e  6.7 I f  in Example 1.9 we take the Laplaeian A(x, Dx)u(x) = Au(x) = 0 in the 
plane domains fY~ C ~- (see (1.1)), the spaces ~ ( ~ )  and ]~p,q ( ~ )  are decomposed into the 
spaces of harmonic functions in f~+ and in f l- .  

6 .4 .  T h e  P l e m e l j i  f o r m u l a e  f o r  l a y e r  p o t e n t i a l s .  Let 

y 

for j = 0,..., 2g- 1 denote the restriction of the potential-type operator BjVk on the surface 
t E J (see (3.5)). According to Theorems 3.2 and 6.1, Vj,k is a pseudodifferential operator 
and 

v j , k :  
(6.29) 

: 

are continuous p r o v i d e d l < p < o o ,  l < q < o c ,  s E ] E ( l < p _ < o %  l < q _ < o c i f s > 0 ) .  
We have already explained in w 6.1 in what sense the operator Vj,k should be un- 

derstood when its order is strictly positive, i.e. ordVj,k = mj + #k -- 2g+ 1 > 0. Since 
ordVj,j = 0 (see (1.14)), V j j  becomes a CALDERON-ZYGMUND singular integral operator 
and the integral in (6.28) is understood in the CAUCHY principal value sense: 

Vj'j(t'Dt)(p(t) := ~-~olim / Bj(t, D t ) [ C j ( T , D ~ ) ~ ( t , T ) ] T ~ ( ~ - ) d r J .  (6.30) 

Y\Y(t,~) 

Here J ( t , c )  := S ' - l ( t , e )  N J  is the part of the surface ~,~ inside the sphere S~-l(t,c) with 
radius c centred at t E J .  Then Vj,j is continuous in the spaces ] ~ ( Y )  and ~,q(2~) (see 
(6.29)). 
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T h e o r e m  6.8 Let the BVP (1.11) be formally adjoint to (1.10) and suppose that the GREEN 
formula (1.13) holds . Then, for the traces 7~BjVk we have the following PLEMELJI for- 
mulae: 

(~/~Bj(x, Dx)Vk~)(t) = (7+Bj(x,D~)VMp)(t) for 
1 

('yf~Bj(x, Dz)VjF)(t) = ~ -~( t )  + Vj,j(t, Dt)~(t),  

k, j  = 0 , . . . 2 ~ -  1, 

Proof .  (6.31) follows from (6.25). 

k # j ,  (6.31) 

t e j 7  (6.32) 

Let t E 5 z be the projection of x E ft • i.e. x C TLT(t) ( recall that if(t) is the unit 
normal vector, directed outwards, into ~-). The potential-type operator 

v s j~ (x )  := ~ ( ~ , A ( x ,  x - ~ ) ~ ( ~ ) d , J ,  
j J  (6.33) 

restricted to 5 ~) has order 0 and has the following CALDERON-ZYGMUND kernel 

9~j,A e C~176 " | R n \ Am,), (6.34) 

I ~ , . ( = , = -  y)l <_ Molx - yl ' - ' ,  x, y e ~ " ,  x C y .  (6.35) 

Then the truncated operator 

~,,(x,x- ~)~(~)dJ, ~ > 0 (6.36) V~ 
, /  

(see (6.30)) has C~-smooth kernel (see (6.34)) and 

- 0 lim (TjVj , j ,~)  (t) -- ~im(7}V~ (6.37) 
e-40 

Due to the definition (6.30) and the continuity property (6.37), 

+V (Tf~Bj(x, D~)Vjp) (t) = (Vj,j(t, Dt)~) (t) + lira (7~ Jd,~) (t) (6.38) 
e---+0 

= ~ ( ~ , . ( ~ , ~ - ~ ) ~ ( ~ ) d J ,  �9 e ~*,  ~ e C ~ ( J ) .  Vjd,~(x) 
y(t,~) 

Since v > 0 is sufficiently small there exists a diffeomorphism 

: 5~0(t,~) ---+ J ( t , ~ ) ,  ~(x') = (x',g(x')) e 5q t ,~ )  c J ,  

X " :  (Xl,...,Xn--1) ~ ~O(t,~) C ]~n--1, (6.39) 
g(t) = t e J ,  (akg)(t) = 0, k = 1 , . . . , n - -  1 
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and J0(t ,  6) is the projection of the part Y(t ,  ~) into the tangent plane ]I~ -1 to Y at t E ~,o,. 
By changing the variable -r = x ( y ' ) ,  y' C J o ( t , c )  in the integral (6.38) we find the following 

v ~ , j , ~ ( x ) : =  ~ , . ( x , x  (v ) )  ~ ( v ) x ~ ( v ) ~ ( ( y ) )  v ,  I z - t l < 2 ~ ,  x C J 0 ( t , c )  

where X~ is the characteristic function of the part J0(t ,  c) C Rn-1 and 

~ ( y , )  := v/i grad g(y,)]2 + 1 = 1 + O ( l y ' -  tl) (6.40) 

is the G~AM determinant (see [Scl, w [Sil, w 
Next we note that 

Vj,e~(z) i ~/jj.A(x,x- ' ' ~ ' d ' +  := v ) x ~ ( v ) ~ ( ( y ) )  v e (1) (6.41) 

as c -+ 0 uniformly for x C ]R ~ in the vicinity of ~'0(t, r 
In fact, the remainder kernel 

~?~(~,y ' )  := ~ , ~ ( ~ , ~  ~ , ~ , - ( y ) )  ~ ( y )  - ~ , ~ ( x , z  y') 

is weakly singular 

I~,.~ _<Ml lx -y l  ~-~, z, y e ~ " ,  x ~ y  (6.42) 

(cf. (6.34); see (6.37) and [CD1, w 1.4]) and it is almost obvious that 

l i m ~  r ~ ? ( x , z  ' ' ' ' ' - v ) ~ ( v  ) x ~ ( v ) ~ ( , 4 ~  ) ) @  = 0 
e---~0 d 

yo(t,c) 

for arbitrary ~ C C ~176 By the same reasons 

I 5~j,A(x, x - y ' )dy '  + 8 (1) as e --~ 0, (6.43) V;,~(~) 

Yo(t,e) 

because l~ (~(y ' ) ) -  ~(t)l _< Mdy'-tl. 
If in the definition of the kernel 2~j,A(x, z - y') in (6.33) the differential opera- 

tors Bj(x, D~), C j ( x ,  D~) and A(x, D~) are replaced by their principal parts Bj,o(t, D~), 
C~,0(t, D~) and Ao(t, D~), respectively, the remainder kernel is weakly singular and admits 
an estimate similar to (6.42). Therefore, as in (6.43), 

:= ~(t)  i ~ j j ,o ,A(x ,x  - y ' )dy '  + ~ (1) as ~ --+ 0, (6.44) Vj ,~(x)  

~o(t,e) 

where the kernel is homogeneous of order 1 - n: 

~/jj,o,A(x,,~z) = A~-n~,o,A(x,z), x,z e IR '~ , z r 0. (6.45) 

We can simplify the integral (6.44) furthermore: 
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1. First we replace the domain of integration Jo ( t ,  e) by the ball 

2. 

3. 

Observe that  mes ~ ( t ,  e) - mes Yo (t, e) = t? (e), while the corresponding integrals 
differ by ~ (1) as e --+ 0. 

Next it is possible, by freezing coefficients at to E J as c --+ 0, to consider a pure 
convolution kernel ~,0,A(t0, x - yt) which is translation invariant; the remainder has 
a weak singularity and contributes a term ~ (1) in (6.44). 

Due to the described simplifications, the domain of integration y~ - t < ~ can be 
translated (shifted) to the origin and stretched up to the unit ball ]Y'I -< 1; t-he integral 
is invariant with respect to translations and dilations (stretching). 

Finally, taking the traces, we get the following 

( ' ~ ,V j ,~ )  (t) := • ~(t) + ~ (1) as r -~ O, 

where 7 • denote the traces on different faces of the surface; the integral 

Co := ~,o,a( to ,y)dy  

ly'l_<l 

(6.46) 

1 
is independent of e > 0 and to E J .  Invoking (6.26) we find Co = ~. Now (6.38) and (6.46) 

yield (6.32). 

R e m a r k  6.9 Applied to the operator Bj(x, D~)Vj, (4.9) gives 

(~/~,Bj(x, Dx)Vj~)(t)  = •  + Vj,j(t, Dt)~(t) t e J ,  (6.47) 

where co(t) = i~j( t ,  Y(t))~j,j(t, Y(t)) and ~jj,j(t, if(t)) is the symbol of the pseudodifferential 
operator on N ~ 

- -  T T 

Nj,3(x, Dx)~p(t) : = / B y ( x , D ~ )  [Cj(y, Dy)~g" A (x,y)] ~o(y)dy, (6.48) 

associated with the potential operator Vy,j in (6.30). From (6.26) we find co(t) ~ 1. 
It is possible to find the symbol ~ j ( t ,  Y(t))~j,j(t, Y(t)) directly by invoking (1.38). 

6 . 5 .  O n  s m o o t h n e s s  o f  s o l u t i o n s  a n d  c o e f f i c i e n t s .  It is possible to diminish 
substantially the smoothness requirements, imposed in w 2 on the coefficients and on the 

~=km---• 
boundary. We need only to ensure an invariant definition of the relevant spaces 1Hip : P ( J ) ,  

1 ~ - - ~  ,q " ( Y )  etc. and the continuity of operator (1.1) and of its formal adjoint (1.2) in 
appropriate spaces. For more refined results for the second order equations on domains with 
LIPSCHITZ boundary we refer to [MMT1, MT1] and the literature cited therein. 

Let the boundary cgf~ = J be C~-smooth. 
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If the integers w, go , . . . ,  gm and the coefficients a,~(x) of the operator A(x,  Dx) in 
(1.1) satisfy the following conditions 

I.d > ~ -- > O, ao~ ~ C e l a l ( ~ n , c N x N ) ,  

m - k  I for # _ r n  > 0  
> I~+W W -  ' 

get  m 
gk = 0  for f l + ~ - - k > 0 ,  ~9- ~- _< 0, 

m 
> k - # - r n 2  for ~ + ~ - - k < 0  

(6.49) 

(6.5o) 

for all k = 0, 1 , . . . ,  m, then the spaces Hp p ( j ) ,  ~p~q 2 p ( j )  are well-defined, the traces 
ra 1 

~ , q  ~" ] = ~J~p,q,toc~" o ] exist and the operators 

A(x,  Dx) : --p,,oo ,oo , ---+ E,,o~ ( a ) ,  

~e+~ ro+~ ~ -~  --T : ,,~,~o~,o,, ~E,~,~o~(a ) (6.51) 

are continuous. 
m rn 

In fact, let t9 - -~- _> O. Since 0~o C ~-p,loc ~o o j we get a~c9%p E ~,~o~ ~ ~ j C 

]H~,lo ~ -  ~ (~-g) for a~ E C~+~ -I~1 (R =, c N •  lee I < m (we remind that  a multiplication operator 
a I  is continuous in ]~(~-q), ]t,~,q(5~ ~) provided a C C"(~-F) and # > ~; see [Trl, Corollary 
2.8.2]). 

m m r~+ ~-I~ t ~ - ~  ~- Lp ,lo~ ( fF )  Now let ~9 - -~- < 0. If ~9 + ~- - laI _> 0 we have 0%0 ~ ~o,~oc ~oo ~-- 

o-  ~ C(X~ ' C N •  m and a,~O'~qo e f~,,o~(f~ •  C ]~,,o~ (~-~) for a~ e If ~ + W - I~1 < 0, then 

a,~O'~q ~ ~ ~o,tor ~oo ~ C f~• for aa ~ clal-~-~(~n,cYxN), [O~[ ~ m.  This yields 
the boundedness result (6.51). 

The condition (6.49) can be slightly improved, provided the condition w > + ~- - > 

m 1 m 
0holds:  i f s + - ~ + p _ - > 0 a n d s - ~ - < 0 w e c a n t a k e  

# • ~Tt n m 

c~ e ~g,~o~(a ) for ~ + W - I< > ~ ,  ~ - W < o ,  (6.52) 

# := max -t9 - ~- + I~1 + - ,  ~ - �9 
p 

~ +  ~ ~o~-~ ~ +  ~ - I<  ~o--~ In fact, under the conditions (6.52) and ~ ~ ~,~oc ~ ~ ~ we get 0a~ ~ ~,~oc ~~ ~ ~ C 
rn 

# :t: C~+~-t~l-~+~(f~ • for a small e > 0. Therefore, a~O%p e I~ , to~(a ) C ~,7o~(a• 
m 1 

Under the conditions (6.49) and (6.50), Lemma 4.8 with s = t~ . . . .  > 0 (which 
2 p 

m 1 
implies ~ > ~- + P and w > m) remains valid. 
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Theorem 3.2 can also be extended, based on Lemma 4.8 with weaker smoothness 
requirements. We leave these results for forthcoming publications. 

6.6. C o n c l u d i n g  R e m a r k s .  As we have already mentioned, if A(z, D~) in 
(1.1) is scalar (N = 1), elliptic and has real valued matrix-coefficients (or complex valued 
coefficients and n > 2), then it is proper elliptic and has even order ord A(x, Dx) = m = 2~ 
(see [LM1, Ch.2, w167 1.1]). 

For the non-scalar case N -- 2, 3, . . .  matters are different. The operator 

A(D~) = ( iOa - i 0 1 - 0 2  (6.53) 
iOl - 02 iOa \ / 

is elliptic 

( ~3 - ~ , + i ~ 2 )  dets~ '(~): l~]27~0 for ~ r  
~(~) = ~ + i~2 ~3 ' 

and has order 1. 
Let us consider the BVP (1.10) with an elliptic "basic" operator A(z, D~), ord A=  

m, with quasi-normal "boundary" operators b0(x, Dx), . . .  ,b~-l(X, D~) and the following 
conditions: 

1 
uel '~( f~+) ,  f e ] f~ -m( f l+) ,  s e N ,  l < p ,  oe, s - - > m - 1 .  (6.54) 

P 

The FREDHOLM properties and the solvability of the BVP (1.10) is completely 
determined by the factorisation of the "lifted" principal homogeneous symbol 

~m)(t, GA):=(A-il5'I)-m~o(t, 5'+AJ(t)), t ~ J ,  5 ' ~ ( t , J ) ,  he iR,  (6.55) 

where 3 ( t ,  J )  := {~' e N ~ : ~'. zT(t) = 0} is the tangent space to J at t e 3 :p, and ad0(x, ~) 
is the principal homogeneous symbol of A(x, Dx) (see (1.4)). 

The symbol ;d(m)(t, ~', A) in (6.55) admits the following factorisation 

ilr 
(6.56) 

where ~'_+(t, ~', ~) and ~'+~(t, ~', ~) are rational, uniformly bounded (with their derivatives) 
and have analytic continuation in the lower (Ira A < 0) and the upper (Ira A > 0) complex 
half-planes, respectively (see [Dul, Esl, Lo2, Shl] and the most recent paper [CD1, w 1.7]). 
The factors ~r in (6.56) do not influence the FREDHOLM and solvability properties of 
the equation and we are left with the middle factor. This leads locally to the problem of 

m 

invertibility of a PsDO (or of a convolution operator) with the symbol \ ~ ]  in the 

space ]K~ (R~_) (details see, e.g., in [CD1, w 1.7], [Esl, Shl]). I fm  = 2 this PsDO has a kernel 
which is eliminated by the SCHAPIRO-LOPATINSKII condition; this condition in the scalar 
case N = 1 can be written as follows 

det[bj(t,~',,~+)]~x~ 7~0, t e J ,  ~ ' G . r  (6.57) 

where A+,. . . ,  A+_I are all roots of the polynomial equation ~0(t, ~', A) = 0, Im A > 0 (see, 
e.g., [LM1, Rol] and [EgS1, Ch.2, w 2]). As we see, the number of boundary conditions in 
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m 
the BVP (1.10) in the scalar case equals ~- and is independent of the space where BVP is 

considered. 
For the matrix case, conditions are formulated in terms of unique solvability of the 

initial boundary value problem for ordinary differential equations (see [Agl, Esl, Hr2, Roll). 
If the "basic" operator in the BVP (1.10) has even order (see (6.53)), a problem arises: the 
values of the parameters 

1 1 
s - - = integer + (6.58) 

p 

are critical and the BVP (1.10) under the conditions (6.54) is not FREDHOLM (moreover, 
A(x, Dx) has a non-closed range; see [CD1, w 1.5]). In the case when (6.58) does not hold, 

1 
the number of boundary conditions w in (1.10) also depends on the space parameters s - - .  

P 
The details will be discussed in further publications. 
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