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Factors and Extensions of Full Shifts
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Abstract. Let X be an irreducible shift of finite type with entropy log n. Then X',
is a continnous extension of the full n-shift. Also, if 2, is a continuous factor of the
full n-shift, then it is shift equivalent to the full n-shift.

1. Introduection

Let 2 be an irreducible shift of finite type of entropy log » where
n is a positive integer (see Section 2 for definitions). In this paper we
show (Theorem 5) that X', is topologically conjugate to an irreducible
shift of finite type all of whose row sums and column sums equal n.
From this and a result of ADLER, GoODWYN and WEIss ([1]) it follows
(Theorem 6) that X, is a finite-to-one, 1-to-1 a.e., continuous
extension of the full n-shift. We also show (Theorem 8) that if X, is a
continuous factor of the full n-shift, then A is shift-equivalent to the
full n-shift in the sense of WrLriams ([8]). It is a well-known
conjecture and at least in this case we believe that shift equivalence
implies topological conjugacy (it is implied by topological conjuga-
cy). In any event, it does at least imply that 2, has the same number
of periodic points of all orders (namely »*) as the full n-shift so that
the zeta functions of X, and the full n-shift are the same. And it
does imply that sufficiently high powers of X, are topologic-
ally conjugate to the corresponding powers of the full n-shift.
Thus, in a sense, the full n-shift is the “minimal’ shift of finite type
with entropy logn.

We hope that our view point will be useful in the problem of
deciding whether shift equivalence is indeed equivalent to topologi-
cal conjugacy. In particular, see Theorem 7.
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2. Background

Let 4 be an I x | matrix of 0’s and 1’s. Let
2, ={xef1,.. .,Z}Z:AWM =1 for each i€ Z}.
Let 0.2, — £, denote the left shift:
o(x) =1 where y; =, .

The map, o, is known as a shift of finite type often referred to simply
as X, . The set {1,...,1} is the alphabet or “symbols” of 2.
One says that i is a predecessor of j (or that j is a sucecessor of 4) if

A;; =1 and we denote this 1 — j. Let § (i) denote the set of successors
of 1. A p-block (or allowable word) is a word @, ...q,, a;€{1,.. .1},
A, =1fori=1,...,p—1. Sometimes a p-block a,...a, also

refers to the cylinder set {x:2;=¢;, 1 <17 < p}.

The usual notion of conjugacy is topological conjugacy: X', and
X' are topologically conjugate if there is a homeomorphism from X'
onto X which commutes with the shifts. Two important invariants
of topological conjugacy are

a) Transitivity — i.e., there exists a point # whose forward orbit
{6" (®)},> is dense. In such a case it is well-known that we may
assume that 4 is a irreducible matrix i.e., Vi,je{l,...,{}dn s. t.
A7;> 0. From this it follows from the beautiful Perron-Frobenius
theorem ([4]) that among the largest (in modulus) eigenvalues there
is one (called 4 = 4 (4)) which is simple and positive. Moreover, 1 has
a positive eigenvector and is uniquely determined as the only
positive eigenvalue with a positive eigenvector.

b) Topological Entropy. The topological entropy of 2, is simply
log (A). (The topological entropy of an arbitrary homeomorphism has
an abstract definition and turns out to be log 1 in this case — see [6],
[91.)

There is also the notion of measure theoretic entropy [9] of a map
relative to a shift invariant Borel probability measure. PARRY ([6])
proved that there is a unique such measure 1, whose entropy is log 4,
and u, is constructed as follows: Let r > 0 be a right (column)
eigenvector and s > 0 be a left (row) eigenvector corresponding to 4.
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‘ {
Normalize r such that ) r;s;=1.If a,...q, is a p-block, then
i=1
S, ¥

) =T

A continuous factor map n: Xy — 2, is a continuous map which
commutes with the shifts. One says that 2, is a continuous factor of
X (or X'y is a continuous extension of X',) if there exists such a map
which is also onto. The well-known theorem of Curtis—Hedlund—
Lyndon ([5]) asserts that (modulo composition with a power of the
shift) every continuous factor map #n:2; — X is of the following
form:

Ja positive integer k and a map a*: {k-blocks of X3} — {1-blocks
of 24} such that

T ((bz)fif ac) = (7‘[4‘ (bL'—H EAS) b’i—Hc))ijC:» 0 0

Note that n* in a natural way defines a map (also called n*) from the
(£ + p — 1)-blocks of Xy to the p-blocks of 2.
Also, we shall use (1 = 3) of the following

Theorem (COVEN-PAUL [3]): Let X3 and X be irreducible shifts of
Jinite type with A(A) = A(B). Let 7n: Xy — X, be a continuous factor
map. Then the following are equivalent

1) = s onlo,

2) =z is boundedly finite-to-one,

3) 7w is measure preserving (i.e., p (C) = ug(z "(C)) for all
measurable sets C C X ).

Finally we mention the notion of shift equivalence ([8]). Let 4
and B be square matrices with non-negative integer entries. One says
that 4 is shift equivalent to B if there exists a positive integer k and
non-negative integer valued matrices R, S such that

A*=RS, B* =S8R, AR=R 73, SA=BS.

Shift equivalence is an equivalence relation [8]. Also, if 4 and B are
0-1 matrices and X ; is topologically conjugate to 2z, then A and B
are shift equivalent ([8]). The converse is conjectured to be true.

 LetJ, bethen x nmatrix consisting of all 1’s. Then 2, issimply
the full shift on % symbols. Note that J, is shift equivalent to the
1 x 1 matrix (n).
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By a constant matrix (or vector) we simply mean an integer-
valued matrix (or vector) all of whose entries are the same.

In this paper we are interested in the case when 4 (4) is an integer.
It is easy to see that in this case the corresponding eigenvectors can
be chosen to be positive and integral. Since the corresponding
eigenspace is 1-dimensional, the notion of a smallest positive integer-
valued right eigenvector makes sense. We will call this vector: the
smallest right eigenvector. Note that the row sums of 4 are all equal
to A(A4) if and only if the smallest right eigenvector is (1,...,1).

We shall occasionally refer to (forward or backward) one-sided
shifts of finite type (see [8] for more about this notion).

3. A Doubly Stochastic Model

Proposition 1: Let A be an irreducible 0-1 matrix with 1(4) =
=neZ". Then 3 an irreducible 0-1 matrix B such that X, is
topologically conjugate to Xy and

ay eack row-sum of B is n,

b) the set of column sums of B is the same as the set of column sums
of A.

Remarks: 1) The conjugacy is in fact a conjugacy on the forward
one-sided level.

2) In general the dimension of B will be much larger than that of
A (in fact the dimension of B will be the sum of the components in the
smallest right eigenvector corresponding to 7).

3) It was previously known ([1]) that one could get such a X
which can be seen to be an at most 2-to-1 continuous extension of Xy .
Their method involves “filling in a tableau” and our method
(although different) essentially shows that one can “fill in the
tableau” so that their factor map is actually a homeomorphism.

As we shall see, Proposition 1 will follow from

Proposition 2: Let A as in proposition 1. Let (r;,...,r) be the
smallest right etgenvector corresponding to n and assume (by a
permutation) r, Z v, i =1, L If(ry,. .., r) # (1,...,1) then there is
an irreducible (I + 1) x (I + 1) 0-1 matrix B such that X, is topological-
ly conjugate to Xp and

a) the smallest right eigenvector of B corresponding to n 1s
(T, Ti_q s €1 ,89) Where e, ,eq < 17;
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b) the set of columm sums of B is the same as the set of column sums
of A.

Note that proposition 2 improves the smallest right eigenvector;
it produces another matrix whose smallest right eigenvector has
either a smaller maximal component or has the same maximal
component but with one less repetition. Thus, by repeated applica-
tion proposition 2 will yield proposition 1.

Proof of Proposition 2: The alphabet for Xy will consist of
equivalence classes (soon to be specified) of the 2-blocks of X,
satisfying ij ~ ¢'j'=1i =14'. The equivalence class of 75 is denoted
[ij]. Given such equivalence classes, one has the natural transitions

[ej] = [0 it dij ~ e,
The associated transition matrix B is easily seen to be irreducible
and the 1-block map defined by =*([ij]) =1 is a topological
conjugacy from X onto 2. This is an example of an elementary

equivalence in the sense of Williams ([8]). By a straight forward
computation one has

Lemma 3: The vector v whose components are

vin= 2, 1y, M ={jeS(i):ij~ij}

jeM
18 a right eigenvector of B corresponding to n.

Note that by definition each predecessor of an element [¢' '] € B is
of the form [¢¢']. Hence the B-predecessors of [¢'j'] are in 1-to-1
correspondence with the 4-predecessors of +'. This means that the set
of column sums of B will be the same as the set of column sums of 4.

After a little discussion, we shall specify the equivalence classes.

We first show that 3¢%,j*e {1,...,1} such that ¢* = j*, ru =17,
and 7« < r,. Ifnot, then one cannot escape from {ie{1,..., [} :r, =1}
whence by irreducibility of 4 we would have each r; = ;. But since
(ri,...,7) is the smallest right eigenvector corresponding to n, we
would have (r,,...,r,) = (1,...,1) contrary to assumption.

So, such 7*, j* must exist and (by a permutation) we may assume
¥ =1

Now, note

17 Monatshefte fiir Mathematik, Bd. 88/3
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Also for each je S (I) r; < 7, j* €S (I) and rj» < ;. Thus, # S(I) > n.
Now we claim
Lemma 4: There is a nonempty subset E C S (l) such that

i) #E<n and
%) ) r;=0modn.

jek
Proof : To see this, first pick n arbitrary elements j; , .. .,j,in 8 (J).
P
Now, if Z 7,0 =1,...,n are all distinct mod » then one must be
k=1

congruent to 0 modn. Otherwise, two of the sums must coincide

P

(modn) and so 11 < ¢ < p < n such that ) 7;, = 0mod n. Thus, in
k=q

either case we can find such (in fact many) a subset E. []

Now, the equivalence classes are as follows: For i # [ {ij};c5¢
forms one entire class, denoted simply [¢].
For ¢ = [, we have two classes,

[h]= {Z]}JGE (as in lemma 4), [/;] = {ij}jeS(l) ~E-

Note that [l,] is indeed nonempty since # S(I) >n and # £ < n.
Also, note that we have simply split the symbol [ into two pieces.
Now by lemma (3) we have

vy = ., ry=mnr; for i #1,

jes)

P = ). 7
jel

U[lz] == Z Tj.
jeSO~E

But this means that each component of the vector v is divisible by n:
this is clear for ¢ # I; true for [/|] by the choice of £ (lemma 4); and
true for [l,] since

vy = ), 7;) — vpg=mnr — vy, *)
jes

Thus, dividing each component of v by n we obtain a smaller right
eigenvector corresponding to » whose components are

. , .
Jtﬁy"”g,...,rll’ U']’ [U}
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: A I () 4 -
Since by (*) -+ —= =1, and both are positive, the proof is
complete. " "
We next strengthen proposition 1.

Theorem 5: Lel A be an irreducible 0-1 matriz with A(4) =neZ™.
Then 3 an irreducible 0-1 matriz B such that X, is topologically
conjugate to Xy , each row sum of B is n and each column sum of B isn.

Proof: First apply Proposition 1 to 4" to obtain a matrix B, with
X, top conjugate to X and each row sum of B, is n. Since a
conjugacy between two maps is a conjugacy between their inverses
we have X, conjugate to 2y and each column sum of B{is n. Now,
apply Proposition 1 to Bi.

4. Factors and Extensions

Theorem 6: T'he full n-shift is a continuous, boundedly finite-to-one,
1-to-1 a.e., factor of every irreducible shift of finite type, X, whose
entropy s log n.

Note: This is also valid on either one-sided level.

Proof: (This is an idea of ADLER and WEIss.) By Theorem 5, we
may assume that each row sum of 4 is n. So, we can define a block
map z* from the 2-blocks of 4 to the symbols {I,...,n} in such
a way that z* is 1-to-1 when restricted to each set of the form
{19:7€8(#)}. One easily sees that this defines a continuous factor
map 7 from X' onto 2, . It is also easy to see that is boundedly finite-
to-one (alternatively one can refer to the result of COVEN and PauL
mentioned in section 2). In general, it willnot be 1-to-1 a. e. Butin[1]
it is shown that such a = can be chosen to be 1-to-1 a.e.

In our discussion of factors of the full n-shift we shall need (3 = 2)
of the following.

Theorem 7: Let A be an irreducible shift of finite type with 1 (A) = n.
The following are equivalent :

1) n s the only non-zero eigenvalue of A,

2) A is shift equivalent to J,,

3) X, is topologically conjugate to some Xz where B is a constant
matrix for some k.
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Proof: 1 =2. See [8, section 8].

2=3. By Theorem 5 we can choose B with all row and column
sums equal to n (and X' topologically conjugate to 2 ). Then B will
be shift equivalent to the 1 x 1 matrix n. This means that there exists
a right eigenvector R and left eigenvector S for B (corresponding to
the eigenvalue n) and also k& > 0 such that

B*=RS, n*=SR.
But S and R are constant vectors — so B is a constant matrix.

3 = 1. This is obviously true for B and therefore true for 4 since
the non-zero eigenvalues determine the numbers of periodic points of
all orders ([2]) and therefore is an invariant of topological conjugacy.

Theorem 8: If X is a continuous factor of X, and i (B) = n, then B
is shift equivalent to J,.

Proof : Since transitivity is preserved under continuous factors,
we may assume that B is irreducible. Since 1(B) =n we may (by
theorem 5) assume that B has all its row and column sums equal to n;
s0, its right and left eigenvectors are comstant vectors. By the
construction in section 2, this means that the measure of maximal
entropy up assigns equal measure to blocks of equal length —namely

1 . . .
the ug-measure of a p-block is T (assuming B is a d x d matrix).
"
1
Also, the measure of maximal entropy s, assigns mass — to each
”

g-block in X; . Note that the result of COVEN—PAUL in section 2
implies that p, = 7™ up where n:X; — Xp is the factor map.

Now, we may assume by the Curtis—Hedlund—Lyndon
theorem (section 2) that = is a k-block map for some k. So, the inverse
image of a p-block in X is the disjoint union of certain (k + p — 1)-
blocks in X, .

But by the remarks in the preceding paragraph one sees that the
number of such (k 4+ p — 1)-blocks is

n(lc+p- 1)

k
n
dn?~! d’

Thus, the number of (k 4+ p — 1)-blocks in the inverse image of a
block in Xy is the same for all blocks in Xy (and in particular is
independent of the length of the block) (cf. [5, theorem 5.4]).
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By virtue of theorem 7 (3 = 2) it is sufficient to show that B is a
k

constant matrix. Specifically, we will show B = ’a Ja.

To see this, we must show that given b,b'e {1, ..., d} the number

of words 6 = by... b, in Xy with by = b and b, = b is T Consider the
map

@ (@*) (b)) x (%) (D) = {by...b, in Tp with by =b and b, = b'}
defined by

P& T Yo Yr1) =T (X Ty Yoo Yimt)

Now, by the remarks above we know that the cardinality of the

AW
domain of ¢ is (7) . Moreover, the mapping is onto and each

. .
element of the range has exactly  inverse images. Thus, the
k

cardinality of the range is R

d

k
So, we have shown that B* is the constant matrix j-Jd as
desired.
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