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Abstract. It is shown that a system of r homogeneous cubic equations with 
rational coefficients has a nontrivial solution in rational integers if the number of 
variables is at least (10 r) 5. For most such systems, an asymptotic formula holds for 
the number zp of solutions whose components have modulus < P. 

1. Introduction. By a special case of  a theorem of  BIRCH [1], there is 
for each r a number  a (r) such that a system of r cubic forms with 
rational coefficients has a nontrivial rational zero when the number  of  
variables exceeds ~ (r). In what  follows, let a (r) be the smallest integer 
with this property.  It appears to be difficult to obtain good bounds  for 
a (r) by BIRCH'S method. But DAVENPORT [5] used the Circle Method  
to obtain a(1) ~< 31, then [6] 

a(1) ~< 15. 

There can be no rational zero unless there is ap-adic zero for each 
prime p. So let ?, (r) be the smallest integer such that r cubic forms in 
more  than ~ (r) variables possess a nontrivialp-adic zero for eachp. It 
has been known for some time (DEM'JANOV [10], LEWIS [12]) that 

(1) = 9, 

but  no estimates were known for e (r) in general. But LEEP and 
SCHMtDT [11] could show that a variation of  a method of  BRAUER [4] 
yields 

(2) ~< 320, (1.1) 

7'(r) ~< (81/2)r 4. (1.2) 
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In par t  III of the present  series it was shown that  

y (r) ~< 5300 r (3 r + 1) 2 . (1.3) 

The existence of a nontrivial  p-adic zero is usually not  enough to 
obtain a rational zero. In mos t  work  to date a nons ingularp-adic  zero 
was required for each p. At the cost of needing a larger number  of 
variables, this difficulty can be overcome:  

Theorem 1. For  r > 1 we have  

r 

~(r) ~< 15 + ~ (8t~,(t) + 2 t  2 -  2 t ) .  
t=2 

Combining  the theorem with (1.1), (1.2) and (1.3) we get 

a(2) ~< 5139, (1.4) 

~r(r) < 66(r  + 1) 6, (1.5) 

(r) < (10 r) 5 . (1.6) 

Only the last of these inequalities depends  on (1.3) and on the 
preceding work of  this series. 

There is no  reason to believe that  the estimate o-(r) ~ r 5 is in any 
way best possible. DAVENPORT and LEWIS [9] showed that  for r cubic 
forms of  additive type 

27 r 2 (log (9 r)) 

variables suffice. BIRCH [2] proved (as a special case of  a more  general 
theorem) the condit ional  result that  a system of cubic forms has a 
non-trivial  rational zero, provided it has a nonsingular  zero in each 
local field and provided that  s > 8 r (r + 1) + dim V*, where V* is a 
certain manifold defined in terms of  singular points. Condi t ional  
results were also proved by TARTAKOVSKY [16], [17]. 

We will study more  general equat ions 

~i(x) = ci (i = 1 , . . . , r )  (1.7) 

where the ~i are cubic forms in x = (xl . . . . .  x,), and where the ci are 
constants  (i =- 1 , . . . ,  r). 

Theorem 2. Suppose  ~1,  . . ., 5,. are cubic f o r m s  in s variables wi th 

ra t ional  in teger  coef f ic ients ,  a n d c l ,  . . ., c,. are ra t ional  integers.  Suppose  

that  no f o r m  in the ra t ional  penci l ,  i. e. no f o r m  ql 51 + "'" + qr~r  with 
ql , " " ,  qr in Q but  not  all  zero ,  vanishes  on a ra t ional  subspace  o f  Q s o f  
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codimension 
,%< 10r2+  6 r .  (1.8) 

Given a box f~ C Es with sides parallel to the coordinate axes, write 
zp = zp ( ~ , . . . ,  ~r; c l , . . . ,  Cr) for the number o f  common integer solu- 
tions of  (1.7) with x ~ P f ~ ,  i.e. in the box which is obtained from 

by the homothetic map • -+ P x. 
Then as P -~ o% 

Z e = PS-3r 3 ~ + O (ps-3r-d).  

Here ~ = O (r, s) > O, and the "singular integral" ,3 depends only on 
q~l,..., ~r and ~3, whereas the "singular series" ~ depends only on 

51 , . . . ,  Jr and cl , . .  .,cr. 
In view of  the condition with (1.8), the hypothesis implies that 

s > 10r2-t - 6r. We may  infer the existence of  solutions only if 
.3 > 0 and | > 0. Hence two additional facts are of importance. 

First Supplement. We have ,3 > 0 i f  the manifold M~ o f  common 
real zeros o f  q~i . . . .  , ~r in the interior offB has dimension >1 s - r. In 
particular we have ,3 > 0 i f  ~ contains 0 in its interior. 

Second Supplement. We have ~ > 0 i f  either 

(a) cl . . . . .  cr = 0 and no form o f  the rational pencil vanishes on 
a rational subspace o f  codimension 

~< 8r~/(r) + 2 r  2 -  2 r ,  

or i f  

(b) 
s > 5300 r (3 r + 1) 2, (1.9) 

the system ~ , .  . ., ~,. is "bottomed" in a sense to be explained below, 
and each c i 6 m Y  where m =  m ( ~ l , . . . , ~ r ) >  0 and Z is the ring o f  
rational integers. 

It is easy to deduce Theorem 1. In view of ~r (1) ~< 15 it is enough to 
show that 

~(r) ~< ~ ( r -  1) + 8 rT( r  ) -t- 2r  2 -  2 r .  (1.10) 

Suppose then that 

s > a ( r  - 1) + 8 r T ( r  ) n t- 2 r  2 - 2 r .  (1.11) 

We will try to apply Theorem 2. We know that ,3 > 0 if~3 is chosen 
properly. Further  ~ > 0 if the condition of  part  (a) of  the Second 
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Supplement holds. In this case Theorem 2 itself applies, since ~, (r) 
~> 9 r (a well known fact, since the Artin conjecture, if true, would be 
best possible). If not, then we may suppose that ~r vanishes on 
a large subspace S. The restrictions of ~1,-.- ,  ~ - 1  to S are r -  1 
forms in 

~ > s - ( 8 r T ( r  ) - 2 r  2 + 2 r ) > ~ ( r -  1) 

variables. Hence 51 . . . .  , ~r-1 possess a nontrivial rational zero in S. 
Thus there is a common rational zero of ~1,. �9 ~ if the number  s of 
variables satisfies (1.11), and (1.10) follows. 

We postpone the classification into bot tomed and bottomless 
systems to the last section. Here we only remark that the bottomless 
systems are rare, in the sense that they form a proper algebraic subset 
of all systems. 

Corollary 1. Suppose (1.9) holds and (~1, . . . ,  Jr) is a bottomed 
system with integer coefficients. Then for  each c~mT? ~ where 
m = m (~1,.--,  ~r), the equations (1.7) have a solution x ~  7/s. 

Corollary 2. Suppose (1.9) holds and (q~l . . . . .  ~r) is a bottomed 
system with rational coefficients. Then for  each e ~ Qr, the equations 
(1.7) have a solution x ~ QS. 

Proo f  Set x -- q-  1 y. Then the equations (1.7) become 

~i(Y)=q3ci  (i = 1,. . . , r ) .  

For suitable q > 0, q e Z, the numbers q3 ci will lie in m Z. 
In a sense, the condition that the system is bot tomed means that it 

is "general", and results about general systems are due to TARTA- 
KOVSKY and BIRCH. However, in contrast to these works, we do not  
always impose extra p-adic conditions. We remark that DAVENPORT 
and LEWIS [8] and WATSON (in work culminating in [18]) obtained 
results about a single nonhomogeneous cubic equation. 

Our presentation will depend on [14] and, to a lesser extent, on 
[13], [15] and the other papers of  the present series. 

2. The Singular Integral and the First Supplement. As in [14], we 
begin with the singular integral and the singular series. Write 

1 - [ y [  iflyl~< 1, 
~o ( y ) =  0 if lYl > 1, 
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and for T > 0 put  
fT(1 - TlYl) i f  fyl <~ T -1, 

~vT- (y) T ~ ( T y )  
0 i f ly l  > T-~. 

Fur ther  set ~0v(y)= Wv(Yt)" "~r(Y~) when y = (Yt . . . .  ,Yr). 

Let 
F = ( 5 ,  . . . .  , ~r)  

be an r-tuple of  cubic forms, and put 

3~r = ~ ~z(F (~)) d~:. (2.1) 

It will follow in the course of the proof  of Theorem 2, that under  the 
condition given in terms of  (1.8), the limit 

,3 = lira 3 r  (2.2) 
T ~  

exists. This limit is the singular integral ~ of  Theorem 2. 
Lemma 2 of  [ 14] holds in the present context. That  is, the singular 

integral is positive if the manifold M s  consisting of real zeros of  F in 
the interior of  ~ has real dimension 

d i m M ~  ~> s - r .  (2.3) 

In particular this is true i fF  has a nonsingular zero in the interior of~3. 
It remains for us to show that (2.3) is certainly true if ~3 contains the 
origin in its interior. We first quote the 

Borsuk-Ulam Theorem. Suppose 9) is a continuous map f rom the 
sphere S ~ into ~r. Then there is a pair x, - x o f  antipodal points on S" 
with ~ (x) = 9~ ( -  x). 

For  a p roof  see BORSUK [3]. 
Now F defines a map from [~ into ~ .  Given a subspace A ~+ ~ of  [~ 

of  dimension r + 1, it contains an r-sphere, and hence an x # 0 with 
F (x) = F ( -  x), therefore with F (x) = 0 since F is cubic. Thus the 
manifold M of  zeros o f f  has nonzero intersections with any subspace 
A~+ l of  dimension r + 1. 

Thus M is "large" in some sense. We want to show that its 
dimension is at least s - r. Being simple number  theorists, we don' t  
want to go into the definition of dimension, etc. We will simply show 
that there is a subspace A ~-~ of dimension s -  r, such that the 
orthogonal projection of  M on A ~-r is A ~-~ itself. The intersection 
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M~ = M c~ ~ then has the property that  its orthogonal projection on 
A ~-~ contains the origin in its interior, and Lemma 2 of  [14] clearly 
may be applied. Hence it will suffice to prove the following 

Lemma 1. Let M be a subset o f  W which is "homogeneous" in the 
sense that 2 x ~ M whenever x ~ M and 2 ~ ~. Suppose that M c~ A ~ {0} 
for  every subspace A o f  dimension > r. Then there is a subspace A ~-~ 
such that the orthogonal projection o f  M on A ~-~ is A s-r itself. 

Proo f  When r = 0, then M = ~'. In the step from r - I to r we 
may suppose that M c~ A ~ {0} when dim A > r, but  that there is a 
subspace B with dim B =  r and M ~ B =  {0}. We further may 
suppose that B is the subspace x~ . . . . .  x~_~ = 0. Let A ~-r be the 
subspace x~-r+l . . . . .  xs = 0, and let u ~ 0 be in A ~-~. We have 
M ~ A  ~ {0} for the subspace A spanned by B and u. Since 
M ~ B = {0}, some b + 2 u ~ M, where b e B and 2 :~ 0. Thus 2 u, and 
hence u, lie in the orthogonal  projection of  M on A ~-~. Since u was an 
arbitrary nonzero element of  A ~-~, the lemma follows. 

3. The Singular Series and the Second Supplement. Write e (x) = 
e 2 z i x  and 

S ( a , q ) =  ~ e ( q - S a F ( x ) )  (3.1) 
x (rood q) 

where a = (as,.. . ,a,.), x = (xl . . . .  ,Xs) and a F  is the inner product  
as ~1 + . . .  + ar ~r. Further  write 

A(q ,c)  = ~ q - S S ( a , q ) e ( -  q-Sac )  (3.2) 
a (rood q) 
( a , q )  = 1 

where (a, q) is the greatest common divisor of  al . . . .  , at, q, and where 
ac  = a l  c 1 dr- . . .  -3v a r C  r. 

It will be shown (Lemma 8 below) that under the hypotheses  of  
Theorem 2, 

I S (a, q) l ~ q S - r -  s - ~o/2) 

where q = (10 r)-1. It then follows that 

IA (q,e)[ ~ q-l-(d2), (3.3) 

and the sum 
~3 

= ~ (c) = ~ A (q, c) (3.4) 
q = l  
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is absolutely convergent,  uniformly in e. This sum is the "singular 
series" of Theorem 2. By the absolute convergence,  and since A (q, c) 
is multiplicative in q, 

(c) = [ I  z (p, c) (3.5) 
P 

where for each prime p, 

X (p,e) = 1 + A (p,e) + A (p2,c) + . . . .  

We have the well known relation 

1 + A (p, e) + . . .  + A (pl, e) = p-(S-")~z(c) 

where ~t(c) is the number  of  solutions x ( m o d p  ~) of  

V (x) - c (modp ' ) ,  (3.6) 

i.e. of ~i(x) - c i ( m o d p 5  ( i =  1,.~.,t  9 . 
Write ~'z = *~ (0), so that  ~'l is the number  of  solutions of  

F (x) - 0 ( m o d p 5 ,  (3.7) 

and write xt for the number  of  primit ive  solutions, i.e. solutions 
x ~ 0 (modp).  

Lemma 2. z~t ~ p/(~--y(r)). 

P r o o f  The integer points  x ( m o d f f )  form a group X under  
addition, which is the sum of s  cyclic groups of o rde rp (  The  primitive 
integer points are the elements of  X of  o rde rp  ~. The letter H will stand 
for subgroups of  J( which are the sum of  

g = y (r) + 1 

cyclic groups of  order  ft. In t roduce 

~i = number  of  subgroups H of 32, 

:~2 = number  of  subgroups  H of  X which contain a given x of  X 
of  order  pl, 

fli = number  of  elements of  order  pl in 2", 

r2 = number  of  elements of  order pl in a given H. 

Then  

~2 

fll pl~. _ p q -  l)s 1 -- p -S  pl(S-g) 
r2 pig _ p(~-l)g 1 -- p -g"  
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By definition of 7 (r) and of g, a system of r forms in g variables 
possesses a nontrivial p-adic zero, hence possesses a zero x whose 
components are p-adic integers, in fact possesses a primitive zero 
whose components are not all divisible byp. Hence a congruence (3.7) 
in g variables possesses a primitive solution. Then it must possess at 
leastpl _ pt- ~ primitive solutions. It follows that in every subgroup H 
of X there are p t  pt-1 primitive solutions of (3.7). We obtain 

zll >~ (pl _ pl-1) ~I =pl(S-r(r))(1 - p- l )  (1 - p-~) (1 - p-g)-1 
~2 

pt(S-~(r)) . 

As a consequence of Lemma 2 we have 

1 + A ( p , 0 ) + . . .  + A (pl,0) = p-(S-r)lV 1 >~ p-(S-r)lz~ t >> p-lb,(r)-r). 
(3.8) 

It will be shown in Lemma 8 below that under the hypotheses of 
part (a) of the Second Supplement, 

t S ( a , q ) l  ~ r 

where 0 = (10 r ) -k  Then 

[ A (q, 0) [ ~ qr- ~ (~)- (0/2) 
and 

I A (pt+ 1, 0) + a (p/+2 0) --[-... I ~ p-t(e(r)-r+(0/2)>. 

This relation contradicts (3.8) if Z (P, 0) = 0. Hence each z (P, 0) is 
positive and the singular series ~ is positive. So much about part (a) of 
the Second Supplement. For part (b) see the last section of this paper. 

4. A L e m m a  with Three Alternatives .  To each cubic form ~i (x) 
there belongs a unique symmetric trilinear form ~ (x ly ]  z) with 

(x) = ~ (x] x l x). To our given r-tuple F = (~il, . . . ,  ~ )  of cubic 
forms there belongs an r-tuple 

F(xl ylz) = (~1 (x ly lz ) , . . . ,  ~r(x] yl z)) 

of symmetric, trilinear forms. The forms ~i in Theorem 2 are 
supposed to have integer coefficients. We may interpret this to mean 
that each associated trilinear form has integer coefficients (sneaky [), 
or else we can force this by multiplying F by a factor 6 and by noting 
that if the theorem is true for 6 F, t hen  it is also true for F. 
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Given ~ = (~1,. �9 ~ )  ~ ~ ,  write 

~ F ( x )  = ~ ~ ( x )  + . . .  + ~r ~ , (x )  
and 

~ F ( x l y l z )  = ~ l ~ l ( x [ y l z )  -]-...-Jr- ~,. ~?,(xl y l z ) .  

Let ~[~ be the uni t  cube  0 ~< ~ < 1 (i = 1,. . . ,  r), and put  

s (_~) = Y~ e (_~ F (x)).  
xePf~ 

T h e n  the n u m b e r  ze o f  T h e o r e m  2 is given by 

ze = ~ S(~_)e(-  _~e)d~. (4.1) 
t[,. 

In proving T h e o r e m  2 we m a y  suppose  wi thout  loss o f  general i ty that  
has sides at mos t  1. Besides the cube ~J~ in t roduced  above we will 

need the cube  ~ consist ing o f  x with - 1 < xe < 1 (i = 1 , . . . , s ) .  

Lemma  3. Suppose K > 0, ~ > 0, 0 > 0. Given ~_, we have either 

(i) Is (_~)1 ~< pS-K, 
o r  

(ii) there are rational approximations (a~/q . . . .  ,a,./q) 
= (~1, . . . ,  ~r) satisfying 

o r  

(iii) 

1 ~ q <~ p2rO 

(a, q) = 1, 

I q ~ i -  ail < p-3+2ro ( i x  1 , . . . , r ) ,  

there are 
>~ p 2 O s - 4 K - ~  

to  ~ 

(4.2) 

(4.3) 

(4.4) 

pairs o f  integer points x, y in pO ~ for  which 

rank  (~i (x i Y [ ej))l < i,<,, 1 <~j<~s • 1.. O. 5) 

Here e~,. . ., e~ are the basis vectors, and the constant in >> may depend 
on r, s, K, O, e. 

Proof  This is essentially the case d = 3 of  L e m m a  2.5 of  BmCH [2]. 
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5. Trilinear and Fourlinear Forms. We shall have to deal with 
fourlinear forms 

f B ( x l Y l Z l w ) - - w l q ~ , ( x [ y l z ) + . . . + W r ~ , . ( x l y l z ) .  (5.1) 

We are not  able to deal with such forms directly, but need to examine 
trilinear forms first. 

Lemma 4. Let Z ( x l y l z )  be a trilinear form with rational co- 
efficients in vectors x ~ Qs, y ~ Qt, z ~ �9 which is symmetric in y, z. 
For given x, let Y(x) be the subspace o f  Qt consisting o f  y having 
3; (x [y lz )  ---- 0 identically in z. 

Suppose that a is an integer in 1 <~ a <~ s, that R ~ 1 and that there 
are more than 

ARa-1  

integer points x with* Ix] <~ R and dim Y(x) >~ d, where A = A(s, l ) .  
Then there are subspaces J2 o f  Q s and Y o f  Q t with 

d i m X / > a ,  d i m Y ~ > d ,  
such that 

3 ; ( x l y r z  ) = 0  f o r x e X ,  y 6 Y ,  z ~ Y .  (5.2) 

It will be crucial for the applications that A does not  depend on the 
coefficients of  3;. A special version is Lemma 3 of DAVENPORT [6]. 
Another  version was proved by DAWNPORT and LEWIS [7] in the 
context of  forms over finite fields. Here we will indicate a p roof  in the 
terminology of  Lemma 4 of  [14]. 

Proof. Let X be the given set of  integer points x with Ix] ~< R and 
dim Y(x)1> d. When d =  t, then 3[ is a subspace of  Q~' and the 
conclusion follows easily. 

Suppose then that d < t. Consider the matrix 

3; (x [ei[ ej) (1 ~< i,j <. t). (5.3) 

Just as in [14]** we may  suppose without loss of  generality that for 
x e t; we have dim Y (x) = d, the matrix (5.3) has rank t - d, and the 
submatrix with 1 ~< i,j <~ t - d is nonsingular. 

Again, as in [14], let DI(x) , . . . ,DN(X)  be the ( t -  d +  1)-sub- 
determinants  of  (5.3), arranged in some order. Write D ( x ) =  
= (D1 (x) , . . . ,  DN(X)). As in [14], there exist points x of  X for which 

* We set Lx] = max(IxiI ..... Ix, i)- 
** But our roles of y, z are interchanged from the ones in [14]. 
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at mos t  s - a of the vectors 

8 D / S x T , .  . ., O D / d x ,  (5A) 

are independent .  This is a consequence of  DAVENVORr'S Lemma 2 
in [6] (reproduced as Lemma  4 in [14]). It is impor tan t  to note that  
the constant  A in DAVENPORT'S Lemma does not  depend on the 
coefficients of  the polynomials.  

Construct  vectors y(~)= y0)(x),...,y(a)___ y(d)(x) of Q: as in [14]. 
The componen t s  of  these vectors are polynomials ,  and for x e 3~, they 
are linearly independent .  The identi ty (7.7) of[14] holds, i. e. we have 
identically in x, z that  

(x ly  (~ (x) 1 z) = ~B (~ (z lD (x)) (i = 1 , . . . ,  d), (5.5) 

where each ~3 (') is a bilinear form, in the vector z with t componen ts  
and the vector D with Ncomponen t s .  Taking the partial derivate with 
respect to x:, we obtain 

( By(i)  ) ~B(0(  ~ 8  
z ( e ,  x (x) = (5.6) 

( l <~ i <~ d, l <~ l <~ s ) .  

By construction,  the vectors y~) (x) lie in Y(x) for x ~ ~. Since 3; is 
symmetric in the last two arguments ,  3; (x Jwly  0) (x)) = 0 identically 
in w when x ~X. Substi tuting z = y0)(x) in (5.6) we obtain 

8 
2; (err y(0 (x) l y0) (x)) = ~3 (0 (y(/) (x) i v -  D (x)) (1 ~< i , j  <~ d, 1 <~ l <~ s),  

ox l  

for x s 3L We substi tute x = a where a is an element of  3~ for which at 
mos t  s - a of  the vectors (5.4) are independent .  Let X be the subspace 
of  Qs consisting of u = (ul, .  �9 u~) with 

8 8 
D (,) + . . .  + , ,  (,) = 0 .  

cxi  

Then  dim X ~> a, and for u ~ X we have 

~. (u [ y(0 (a) f y(:) (a)) = 0 (1 ~ i , j  <~ d). 
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The assertion of the lemma holds with the space X, and the space Z 
spanned by y0) (a), . . . ,  y(~0 (a). 

Lemma 5. There is a constant B = B (s) as follows. Let ~ (x ] y I z) 
be a symmetric trilinear form in vectors x, y, z ~ Q". Let b be an integer 
in s < b <~ 2 s, and let R >~ 1. Suppose there are more than 

BRb-1  

pairs (x,y) o f  integer points with Ixl ~< R, lYl ~< R for  which 

 (xlylz)=0 
identically in z. Then there is a subspace S o f  Qs with 

dim S t> b - s 

such that ~ ( x l y l z )  = O f o r  x,y, ze  S. 

Proof  For given x, let again Y(x) be the subspace consisting ofy  
for which X (x I y I z) = 0 identically in z. In a subspace Yofdimension 
d, there are at most Cl (s) R a integer points y with I Y [ ~< R. Thus if,t (d) 
is the number of x with dim Y ( x ) =  d and Ixl ~< R, then our 
hypothesis yields 

s 

cl(s) z(cO-ea>>- . R  
d = 0  

Hence there is a d with 2(d)~> c 2 ( s ) B R  b-a-1. If B is so large 
that c2 (s)B > A, then the preceding lemma may be applied with 
a - - - b -  d, and we obtain subspaces X and Y with (5.2) having 
dim X ~> b -  d, dim Y~> d. The intersection S =  Xr Y has the 
properties enunciated in the lemma. 

Lemma 6. Suppose ~(x ly lz lw)  with x , y , z ~ Q  s and w ~ Q  ~ is a 
fourlinear form which is symmetric in x, y, z. Le t s  > 2 r 2 - 2 r, and let c 
be an integer with 

s + 2r 2 -  2r  < c ~< 2s.  (5.7) 

There is a constant C = C (~B) as follows. Suppose that R >~ 1 and that 
there are 

>I C R  c-I 

pairs (x,y) o f  integer points with Ixl ~< R, lYl ~< R for  which there is a 
nonzero w in Qr such that YB (x I Y l z[ w) = 0 identically in z. 

Then there is a nonzero w0 ~ Qr and there is a subspace S o f  Q s with 
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d i m S  ~> c - s - 2r  2 + 2 r  

such that  93(xly[zlwo) = O f o r  x,y,  z s S .  

P r o o f  Let (x, y) be a typical pair in the hypothesis of  the lemma. 
The condition that 93 (xJ y I zlw) = 0 identically in z is a linear condi- 
tion on w, and since a nontrivial such w e Qr exists, the condition must 
amount  to not more than r -  1 linear homogeneous equations in 
W l , . . . ,  Wr. The coefficients of  each of  these equations are ~< c3 (93) R 2 

in absolute value, since f x I, lYl ~< R. Hence these linear equation's have 
a nonzero solution w = w (x, y) whose components  are integers not  
exceeding c4 (93) R 2(r -  1) in absolute value. The number  of  possibilities 
for such vectors w does not  exceed e5 (93)R 2r2-zr .  Since there are at 
least C R  c-I  pairs in the hypothesis, there must  be a w0 having 
w0 = w (x, y) for at least (C/cs)  R c-2r2+2,.-1 of  these pairs. Now if C is 
so large that C/c5 >~ B, then the preceding lemma may be applied with 
3; (x I y lz) = 93 (x ! Y lZt w0) and with b = c - 2 r 2 + 2 r. The coeffi- 
cients of  3~ here depend on R and may be quite large, but fortunately 
the constant  B of  Lemma 5 does not  depend on the coefficients. 

6. The  M i n o r  Arcs.  Let 93 be the fourlinear form (5.1). For  every 
pair (x,y) with (4.5) there is a w 3 0  such that 9 3 ( x l y l z l w ) =  
= w F (x [ y Jz) = 0 identically in z. In other words, W(x, y) ~ 0. 

Suppose the third alternative of Lemma 3 holds for certain 
arbitrarily large values of P. Put 

c = 2 s  - [4K/O] 

where [ ] denotes the integer part. We have 

2 0 s  - 4 K -  e = O(2s  - (4K/O)  - (e/O)) > O(c - 1) 

if e > 0 is sufficiently small. Hence Lemma 6 may be applied with 
R = pO (we don' t  have to check (5.7), since the lemma is trivially true 
if this condition is violated). There is then a rational w0 r 0 and a 
subspace S of  Q~ with 

d i m S  1> c - s - 2 r  2 + 2 r  >1 s - (4K/O)  - 2r  2 +  2 r  

such that w0 F (x  ! Y[ z) = 0 for x, y, z ~ S. The form w0 F of the rational 
pencil vanishes on a space S with 

codim S ~ (4 K/O) + 2 r 2 - -  2 r .  

23 Monatshefte ffir Mathematik, Bd. 93/4 
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o r  

We now set either 

K = K 1  0(2r  2 + 2 r + ( 1 / 5 ) ) ,  

K =  K2 = O(2r~(r) + (1/5)). 

Suppose the hypotheses  of  Theo rem 2 hold. Applying what  we 
just  said with K = K1, we see that  the form w0 F would vanish on a 
rational subspace of codimension ~ 10 r 2 -I- 6 r, which is impossible. 
Hence the third alternative of  L e m m a  3 is ruled out. 

On the other hand,  suppose  that  the stronger hypotheses  of par t  
(a) of the Second Supplement  hold. Put t ing K = K2, we see that  the 
form w0F would vanish on a rational subspace of codimension 

8 r~ ( r ) +  2 r  2 -  2r,  which is impossible. Again the third alter- 
native of L e m m a  3 is ruled out. 

We now put  A = 2 r 0 and 9 = (10 r)-  1, so that  K1 = A (r + 1 + O), 
/s = A (~ (r) + 9). Our  conclusions may  be summarized as follows. 

Lemma 7. Suppose the hypotheses of  Theorem 2 hold. Then for 
large P, each ,_ either has 

(i) IS(_~)l ~< p,-A (,~+I+o), 
or 

(ii) _~ lies in the set 9~(A), consisting of r-tuples which have 
approximations (al/ q . . . .  , at~q) with 

1 ~ q ~< P ~ ,  (6.1) 

(a, q) = 1, (6.2) 

] q , i - a i J < p - 3 + ~  ( i =  1 , . . . , r ) .  (6.3) 

Moreover, i f  the hypotheses of part (a) of the Second Supplement 
hold, then (i) may be replaced by 

(i') IS(_~)I ~< P'-~(~(r~+~ 

Next  we have 

Lemma 8. Suppose a = ( a l , .  � 9  ar) and q have (a, q) = 1. Then the 
sum S (a, q) given by (3.1) has 

I S (a, q) l ~ q x-r-  1 - ( ~ / 2 )  

if  the conditions of  Theorem 2 hold. It even has 

IS(a, q) l ~ qS-y(,.)-te/2) 
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i f  the conditions of  part (a) of the Second Supplement hold. 

Let ~t (A) be the complement of 9t (A) in 11, 

Lemma 9. For 0 < A < 3 r/(r + 1) we have 

,1 (4) 

Proofs. Just as for Lemmas 7, 8 in [14]. 

Now let 931----9Jl(A) consist of _~ in ~i,. for which there are 
approximations (al q~ . . . .  , at~q) with (6.1), (6.2) and 

_ .< p - 3 + ~  (i  = 1 . . . .  , r ) .  ( 6 . 4 )  

Since (6.4) is weaker than (6.3), we have 

• ur 93l 

Then the complement rrt = m (A) of 931 = 93l (A) in 1I,, is contained in 
rt (A). Following tradition we call 9)l the "major  arcs" and m the 
"minor  arcs". According to Lemma 9, the integral 

I ( -  c) 
t l l  

which is the part of the integral (4.1) belonging to m, is small. We 
therefore may turn to the major arcs. 

7. The Major Arcs. Given a, q with (6.1), (6.2), let 9Jl,,q = 9)l~,q (d) 
be the set of ~ with (6.4). 

L e m m a  10. Suppose g = q - l a  +//fiE9)la, q. Then 

S(~) = q-SS(a,  q)1(/3) + 0 (qp~-l+~) 
where 

I ~ ) =  j" e~V(_~))d_~. 
P~ 

Proof We proceed as with Lemma 9 in [14], the only exception 
being that in the formula below (9.3), 

is to be replaced by 

23* 

qlfl_]P ~ qp-2+dp  

qlfi]p2 ~ qp-3+~ p2. 
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Lemma 11. For sufficiently small d > 0 

S(a_)e( -  c_~) d_~ =-- ps-3~ ~ ( P ~ , c )  3(P ~) + O(P s-3r-~) 

for some ~ > O, where 

~ ( P ~ , c ) =  ~ A(q,c)  
q <~ P~ 

with A (q, c) given by (3.2), and 

3(P~)= I (~ e(y_F(~)) d 0 @ .  
]_y] < P.J 

Proof. The argument  for Lemma 10 of[14] carries over with small 
changes. For ~ = q - 1 a + -fi ~ 9~Ra, q,  

e ( -  e_~) = e ( -  q - l a c ) e ( -  _fie) = e ( -  q - l a e )  + O(p-3+A),  

SO that by our Lemma 10, 

S(~_)e(- c~_) = q-SS(a,q)e(-  q - l a e ) I ~ )  + O (qPS-l+A). 

We have to integrate over 9Jla, q, and take the sum over the sets 9)la, q, 
which are disjoint when A is small. 

The error term, when integrated over 932a, q, i. e. over 1_/21 ~< P -3+d, 
gives 

<~ p-3r+Ar ps-l+ZA = ps-3r-l+(r+2)~. 

Summation over a gives a factor ~< qr, and summation over q <<. pA 
gives a factor -%< Z q  r <~ p~( r+ l )  SO that the total error is 

ps-3r-l+(2r+3)A. 

This certainly is ~ ps-3r-~ when A is small. 
The main term gives 

(PLe) 
I fll < p-3+A 

With the new variables _~ = p3  _/2, the integral becomes 

e-3~ ~ i(p-3 )dT= e~-3r3(p~), 
I_rl < P~ 

since 
I(p-3_7 ) - -  ~ e(p-37_F(~_))d~=PS~e(_yF)d~_. 

P~B ~3 
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(4.1) in 

Lemma 12. 
IR (Z)I ~ min(1,1Zl-r-1).  

Proof Same as for the corresponding lemma in [14], the only 
difference being that now we set _/2 = P-3_V. But still P = lZl ~+2 and 
9~= ( r + 2 )  -1 

As a consequence of the lemma, the integral 

.30 = ~ ~ (~) + 

is absolutely convergent, and 

130 - 3(P~)I  < e - ~ .  

Finally, again as in [14], 

130 - 3 ~ 1  ~ T -~ , 

so that the limit .~ of 3v exists, and ,3 = 30. 

9. Bottomed and Bottomless Systems. We finally come to part (b) 
of the Second Supplement and to the definition of bottomed systems. 

Let k be a field of characteristic 0. To each cubic form ~ with 
coefficients in k there belongs a unique symmetric trilinear form 

(xl y iz) with ~ (x) = ~ (xl x l x). Let F = (~1, . . . ,  ~r) denote an l"- 
tuple of such cubic forms in vectors x = (xl,.  �9 x~). If  T, T are linear 
transformations respectively of U into itself and of k s into itself, let 

8. Completion of the Proof of Theorem 2. Formula  
conjunction with Lemmas 9 and 11 yields 

Zp = ps -3r3  (P~) ~ (P~, c) + 0 (p,-3r-~).  

It remains for us to show that ,~ (as defined in (2.2)) exists and that 

13 - 3 (P~)I ~< P - ~ ,  

as well as that ~ (e) (as defined in (3.4)) exists and that 

I~(c )  - ~ (Pd,c)[ ~< P - ~  

The assertions concerning the singular series are immediate 
consequences of the definitions and of the inequality (3.3), w h i c h  
follows from Lemma 8. To deal with the singular series we follow the 
procedure in [14]. Put 

a (z) = f e (z F q) )  ~ .  
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T K  be the r-tuple of cubic forms with 

TF~ (x) ---- T (F  (3 (x))). 

Call systems F and F' equivalent if there are nonsingular  T, T with 
TF~ = F'. 

Following [13] we call a system special if there are nonnegat ive  
integers a l , . . . ,  a~ and b l , . . . ,  br with 

3 s -  1 (ai + . . .  + a~) < r -  1 (b  1 + . . .  + b,.) (9.1) 

such that  
~j (ei~ I%1%) ----- 0 

for every j and every triple il, i2, i3 with 

all + ai2 + ai3 < bj. 

Here e l , . . . ,  e~ are the basis vectors. We call a system bottomless if it is 
equivalent to a special one. (The reason for this name is more  
apparent  in the case where k is the field �9 ofp-adic  numbers ,  which 
was studied in [13].) A system which is not  bot tomless  will be called 
bottomed. 

By an invariant ,~ = ,~ (F) we will mean  a not  identically vanishing 
form (with coefficients in Z) in the coefficients of the forms ~j, which 
has 

,~ (TF~) = (det T) ~/r (det z) 3~/~ .~ (F),  

where A is the total degree of,~. As was pointed  out in [15], such an 
invariant  certainly does exist. 

Lemma 13. A bottomless system F has 

--- 0 

for any invariant 3. 

In [13] this was proved for k = (~p.  

Proof We may suppose wi thout  loss of generality that  F is special. 
Adjoin a variable Z to the field k, and define linear t ransformat ions  
T , r  by 

Te i=  Zb'ei ( i=  l , . . . , r ) ,  

Tej= ZaJej ( j= 1, . . . ,s) ,  

and put  F'  = T-~ FT. Then  

~;(eil [e i2[  el3) = zaq+ai2+ai3-bi ~j(eil I%[ %) 
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is zero when ai~ + ai~ + ai 3 < bj, hence in each case it lies in the 
polynomial  ring k [Z]. So each coefficient of F' lies in k [Z], and so 
does ,~ (F'). But 

3 (F') = Z -(bt~-''" ~- br) ( A / F ) - ~ ( a I +  " ' "  ~- as)(3/]/s) 3 (F) ,  

and compar ison with (9.1) shows that  ,3 (F') cannot  lie in k [Z] unless 
3 (F )  = 0. 

As a direct consequence of the lemma we see that  the bottomless 
systems lie in a proper algebraic subset o f  the space o f  all systems o f  
cubic forms. In fact it would not  be hard to show that  the bot tomless  
systems themselves form a proper  algebraic subset, and that  this 
subset has a dimension quite a bit smaller than the set of all systems; 
at least when r and s are large. In [13, Theo rem 3] we gave another  
result which shows that  bot tomlessness  is rather rare, namely:  I f F  is 
bottomless, then there is a t in 1 <~ t <~ r and there are t independent 
forms in the pencil generated by F which vanish on a subspace o f  U o f  
dimension >>. 1 + (r - t)[s/t]. 

Now in the context  of the Second Supplement ,  we call F (which 
has coefficients in Q) bo t tomed  or bot tomless  if it so with respect to 
the field C of complex numbers .  A bo t tomed  system then is also 
bo t tomed  in each p-adic field Qp. So by Theorem 2 of  [14], if F has 
coefficients in 2 and is bo t tomed,  and if (1.9) holds, then there is a 
positive integer mp = mp (F) such that  the number  ~ (e) of solutions of 
the congruence (3.6) satisfies ~1(c)>>pl(~-r~ when C~mpT/~. Since 
z (P, e) as defined in w 3 is the limit (as l -~ oc) of ~l (e)p-~(~-"~, we have 
x (P,e) > 0. N ow under  the hypotheses of Theorem 2, the product  
(3.5) for ~ = ~ (e) is convergent  uniformly in e, and hence Z (P, c) > 0 
for each e ~ U w h e n p  > P0. Hence certainly Z (P, e) > 0 for each prime 
p if e e m U where 

m=Hmp. 
p <p0 

In this si tuation ~ = ~ (e) > 0, as asserted. 
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