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Abstract. Let A be a distinguished Laplacean on a solvable extension S of an H-type group. 
We give sufficient conditions on the multiplier m so that the operator re(A) is of type (p,p) for 
1 < p  < oc and is of weak type (1, 1). 

1. Introduction and Preliminaries 

An H-type Lie algebra rt is a two-step nilpotent Lie algebra 
equipped with an inner product satisfying the following property 
[14]: 

Let 3 be the centre of n and u its orthogonal complement  with 
respect to the inner product; then for every unitary Z in 3 the 
map Jz: t~ ~ u defined by the relation 

(Jz X, Y) = (Z,[X,  Y]) 

is orthogonal.  

An H-type group N is a connected, simply connected Lie group 
whose Lie algebra n is H-type. Let S be a one-dimensional extension 
of the group N obtained by making A = [~ + act on N by homogeneous 
dilations; let H denote the vector acting on n with eigenvalues 1/2 
and 1; we can extend the original metric on n to the Lie algebra 

= n �9 a of the group S by asking n and a to be orthogonal and H 
to be unitary. 

M. COWLING, A. DOOLEY, A. KORANYI and F. RIcc~ [4, 5], E. 
DAMEK [8,9], E. DAMEK and F. RIccI [11] studied geometric 
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properties of these groups, which provide examples of nonsymmetric 
harmonic manifolds [10]. 

If {Eo,...,  E,,+k } is an orthonormal basis of ~ such that Eo = H, 
EI,.. . ,Em span ~ and Em+a,...,Em+k span 3, then the Laplace- 
Beltrami operator can he written as 

m + k  

S =  ~ E2.--QEo 
J 

j = O  

where Q = m + k  is the homogeneous dimension of N and 
2 

{Eo,...,  E,,+k } are regarded as left-invariant vector fields (see [8]). 
A radial function on S is a function that depends only on the 

distance from the identity. A radial function (I) is spherical if 
(1) @(e)= 1; 
(2) q~ is an eigenfunction of the Laplace-Beltrami operator ~ .  
Let rc be the orthogonal projector of L2(S) onto L2(S), the closed 

subspace of L2(S) consisting of radial functions. Applying rc on S 
corresponds to averaging over geodesic spheres centered at the identity 
with respect to the surface measure; the operator re extends to L p for 
all p, 1 ~< p -%< c~, to L~o c and preserves regularity. 

Let 6 be the modular function of S; as proved in [11], all spherical 
functions are of the form q~s = ~( 6s/e- 1/2), seC; the corresponding 
eigenvalue is s z - Q2/4 and q)s = q)_~. 

If f is a radial function, its spherical transform is defined by 

f(s) = fs  f(x)O~(x)dx 

for all values of s for which the integral converges. 
There exists a measure d~(2) = [e(i2)[-2d2 on [0, + oo) such that 

the following Plancherel formula holds 

If(x)[2dx = C [jT(i2)]2d#(2) 

where the constant C does not depend on f and where 

e ( s )  = 2 Q- 2s , s e C .  

( 4  1 ) ( Q )  F + - + s  F + s  
2 
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By Stirling's formula the function r satisfies the estimate 

le(i;01 i 2 ~< 
C(I)olm+k i f l 2 l > l .  

(1) 

A distinguished right-invariant Laplacean on S is 
m + k  

j=O 

where /~o,. . . ,Em+k are right-invariant vector fields agreeing with 
Eo . . . .  ,Em + k respectively at the identity. 

The operators  Y o  --- - 5~ + Q2/4 and A are nonnegat ive essential- 
ly self-adjoint operators  on C~(S) with respect to left Haar  measure; 
via functional calculus we can define for every bounded  Borel function 
m on [0, + ~ )  the operators  m(SeQ) and re(A), which are bounded  
operators  on LZ(S). These operators  are strongly related as the 
following proposi t ion shows: 

Proposition 1. I f f  ~C~(S) is a radial function, then 

c~1/2A6-  1 / 2 f  = ~o.f. 

Moreover, if k and Fc are the distributional kernels of the operators 
m(A) and m(Sf Q) respectively, then k = c5-1/2~. 

See [6, 12, 16, 1] for a proof. 
The aim of this paper is to show that, under  suitable hypotheses 

on the function m, m(A) is a bounded  operator  on Lv(S), 1 < p < ~ ,  
and is of weak type (1, 1); our  proof  is a simple extension of the work 
of COWLING, GIULINI, HULANICKI and MAUCERI [7] to the case of 
these solvable groups. 

Problems of this kind have been studied by a great number  of 
authors;  we refer to [7] for a bibliography. 

2. Result 

Fix a function ~ in Cco(~+), compact ly  suppor ted in (1/2, 2), and 
such that  for every ~ in N + 

+ c o  

- - co  

Let HS([~) be the LZ-Sobolev space of order  s, i.e., 

Hs(~)={f~Se ' (~): l l fH, , ,= f (1 + l [2) lf( )i2d{ < oo }. 
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If m is a function on [0, + o9) which is locally in Hs(R) on (1, + oo), 
then define IIm r] (,) as follows: 

II m II is) = sup II ~(')m(t')I1.~. 
t~>l 

Theorem 2. Fix s o and s in (2, + oo) such that s > 

m be a function on [0, + oo) such that 

i) on the interval [0, 2], m coincides with a function in HS~ 
ii) m is locally in HS(~) on (1, oo) and IIm I] (s) < c~. 

Then m(A) is bounded on LP(S), 1 < p < oo, and is of  weak type (1, 1). 

m + k  
+ 1. Let 

2 

3. Proof 

The proof follows the work of COWLING, GIULINI, HULANICKI 
and MAUCERI [7], where they solve the same problem in the case of 
noncompact  symmetric spaces of arbitrary rank; we outline their 
method and prove that the estimates they use are still valid in the 
present case. The groups we are s tudying are still of exponential 
growth. In fact, DAMEK and RmcI [10, 11] prove that in geodesic polar 
coordinates the left Haar  measure dx of the group S can be written as 

dx = (sinh p/2)"(sinh p)kdp da, 

where p is the distance of the point x ~ S  from the identity e~S and da 
is the surface measure on the unitary ball; as an immediate consequence, 
ill Br [ denotes the volume of the ball of radius r centered at the identity 
e, then 

c ( r  m+k+ ifr~< 1 

IBr] ~< (eOr ifr > 1. 
(2) 

Moreover, as the spherical function �9 o satisfies the estimate 

~o(P) = ctP] e-~ + O(IPl e-pO'/2) 

(see [11, 1]), then trivially 

fB { rm+k+l i f r ~ l  
I~o(x)le dx <~ C (3) 

r r 3 ifr > 1. 

To  control the size of nonradial kernels, one can use the following 
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Lemma 3. Let E be a radial measurable subset of S, and f a function 
in L2(S), such that 61/2f is radial. Then 

II z e f  II 2 = II Zl~51/2f II 2" (4) 

Moreover 

it zEf  k[1 ~< [I ZEqbo II 2 i] z e f  il 2" (5) 

Let 9 be the funct ion 61/2f and  drx the right H a a r  measure  Proof. 
of S; then, as ~:Eg is radial, 

II z g f  II 2 = Iz~f(x)l 2dx = ]zEf(x)]aa(x)dr x = 

= IZEg(x)12drx= I(ZEg)(x-1)lZdx= 
s 

As rt is an o r thogona l  projection,  by the C a u c h y - S c h w a r z  inequali ty 
and  (4) 

II z E f  ]l 1 ; 6 - : / 2 1 ' S : / 2 f l d x = ( 6 - 1 / 2 "  61/2 = , /~  I f [ )  = 

= ( re(6-  i,,2), Z ~ / 2  I l l  ) = f~*o(X)61/2 [f l  (x)dx <~ 

~< [[ ZEOo 1[ 2 Ib Z~0 il 2 = II )~Eq)O II 2 II ZEf 1[ 2. 

Let r be  a smooth  cut-off  funct ion defined on [0, + oc), equal  to 
1 on  [0, 1] and  suppor ted  in [0, 2]. Let mo denote  mr and  m~ denote  
m ( 1 -  r), so that  m = m o + m~; let k o and  k~ be the dis t r ibut ional  
kernels associated with the opera tors  mo(A ) and m~(A) respectively. 

Using  L e m m a  3 and  the estimates (1), (2), (3), as in [7], w we can 
conclude that /c  o is in LI(S), so mo(A ) is of  s t rong type (p, p) for every 
p in El, + oo]. 

N o w  decompose  the kernel  koo into the sum koo = k 1 + k ~ where  
oO 00  ~ 

kloo = koozB1 and k ~ = koo(1 - Zm); it suffices to control  the L ~ n o r m  
of k~ and, in view of COWMAN and WEISS' [3], Th6or6me III.2.4, 
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integrals of the form 

fA~ lk~(xy)-- k~(x) ldx, (6) 

where A(y) = {xeS:2]yJ  <~ ]xl <~ 1}. In order to do this, let h i be the 
function on N defined by 

h~(z) = mog(z2)lp(2- Lc2)e 2 -J~2ze~, jeZ;  

then moo(A)=~. ~ oh/A1/2)e-2-~a and the kernel koo is ~.~ oh.(A1/2)p 2 j, 
where Pt denotes the heat kernel associated to A. ~orJeover, the 
following lemma holds. 

Lemma 4. Let j >>, 0, then 

II I" I Shj II 2 ~< C 2 J ~  II m II ~,. 

I f  0 < r < R < 0% then for  every function u in L2(S), 

II zB~hj(A1/2) u II 2 ~< C(2/~-~ ( R - r) ~-~ I/):B.u II 2 + II zB ;u  I/2)II m I1,~). 

See [7] for a proof, which is based on the property of finite 
propagation speed of the operator cos(tA 1/2) [2]. 

To estimate the L ~ norm of k2 and integrals of the form (6), 
decompose S\{e}  into the disjoint union of dyadic annuli; by Lemma 
4, it is enough to obtain small time estimates ofL 2 norms outside balls 
of the heat kernel Pt and of its gradient. The first estimates can be 
achieved using VAROPOULOS' estimate [15], formula (4.1); by Lemma 3 
and 4 and Proposition 1, the estimates of II ZB; I Vptl II 2 can be obtained 
from pointwise estimates of the gradient of the heat kernel associated 
to the Laplace-Beltrami operator. These estimates will be the subject 
of the next section. 

4. Small Time Estimate of the Gradient of the Heat Kernel 

Let qt be the heat kernel associated to the Laplace-Beltrami 
operator Ar in this section we exploit the method in [16], to obtain 
pointwise estimates of the gradient of the heat kernel qt, from 
Varopoulos' estimate of the heat kernel itself. 

Lemma 5. There exists a constant h > 0 such that, for  every c~ >1 0 
and for  every 0 < t <~ 1, 

r] qt(')exp(c~l'l)]] 2 ~ Ct-n/4eh~2i (7) 
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where n = m + k + 1. Moreover ,  

dqt(.) Ct 1-,~/,, <~ (s) 
2 

Proof .  From VAROPOULOS' estimate of the heat kernel for small 
time (see [15]), one can deduce the existence of a constant h such that 

qt(x) exp (0~1 x [) <~ Cehaitt - n/2 exp ( -- ]xL2/Ct) 

Then 

S Iqt(x)[2 exp(2~ ] x l ) d x  = 

]x]2 < t  j = l  2J-lt<~[x]2<<.2jt 

~ Ce2h~2tt-n[e-2/C'Btl/2' + i e-2'/C'B(2jt)w2'j = 
j = l  

j = l  

As the last series is convergent, this concludes the proof of the first 
inequality; the second inequality is an application of the Plancherel 
formula together with the estimate of the e function (1): 

q t ( "  = t ( ' )  = 
2 2 

= 2 % - 2 ~ : t l e ( 2 ) 1 - 2 d )  ~ 

jo < )c6e-2~'a'd)~ + 2 3 +%-2~.hd2 = 
1 

=(t-3-1/2 +t-(3+n)/2-1/2 ) e-2U~d#<< 

<~ Ct -" /2  2 

which is the desired estimate. '~ 

Theorem 6. I f  i = 0, . . . ,  m + k, then there exis ts  a posit ive cons tant  
c such that,  f o r  every x in S and for  every 0 < t <~ 1, 

]Eiqt(x) [ <~ Ct-(n+ 1)/2 exp(-- tXi2/Ct) (9) 
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Proof. As E i is a lef t - invariant  vec tor  field, 

Eiqt(x) = Ei(qt/2 * qt/2)(x) = qt/2 * Eiqt/2(x) = 

= ~ qt/2(y)Eiqt/2(Y - lx )dx  

so, for every c~ > 0, since [Y[ + ly-lxl >i Ixl,  one ob ta ins  

[e~'fXrE~qt(x) l <~ f s  qt/2(y)e~'lYllE~qt/2(Y - lx) le~'lY-'xf dy <~ 

<~ I[ q,/2 e~l'l I12 II Eiqt/2 e~'l'l I12. (10) 

By L e m m a  5, fo rmula  (7) 

II qt/2 e~l'r II 2 <~ ct-n/'lehe2t/2, (11) 

so the p r o b l e m  n o w  is to find an es t imate  for IfE~qt/2 e~t'1112; as the 
d is tance  func t ion  satisfies I Ix[ - l Y[] ~< l Y- 1x I, it can  be a p p r o x i m a t e d  
by posi t ive funct ions  ~b. in C o ,  such tha t  [Vq~. I~< 1 and  

I] Eiqt/2 e~l'l II 2 = l im Ir Eiq,/2 e~r II 2. 
n 

Let q5 be such  a funct ion;  then  

[I Eiqt/2 e~'o II 2 = Eiqt/2e2~'~Eiqt/2 dx" 

R e m e m b e r i n g  tha t  

( E i f ,  g ) = - - ( f , E ~ g )  i f / = l , . . . , m + k  

( Eof ,  g )  = - ( f ,  Eog )  + Q ( f , g )  

it follows tha t  

m+k 2 fS II Eiqt/2 e ~  I[ 2 = qt/2(x)e2~4~(X)~qt/E(X)dx - 
i = 0  

_ 2~ i= 0 0 s qt/2(x)Eiqt/2(x)Ei~(x)e2~'~tX) dx 

so for every i = 0 , . . . , m +  k, 

I[ Eiqt/2 e ~  J] 2 <~ II qt/2 e2~O I12( [l '~qt/2 I/2 + 2 ~ C  II Vqt/2 [I 2). 

d 
2 II ~,1/2q, I122 ~< II ~'qt 1] 2 II qt l] 2, pu t t i ng  As L,q~qt = ~ qt and  [I Vqt II 2 = 
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together the estimates (7), (8), (10) and (11), one obtains 

[e~lXlEiq~(x)] <_ Ct- (" + 1)/2e3/2k~2t 

where k is h + e, e > 0. So 

,Eiq~(x),<<. Ct-("+l'/2exp(~k~2t-~,xl). 

Now,  for fixed x and t, choose ~ = [xf/3kt; squaring, adding over i and 
taking the square root, one obtains 

]gq,(x)] ~< Ct-("+t)/2exp\ ~ 3kt / 

= Ct-i,+ 1~/~ exp(- ]x lZ/6kt) .  

This ends the proof  of the theorem. [] 

Remark. One can also prove that the best constant c in Theorem 
6 is 6 + e, because in Lemma 5 the constant h in formula (7) is at best 
t + r/, r /> 0. These estimates are enough to prove Lemma 4.4 in [7]. 
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