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Abstract: "['he centrally symmetric convex polytopes whose images under ortho- 
gonal projection on to any pair of orthogonal complementary subspaces of Ig d have 
numerically equal volumes are shown here to be certain cartesian products of 
polygons and line segments. For d ~> 3, the general projection property in fact follows 
from that for pairs of hyperplanes and lines. A conjecture is made about the problem 
in the non-centrally symmetric case. 

1. Introduction 

Let P be a (d-dimensional) convex polytope in euclidean space E d, 
let L be a linear subspace of [E d, let q~L denote orthogonal projection 
on to L, and let V = VL denote ordinary (dim L)-dimensional volume 
in L (if L = {o}, then V = 1). We say that P has the property (VP), 
or is a (VP)-polytope, if for each pair L and M of orthogonal 
complementary subspaces of E d, VL (~bL P) = VM(~bM P). 

We have shown in [4] (see also [2]) that a unit regular d-cube has 
the property (VP). In this paper, we shall investigate the more general 
problem of determining which d-polytopes are (VP)-polytopes. This 
problem is easily solved if d ~< 2; our main object here is to settle the 
problem for centrally symmetric polytopes. We shall also propose a 
solution to the problem in general. 

An interesting feature of the centrally symmetric case for d >~ 3 is 
that it reduces to solving the equa t i on / /P  = D p (  = 2 P) relating the 
projection and difference bodies of a polytope P, which expresses the 
property (VP) for hyperplanes and lines alone. 

2. The Planar Case 

As a preliminary to the discussion of the general case, we first 
describe the d-dimensional (VP)-polytopes for d ~< 2. An immediate 
consequence of the definition is: 
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Lemma 1. A (VP)-polytope P in I :d has d~dimensional volume 
v(e) = 1. 

This holds because I za is the orthogonal complement of {o}. As a 

consequence: 

Theorem 1. The (VP)~polytopes in [_1 are the unit line segments. 
N o w  let P be a (VP)-po lygon  in 1:2. Apar t  f rom having area 1 by 

L e m m a  1, the proper ty  (VP) implies that  P has equal widths in 
perpendicular  directions. An  easy way of  expressing this is in terms 
of  the difference body 

D P  = P -  P = { x -  y l x ,  y ~ P }  �9 

Theorem 2. A polygon P in ~_2 has property ( V P) i f  and only if P has 
area 1, and D P has 4-fold rotational symmetry. 

It suffices to remark  that  D P (which is centrally symmetric about  
o) has twice the width of  P in any direction. 

3. The Higher Dimensional Case: the Main Theorem 

F r o m  now on, we suppose that  d ~> 3. It is of  great help in the 
discussion to introduce another  auxiliary body associated with a 
polytope P. This is the projection body H P  of P, whose suppor t  
funct ion h (H P, .) satisfies 

h( 7t',u) = 

if u is a unit  vector and M is the hyperplane or thogonal  to u. Thus  H P 
is centrally symmetric  about  the origin o. In fact, H P is actually a 
zonotope, or vector sum of  line segments; for more  details, see [9] or 
the survey article [6]. 

We can now state our  main  theorem. This is confined to centrally 
symmetric  polytopes,  whose centres of  symmetry  we shall tacitly 
assume to be o. 

Theorem 3. Let P be a centrally symmetric d-polytope in l:a(d >~ 3). 
Then the following conditions are equivalent. 

a) P is a (VP)-polytope; 

b) H P  = D P ( =  2P) ;  

c) P is a cartesian (orthogonal) product of  (V P)-polygons and unit 
line segments. 
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Since (b) is just that part of the definition of a (VP)-polytope P 
corresponding to the projection of P on to pairs of orthogonal lines 
and hyperplanes (compare the definitions of l i P  and D P, and the 
discussion above), we shall see that (b) follows trivially from (a). It is 
interesting that the apparently weaker condition (b) is in fact equiva- 
lent to (a), at least in the special case of centrally symmetric poly- 
topes. We shall complete the proof of Theorem 3 in the next two 
sections. 

4. Necessity of the Condition 

Here we shall show that condition (c) follows from condition (b). 
The proof will follow from a result of WEre [9], together with an 
examination of particular projections. 

The condition H P = 2 P implies, by [9], that P is a cartesian 
product of certain (centrally symmetric) polygons and line segments, 
say 

P =  P I x . . . x  P,• I1• . . . •  I~, 

where PI , . . . ,  Pr are polygons and I1, . . . ,  Is are line segments so that 
2 r + s = d. We choose an orthonormal basis {el , . . . ,  ea} in ~ so that 

P /~  E~ = lin {e2j_l, e2j) ( / =  1, . . . ,  r ) ,  

Ik --- lin {e=r+k} (k = 1, . . . ,  s) .  

(We thus suppose, as we may, that the Pj and Ik also have centre o). 
We first look at  the polygons P/. For arbitrary u e Ej (j = 1, . . . ,  r), 

we have 
h ( D P ,  u) = h(DPj,  u) , 

h(liv, .)  = H  =IH 

where li/pj is the projection body of P/in E/. If u' is a unit vector in 
Ej orthogonal to u, we have 

h(l i jP/ ,u)  = h (D  Pj, u'), 

and so replacing u by u' in the above shows first 
S 

/l~/V2 (P/) 9 ,  Vll (/k) = 1, 

and second 
/ / j g  = D g ( =  2g)  . 
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On the other hand, if u = e2r+k (k = 1 , . . . , s ) ,  the condition 
h (H P, u) = h (D P, u) implies 

j = l  

Bearing mind that d >/3 (so that r + s >~ 2), easy algebraic manipula- 
tions now show that 

~ ( ~ )  = 1 = ~ ( I k )  

f o r j  = 1, . . . ,  r and k = 1 , . . . ,  s. In view of  Theorem 2, this establishes 
the necessity of  condition (c). 

5. Suff ic iency o f  the Condi t ion  

We now show that condition (a) follows from condition (c). If  P 
satisfies the latter condition, then P and all its projections are zono- 
topes, or Minkowski sums of  line segments. Our first step is to 
generalize a result of  SHEPHARD [7] on zonotopes. 

We recall a consequence of  the Lifting Theorem of  WALKUe and 
WETS [8], which we have used in a number  of  contexts (see, for 
example, [5]). 

Lemma 2. A Minkowski sum Q1 + . . .  + Qt o f  polytopes admits a 
dissection into direct sums o f  polytopes GI + . . .  + Gt, where Gi is a face 

o f  Oifor i =  l , . . . , t .  

In the special case of  zonotopes, this result can be somewhat  
strengthened. The faces of  a zonotope Q fall into face-classes, in 
which the faces are translates of  one another. Corresponding to the 
face-classes of  the zonotope Q1 (i = 1, . . . ,  t) the cells G~ + . . .  + G t of  
a dissection of  Q~ + . . .  + Qt fall into cell-classes, according to the 
face-classes of  the G~; so, we regard G~ + . . .  + Gt and G'I + . . .  + G't 
as being in the same cell-class if and only if G'~ is a translate of  G e 
(i = 1, . . . ,  t). We then have: 

Lemma 3. Every dissection o f  a sum QI + . . .  + Qt o f  zonotopes into 
cells G1 + . . .  + Gt (Gi a face o f  Qi, i = 1, . . . ,  t) contains exactly one 
cell from each possible cell-class (of full-dimensional cells). 

The result of  SHEPHARD [7] is the particular case when each Q~ is 
itself a line segment. Lemma 3 follows directly from this special case, 
for if we express each zonotope Qi (and hence each of  its faces Gi) as 
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a sum of  line segments, then the essential uniqueness of  the resulting 
subdissection implies the statement of  the lemma. 

We are now in a position to prove the sufficiency. The crucial 
result which led to the special case of  the cube is the following. If  L 
and M are two linear subspaces of  ~d of  the same dimension, then the 
number  

<L, M) = VL(+L P)/VM(P) 

is obviously independent of  the choice of  full-dimensional polytope P 
in M. We then have ([1]): 

Lemma 4. i f  L, M are two subspaces o f  E a o f  the same dimension, 
then <L, 34) = <L i ,  M i ) .  

Now let P = P1 x . . .  x Pr x 11 • . . .  x I s be as in the statement of  
Theorem 2, and let L be a linear subspace of  Ed. We can suppose that 
L is neither {o} nor  Ed itself, since the (V P)-property clearly holds for 
these subspaces. Let us write 

Qj = <bcPj, Jk = ~LIk, 
so that the Qj and Jk are (possibly degenerate) centrally symmetric 
polygons and line segments, respectively, and hence zonotopes. Let 

G = G I  + . . .  + G r +  HI + . . .  + H s 

be a full-dimensional cell in a dissection of  

q)LP = Q~ + . . .  + Qr+ J~ + . . .  + Js. 

We can suppose (and here we are really referring back to the proof  
of  Lemma 2 using [8]) that there are faces F) of  Pj and Ek of  Ik, with 

Gj = + Fj, /+k = 

and F, + . . .  + F~ + E, + . . .  + E, = F (say) is a face of  P of  dimen- 
sion dim L. We now define faces F ' , , . . . ,  F;, E ; , . . . ,  E;  as follows: If  
Fj = vertex (Pj), then F) = Pj (vertex); if ~ is an edge of  Pj, then F~ is 
a perpendicular edge of  Pj; if E k = vertex (Ik) , then E~ = I k (vertex). 
Now let 

F ' = F ~  + . . . + F ; + E ' I + . . . + E ' ~ ,  

F j  t t ' q5s177 H = q~ E G j = , k L • k~ 

this determines an element 
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G' = G 1 + . . .  + G) + H 1 + . . .  + Ha 

of  a cell-class of  a dissection of  ~b L• P. Now,  if M is a linear subspace 
of  n :a parallel to F, then M • is that  parallel to F'. Moreover,  since 
each Pj has 4-fold symmetry and unit  area, and each Ik has unit  length, 
we see that  

VO1M (F) = vol M" (F') . 

In view of  L e m m a  4 and the preceding remarks,  there at once follows 

vol L (G) = vol L" (G') . 

In the course of  this proof,  we have constructed a one-to-one corre- 
spondence between full-dimensional cell-classes, induced by G ~ G', 
and using L e m m a  3 this correspondence and the equality above 
completes the p roo f  of  the sufficiency, and hence of  Theorem 3. 

6. The General Case 

We shall now slightly extend Theorem 3 in one direction, and 
adduce some evidence that  this extension describes the general state 
of  affairs. 

Theorem 4. Let the d-polytope P be a cartesian product of ( V P)- 
polygons and unit line segments, of  which at most one polygon is not 
centrally symmetric. Then P is a (VP)-polytope. 

We prove this as a consequence of  (the me thod  of) Theorem 3. Let 
us denote,  as before, 

P = P I + . . . + P , + I I + . . . + I ~ ;  

we assume that  P1 (above) is not  centrally symmetric. Again, as 
before, if L is a linear subspace of  I :d, we write 

Now,  apart  f rom the fact that  

(�89 (P1 - 71)) > v (?0 = 5, 

�89 - / 1 )  is a (VP)-polygon.  We now consider VL(Q), where 

Q = Q I  + . . .  + Qr+ J~+. . .  + J~. 

We note  that  we change Q to - Q if we replace P~ by - P~ (and hence 
Q~ by - Q0, since the remaining P: and the I k are centrally symmetric. 
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Now VL (Q) can be expressed as a sum of  three terms (actually mixed 
volumes), which are, respectively, quadratic, linear or constant in Qv 
We look at these three terms in turn. 

The first, quadratic, term arises from those cells of a dissection 
of  Q which come from faces of P containing a translate of P1- We 
can consider varying the dissection, by replacing QI by 
;~ Q~ - / ~  Q~ (2, ~ >/0); the case 2 = �89 = # corresponds to the zonotope 
case, discussed before, but the dissections can be made to vary conti- 
nuously. So, all the terms contributing to the quadratic term can 
be put  into one to one correspondence with the terms of 
V L, (Q' = ~bL~ P) which are constant in Q'1 = ~L• and by the same 
token as above, these volumes are numerically equal. The symmetri- 
cal argument equates the constant term in VL (Q) with the quadratic 
term in V/~ (Q'). 

There remains the linear term. Since the area of/~ does not enter 
into the earlier argument, we can now equate the terms linear in Q~ 
in VL (Q) and VL~ (Q'), where in Q we replace Q~ by �89 (Q1 - Q0, and 
similarly for Q'. But by this linearity, and the symmetry between Q~ 
and - Q~, we finally equate the original linear terms, and hence show 
that V L (Q) = VL~ (Q'), which proves Theorem 4. 

We now wish to propose: 

Conjecture 1. The condition o f  Theorem 4 is necessary as well as 
sufficient for  a polytope P to be a (VP)-polytope. 

As we have already remarked, a (VP)-polytope P must satisfy 
l i P  = D P. The first step in proving Conjecture 1 would be to esta- 
blish 

Conjecture 2. I f  a polytope P satisfies H P = D P, then P is a 
cartesian product o f  polygons and line segments. 

By considering certain special projections, the fact that no more 
that one polygonal component  in the cartesian product P can be 
non-centrally symmetric if P is to be a (VP)-polytope would follow 
from: 

Conjecture 3. Let  Pi, P2 be non-centrally symmetric polygons 
in ~_2. Then there is a rotation ~ o f  ~_2 such that 
~ ( P1 + ~' P9 ~ ~ ( PI - ~' P~). 
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Rol f  SCHNEIDER (private communicat ion)  has pointed out  that this 
conjecture can fail for pairs o f  non-centrally symmetric planar convex 
sets. 

So far, we have said nothing about  arbitrary convex bodies. Theo- 
rem 2 generalizes in the obvious way, to describe the (VP)-discs, as 
we shall call the planar convex bodies which have proper ty  (VP). But 
while cartesian products  o f  centrally symmetric (VP)-discs and unit 
line segments have property (VP), it is far from obvious that this 
characterizes centrally symmetric convex bodies satisfying (VP). 

A further generalization is possible. Suppose that K is a convex 
body  in H :d, such that there exist numbers  20,...,2a, with 

VL• (q~t • K) = 2 r VL(~L K ) whenever L is an r-dimensional linear sub- 

space. (Thus 2, 2d_ r = 1 for r = 0 , . . . ,  d.) If  K is a centrally symmetric 
polytope, and i f #  d-2 = 21, then we see that H ( # K )  = D (~K), and by 
Theorem 3 (the equivalence of  conditions (a) and (b)), we see that # K 
is a (VP)-polytope;  in other words, we get nothing essentially new. 
But clearly any ball has this more general property,  al though it is 
nowhere near a product  of  discs and line segments. This generaliza- 
tion may  well be very difficult to investigate, and we propose no 
solution here. 
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