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Abstract. We consider terms in which some patterns can be repeated n times. 
n is an integer variable which is part of the syntax of the terms (and hence may 
occur more than once in them). We show that unification of such terms is 
decidable and finitary, extending Chen and Hsiang's result on p-term uni- 
fication. Finally, extending slightly the syntax yields an undecidable unification 
problem. 

1. Introduction 

In [1] H. Chen and J. Hsiang proposed a unification algorithm for what they called 
co-terms, and later p-terms (we keep this last terminology), with intended applica- 
tions to logic programming. These terms allow us to iterate terms with one hole 
along fixed paths. The number of iterations is part of the syntax of the terms and 
may include integer variables. 

Example 1.1. Let the alphabet of functions symbols b e f  (binary), g (unary), and 
a (constant). Let N be an integer variable. Then, in Chen and Hsiang's formalism, 
q)0c(~, a), N, g(a)) is a typical p-term whose instances (obtained by replacing N 
with an actual nonnegative integer) are g(a), f(g(a), a), f(f(g(a), a), a), . . . .  
The termf(O, a) has one "hole" (the Q) and its iteration along path 1 (which is the 
position of the hole) is allowed. 

Such constructions can be useful in expressing infinite sets of terms which 
occur in logic programming (see [1] or in the Knuth-Bendix completion procedure 
(see [2]). In both cases the ability to express iterated terms can prevent non- 
termination of the deduction process. Other applications are currently under 
investigation, for example in unification theory (see [4]). 
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Constructions involving more than one occurrence of an integer variable such 
a s  

f ( ~ ( f ( ~ ,  a), N, g(a)), qb0c(~,, a), N, f(a, a))) 
are also allowed in [1] which shows that the p-terms can schematize nonregular sets 
of ground terms and hence they are not encompassed by the study of terms with 
context variables investigated in [3]. On the other hand, p-terms do not have the 
power of regular languages; there are two restrictions in these p-terms: nested 
p-terms are forbidden and the iterated part should not itself contain p-terms. 
Finally, in [1], the iterated parts and the terms in the holes should not contain 
variables. 

2: 

Fig. 1. Examples o f  terms in T which are not p-terms. 

Example 1.2. (see also Figure 1). 

�9 (f(~), a), N, @(g(~), M, a)) is not a p-term. (Nested p-terms are for- 
bidden.) 

qb(f(~, tI)(f(~, a), N, a)), M, g(a)) is not a p-term (the iterated part itself 
should not contain a p-term). 
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r ~) ,  N, g(a)) is not a p-term (variables are not allowed in the iterated 
part). 

dg0C(a, <>), N, g(x)) is not a p-term (variables are not allowed "below" the 
iterated part, i.e., in the third position of  the r construction). 

In this note we give another unification algorithm where these restrictions are 
dropped. We keep, however, the condition that any p-term should not occur along an 
iterated path. (i.e., for example, ~ (O( fO,  a), N, g(O)),  M, g(a)) is still not 
allowed). This means that if the iterated part itself contains iterated parts, the two 
iterated paths (or if  one prefers, the two positions of  the hole holder) should be 
uncomparable with respect to the prefix ordering (as in the right-up example of  
Figure 1). Indeed, without this restriction, unification becomes undecidable. 

2. Syntax and Interpretation of Formulae 

2.1. Terms 

Missing definitions can be found in [5]. We assume that F is a (finite or infinite) set 
of  function symbols together with the arity function a. F is assumed to contain at 
least one constant (i.e., a symbol of  arity 0). X is an infinite set of  constants (disjoint 
from F)  called variables. r is a special symbol of  arity 0 (the hole holder). VN is a 
fixed set of  symbols denoting integer variables. The set of / - te rms  T (also called 
"terms" for short) and the set of  terms with one hole Tl (also called "contexts") are 
the least sets that satisfy: 

f(-s)  E T 
x E T  

~ E T 1 ,  
f(s~, s, s~) E T, 

s N . t E T  

. - .4  

"r S E T aft), 
x C X ,  

"r (~l m s, sS) E T nl • T1 x Tn2, nl + l + n2 = a(f)~ 
s E T 1 ,  t E T ,  N E V N ,  s ~ .  

The construction s N �9 t E /'1 ~ s E /'1, t E T1, N E VN is not allowed here. 
However, as we will see in Section 7, this additional construction does not increase 
the expressive power. We also define Pos(t), the set of  positions of  a term 
t E T U T1, as follows: 

Pos(x) def{A}, 

Pos({)) def{A}, 

PosOC(-s)) a~J{A} u 1. Pos(sl) u . . .  U aOC) �9 Pos(sa(f)), 
Pos(s N " t) def{A}. 

We often omit the- when concatenating the positions (. is overloaded). Positions are 
(partially) ordered with the prefix ordering >pref. If  p and q are uncomparable 
positions, we write pllq. In the above definition, i.  Pos(si) stands for the set 
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{i .p~o E Pos(si)}. I f p  E Pos(t), tip is (as usual) the subterm at positionp, t(p) is 
the label (function symbol) at position p and t[U]p is the term obtained by replacing 
tie with u at position p. We often use the notations s[(>]p, s[(>]~- t to indicate the 
position at which (> occurs in s: it follows from the definitions of  TI and Pos that, 
for every term s E T1 which is not 0 itself, there is exactly onep  E Pos(s) (p r A) 
such that Sip = ~. 

Extensions of  this syntax (keeping the same expressive power) are described in 
Section 7. In particular, contexts with multiple holes are considered. 

Example 2.1. We use the same alphabet as in Example 1.1. Assuming 
x, y E X, N, M, Q E VN, the following expressions are/- terms:  

tl =- f (x, f (x, ~ ) )N . f ( ~, a)M . g(x) (this corresponds to/- terms with nested 
exponents). 

t2 =-f(f(y, ~)O.a,  O) a .y (this corresponds to /-terms where the iterated 
part itself contains integer exponents). 

Of  course the intended meaning of  the construction s[~]p N (which is defined 
precisely below) is to iterate the context s[ ]p (i.e., the term s in which the subterm at 
position p has been erased) N times. 

The identity of  I-terms is denoted = (in order to avoid confusion with = which 
is used for equations). 

2.2. Equations and Formulae 

We consider two kinds of  equations: ordinary equations of  the form s = t where 
s, t E T (= is assumed symmetric: there is no difference between s = t and t = s) 
and linear diophantine equations over a set of  variables VN. If  ~O is a conjunction of  
ordinary equations, then IV(~b) (integer variables of  if) is the set of  symbols of  VN 
which occur in some/ - t e rm of  ~. On the other hand, Var(~O) is the set o f  free 
variables x E X which occur in ~. 

Unification formulae are disjunctions of  formulae of  the form 3 n' .q~ A ~ where 
h' is a finite subset of  VN, ~k is a conjunction of  ordinary equations (called thepure 
part of  the conjunction), and q~ is a conjunction of  linear diophantine equations 
whose variables are a subset of  h' U IV(~b) (c~ is called the diophantinepart of  the 
conjunction). 

2.3. Substitutions and Solutions 

Substitution of  ordinary variables (i.e., elements of  X) by/ - te rms are defined in the 
usual way: a substitution a is defined by a finite set of  pairs (variable, term) written 
{Xl ~ tl; . " ;  x, ~ tn}. Its application to t E T is defined by: 

O Og(Sl " ,  S n ) 6  def ~./ , . .  = y [ s l ~ 7  ~ . . . ,  Sn~7).  

�9 xi{xl H tl; . . . ;  Xn ~ tn} ~fti and x{xl ~ fi; . . . ;  xn~-~tn} aefx i fx  
is not one of  the xi's. 
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Note that this makes sense since, by induction on the structure of  the terms. 

(19 E Pos(s) A Sip =-- ~ )  ~ (p E Pos(sa) A Sa[p =-- ~}). 

If  a is a mapping which assigns a nonnegative integer to each variable 
belonging to IV(s  = t), then sa and ta are defined by: 

�9 f ( ~ ) o  dof . . . .  = j ~ s  a). 
def 

�9 x a = x  ( w h e n x E X ) .  

�9 ( S [ ~ ] N ' u )  o " defso'[ ' ' ' , ,  S f f ! U f f ] p ' ' ' ] p .  

Na Na 

Similarly, we use the notation t[~]~ where n is a (constant) nonnegative integer for 
the context obtained by unfolding t[ ]p n times. 

A solution a to an ordinary equation s -- t is a pair (al,  o2) of  a mapping aa 
which assigns a nonnegative integer to each variable in IV(s  = t) and a substitution 
o2 which assigns a n / - t e r m  to each variable in Var(s = t) in such a way that 
Sala2 =- tala2. This definition extends to any of  our formulae in a straightforward 
way. 

3. Outline of the Unification Procedure 

Our goal is to transform any unification formula ~b into a formula ~O' which is 
equivalent (i.e., has the same set of  solutions) to ~k and which is in solved form. 

Definition 3.1. A solved form is either _1_, T, or a finite disjunction of  formulae of  
the form 

3 n . N I  = E1A . . .  A N k  ~- Ek  A X l  = tl A . . .  A X n  = tn ,  

where N1, . . . ,  Ark are integer (free) variables which occur only once in the 
�9 . - - - +  

conjunction, El, . . . ,  Ek are hnear expressions over n, and xl, . . . ,  xn are ordinary 
variables which are solved in the conjunction (i.e., that occur only once in the 
conjunction). 

Such solved forms may also be regarded as substitutions. 
The transformation of  a unification formula into a solved form is described by 

means of  Transformation rules, as in [5]. 
We split the rules into five parts. First, in Section 4, we use the classical 

unification rules (or slight extensions of  them)�9 Then we may assume that every 
unsolved ordinary equation has (at least) one member of  the form s N �9 t. Such terms 
are called N-terms in the following. 

The second step (again in Section 4) consists in getting rid of  equations 
s[0] N.  t = u whenp  is a position of  u. This step is very simple: we only "unfold" 

s[~] N, after which we may again apply the unification elementary rules. Now we 
have only to consider equations of  the f o r m  S [ t l [ ~ ] N l . U l ] p  = t2[<~]qN2Z �9 U2 (see 
Figure 2). 
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N1 

Fig. 2. 

N2 

The equations that remain to be considered after step 2. 

H. Comon 

The third step consists roughly in taking a "common multiple" of  ql and q2, 
reducing the general case to the case where ql and q2 have the same length. We have 
to consider separately the cases where N2 _< [ql [and N1 _< [q21. Then, dividing N2 

by [ql[ and Na by [q2[, it is possible to replace ql with ql q21 and q2 with q~q,I which 
have the same size. 

The fourth part consists in again reducing the general case to the case where 
q2 ~pref P " ql <_pref q2 �9 q2: it is sufficient to unfold once on each side. Now, if  this 
last condition is satisfied and if  lql[ = tq2[, qt must exist such that q2 = P" q' and 
qa = qt .p. (That is the main trick.) 

Now, if  there is no clash, we are left to solve equations of  the form 
N1 N2 . . . . . . .  

S [ V I [ W 1 ]  , [ ~ ] q , p "  Ul] ~---V2[W2] [~] ," U2 This  Sltnatlon is depicted in Figure 3 
q P P . P q  " . 

We have first to ensure the equality of  subterms which are not located along the path 
P" (qp.p)N1; this is ensured by the equalities s = v2, Vl = w2 and, Wa = v2. Then 
either N1 = N2, N1 > N2, or N1 < N2. In each case we simplify both sides: the path 
(p. q~)min(N2,N,) is shared by two members of  the equation. 

Correctness of  all the rules (i.e., the preservation of  the set of  solutions) is not 
difficult in general. Neither is termination very difficult because we never introduce 
new ordinary variables. Moreover, the number of  integer variables which occur in 
the/-terms of  the problem never increases. When these two numbers are constant, 
then the rules aim at "separating the integer variables," which is rather technical to 
explain formally. 

4. Elementary Rules 

First, we restrict our attention to solutions which assign nonnull integers to the 
integer variables of  the problem. Indeed, we may at once nondeterministically 
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1)1 

N2 

N1 

Fig. 3. The equations that remain to be solved after step 4. 

choose the integer variables which are mapped to 0. Hence, from now on, we only 
consider such interpretations. 1 

Trivial 

Decompose  

Clash 

Variable Elimination 

Occur  Check x = s ~ _1_ 

Let R1 be the above system o f  rules. 

s = s - - - ~  T 

f ( -~ )  f ( 7 )  --" -~ - - - > s ~ t  

f ( -~ )  = g ( T )  ~ I i f  f # g 

x = s A P  ~ x = s A P { x ~ - - ~ s }  

i f  x f~ Var(s),  x E Var(e) ,  

and (s E X :=> s E Var(e) )  

i f  s ~ x and x c Var(s) 

L e m m a  4.1. All  rules in R1 are correct. Moreover,  R1 terminates on any 
unification formula.  

P r o o f  Correctness is quite straightforward. Termintion is classical: it is similar to 
the termination p roo f  o f  the usual unification rules (see [5]). [ ]  

1 The nondeterministic choice is very inefficient and is not really necessary. We choose this 
presentation for the sake of simplicity (for example, we can use Occur-Checks without considering the 
null case separately) but this should not be followed in an implementation. 
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Let us call an equation solved in a unification formula (o if  one of  its member is 
a variable x E X which has only one occurrence in r (In such a case x itself is also 
called a solved variable.) 

Lemma 4.2. I f  ~o is a unification formula which is irreducible with respect to R1, 
then equations between 1-terms which occur in q9 are either solved or of the form 
s N. t = u where u is not a variable. 

Proof Every equation which is not of  the form s N �9 t = u where u is not a variable 
can be written as either x = s, where x is a variable, orf(-~) = g(~) .  In the first case 
either x = s is solved or else x E Var(s) (in which case, the Occur-Check rule or the 
Trivial rule applies) or the Variable Elimination rule applies. In the second case 
either Clash or Decompose applies. [ ]  

We first consider the case o f  equations s = [0]~- u where no prefix q o f p  is 
such that Slq is an N-term. In such a case we may "unfold" t[(>], N once: this will lead 
by decomposition along the path p to equations which have either less integer 
exponents or the same integer exponents and smaller terms. 

Example 4.3. Consider the equa t ion f (~ ,  a) N . x = f (y ,  f (a ,  ~)M . z). We are 
going to unfold f((>,  a)N: either N = 1 which leads to the equation f (x ,  a) = 
f (y ,  f (a ,  ~)M. Z) which contains less ~teger  variables, or else N can be written 
N '  + 1 (with N '  > 1) and f(f((>, a) N .x, a) = f 0 ' ,  f (a ,  ~)M. z). This last 
equation can be simplified using R1, which yields 

f ( ~ ,  a)S ' .x  = y A a  =f (a ,  O) M.z ,  

a conjunction of  simpler equations. 

(Unfold 1) 

s = t [ 0 ]  N- u ~ ( N =  1 A s = t [ u ] p )  V ( 3 M . N =  M §  1As=t[tM.u]p) .  

If: 

�9 There is no prefix q o f p  such that Slq is an N-term. 
�9 R1 does not apply. 

Lemma 4.4. The system R2 obtained by adding (Unfold 1) to R1 is correct and 
terminating. 

Proof Correctness is straightforward: only termination needs a proof. We give an 
interpretation of  formulae which are irreducible with respect to R1. 

Any unification formula can be written 

( : tn l l  �9 r A t ' , )  V . . -  V ( 3 n 5 .  q~k A ~ k ) ,  

where each q~i is a system of  linear diophantine equations and 0i is a pure 
conjunction of  equations. We interpret this unification formula as the multiset 

{I(r " " ,  I ( r  
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of  interpretations of  each pure part. The multisets are ordered using the multiset 
extension of  the ordering on the components. 

Now, I(sl  = h  A---A~. =in)  is a pair (a, {I(sl = f i ) ,  . . . ,  I (s ,  =tn)})  
which consists of  the number a of  unsolved (ordinary) variables in the conjunction 
and the multiset of interpretations of  each equation. The pairs are ordered 
lexicographically. 1(2_) is assumed to be minimal. 

Before we define l ( s  = t) we need to define some measures on the/-terms. 
These measures are reused in the following. Roughly, E-size(s) gives a measure of  
the number of  nested N-terms. However, actually, there are two notions of  
nestedness: in the expression s N. t M �9 u, t M is nested below s N. In the expression 
sit M �9 u, O] N .  v, t M is nested below s N in another way because, for any instance 
n, m o fN ,  M respectively, t will be repeated n x m times in the latter case whereas 
t will be repeated m times in the former case. That is why E-size(s) is a pair of  
natural numbers, recursively defined as follows: 

�9 E-size (x) = E-size(~) = E-size(a) = (0, O) for every variable x and every 
constant symbol a. 

�9 E-size(f(sl, . . .  Sn)) = max{E-size(si)ll < i < n}. 
�9 E-size(s N. t) = max{(nx 4- 1, 0), (ml, m2 + 1)} if  E-size(s) = (nl, n2) 

and E-size(t) = (ml, m2). (The maximum is considered with respect to 
the lexicographic extension of  the ordering on natural numbers.) 

I (s  = t) is the multiset of  pairs {(E-size(s), IPox(s)l), (E-size(t), Ieos(t)l)} 
ordered using multiset and lexicographic extensions of  the orderings. 

We are going to show that the interpretation is strictly decreasing on the normal 
forms with respect to R1 by application of  Unfold 1). 

Assume that 

O V ( 3 n  . q ~ A O A s = t  �9 u) ---~ 

V ( q n . ( a  A N  = 1 A ~ A s  = t[U]p) 

V (3 n,  M .  (p A N = M + 1 A ~ A s = t[t[~]~ t .  U]p). 

Rx does not introduce any disjunction. Hence, by definition o f  the multiset 
extension of  an ordering, it is sufficient to prove that the normal forms (with respect 
to R1) of  @ A s = t[u] and ~k A s = t[t[O] M- U]p are both strictly smaller than 

A s = t[O]p N- u in t~e interpretation. If  there is at least one occurrence of  
application of  the Variable Elimination rule along the normalization by R1, then 
the interpretation is decreasing because there are strictly less unsolved variables in 
the normal form. Similarly, i f  a Clash or an Occur-Check is applied during the 
normalization, the decrease is obvious. These situations can be excluded. Now, 
since only Decompose and Trivial remain, we only have to compare s = t[~] u �9 u 
with the decomposed forms of  s = t[U]p and s = t[t[~] M .u]p, respectively. PThe 
decomposed forms of  these equations are conjunctions of  equations Stq = tlq[U]r 
(resp. Slq = t]q[t[O]Mp �9 U]r ) where q is a position of  s and t and q . r  = p  and 
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equations of  the form S[q = t[q where Pllq and q is a position of  s, t. It is quite 
straightforward to see that E-size(s[q) ___ E-size(s). We also have: 

�9 E-size(t[q[U]r ) < E-size(t[o]pN.u) since E-size(t[q[U]r ) = max{E-size(t[q), 
E-size(u)} and both E-size(t) and E-size(u) are strictly smaller than 
E-size(t[~]J.  u). 

�9 E-size(t]q) < E-size(t[Q]p N- u) when Ptlq since E-size(t[q) < E-size(t) < 
E-size(t[Q]J. u). 

�9 ]eos(Slq)l < [Pos(s)l. 

Hence, we only have to consider the case of  irreducible equations 
slq = t[q[t[~] M . U]r such that q . r = p. In these cases, by hypothesis on the rule 
(Unfold 1), the head ofs[q is either a function symbol or a variable. It cannot be a 
variable because we assumed that there is no Variable Elimination and no Occur 
Check. This means that S[q = f ( s l ,  . . . ,  sn). Then, by irreducibility of slq = 
tlq[t[~]M.U]r, we must have q - - p :  the equation can be written 
Sip = t[()]p M- u. Now the interpretation of this equation is strictly smaller than the 

interpretation of  s = t[()]J,  u. 
In order to complete the proof, we only have to associate with each unification 

formula (o the pair consisting of  the above interpretation applied on a normal form 
of  tp with respect to R1 and the formula itself. The pairs being ordered lexico- 
graphically and the second components being ordered by the reduction relation 
4 '  we get a well-founded interpretation which is decreasing by any application of  R1 ~ 

a rule. []  

5. Solving Some Particular Equations 

It only remains to consider equations of the form s[tl[~]~l.ut]p = t2[~lqN; �9 u2 
where p is a prefix of  q2 (P may equal A, but ql and q2 may not, by definition). 

S.1. Reduction to Iqll = Iq21 

The first step consists in reducing the above problem to the case ]ql] = Iq21. This is 
done by unfolding tl [~]q N1 Iq21 times and unfolding t2[()]~ 2 [ql] times. Letus give an 
example. 

Example 5.1. Consider the equation gOt(a, g(~>))N1 . z ) =  g ~ ( x ,  g(())))N2 .y. 
The first 0 position ql = 21 has a length 2 and the second () position q2 : 121 has 
a length 3. We unfold the/- terms so as to have the same lengths; the above equation 
is equivalent to the disjunction of  nine formulae. The first three formulae 
correspond to "small" values of  N1, N2: 

* N2 = 1 A gOt(a, (0))  N1. z) = g( f (x ,  g(y))). 
�9 N1 = 1 A g f f (a ,  g(z))) = g(f(x,  g(())))N=.y. 
�9 N1 = 2 Ag(f (a ,  gOe(a, g ( z ) ) ) ) ) = g ( f ( x ,  g (0 ) ) )  er .y. 
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The next six formulae correspond to all possible remainders of  the divisions of 
N1 by 3 and N2 by 2, respectively; we gather together three iterations o fg ( f ( a ,  0 ) )  
and two iterations of  g(f(x, g(0) ) ) :  

�9 ~ N ~ , N 6 . N 2 - - - 2 • 2 1 5  
N ~ A g(f(a, gOt(a, g(f(a, g(<~)))))) 1 .z)----g(f(x, g(gOC(x, g(0) ) ) ) ) )  u~ .y. 

�9  N ,N6.N2---Z•215 
A gOt(a, gOt(a, gOt(a, g((>))))))"'1 . f(a, g(z))) 

= g(f(x, g(gOC(x, g(()))))))N~ "Y. 
�9 3 N ~ , N 6 . N z = 2 • 2 1 5  

A gOt(a, gOt(a, g(f(a, g((>))))))U; .f(a, gOt(a, g(z))))) 

= g(f(x, g(g(f(x, g(~))))))N~ "Y- 
�9 ~ V ~ N ~ . N E = E x N ~ + I A N I = 3 X N ~  

A gOt(a, g(f(a,g(f(a, g(0) ) ) ) ) )  ~ .  z) 
= g(f(x, g(gOC(x, g(~))))))N~, gOt(x, gO,))). 

�9 3 N ~ , N ~ . N 2 = 2 x N ~ + I A N I = 3 x N ~ + I  
A g(f(a, g(f(a, gOt(a, g(~))))))N~ . f(a, g(z))) 

= g(f(x, g(g(f(x, g(~))))))N~, g(f(x, g(y))). 
�9 3 N ~ , N ~ . N 2 = 2 • 2 1 5  

A g(f(a, gOt(a, gOt(a, g(0) ) ) ) ) )  N: . f(a, gOt(a, g(z))))) 
= gOt(x, g(gOC(x, g((>))))))N~, g(f(x, g(y))). 

Now the two 0 positions 121121 and 121212 have the same length. 

(Unfold 2) S[tl[~]~ 1 .Ul]p = t2[~]~ 2 -u2 

--+ V N, -=rl As[h[~]q' 1 .U,]p=t2[~]qNz2.u2 
l_<rl<a2 

V N2 ~---r2 A s[tl[~] N' "U1]p=t2[~]q22"u2 
l_<r2<al 

V ~ I I '  M2"N1 = ~ 2 1 5 1 7 6  •  
O<_rl <~2 
0_<r2<~1 

A 4 ( t ? )  �9 = 

If  [qll r ]q2[, R2 cannot be applied andp is a prefix of  q2. d is the 
gcd of tqll and Iq2l, ~l=[qll /d ,  o~2=lq2]/d, and 
m = al • ~2 x d is the lcm of  [q~[ and [qz[. 

Lemma 5.2. (UnfoM 2) is correct. 

Proof Conceming correctness, we only have to notice that all integers nl, n2 _> 1 
(i.e., all possible assignments to NI, N2) have to satisfy nl E {1, . . . ,  a2 - 1} or 
n2 E {1, . . . ,  al - 1} or else nl ---- a2 x ml + r l  and n2 - -  0~1 X m2 + r 2  for some 
ml, m2 _> 1 and some rl E {0, . . . ,  ~x 2 - 1}, r2 E {0, . . . ,  ~1 - 1}. []  
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R2 U {(Unfold 2)} is also terminating, but we prove this later for all rules 
together. 

5.2. Ensuring Some Prefix Conditions on the Positions 

The second step consists in applying rules similar to (Unfold 1) in order to eliminate 
uncomparable positions. More precisely, we want to ensure that 
P ~pref q2 ~prefP 'q l  ~pref q2 "q2 in equations s[tl[~]qNl.ul]p -~ t2[~]qNZ.u2. 
(The first inequality is already known from (Unfold 1).) 

Example 5.3. Consider the equation 

f(a, foe(x, ~). y)Nx. z) =f(a, f (x  t, ~))N2. yl. 

We havep = 2, ql = 12, and q2 = 22. None of  the rules which have been shown up 
to now can be applied. However, unfolding once on both sides, we get: 

N1 = 1 Af(a, foe(x, z), y)) =f(a,  f(x',  <)))N2 .y, 

V N2 = 1 Af(a, foe(x, 0) ,  y)Ul. z) =f(a,  f ( x  ~, y')) 
v3ml ,  Mz .N1 = MI + I A Nz = M2 + I 

AT(a, foe(x, fOe(x, 0), y)g, . z), y)) 

= f ( a ,  f ( x  t, f(a,  f ( x  ~, ~))M2 .y ) ) .  

By decomposition the last equation reduces the exponent sizes of  the members, 
because q2 is not a prefix of  p 'q l ;  we get 

x t =f(x ,  foe(x, 0), y))M1 . z A y  =f(a,  f ( x  t, 0)) M2 .y'. 

(Unfold 3) S[t l[~lqNl 1 " Ul] p : t2[o]N• "U2 

---+ (N2 = 1 A t2[U2]q 2 = s[~' �9 Ul]p) 

V (N1 : 1 AS[tl[ul]q~]p : t~22" u2) 

V (N2 ---- 2 A tz[t2[U2]q2]q2 = s[ ( ' .  Ul]p) 

V(3MI,  M2.N~ =M1 + 1 AN2 = M 2 + 2  

AS[t l [  I/I/I ~ 1  "Ul]q,]p = t2[t212t~ 2 �9 U2]q2]q2). 

Lemma 5.4. (UnfoM 3) is correct. 

Proof It is sufficient to consider that any solution either assigns N2 to 1 or 2, or 
assigns N1 to 1, or else assigns N1 to nl _> 2 and N2 to n2 ~ 3. []  

5.3. The Crux Decomposition Rule 

The key property is given in the following lemma. It shows that all equations that 
remain to be considered do have some commutation properties on their paths 
(actually they are of  the form depicted in Figure 3). 
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t "-'N2 u- L e m m a  5.5. l fs[ t l  [~]qN~ "Ul]p = 2[(>]q2 " ~ is irreducible by (Unfold 1), (Unfold 
2), and (UnfoM 3), then there is a qP such that q2 = P "  q~ and ql = q~ "P. 

Proof. By irreducibility with respect to (Unfold i) ( i - -  1, 2, 3), we know that 

P ~pref q2 <:pref p "  ql ~pref q2 " q2. 

We also know that I q l l : l q 2 l .  Let q 2 = p . q  ' and p . q l = q 2 . q  ". Then 
p . ql = p . ql . q ", hence ql = q~ . q ". From q2 = p . q ~, ql = q~ . q '', and 
[qll = Iq2l, w e  derive that ~01 = Iq"l- 

N o w p .  ql is a prefix of  q2 �9 q2, Hence, for some r, q2 �9 q2 = P "  ql �9 r. Which 
means that p .  q' = q " .  r. Now using ~0 t --- Iq"l we derive p = q". It follows that 
q2 : P"  q' and ql = ql "P. [ ]  

In order to have an intuition of  the next decomposition rule, look at Figure 3: 
in such equations, we must have s = v2 = wl and Vl = w2. Then, rearrang- 
ing the parentheses, we lift up the N1 exponent and guess whether N1 > N2 or 

N2 > N1. Assume, for example, N1 _> N2, then we can remove t2[~]qN 2 on both 
sides. 

Example 5.6. Consider the equation gOcOC(g(z), g ( f ( ~ ,  u))) N1. g(u), x ) ) =  
g ( f ( f ( v  ~, (>), u')) N2. g(z)  which can be depicted as 

g 

I 
f / \  

/ 

/ N  
g g 

I I 
z f 

g 

I 
lZ 

Ar~ 
g 

I 
f 

/ \ ,  
f 

g 

I 
Z 

We have s =- g ( f (a ,  x)) ,  vl - f ( g ( z ) ,  a), Wl = gOt(a, u)), v2 : ~  gOt(a, u')), 
w2 = f ( v ' ,  a), p = 11, and ql = 2. The equation can be decomposed into the 
following problems (the a can be replaced by any term, we only replace the ~ in 
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order to keep terms in T): 

g(f(a, x)) = gOt(a, u')) (i.e., s -- v2) 

A g0C(a, x)) = gOt(a, u)) (i.e., s = wl) 

Af(g(z),  a) ----f(v r, a) (i.e., Vl ---- w2) 

A ((N1 = N2 Ag(f(g(u),  u)) = g(z)) 

V (3M, .N1 --- N2 +MI  AgOC(f(g(z), g( f (~ ,  u))) M' .g(u), x)) = g(z) 

V (SM2 .Nz = N1 +M2 Ag(f(g(u), u)) = g(fOV(v ~, ~), u')) M2 .g(z))). 

More generally, we get the following rule (where the righthand side has actually to 
be put in disjunctive normal form in order to get a unification formula): 

(Decompose 2) 

S[(Va [W1 [~]p]q,)N1. Ul]p = (112[W2[~]q,]p) N2 " U2 ""+ s[a]p = w I [alp 

A s[a]p = v2[a]p A Vl [a]q, • w2[a]q, 

A ((N1 =N2 AS[Ul]p =U2) 

V (3M1. NI : Y2 q-M1 A s[(111 [w1 [~]p]q,)M1 .Ul] p = U2) 

V (3M2.  N2 = 171 + M2 A w 1 [Ul ]p : (112 [w2 [~]q,]p)M2" u2)). 

Lemma 5.7. The rule (Decompose 2) /s correct (a being any constant). 

Proof This is again quite easy: the first three equations are obtained by 
considering the top part of both sides for an arbitrary assignment (remember 
that N1 and N2 must be assigned to integers larger or equal to 1). The next three 
disjunctions are obtained by guessing how N1 and N2 compare. Assume, 
for example, that N1 is assigned to a strictly larger integer than N2. Writing 
N1 as N2 + M1, and using the equations s - -v2  and vl--w2,  the equation 
becomes 

V2 [(W2 [112 [~]plq,)N2. (111 [W1 [~]p]q,)M, gl]p = (Y2 [W2 [~]q,]p)N2. U2, 

which becomes, after reorganizing the terms and simplifying by (v2 [w2 [~]q,]p)N2 on 
both sides, 

v2 [(11, [w, ul]  = u2. 

Replacing again v2 with s, we get the corresponding equation. [] 

6. Unification of Terms with Integer Exponents 

Now we have the whole set of rules. Let us first prove termination. Then solving the 
diophantine equations part leads to solved forms. 
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6.1. Termination 

Lemma 6.1. The system R3 which consists of  applying R2 as long as possible and 
(Unfold 2), (Unfold 3), and (Decompose 2) on irreducible problems with respect to 
R2 is correct and terminating. 

Proof Correctness has been shown in Lemmas 4.4, 5.2, 5.4, and 5.7. 
Regarding termination, we use the same interpretation as in Lemma 4.4, except 

for the definition of  I(s = t) which is modified as follows: 

Z(s --  t) --  ( {E-s ize(s ) ,  E-s ize( t ) } ,  { Ieos(s ) l ,  Ieos(t)l}, status(s = t)),  

where status(s = t) is equal to 1 if (Unfold 2) can be applied on s = t. Otherwise, 
status (s = t ) =  0. 

As in the proof of  Lemma 4.4, we only have to prove that, for each rule, each 
equation in the pure part o f  a normal form with respect to R1 of  the right-hand side 
is strictly smaller than the left-hand side. 

In Table 1 we summarize, for each rule, and each equation in a normal form 
with respect to R1 of  the right-hand side of  this rule, how it compares with the left- 
hand side of  the rule. We assume here (as in the proof of  Lemma 4.4) that there is no 
occurrence of  a Variable Elimination rule along the simplification. (Because, 
otherwise, the interpretation is obviously decreasing.) A pair {<,  =}  on the line 
s = t for the interpretation i means, for example, that s = t has one member for 
which i is strictly decreasing and one member for which i is constant. In some places 
we use the notation U[q without any further explanation. In such cases q is assumed 
to be a position of  u, such that the displayed equation is irreducible with respect to 
(Decompose 1). Finally, most o f  the results reported in the table are quite easy. How 
look the irreducible forms of  equations in the right-hand side of(Unfold 1) has been 
investigated in the proof of  Lemma 4.4. We only give further explanation for the 
five results which are marked (1)-(5) in the table: 

(1) It should be noted that, in these situations, the number of  occurrences of integer 
variables may increase. However, E-size is still strictly decreasing. Indeed, 

E-size(s[tl [~]ql I " Ul]p) = max{E-size(s), E-size(t1), E-size(u1)}, 

since, by definition, for all terms u, E-size(u) = max{[E-size(U[q)[q E Pos(u)) 
and p .  qra~ E Pos (s [ta [<)] ~11 �9 ua ]p). Moreover, as already noticed in the proof of 

Lemma 4.4, for every term tN.U, E-size(t) and E-size(u) are both strictly 
smaller than E-size(t N. u). 

(2) As above, E-size(t~ 2) = E-size(q) and E-size(t~ 1 �9 Ul) = max{E-size(tl), 
E-size(u1)}. Now, assume that E-size(fi)= (nl, n2) and E-size(u1)= 
(ml, m2). There are two situations: either N1 _> M1 or N1 < M1. In the first 
case E-size(t~'. Ul) _< (nl, max{ml, m2}), hence 

E-size((t~2) M1. t~ 1. ul) = (nl --}- 1, 0) = E-s i ze ( (  1. Ul). 

In the second case E-size(t~ 1- ul) = (ml, m2), hence 

E-size((t~2) MI" t~ 1" Ul) ---- (ml~ m2 + 1) = E-size(~ 1. ux). 
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Table 1. Influence of the rules on the interpretation 

E-size Size Status 

(Unfold 1) Slq = t[U]p[q { < ,  <}  

Slq = tlq {_<, <)  

sip = t[{>]~'u {_<, =} {<,  =} 

(Unfold 2) s[h [(>]~'~ .Ul]p = t2[O]~ ~ -u2 {<,  =} (1) 

s[tl[~]~'Ul]plq --- (tz[O]q22 �9 u2)lq {_<, <} (1) 

s[(t~2) M' �9 t~ 1. Ul]p = (t~')M2. ~2 -uz {=,  =} (2) {= ,  =} (3) < (4) 

(Unfold 3) t2[u2]q2lq = s[~ l "Ul]plq {<,  <} 

~[t~ [u,]q, lp = 4 2 .~2 (<,  =) 

t2[tz[UZ]q2]qZlq = $[t~l I " Ul]plq { < ,  < )  

s[tl[~l ~ " Ul]ql]p[ q = t2[t2[ 2fl2~ 2 " U2]q2]q21 q {< ,  ___~) (5) 

(Decompose 2) Slq = Wll q { < ,  <}  

slq = V2lq {<,  <} 

Vllq = w2lq {<,  <} 

S[Ul]plq : u2lq {<,  <} 

s[(vl[wl[~]plq,) Ar "ul],lq = UZ[q {<,  <} 

Wl[Ul]plq = ((V2[W2[~]ql]p) M2 " U2)lq { ( ,  ~} 

(3) 
(4) 

(5) 

By definition o f  Pos, [Pos(s[( t~  ) M1. t~l' . Ul ]p) ] = [Pos(s)[ = IPos(s[ ( '  . Ul ]p)[. 
By definition, the equation on which (Unfold 2) is applied has a status 1. 
We have to check that (Unfold 2) cannot be applied again on the equation 
we consider. In which case the status is 0 and hence strictly decreasing. 
Note first that p is fixed (because it must be a prefix of  q2). Then note 
that q~2 has the same length as q~l, which prevents the application 
of  (Unfold 2). 
Several cases have to be considered: 

�9 I f  q[[p- ql, then 

E-size(s[tl [~l l " Ul]ql]plq) = E-size(s[tl]p[q) < E-size(s[tl [{)]qNl " Ul]p) 

and the result follows. 

�9 I fq[[q2 .  q2, we get a similar result for the other member. (Note that, in any 
case, E-size is never increasing.) 

�9 Now assume that q is a prefix of  both p �9 ql and q2 �9 q2. By irreducibility 
with respect to (Decompose 1), we must have q = p ' q l  or q = q2"q2.  
Which means that either p .  ql is a prefix of  q2 "q2 or else q2 "q2 is a 
prefix of  p ' q l .  However, both situations are prevented by the condition 
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on the application of (Unfold 3). (See the rule.) Hence, this last case 
cannot occur. 

As in the proof of Lemma 4.4, these decreasing properties complete the 
termination proof. []  

6.2. Irreducible Formulae 

Lemma 6.2. I f  a formula & irreducible with respect to R3, then it is a disjunction 
of  conjunctions of  the form 

3n' .(pAXl = t l A  . . - A x n : t n ,  

where q) is a conjunction of  linear diophantine equations, -~ is a set o f  integer 
variables, and Xl, . . . ,  Xn are ordinary variables which are solved in the con- 
junction. 

Proof We only have to check that each unification formula which is not in the 
form of the lemma can be reduced using one of the rules in R3. As already noticed at 
the beginning of Section 5, every irreducible unsolved equation (with respect to R2) 
must be of the form s[h [(~]~1 . Ul ]p = t2 [~]qN2 with p --~pref q2- By irreducibility with 
respect to (Unfold 2), ql and q2 must have the same size. By irreducibility with 
respect to (Unfold 3), we know that q2 <pref P" ql ~__pref q2 " q2, and, in this case, by 
Lemma 5.5, we can apply (Decompose 2). [] 

6.3. The Last Step 

Now we solve the linear diophantine equations parts. This means that the 
diophantine parts are replaced with finite disjunctions of systems of the form 

3 n  .N1 = E l  A ..- ANk : E ~ ,  

where El, . . . ,  Ek are linear expressions and N1, . . . ,  Nk are integer variables 
occurring only once in the problem. 

The values of NI, . . . ,  Ark can be replaced in the corresponding pure part, 
leading to equivalent solved forms. (t e is expanded according to the rule 
fV+M~ rv. tM; then replacing integer variables with linear expressions yields 
a unification formula.) 

Theorem 6.3. Unification of  I-terms is decidable and finitary: there is a correct 
and terminating algorithm which computes a fn i te  set o f  solved forms for s : t. 

6.4. Minimality 

It should be noticed that the solved forms of our unification algorithms do not 
contain redundancies: if dl V d2 is a solved form of an equation s = t, then dl and 
dz do not share any solution. This can be checked on each rule: each disjunction 
introduced by a rule splits the solutions in disjoint sets. However, we cannot claim 
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that the solved form are minimal, because there are solved forms dl V d2, where 
dl, d2 are conjunctions of equations, that can be "folded" into a single conjunction 
of equations. For example, consider the equation f ( x ) = f ( f ( O ) )  N . f (a) .  By 
(Unfold 1) and further reductions, we get 

(N : 1 Ax : f ( f ( a ) ) ) V  ~V' .N : N ' +  1 Ax : f ( f 0 c ( ~ ) )  N' . f (a) ) .  

Which is obviously not minimal since x = f 0 c ( ) )  �9 a is equivalent to the original 
problem�9 

7. Extensions of the Syntax 

We may allow a number of  new syntactic constructions while keeping the result of 
Theorem 6.3�9 Let Tn be the set of  terms with n "holes" (T I = To) defined as the 
least sets which satisfy 

xcTo 
f ( s l ,  . . . ,  Sn) C Tml+ ... +ran "r 

~ : : ~  ~ r ~  

s .  t E Tn+k-1 

Positions are defined as before; in particular, Pos(s .  t) = {A}. We do not use 
the special symbol 0 in this syntax for the reason shown in the following 
example. 

x E X  or x E F ,  a(x)=O,  
S 1 C Trnl, . . . ,  Sn E Tin,, 1 <_ n, 
s ~ To, 1 < k,  p l ,  . . . ,  m c Po~(~) - {A}, 

Vi #j .p i l~oj ,  N1, . . . ,  Nk E VN, 
s E T , ,  l < n, t E Tk. 

I"aN1'N2. C). d. Assume that N1 and N2 are both Example 7.1. Let s = (f(a, U ) l , 2  

assigned to 2. Then, according to the semantics defined below, 
sa =_f(f(c,  b), f ( a ,  d)). Now, using the special place holder O, what should 

�9 A ' ~ 2 ,  2 (f(O, ~)2,2. c) d be? There are several possibilities for unfoldingf(O, VJl,2, 

but all of  them lead to terms with more than two occurrences of (7. (This could be 
f0c (0 ,  0) ,  f ( 0 ,  ~))  o r f ( f ( ~ ,  <~), f ( f ( ~ ,  0) ,  ; 0)).) Hence, we would have to 
decide which occurrences of 0 have to be replaced with c and which have to be 
replaced with d. This leads to another interpretation of the terms which is more 
complicated. Even if we do, the expressive power is not increased. In order to be 
able to express other sets of terms we have either to allow s to be u. v (which is 
investigated in the next section) or, e.g., unfold simultaneously with respect to all 
holes (as in [6]). 

Now, given an assignment to the integer variables of s E Tin, sa is defined by 

d e f  x a = x  if x E X  or x E F ,  

f ( s l ,  . ,  Sn)~ 7 d e f  ~ .  �9 . = ? t s , ~ ,  . . . ,  Sn~), 

pl ..... p, - ~1 ..... ~_, , L " "  [~[0]~]  ""]~!]p~, 
Y 

Nka-1 

(s t)a d e f  ~ , 
�9 -~ sa[taJp i f p  is the smallest position of 0 in sa. 
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Assignments to 0 are excluded (because this would greatly complicate the 
definitions). Positions are compared lexicographically in the above definition. 

The above additional constructions actually do not increase the expressive 
power of  terms with exponents. That is what is shown in the next proposition, t E T~ 
is said to be equivalent to t t E Tn i f /V( t )  -- I V ( t  ~) and, for every assignment to 
these integer variables, to- -- tto-. A term s E T is weakly equivalent to a term t E To 
i f / V ( s )  ----/V(t) and: 

�9 For every assignment o- o f  normull integers to these variables, there is an 
assignment 0 such that sO - to-. 

�9 For every assignment 0 to these variables, there is an assignment o- ofnonnull  
integers such that sO =_ to-. 

Proposit ion 7.2. For every t ~ E To there is a weakly  equivalent t E T. 

Sketch o f  the P r o o f  We show the proposition by structural induction on t~: 

I f  t ~ - - f ( ~ )  with ~ E T~0 (f), Then it is sufficient to choose t ~ f ( ~ )  where 
each term si E -~ satisfies, for all o-, sift ~ ~o-. (~ exists by the induction 
hypothesis.) 
If  t ~ E X, then let t _---- t .  
If  we are not in one of  the two above cases, then t' - s .  u with s E T1 and 
u E To. Note that �9 is "associative" in the following sense: when s E Tn, 
t E Tm, u E Tk with n, m < 1, then (s- t) �9 u and s-  ( t .  u) are equivalent. 
Hence, we may assume that t ~ has the form (s-Ul) . . . . .  uk where 
ul, . . . ,  uk E To and s E Tk+l cannot be decomposed as Sl �9 s2. There 
are still two possible cases: 

- - s  - f ( s l ,  . . . ,  sn). In this case t' is equivalent to a t e r m f ( v l ,  . . . ,  Vn), 
where vi - si �9 Umi . . . . .  Umi+l-1 an__d ml = 1, mn+l = k + 1. Therefore, 

this case reduces to the case t j - f ( s  t) which has already been considered. 
r ~ N I , . . . , N , n  

- - s  - iSO)p 1 .. . . .  p,  where so =--f(sl,  . . . ,  Sn). Then we have necessarily 

k = m. I f  m = 1, then we are done: let v0 E T be equivalent to So and let 

vi E T be equivalent to Ul. Then v0[~]pN ~ -vl is equivalent to (so)pN~.ul. 

Assume that Pl ,  . . . ,  Pm are listed in increasing order. This is possible 
since S~p,'q M is equivalent to S~q,~ N. We claim that (S~p',,...,,~ k "Ul ) . . . . .  uk is 

weakly equivalent to the term (s[ pS~ 1 "Ul]pl). . .  [ff~pk k "Uk]p, in which every 

occurrence o f  Ni has been replaced with M~.. For, consider an assignment o- 
to the integer variables o f  the terms. We have 

t, EU lp l . . .  
Y 

Nl t r -1  

since p <lex q implies pn <lex qn for all positive integers n. Moreover, since 
pl ,  . . . ,  pk are disjoint positions, pl NI~, . . . ,  p~k~ are also disjoint positions. 
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Hence 

, k.ul . . . . .  uk)  - 

: 2  . . . . .  uk) is i.., i - i U l l ,  ll . . .  1,11,1, 

NW-1 

which shows the desired equivalence, by induction on k: it is sufficient to 
choose M/O = N,.a - 1, whatever substitution is considered first. [] 

8. An Unsound Generalization 

Now let Tv be defined by 

f 

f (~ l ,  

f ( ~ ) E T u  ~= 7 E ~  (f), 
x E  T~ ~ x E X ,  
~ E T 1 ,  

s,~2) ET1 ~ (s~I, S, ~ )  E I~I • TI • T~ 2, nl + n2 + l = a( f) ,  
s . t E T1 ~ s, t E T1 

sN E T1 ~ s E T 1 ,  N E VN, 
s . t ~ T ~  ~ s E T 1 ,  t ~ T u ,  

and Pos is defined as previously. This definition is close to the definition of  T. The 
main difference is that we now allow a construction such as (s N �9 st) M which enables 
us to encode the multiplication of  integer variables and hence diophantine 
equations. 

Proposition 8.1. Unification o f  terms in Tu is undecidable. 

Proof  Encoding diophantine equations is straightforward. We only need one 
unary s ymbo l f  and one constant symbol a in the signature, code(e) is defined on 
every monomial by: 

�9 code(l)  aeff(~).  

�9 code(N) deff(o)N for a single variable N. 

�9 code(e • N)  aef code(e)N for every nonempty product of  variables e and 
every variable N. 

This coding extends to every integer polynomial, setting c o d e ( e + e ' ) ~ f  
code(e) �9 code(e'). Then the integer polynomial equation P = Q has a solution 
iff code(P) �9 a = code(Q) �9 a has a solution. Indeed, f can be seen as the successor 
function: code(P) can be seen asf((~) e. (Although this is not allowed by the above 
syntax.) 

For example, x 2 + 2  •  •  1 is encoded by (f(~)x)x.  (f((})x)y 
. ( f  ( ~ )x)y . f (a). [] 
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9. Further Remarks 

9.1. Complexity Issues 

We do not know the exact complexity of the problem of unifying two I-terms. 
However, as in the previous section, it is easy to see that if we restrict the alphabet to 
a single unary function symbol and a constant, then the problem of unifying two I- 
terms is equivalent to solving an arbitrary linear diophantine equation. Hence, for 
arbitrary alphabets, the problem is at least as hard as solving systems of linear 
diophantine equations, 2 which may have an exponential number of minimal 
solutions. In the same way, checking the existance of a solution is NP-hard. 

On the other hand, if we only consider one disjunct when applying a rule (i.e., 
choosing "carefully" which disjunct will lead to a solution), and if we use an 
appropriate representation of terms (which prevents the exponential behavior of 
variable elimination), we conjecture that our algorithms decide the existence 
of a solution in NP-time. This would mean that the unifiability of / - terms is 
NP-complete. 

9.2. Related Work 

Since the first version of this paper, we were informed of the work of Salzer, which 
has been done independently from ours [6]. He uses a quite different formalism, but 
he shows essentially the same results as ours, except that his formalism is slightly 
more powerful since he can express, for example, the set of all complete finite 
binary trees with internal nodes labeled with f .  Indeed, his syntax allows for 
multiple holes in the terms, in which case, the semantics is different from what we 
considered in Section 7. In order to express it shortly, you can assume that the holes 
are shared, leading to a DAG on which we apply the semantics defined in Section 2. 
For example, the instances o f f ( ~ ,  ~)N. a are all complete binary trees: 

f 
/ \  

f f 
/ \  / \  

a a a a 

We believe that there is no important difference if we use DAGs instead of terms. 
Hence, the technique of our paper should apply to this interpretation as well. 
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