
Math. Systems Theory 28, 67-88 (1995) Mathematical
Systems

Theory
�9 1995 Springer-Vedag

New York Inc.

On Unification of Terms with Integer Exponents

H. Comon

CNRS and LRI, Bat. 490, Universit6 de Paris Sud,
91405 Orsay cedex, France
eomon@lri.lri.fr

Abstract. We consider terms in which some patterns can be repeated n times.
n is an integer variable which is part of the syntax of the terms (and hence may
occur more than once in them). We show that unification of such terms is
decidable and finitary, extending Chen and Hsiang's result on p-term uni-
fication. Finally, extending slightly the syntax yields an undecidable unification
problem.

1. Introduction

In [1] H. Chen and J. Hsiang proposed a unification algorithm for what they called
co-terms, and later p-terms (we keep this last terminology), with intended applica-
tions to logic programming. These terms allow us to iterate terms with one hole
along fixed paths. The number of iterations is part of the syntax of the terms and
may include integer variables.

Example 1.1. Let the alphabet of functions symbols b e f (binary), g (unary), and
a (constant). Let N be an integer variable. Then, in Chen and Hsiang's formalism,
q)0c(~, a), N, g(a)) is a typical p-term whose instances (obtained by replacing N
with an actual nonnegative integer) are g(a), f(g(a), a), f(f(g(a), a), a),
The termf(O, a) has one "hole" (the Q) and its iteration along path 1 (which is the
position of the hole) is allowed.

Such constructions can be useful in expressing infinite sets of terms which
occur in logic programming (see [1] or in the Knuth-Bendix completion procedure
(see [2]). In both cases the ability to express iterated terms can prevent non-
termination of the deduction process. Other applications are currently under
investigation, for example in unification theory (see [4]).

68 H. Comon

Constructions involving more than one occurrence of an integer variable such
a s

f (~ (f (~ , a), N, g(a)), qb0c(~,, a), N, f(a, a)))
are also allowed in [1] which shows that the p-terms can schematize nonregular sets
of ground terms and hence they are not encompassed by the study of terms with
context variables investigated in [3]. On the other hand, p-terms do not have the
power of regular languages; there are two restrictions in these p-terms: nested
p-terms are forbidden and the iterated part should not itself contain p-terms.
Finally, in [1], the iterated parts and the terms in the holes should not contain
variables.

2:

Fig. 1. Examples o f terms in T which are not p-terms.

Example 1.2. (see also Figure 1).

�9 (f(~), a), N, @(g(~), M, a)) is not a p-term. (Nested p-terms are for-
bidden.)

qb(f(~, tI)(f(~, a), N, a)), M, g(a)) is not a p-term (the iterated part itself
should not contain a p-term).

On Unification of Terms with Integer Exponents 69

r ~) , N, g(a)) is not a p-term (variables are not allowed in the iterated
part).

dg0C(a, <>), N, g(x)) is not a p-term (variables are not allowed "below" the
iterated part, i.e., in the third position of the r construction).

In this note we give another unification algorithm where these restrictions are
dropped. We keep, however, the condition that any p-term should not occur along an
iterated path. (i.e., for example, ~ (O(fO, a), N, g(O)), M, g(a)) is still not
allowed). This means that if the iterated part itself contains iterated parts, the two
iterated paths (or if one prefers, the two positions of the hole holder) should be
uncomparable with respect to the prefix ordering (as in the right-up example of
Figure 1). Indeed, without this restriction, unification becomes undecidable.

2. Syntax and Interpretation of Formulae

2.1. Terms

Missing definitions can be found in [5]. We assume that F is a (finite or infinite) set
of function symbols together with the arity function a. F is assumed to contain at
least one constant (i.e., a symbol of arity 0). X is an infinite set of constants (disjoint
from F) called variables. r is a special symbol of arity 0 (the hole holder). VN is a
fixed set of symbols denoting integer variables. The set of / - te rms T (also called
"terms" for short) and the set of terms with one hole Tl (also called "contexts") are
the least sets that satisfy:

f(-s) E T
x E T

~ E T 1 ,
f(s~, s, s~) E T,

s N . t E T

. - .4

"r S E T aft),
x C X ,

"r (~l m s, sS) E T nl • T1 x Tn2, nl + l + n2 = a(f)~
s E T 1 , t E T , N E V N , s ~ .

The construction s N �9 t E /'1 ~ s E /'1, t E T1, N E VN is not allowed here.
However, as we will see in Section 7, this additional construction does not increase
the expressive power. We also define Pos(t), the set of positions of a term
t E T U T1, as follows:

Pos(x) def{A},

Pos({)) def{A},

PosOC(-s)) a~J{A} u 1. Pos(sl) u . . . U aOC) �9 Pos(sa(f)),
Pos(s N " t) def{A}.

We often omit the- when concatenating the positions (. is overloaded). Positions are
(partially) ordered with the prefix ordering >pref. If p and q are uncomparable
positions, we write pllq. In the above definition, i. Pos(si) stands for the set

70 H. Comon

{i .p~o E Pos(si)}. I f p E Pos(t), tip is (as usual) the subterm at positionp, t(p) is
the label (function symbol) at position p and t[U]p is the term obtained by replacing
tie with u at position p. We often use the notations s[(>]p, s[(>]~- t to indicate the
position at which (> occurs in s: it follows from the definitions of TI and Pos that,
for every term s E T1 which is not 0 itself, there is exactly onep E Pos(s) (p r A)
such that Sip = ~.

Extensions of this syntax (keeping the same expressive power) are described in
Section 7. In particular, contexts with multiple holes are considered.

Example 2.1. We use the same alphabet as in Example 1.1. Assuming
x, y E X, N, M, Q E VN, the following expressions are/- terms:

tl =- f (x, f (x, ~))N . f (~, a)M . g(x) (this corresponds to/- terms with nested
exponents).

t2 =-f(f(y, ~)O.a, O) a .y (this corresponds to /-terms where the iterated
part itself contains integer exponents).

Of course the intended meaning of the construction s[~]p N (which is defined
precisely below) is to iterate the context s[]p (i.e., the term s in which the subterm at
position p has been erased) N times.

The identity of I-terms is denoted = (in order to avoid confusion with = which
is used for equations).

2.2. Equations and Formulae

We consider two kinds of equations: ordinary equations of the form s = t where
s, t E T (= is assumed symmetric: there is no difference between s = t and t = s)
and linear diophantine equations over a set of variables VN. If ~O is a conjunction of
ordinary equations, then IV(~b) (integer variables of if) is the set of symbols of VN
which occur in some/ - t e rm of ~. On the other hand, Var(~O) is the set o f free
variables x E X which occur in ~.

Unification formulae are disjunctions of formulae of the form 3 n' .q~ A ~ where
h' is a finite subset of VN, ~k is a conjunction of ordinary equations (called thepure
part of the conjunction), and q~ is a conjunction of linear diophantine equations
whose variables are a subset of h' U IV(~b) (c~ is called the diophantinepart of the
conjunction).

2.3. Substitutions and Solutions

Substitution of ordinary variables (i.e., elements of X) by/ - te rms are defined in the
usual way: a substitution a is defined by a finite set of pairs (variable, term) written
{Xl ~ tl; . " ; x, ~ tn}. Its application to t E T is defined by:

O Og(Sl " , S n) 6 def ~./ , . . = y [s l ~ 7 ~ . . . , Sn~7).

�9 xi{xl H tl; . . . ; Xn ~ tn} ~fti and x{xl ~ fi; . . . ; xn~-~tn} aefx i fx
is not one of the xi's.

On Unification of Terms with Integer Exponents 71

Note that this makes sense since, by induction on the structure of the terms.

(19 E Pos(s) A Sip =-- ~) ~ (p E Pos(sa) A Sa[p =-- ~}).

If a is a mapping which assigns a nonnegative integer to each variable
belonging to IV(s = t), then sa and ta are defined by:

�9 f (~) o dof = j ~ s a).
def

�9 x a = x (w h e n x E X) .

�9 (S [~] N ' u) o " defso'[' ' ' , , S f f ! U f f] p ' ' '] p .

Na Na

Similarly, we use the notation t[~]~ where n is a (constant) nonnegative integer for
the context obtained by unfolding t[]p n times.

A solution a to an ordinary equation s -- t is a pair (al, o2) of a mapping aa
which assigns a nonnegative integer to each variable in IV(s = t) and a substitution
o2 which assigns a n / - t e r m to each variable in Var(s = t) in such a way that
Sala2 =- tala2. This definition extends to any of our formulae in a straightforward
way.

3. Outline of the Unification Procedure

Our goal is to transform any unification formula ~b into a formula ~O' which is
equivalent (i.e., has the same set of solutions) to ~k and which is in solved form.

Definition 3.1. A solved form is either _1_, T, or a finite disjunction of formulae of
the form

3 n . N I = E1A . . . A N k ~- Ek A X l = tl A . . . A X n = tn ,

where N1, . . . , Ark are integer (free) variables which occur only once in the
�9 . - - - +

conjunction, El, . . . , Ek are hnear expressions over n, and xl, . . . , xn are ordinary
variables which are solved in the conjunction (i.e., that occur only once in the
conjunction).

Such solved forms may also be regarded as substitutions.
The transformation of a unification formula into a solved form is described by

means of Transformation rules, as in [5].
We split the rules into five parts. First, in Section 4, we use the classical

unification rules (or slight extensions of them)�9 Then we may assume that every
unsolved ordinary equation has (at least) one member of the form s N �9 t. Such terms
are called N-terms in the following.

The second step (again in Section 4) consists in getting rid of equations
s[0] N. t = u whenp is a position of u. This step is very simple: we only "unfold"

s[~] N, after which we may again apply the unification elementary rules. Now we
have only to consider equations of the f o r m S [t l [~] N l . U l] p = t2[<~]qN2Z �9 U2 (see
Figure 2).

72

N1

Fig. 2.

N2

The equations that remain to be considered after step 2.

H. Comon

The third step consists roughly in taking a "common multiple" of ql and q2,
reducing the general case to the case where ql and q2 have the same length. We have
to consider separately the cases where N2 _< [ql [and N1 _< [q21. Then, dividing N2

by [ql[and Na by [q2[, it is possible to replace ql with ql q21 and q2 with q~q,I which
have the same size.

The fourth part consists in again reducing the general case to the case where
q2 ~pref P " ql <_pref q2 �9 q2: it is sufficient to unfold once on each side. Now, if this
last condition is satisfied and if lql[= tq2[, qt must exist such that q2 = P" q' and
qa = qt .p. (That is the main trick.)

Now, if there is no clash, we are left to solve equations of the form
N1 N2

S [V I [W 1] , [~] q , p " Ul] ~---V2[W2] [~] ," U2 This Sltnatlon is depicted in Figure 3
q P P . P q " .

We have first to ensure the equality of subterms which are not located along the path
P" (qp.p)N1; this is ensured by the equalities s = v2, Vl = w2 and, Wa = v2. Then
either N1 = N2, N1 > N2, or N1 < N2. In each case we simplify both sides: the path
(p. q~)min(N2,N,) is shared by two members of the equation.

Correctness of all the rules (i.e., the preservation of the set of solutions) is not
difficult in general. Neither is termination very difficult because we never introduce
new ordinary variables. Moreover, the number of integer variables which occur in
the/-terms of the problem never increases. When these two numbers are constant,
then the rules aim at "separating the integer variables," which is rather technical to
explain formally.

4. Elementary Rules

First, we restrict our attention to solutions which assign nonnull integers to the
integer variables of the problem. Indeed, we may at once nondeterministically

On Unification of Terms with Integer Exponents 73

1)1

N2

N1

Fig. 3. The equations that remain to be solved after step 4.

choose the integer variables which are mapped to 0. Hence, from now on, we only
consider such interpretations. 1

Trivial

Decompose

Clash

Variable Elimination

Occur Check x = s ~ _1_

Let R1 be the above system o f rules.

s = s - - - ~ T

f (-~) f (7) --" -~ - - - > s ~ t

f (-~) = g (T) ~ I i f f # g

x = s A P ~ x = s A P { x ~ - - ~ s }

i f x f~ Var(s), x E Var(e) ,

and (s E X :=> s E Var(e))

i f s ~ x and x c Var(s)

L e m m a 4.1. All rules in R1 are correct. Moreover, R1 terminates on any
unification formula.

P r o o f Correctness is quite straightforward. Termintion is classical: it is similar to
the termination p roo f o f the usual unification rules (see [5]). []

1 The nondeterministic choice is very inefficient and is not really necessary. We choose this
presentation for the sake of simplicity (for example, we can use Occur-Checks without considering the
null case separately) but this should not be followed in an implementation.

74 H. Comon

Let us call an equation solved in a unification formula (o if one of its member is
a variable x E X which has only one occurrence in r (In such a case x itself is also
called a solved variable.)

Lemma 4.2. I f ~o is a unification formula which is irreducible with respect to R1,
then equations between 1-terms which occur in q9 are either solved or of the form
s N. t = u where u is not a variable.

Proof Every equation which is not of the form s N �9 t = u where u is not a variable
can be written as either x = s, where x is a variable, orf(-~) = g(~) . In the first case
either x = s is solved or else x E Var(s) (in which case, the Occur-Check rule or the
Trivial rule applies) or the Variable Elimination rule applies. In the second case
either Clash or Decompose applies. []

We first consider the case o f equations s = [0]~- u where no prefix q o f p is
such that Slq is an N-term. In such a case we may "unfold" t[(>], N once: this will lead
by decomposition along the path p to equations which have either less integer
exponents or the same integer exponents and smaller terms.

Example 4.3. Consider the equa t ion f (~ , a) N . x = f (y , f (a , ~)M . z). We are
going to unfold f((>, a)N: either N = 1 which leads to the equation f (x , a) =
f (y , f (a , ~)M. Z) which contains less ~teger variables, or else N can be written
N ' + 1 (with N ' > 1) and f(f((>, a) N .x, a) = f 0 ' , f (a , ~)M. z). This last
equation can be simplified using R1, which yields

f (~ , a)S ' .x = y A a =f (a , O) M.z ,

a conjunction of simpler equations.

(Unfold 1)

s = t [0] N- u ~ (N = 1 A s = t [u] p) V (3 M . N = M § 1As=t[tM.u]p) .

If:

�9 There is no prefix q o f p such that Slq is an N-term.
�9 R1 does not apply.

Lemma 4.4. The system R2 obtained by adding (Unfold 1) to R1 is correct and
terminating.

Proof Correctness is straightforward: only termination needs a proof. We give an
interpretation of formulae which are irreducible with respect to R1.

Any unification formula can be written

(: tn l l �9 r A t ' ,) V . . - V (3 n 5 . q~k A ~ k) ,

where each q~i is a system of linear diophantine equations and 0i is a pure
conjunction of equations. We interpret this unification formula as the multiset

{I(r " " , I (r

On Unification of Terms with Integer Exponents 75

of interpretations of each pure part. The multisets are ordered using the multiset
extension of the ordering on the components.

Now, I(sl = h A---A~. =in) is a pair (a, {I(sl = f i) , . . . , I (s , =tn)})
which consists of the number a of unsolved (ordinary) variables in the conjunction
and the multiset of interpretations of each equation. The pairs are ordered
lexicographically. 1(2_) is assumed to be minimal.

Before we define l (s = t) we need to define some measures on the/-terms.
These measures are reused in the following. Roughly, E-size(s) gives a measure of
the number of nested N-terms. However, actually, there are two notions of
nestedness: in the expression s N. t M �9 u, t M is nested below s N. In the expression
sit M �9 u, O] N . v, t M is nested below s N in another way because, for any instance
n, m o fN , M respectively, t will be repeated n x m times in the latter case whereas
t will be repeated m times in the former case. That is why E-size(s) is a pair of
natural numbers, recursively defined as follows:

�9 E-size (x) = E-size(~) = E-size(a) = (0, O) for every variable x and every
constant symbol a.

�9 E-size(f(sl, . . . Sn)) = max{E-size(si)ll < i < n}.
�9 E-size(s N. t) = max{(nx 4- 1, 0), (ml, m2 + 1)} if E-size(s) = (nl, n2)

and E-size(t) = (ml, m2). (The maximum is considered with respect to
the lexicographic extension of the ordering on natural numbers.)

I (s = t) is the multiset of pairs {(E-size(s), IPox(s)l), (E-size(t), Ieos(t)l)}
ordered using multiset and lexicographic extensions of the orderings.

We are going to show that the interpretation is strictly decreasing on the normal
forms with respect to R1 by application of Unfold 1).

Assume that

O V (3 n . q ~ A O A s = t �9 u) ---~

V (q n . (a A N = 1 A ~ A s = t[U]p)

V (3 n, M . (p A N = M + 1 A ~ A s = t[t[~]~ t . U]p).

Rx does not introduce any disjunction. Hence, by definition o f the multiset
extension of an ordering, it is sufficient to prove that the normal forms (with respect
to R1) of @ A s = t[u] and ~k A s = t[t[O] M- U]p are both strictly smaller than

A s = t[O]p N- u in t~e interpretation. If there is at least one occurrence of
application of the Variable Elimination rule along the normalization by R1, then
the interpretation is decreasing because there are strictly less unsolved variables in
the normal form. Similarly, i f a Clash or an Occur-Check is applied during the
normalization, the decrease is obvious. These situations can be excluded. Now,
since only Decompose and Trivial remain, we only have to compare s = t[~] u �9 u
with the decomposed forms of s = t[U]p and s = t[t[~] M .u]p, respectively. PThe
decomposed forms of these equations are conjunctions of equations Stq = tlq[U]r
(resp. Slq = t]q[t[O]Mp �9 U]r) where q is a position of s and t and q . r = p and

76 H. Comon

equations of the form S[q = t[q where Pllq and q is a position of s, t. It is quite
straightforward to see that E-size(s[q) ___ E-size(s). We also have:

�9 E-size(t[q[U]r) < E-size(t[o]pN.u) since E-size(t[q[U]r) = max{E-size(t[q),
E-size(u)} and both E-size(t) and E-size(u) are strictly smaller than
E-size(t[~]J. u).

�9 E-size(t]q) < E-size(t[Q]p N- u) when Ptlq since E-size(t[q) < E-size(t) <
E-size(t[Q]J. u).

�9]eos(Slq)l < [Pos(s)l.

Hence, we only have to consider the case of irreducible equations
slq = t[q[t[~] M . U]r such that q . r = p. In these cases, by hypothesis on the rule
(Unfold 1), the head ofs[q is either a function symbol or a variable. It cannot be a
variable because we assumed that there is no Variable Elimination and no Occur
Check. This means that S[q = f (s l , . . . , sn). Then, by irreducibility of slq =
tlq[t[~]M.U]r, we must have q - - p : the equation can be written
Sip = t[()]p M- u. Now the interpretation of this equation is strictly smaller than the

interpretation of s = t[()]J, u.
In order to complete the proof, we only have to associate with each unification

formula (o the pair consisting of the above interpretation applied on a normal form
of tp with respect to R1 and the formula itself. The pairs being ordered lexico-
graphically and the second components being ordered by the reduction relation
4 ' we get a well-founded interpretation which is decreasing by any application of R1 ~

a rule. []

5. Solving Some Particular Equations

It only remains to consider equations of the form s[tl[~]~l.ut]p = t2[~lqN; �9 u2
where p is a prefix of q2 (P may equal A, but ql and q2 may not, by definition).

S.1. Reduction to Iqll = Iq21

The first step consists in reducing the above problem to the case]ql] = Iq21. This is
done by unfolding tl [~]q N1 Iq21 times and unfolding t2[()]~ 2 [ql] times. Letus give an
example.

Example 5.1. Consider the equation gOt(a, g(~>))N1 . z) = g ~ (x , g(())))N2 .y.
The first 0 position ql = 21 has a length 2 and the second () position q2 : 121 has
a length 3. We unfold the/- terms so as to have the same lengths; the above equation
is equivalent to the disjunction of nine formulae. The first three formulae
correspond to "small" values of N1, N2:

* N2 = 1 A gOt(a, (0)) N1. z) = g(f (x , g(y))).
�9 N1 = 1 A g f f (a , g(z))) = g(f(x, g(())))N=.y.
�9 N1 = 2 Ag(f (a , gOe(a, g (z))))) = g (f (x , g (0))) er .y.

On Unification of Terms with Integer Exponents 77

The next six formulae correspond to all possible remainders of the divisions of
N1 by 3 and N2 by 2, respectively; we gather together three iterations o fg (f (a , 0))
and two iterations of g(f(x, g(0))) :

�9 ~ N ~ , N 6 . N 2 - - - 2 • 2 1 5
N ~ A g(f(a, gOt(a, g(f(a, g(<~)))))) 1 .z)----g(f(x, g(gOC(x, g(0)))))) u~ .y.

�9 N ,N6.N2---Z•215
A gOt(a, gOt(a, gOt(a, g((>))))))"'1 . f(a, g(z)))

= g(f(x, g(gOC(x, g(()))))))N~ "Y.
�9 3 N ~ , N 6 . N z = 2 • 2 1 5

A gOt(a, gOt(a, g(f(a, g((>))))))U; .f(a, gOt(a, g(z)))))

= g(f(x, g(g(f(x, g(~))))))N~ "Y-
�9 ~ V ~ N ~ . N E = E x N ~ + I A N I = 3 X N ~

A gOt(a, g(f(a,g(f(a, g(0)))))) ~ . z)
= g(f(x, g(gOC(x, g(~))))))N~, gOt(x, gO,))).

�9 3 N ~ , N ~ . N 2 = 2 x N ~ + I A N I = 3 x N ~ + I
A g(f(a, g(f(a, gOt(a, g(~))))))N~ . f(a, g(z)))

= g(f(x, g(g(f(x, g(~))))))N~, g(f(x, g(y))).
�9 3 N ~ , N ~ . N 2 = 2 • 2 1 5

A g(f(a, gOt(a, gOt(a, g(0)))))) N: . f(a, gOt(a, g(z)))))
= gOt(x, g(gOC(x, g((>))))))N~, g(f(x, g(y))).

Now the two 0 positions 121121 and 121212 have the same length.

(Unfold 2) S[tl[~]~ 1 .Ul]p = t2[~]~ 2 -u2

--+ V N, -=rl As[h[~]q' 1 .U,]p=t2[~]qNz2.u2
l_<rl<a2

V N2 ~---r2 A s[tl[~] N' "U1]p=t2[~]q22"u2
l_<r2<al

V ~ I I ' M2"N1 = ~ 2 1 5 1 7 6 •
O<_rl <~2
0_<r2<~1

A 4 (t ?) �9 =

If [qll r]q2[, R2 cannot be applied andp is a prefix of q2. d is the
gcd of tqll and Iq2l, ~l=[qll /d , o~2=lq2]/d, and
m = al • ~2 x d is the lcm of [q~[and [qz[.

Lemma 5.2. (UnfoM 2) is correct.

Proof Conceming correctness, we only have to notice that all integers nl, n2 _> 1
(i.e., all possible assignments to NI, N2) have to satisfy nl E {1, . . . , a2 - 1} or
n2 E {1, . . . , al - 1} or else nl ---- a2 x ml + r l and n2 - - 0~1 X m2 + r 2 for some
ml, m2 _> 1 and some rl E {0, . . . , ~x 2 - 1}, r2 E {0, . . . , ~1 - 1}. []

78 H. Comon

R2 U {(Unfold 2)} is also terminating, but we prove this later for all rules
together.

5.2. Ensuring Some Prefix Conditions on the Positions

The second step consists in applying rules similar to (Unfold 1) in order to eliminate
uncomparable positions. More precisely, we want to ensure that
P ~pref q2 ~prefP 'q l ~pref q2 "q2 in equations s[tl[~]qNl.ul]p -~ t2[~]qNZ.u2.
(The first inequality is already known from (Unfold 1).)

Example 5.3. Consider the equation

f(a, foe(x, ~). y)Nx. z) =f(a, f (x t, ~))N2. yl.

We havep = 2, ql = 12, and q2 = 22. None of the rules which have been shown up
to now can be applied. However, unfolding once on both sides, we get:

N1 = 1 Af(a, foe(x, z), y)) =f(a, f(x', <)))N2 .y,

V N2 = 1 Af(a, foe(x, 0) , y)Ul. z) =f(a, f (x ~, y'))
v3ml , Mz .N1 = MI + I A Nz = M2 + I

AT(a, foe(x, fOe(x, 0), y)g, . z), y))

= f (a , f (x t, f(a, f (x ~, ~))M2 .y)) .

By decomposition the last equation reduces the exponent sizes of the members,
because q2 is not a prefix of p 'q l ; we get

x t =f(x , foe(x, 0), y))M1 . z A y =f(a, f (x t, 0)) M2 .y'.

(Unfold 3) S[t l[~lqNl 1 " Ul] p : t2[o]N• "U2

---+ (N2 = 1 A t2[U2]q 2 = s[~' �9 Ul]p)

V (N1 : 1 AS[tl[ul]q~]p : t~22" u2)

V (N2 ---- 2 A tz[t2[U2]q2]q2 = s[(' . Ul]p)

V(3MI, M2.N~ =M1 + 1 AN2 = M 2 + 2

AS[t l [I/I/I ~ 1 "Ul]q,]p = t2[t212t~ 2 �9 U2]q2]q2).

Lemma 5.4. (UnfoM 3) is correct.

Proof It is sufficient to consider that any solution either assigns N2 to 1 or 2, or
assigns N1 to 1, or else assigns N1 to nl _> 2 and N2 to n2 ~ 3. []

5.3. The Crux Decomposition Rule

The key property is given in the following lemma. It shows that all equations that
remain to be considered do have some commutation properties on their paths
(actually they are of the form depicted in Figure 3).

On Unification of Terms with Integer Exponents 79

t "-'N2 u- L e m m a 5.5. l fs[t l [~]qN~ "Ul]p = 2[(>]q2 " ~ is irreducible by (Unfold 1), (Unfold
2), and (UnfoM 3), then there is a qP such that q2 = P " q~ and ql = q~ "P.

Proof. By irreducibility with respect to (Unfold i) (i - - 1, 2, 3), we know that

P ~pref q2 <:pref p " ql ~pref q2 " q2.

We also know that I q l l : l q 2 l . Let q 2 = p . q ' and p . q l = q 2 . q ". Then
p . ql = p . ql . q ", hence ql = q~ . q ". From q2 = p . q ~, ql = q~ . q '', and
[qll = Iq2l, w e derive that ~01 = Iq"l-

N o w p . ql is a prefix of q2 �9 q2, Hence, for some r, q2 �9 q2 = P " ql �9 r. Which
means that p . q' = q " . r. Now using ~0 t --- Iq"l we derive p = q". It follows that
q2 : P" q' and ql = ql "P. []

In order to have an intuition of the next decomposition rule, look at Figure 3:
in such equations, we must have s = v2 = wl and Vl = w2. Then, rearrang-
ing the parentheses, we lift up the N1 exponent and guess whether N1 > N2 or

N2 > N1. Assume, for example, N1 _> N2, then we can remove t2[~]qN 2 on both
sides.

Example 5.6. Consider the equation gOcOC(g(z), g (f (~ , u))) N1. g(u), x)) =
g (f (f (v ~, (>), u')) N2. g(z) which can be depicted as

g

I
f / \

/

/ N
g g

I I
z f

g

I
lZ

Ar~
g

I
f

/ \ ,
f

g

I
Z

We have s =- g (f (a , x)) , vl - f (g (z) , a), Wl = gOt(a, u)), v2 : ~ gOt(a, u')),
w2 = f (v ' , a), p = 11, and ql = 2. The equation can be decomposed into the
following problems (the a can be replaced by any term, we only replace the ~ in

80 H, Comon

order to keep terms in T):

g(f(a, x)) = gOt(a, u')) (i.e., s -- v2)

A g0C(a, x)) = gOt(a, u)) (i.e., s = wl)

Af(g(z), a) ----f(v r, a) (i.e., Vl ---- w2)

A ((N1 = N2 Ag(f(g(u), u)) = g(z))

V (3M, .N1 --- N2 +MI AgOC(f(g(z), g(f (~ , u))) M' .g(u), x)) = g(z)

V (SM2 .Nz = N1 +M2 Ag(f(g(u), u)) = g(fOV(v ~, ~), u')) M2 .g(z))).

More generally, we get the following rule (where the righthand side has actually to
be put in disjunctive normal form in order to get a unification formula):

(Decompose 2)

S[(Va [W1 [~]p]q,)N1. Ul]p = (112[W2[~]q,]p) N2 " U2 ""+ s[a]p = w I [alp

A s[a]p = v2[a]p A Vl [a]q, • w2[a]q,

A ((N1 =N2 AS[Ul]p =U2)

V (3M1. NI : Y2 q-M1 A s[(111 [w1 [~]p]q,)M1 .Ul] p = U2)

V (3M2. N2 = 171 + M2 A w 1 [Ul]p : (112 [w2 [~]q,]p)M2" u2)).

Lemma 5.7. The rule (Decompose 2) /s correct (a being any constant).

Proof This is again quite easy: the first three equations are obtained by
considering the top part of both sides for an arbitrary assignment (remember
that N1 and N2 must be assigned to integers larger or equal to 1). The next three
disjunctions are obtained by guessing how N1 and N2 compare. Assume,
for example, that N1 is assigned to a strictly larger integer than N2. Writing
N1 as N2 + M1, and using the equations s - -v2 and vl--w2, the equation
becomes

V2 [(W2 [112 [~]plq,)N2. (111 [W1 [~]p]q,)M, gl]p = (Y2 [W2 [~]q,]p)N2. U2,

which becomes, after reorganizing the terms and simplifying by (v2 [w2 [~]q,]p)N2 on
both sides,

v2 [(11, [w, ul] = u2.

Replacing again v2 with s, we get the corresponding equation. []

6. Unification of Terms with Integer Exponents

Now we have the whole set of rules. Let us first prove termination. Then solving the
diophantine equations part leads to solved forms.

On, Unification of Terms with Integer Exponents 81

6.1. Termination

Lemma 6.1. The system R3 which consists of applying R2 as long as possible and
(Unfold 2), (Unfold 3), and (Decompose 2) on irreducible problems with respect to
R2 is correct and terminating.

Proof Correctness has been shown in Lemmas 4.4, 5.2, 5.4, and 5.7.
Regarding termination, we use the same interpretation as in Lemma 4.4, except

for the definition of I(s = t) which is modified as follows:

Z(s -- t) -- ({E-s ize(s) , E-s ize(t) } , { Ieos(s) l , Ieos(t)l}, status(s = t)),

where status(s = t) is equal to 1 if (Unfold 2) can be applied on s = t. Otherwise,
status (s = t) = 0.

As in the proof of Lemma 4.4, we only have to prove that, for each rule, each
equation in the pure part o f a normal form with respect to R1 of the right-hand side
is strictly smaller than the left-hand side.

In Table 1 we summarize, for each rule, and each equation in a normal form
with respect to R1 of the right-hand side of this rule, how it compares with the left-
hand side of the rule. We assume here (as in the proof of Lemma 4.4) that there is no
occurrence of a Variable Elimination rule along the simplification. (Because,
otherwise, the interpretation is obviously decreasing.) A pair {<, =} on the line
s = t for the interpretation i means, for example, that s = t has one member for
which i is strictly decreasing and one member for which i is constant. In some places
we use the notation U[q without any further explanation. In such cases q is assumed
to be a position of u, such that the displayed equation is irreducible with respect to
(Decompose 1). Finally, most o f the results reported in the table are quite easy. How
look the irreducible forms of equations in the right-hand side of(Unfold 1) has been
investigated in the proof of Lemma 4.4. We only give further explanation for the
five results which are marked (1)-(5) in the table:

(1) It should be noted that, in these situations, the number of occurrences of integer
variables may increase. However, E-size is still strictly decreasing. Indeed,

E-size(s[tl [~]ql I " Ul]p) = max{E-size(s), E-size(t1), E-size(u1)},

since, by definition, for all terms u, E-size(u) = max{[E-size(U[q)[q E Pos(u))
and p . qra~ E Pos (s [ta [<)] ~11 �9 ua]p). Moreover, as already noticed in the proof of

Lemma 4.4, for every term tN.U, E-size(t) and E-size(u) are both strictly
smaller than E-size(t N. u).

(2) As above, E-size(t~ 2) = E-size(q) and E-size(t~ 1 �9 Ul) = max{E-size(tl),
E-size(u1)}. Now, assume that E-size(fi)= (nl, n2) and E-size(u1)=
(ml, m2). There are two situations: either N1 _> M1 or N1 < M1. In the first
case E-size(t~'. Ul) _< (nl, max{ml, m2}), hence

E-size((t~2) M1. t~ 1. ul) = (nl --}- 1, 0) = E-s i ze ((1. Ul).

In the second case E-size(t~ 1- ul) = (ml, m2), hence

E-size((t~2) MI" t~ 1" Ul) ---- (ml~ m2 + 1) = E-size(~ 1. ux).

82 H. Comon

Table 1. Influence of the rules on the interpretation

E-size Size Status

(Unfold 1) Slq = t[U]p[q { < , <}

Slq = tlq {_<, <)

sip = t[{>]~'u {_<, =} {<, =}

(Unfold 2) s[h [(>]~'~ .Ul]p = t2[O]~ ~ -u2 {<, =} (1)

s[tl[~]~'Ul]plq --- (tz[O]q22 �9 u2)lq {_<, <} (1)

s[(t~2) M' �9 t~ 1. Ul]p = (t~')M2. ~2 -uz {=, =} (2) {= , =} (3) < (4)

(Unfold 3) t2[u2]q2lq = s[~ l "Ul]plq {<, <}

~[t~ [u,]q, lp = 4 2 .~2 (<, =)

t2[tz[UZ]q2]qZlq = $[t~l I " Ul]plq { < , <)

s[tl[~l ~ " Ul]ql]p[q = t2[t2[2fl2~ 2 " U2]q2]q21 q {< , ___~) (5)

(Decompose 2) Slq = Wll q { < , <}

slq = V2lq {<, <}

Vllq = w2lq {<, <}

S[Ul]plq : u2lq {<, <}

s[(vl[wl[~]plq,) Ar "ul],lq = UZ[q {<, <}

Wl[Ul]plq = ((V2[W2[~]ql]p) M2 " U2)lq { (, ~}

(3)
(4)

(5)

By definition o f Pos, [Pos(s[(t~) M1. t~l' . Ul]p)] = [Pos(s)[= IPos(s[(' . Ul]p)[.
By definition, the equation on which (Unfold 2) is applied has a status 1.
We have to check that (Unfold 2) cannot be applied again on the equation
we consider. In which case the status is 0 and hence strictly decreasing.
Note first that p is fixed (because it must be a prefix of q2). Then note
that q~2 has the same length as q~l, which prevents the application
of (Unfold 2).
Several cases have to be considered:

�9 I f q[[p- ql, then

E-size(s[tl [~l l " Ul]ql]plq) = E-size(s[tl]p[q) < E-size(s[tl [{)]qNl " Ul]p)

and the result follows.

�9 I fq[[q2 . q2, we get a similar result for the other member. (Note that, in any
case, E-size is never increasing.)

�9 Now assume that q is a prefix of both p �9 ql and q2 �9 q2. By irreducibility
with respect to (Decompose 1), we must have q = p ' q l or q = q2"q2.
Which means that either p . ql is a prefix of q2 "q2 or else q2 "q2 is a
prefix of p ' q l . However, both situations are prevented by the condition

On Unification of Terms with Integer Exponents 83

on the application of (Unfold 3). (See the rule.) Hence, this last case
cannot occur.

As in the proof of Lemma 4.4, these decreasing properties complete the
termination proof. []

6.2. Irreducible Formulae

Lemma 6.2. I f a formula & irreducible with respect to R3, then it is a disjunction
of conjunctions of the form

3n' .(pAXl = t l A . . - A x n : t n ,

where q) is a conjunction of linear diophantine equations, -~ is a set o f integer
variables, and Xl, . . . , Xn are ordinary variables which are solved in the con-
junction.

Proof We only have to check that each unification formula which is not in the
form of the lemma can be reduced using one of the rules in R3. As already noticed at
the beginning of Section 5, every irreducible unsolved equation (with respect to R2)
must be of the form s[h [(~]~1 . Ul]p = t2 [~]qN2 with p --~pref q2- By irreducibility with
respect to (Unfold 2), ql and q2 must have the same size. By irreducibility with
respect to (Unfold 3), we know that q2 <pref P" ql ~__pref q2 " q2, and, in this case, by
Lemma 5.5, we can apply (Decompose 2). []

6.3. The Last Step

Now we solve the linear diophantine equations parts. This means that the
diophantine parts are replaced with finite disjunctions of systems of the form

3 n .N1 = E l A ..- ANk : E ~ ,

where El, . . . , Ek are linear expressions and N1, . . . , Nk are integer variables
occurring only once in the problem.

The values of NI, . . . , Ark can be replaced in the corresponding pure part,
leading to equivalent solved forms. (t e is expanded according to the rule
fV+M~ rv. tM; then replacing integer variables with linear expressions yields
a unification formula.)

Theorem 6.3. Unification of I-terms is decidable and finitary: there is a correct
and terminating algorithm which computes a fn i te set o f solved forms for s : t.

6.4. Minimality

It should be noticed that the solved forms of our unification algorithms do not
contain redundancies: if dl V d2 is a solved form of an equation s = t, then dl and
dz do not share any solution. This can be checked on each rule: each disjunction
introduced by a rule splits the solutions in disjoint sets. However, we cannot claim

84 H. Comon

that the solved form are minimal, because there are solved forms dl V d2, where
dl, d2 are conjunctions of equations, that can be "folded" into a single conjunction
of equations. For example, consider the equation f (x) = f (f (O)) N . f (a) . By
(Unfold 1) and further reductions, we get

(N : 1 Ax : f (f (a))) V ~V' .N : N ' + 1 Ax : f (f 0 c (~)) N' . f (a)) .

Which is obviously not minimal since x = f 0 c ()) �9 a is equivalent to the original
problem�9

7. Extensions of the Syntax

We may allow a number of new syntactic constructions while keeping the result of
Theorem 6.3�9 Let Tn be the set of terms with n "holes" (T I = To) defined as the
least sets which satisfy

xcTo
f (s l , . . . , Sn) C Tml+ ... +ran "r

~ : : ~ ~ r ~

s . t E Tn+k-1

Positions are defined as before; in particular, Pos(s . t) = {A}. We do not use
the special symbol 0 in this syntax for the reason shown in the following
example.

x E X or x E F , a(x)=O,
S 1 C Trnl, . . . , Sn E Tin,, 1 <_ n,
s ~ To, 1 < k, p l , . . . , m c Po~(~) - {A},

Vi #j .p i l~oj , N1, . . . , Nk E VN,
s E T , , l < n, t E Tk.

I"aN1'N2. C). d. Assume that N1 and N2 are both Example 7.1. Let s = (f(a, U) l , 2

assigned to 2. Then, according to the semantics defined below,
sa =_f(f(c, b), f (a , d)). Now, using the special place holder O, what should

�9 A ' ~ 2 , 2 (f(O, ~)2,2. c) d be? There are several possibilities for unfoldingf(O, VJl,2,

but all of them lead to terms with more than two occurrences of (7. (This could be
f0c (0 , 0) , f (0 , ~)) o r f (f (~ , <~), f (f (~ , 0) , ; 0)).) Hence, we would have to
decide which occurrences of 0 have to be replaced with c and which have to be
replaced with d. This leads to another interpretation of the terms which is more
complicated. Even if we do, the expressive power is not increased. In order to be
able to express other sets of terms we have either to allow s to be u. v (which is
investigated in the next section) or, e.g., unfold simultaneously with respect to all
holes (as in [6]).

Now, given an assignment to the integer variables of s E Tin, sa is defined by

d e f x a = x if x E X or x E F ,

f (s l , . , Sn)~ 7 d e f ~ . �9 . = ? t s , ~ , . . . , Sn~),

pl p, - ~1 ~_, , L " " [~[0]~] ""]~!]p~,
Y

Nka-1

(s t)a d e f ~ ,
�9 -~ sa[taJp i f p is the smallest position of 0 in sa.

On Unification of Terms with Integer Exponents 85

Assignments to 0 are excluded (because this would greatly complicate the
definitions). Positions are compared lexicographically in the above definition.

The above additional constructions actually do not increase the expressive
power of terms with exponents. That is what is shown in the next proposition, t E T~
is said to be equivalent to t t E Tn i f /V(t) -- I V (t ~) and, for every assignment to
these integer variables, to- -- tto-. A term s E T is weakly equivalent to a term t E To
i f / V (s) ----/V(t) and:

�9 For every assignment o- o f normull integers to these variables, there is an
assignment 0 such that sO - to-.

�9 For every assignment 0 to these variables, there is an assignment o- ofnonnull
integers such that sO =_ to-.

Proposit ion 7.2. For every t ~ E To there is a weakly equivalent t E T.

Sketch o f the P r o o f We show the proposition by structural induction on t~:

I f t ~ - - f (~) with ~ E T~0 (f), Then it is sufficient to choose t ~ f (~) where
each term si E -~ satisfies, for all o-, sift ~ ~o-. (~ exists by the induction
hypothesis.)
If t ~ E X, then let t _---- t .
If we are not in one of the two above cases, then t' - s . u with s E T1 and
u E To. Note that �9 is "associative" in the following sense: when s E Tn,
t E Tm, u E Tk with n, m < 1, then (s- t) �9 u and s- (t . u) are equivalent.
Hence, we may assume that t ~ has the form (s-Ul) uk where
ul, . . . , uk E To and s E Tk+l cannot be decomposed as Sl �9 s2. There
are still two possible cases:

- - s - f (s l , . . . , sn). In this case t' is equivalent to a t e r m f (v l , . . . , Vn),
where vi - si �9 Umi Umi+l-1 an__d ml = 1, mn+l = k + 1. Therefore,

this case reduces to the case t j - f (s t) which has already been considered.
r ~ N I , . . . , N , n

- - s - iSO)p 1 p, where so =--f(sl, . . . , Sn). Then we have necessarily

k = m. I f m = 1, then we are done: let v0 E T be equivalent to So and let

vi E T be equivalent to Ul. Then v0[~]pN ~ -vl is equivalent to (so)pN~.ul.

Assume that Pl , . . . , Pm are listed in increasing order. This is possible
since S~p,'q M is equivalent to S~q,~ N. We claim that (S~p',,...,,~ k "Ul) uk is

weakly equivalent to the term (s[pS~ 1 "Ul]pl). . . [ff~pk k "Uk]p, in which every

occurrence o f Ni has been replaced with M~.. For, consider an assignment o-
to the integer variables o f the terms. We have

t, EU lp l . . .
Y

Nl t r -1

since p <lex q implies pn <lex qn for all positive integers n. Moreover, since
pl , . . . , pk are disjoint positions, pl NI~, . . . , p~k~ are also disjoint positions.

86 H. Comon

Hence

, k.ul uk) -

: 2 uk) is i.., i - i U l l , ll . . . 1,11,1,

NW-1

which shows the desired equivalence, by induction on k: it is sufficient to
choose M/O = N,.a - 1, whatever substitution is considered first. []

8. An Unsound Generalization

Now let Tv be defined by

f

f (~ l ,

f (~) E T u ~= 7 E ~ (f),
x E T~ ~ x E X ,
~ E T 1 ,

s,~2) ET1 ~ (s~I, S, ~) E I~I • TI • T~ 2, nl + n2 + l = a(f) ,
s . t E T1 ~ s, t E T1

sN E T1 ~ s E T 1 , N E VN,
s . t ~ T ~ ~ s E T 1 , t ~ T u ,

and Pos is defined as previously. This definition is close to the definition of T. The
main difference is that we now allow a construction such as (s N �9 st) M which enables
us to encode the multiplication of integer variables and hence diophantine
equations.

Proposition 8.1. Unification o f terms in Tu is undecidable.

Proof Encoding diophantine equations is straightforward. We only need one
unary s ymbo l f and one constant symbol a in the signature, code(e) is defined on
every monomial by:

�9 code(l) aeff(~).

�9 code(N) deff(o)N for a single variable N.

�9 code(e • N) aef code(e)N for every nonempty product of variables e and
every variable N.

This coding extends to every integer polynomial, setting c o d e (e + e ') ~ f
code(e) �9 code(e'). Then the integer polynomial equation P = Q has a solution
iff code(P) �9 a = code(Q) �9 a has a solution. Indeed, f can be seen as the successor
function: code(P) can be seen asf((~) e. (Although this is not allowed by the above
syntax.)

For example, x 2 + 2 • • 1 is encoded by (f(~)x)x. (f((})x)y
. (f (~)x)y . f (a). []

On Unification of Terms with Integer Exponents 87

9. Further Remarks

9.1. Complexity Issues

We do not know the exact complexity of the problem of unifying two I-terms.
However, as in the previous section, it is easy to see that if we restrict the alphabet to
a single unary function symbol and a constant, then the problem of unifying two I-
terms is equivalent to solving an arbitrary linear diophantine equation. Hence, for
arbitrary alphabets, the problem is at least as hard as solving systems of linear
diophantine equations, 2 which may have an exponential number of minimal
solutions. In the same way, checking the existance of a solution is NP-hard.

On the other hand, if we only consider one disjunct when applying a rule (i.e.,
choosing "carefully" which disjunct will lead to a solution), and if we use an
appropriate representation of terms (which prevents the exponential behavior of
variable elimination), we conjecture that our algorithms decide the existence
of a solution in NP-time. This would mean that the unifiability of / - terms is
NP-complete.

9.2. Related Work

Since the first version of this paper, we were informed of the work of Salzer, which
has been done independently from ours [6]. He uses a quite different formalism, but
he shows essentially the same results as ours, except that his formalism is slightly
more powerful since he can express, for example, the set of all complete finite
binary trees with internal nodes labeled with f . Indeed, his syntax allows for
multiple holes in the terms, in which case, the semantics is different from what we
considered in Section 7. In order to express it shortly, you can assume that the holes
are shared, leading to a DAG on which we apply the semantics defined in Section 2.
For example, the instances o f f (~ , ~)N. a are all complete binary trees:

f
/ \

f f
/ \ / \

a a a a

We believe that there is no important difference if we use DAGs instead of terms.
Hence, the technique of our paper should apply to this interpretation as well.

Acknowledgments

I would like to thank the referees who gave valuable remarks and suggestions.

2Note that this has nothing to do with the linear diophantine equations which are solved in our
unification procedure. Indeed, the diophantine equations that we have to consider in our procedure are
not arbitrary linear diophantine systems, and their solution might be simpler to solve than the general
c a s e .

88 H. Comon

References

[1] H. Chen and J. Hsiang. Logic programming with recurrence domains. Proc. 18th International
Colloquium on Automata, Languages, and Programming, Madrid. Lecture Notes in Computer
Science, Vol. 510. Springer-Verlag, Berlin, 1991.

[2] H. Chen, J. Hsiang, and H.-C. Kong. On finite representations of infinite sequences of terms.
Proc. CTRS 90, Montreal, 1990.

[3] H. Comon Completion of rewrite systems with membership constraints. Proc. 19th International
Colloquium on Automata, Languages, and Programming, Vienna. Lecture Notes in Computer
Science, Vol. 623. Springer-Verlag, 1992.

[4] E. Contejean. Elements pour la decidabilite de l'unifieation modulo la distributivitr. Th~se de
Doctorat, Universite de Paris-Sud, France, April 1992.

[5] J.-P. Jouannaud and C. Kirchner. Solving equations in abstract algebras: A rule-based survey of
unification. In J.-L. Lassez and G. Plotkin, editors, Computational Logic: Essays in Honor of
Alan Robinson. MIT Press, Cambridge, MA, 1991.

[6] G. Salzer. On unification of infinite sets of terms and its applications. Proc. LPAR 92. Lecture
Notes in Computer Science, Vol. 624. Springer-Verlag, Berlin, 1992, pp. 409--421.

Received August 5, 1992 and in final form January 4, 1993.

