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We derive closed form expressions and limiting formulae for a variety of functions of a permu- 
tation resulting from repeated riffle shuffles. The results allow new formulae and approximations 
for the number of permutations in Sn with given cycle type and number of descents. The theo- 
rems are derived from a bijection discovered by Gessel. A self-contained proof of Gessel's result 
is given. 

1. Introduction 

This paper  derives theorems about  permuta t ions  from the propert ies of  a non- 
uniform probabil i ty on the permuta t ion  group Sn. For an integer a _> 1 define an 
a-shuffle to be the probabil i ty measure Pn,a on Sn defined by 

( a + n - d ( ~ ) -  

(1.1) Pn,a(~r) = an 

for ~r E Sn with d(~) the number  of descents in ~r. This is the dis t r ibut ion of a 
r andom permuta t ion  obtained by first r andomly  cut t ing a deck of n cards into a 
packets (empty packets allowed) and then randomly  riffling the packets together.  
Bayer  and Diaconis [3] showed tha t  Pn,2 k (~r) gives the chance tha t  the deck is in 
the ar rangement  ~r after k independent  2-shuffles. Our  main  finding is tha t  the 
dis tr ibut ion of the cycles s t ructure  of ~r under  Pn,a has a simple form. 

Theorem A. For non-negative nj with Ejnj  = n, the Pn,a probability that a 
permutation has nj cycles of length j ,  1 <_j < n, is 

j=l nj 

where f ja is the number of aperiodic circu]ar words of length j from an alphabet 
of a letters. 
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It is well known that 

1 E #(d)aJ/d" 
(1.3) fja -- j dlj 

The sum in (1.3) is over all divisors d of j w i t h ,  the MSbius function 

, (1)  = 1 

( - 1 )  k if d = p l P 2 . . . p k  for distinct primes P l , ' " , P k  #(d) [ 0 otherwise. 

Theorem A is derived from a bijection discovered by Gessel. This gives a 
1-1 correspondence between { 0 , 1 , . . . , a - 1 }  n and the collection of multisets of 
aperiodic necklaces with total length n. Gessel's result has been part  of the 
folklore of combinatorics for several years. An extensive account in the language 
of representation theory and symmetric functions has recently been prepared by 
Gessel and Reutenauer [6]. We give a self contained treatment from first principles. 

Theorem A allows us to compute and approximate the chance of various events 
after repeated riffle shuffles. For example, the expected number of fixed points is 

1 1 1 
1 + - +  + . . . + - -  

a ~ a n - 1  " 

As a tends to infinity this expectation tends to 1, which is the expected number 
of fixed points of a uniformly chosen permutation. Asymptotics for fixed a as 
n ~ ee are more interesting. The behavior of the large cycles is governed by 
Poisson-Dirichlet asymptotics, exactly as in the uniform case. But the limiting 
joint distribution of the numbers of j-cycles for a random a-shuffle, as n--* ec, is the 
distribution of independent negative binomial variables with parameters (fja, a-j) .  
Only as a ~ ec does this approach the well known limiting distribution for the 
uniform case defined by independent Poisson ( j - l )  variables. 

Bayer and Diaconis [3] have shown that  it takes k= ~log2n 2-shuffles to have 
Pn,2k close to the uniform distribution in total variation. This corresponds to a >> 

n 3/2. The present results show that  features depending on cycles have the correct 
limiting distribution (as n -* c~) after fewer shuffles. The number of fixed points 
has a Poisson (1) distribution to good approximation for a >> 1. The distribution 
of the large cycles has the usual Poisson-Dirichlet asymptotics for a = 2. 

Theorem A allows us to give closed form expressions for the number of permu- 
tations with a given cycle structure and number of descents: 

Theorem B. For non.negatlve nj with ~ j n j  =n, the number of permutations ~r 6 
Sn with nj cycles of length j,  l <_j <_n, and k -  1 descents is 

k-a n +  Z<-l  fi § 
a = l  " " j = l  r t j  

with f ja as in (1.3). 

To illustrate Theorems A and B by example: if nn = 1,nj -=- 0 otherwise, 
Theorem A shows that  the probabili ty that  an a-shuffle produces an n-cycle is 
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fna/a n while Theorem B shows that  the number of ~r in Sn consisting of a single 
n-cycle with k - 1  descents is 

k 
E ( - - 1 ) k - a ( ; + ~ ) f n a  
a----1 

In the special case a = 2 , Theorem B shows that  the number of permutat ions ~ in 
Sn with exactly 1 descent and nj cycles of size j is 

j = l  nj 

unless nl  = n when there are no such permutations. 
The structure of this paper  is as follows. We give basic properties of a-shuffles 

in Section 2, developing enough to show how Theorem A implies Theorem B. 
Gessel's bijection is derived in Section 3 which also contains a proof of Theorem A. 
Section 4 shows how cycles of permutat ions are related to the pieces of the Lyndon 
decomposition of words and thus how Theorem A allows us to derive the distribution 
of a variety of functionals of the uniform distribution on {0,1 , . . . ,  a -  1} n. 

Section 5 derives closed form and asymptot ic  expressions for a variety of class 
functions on Sn. The final section develops a curious unique factorization property 
of derangements. 

2. Preliminaries concerning a-shuffles 

We begin with a careful description of an a-shuifie. Let A = { 0 , 1 , - . - , a -  I}. 
For x E A n let x T be the non-decreasing rearrangement of x. Let =x E Sn be the 
unique permutat ion such that  for each b E A, ~x is an increasing map from 

{ i : x ~ = b }  to { j : x j = b } .  

Example. Take a--3,n-=7,x=0212210. Then x I =0011222 and ~rx is 

i 1 2 3 4 5 6 7 

7rx(i) 1 7 3 6 2 4 5 

The shuffle in the example involves cutting a deck of 7 cards into packets of size 
2, 2, and 3. After the shuffle the original top 2 cards wind up in positions 1 and 
7, the next 2 cards wind up in positions 3 and 6, and the original bo t tom 3 cards 
wind up in positions 2, 4, 5. 

For the general card shuffling interpretation, consider a deck of n cards initially 
cut into packets of no cards in packet 0 on top, n 1 cards in packet 1 below packet 
O,'",na-1 cards in packet a - 1  at the bot tom. (If nb=O the bth packet is empty).  
Now let these packets be riffled together in the order dictated by the sequence x. 
The order of the cards within each packet is preserved, while the cards of the bth 
packet appear  in those places { j :  xj = b}. The map j* > ~rx(j) gives the place 
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(counting down from the top) of the card initially at place j from the top, after 
this riffle shuffle determined by the sequence x. 

If x is picked uniformly at random from A n, the induced distribution of 7rx 
on Sn is an a-shuffle. Put  more probabilistically, a random riffling together of a 
packets of random sizes defines an a-shuffle iff each card in the final deck is equally 
likely to come from any one of the packets, independently of what packets all the 
other cards come from. 

To be precise, we give the following definition. 

Definition 2.1 For x e A n, let n b = r : xi  = b},0 < b < a - 1, and let ~rx be the 
unique permutation ~r such that for each b with nb>O , for j in the range 

n O -~ " �9 -t- rib_ 1 < j < no Jr " "  + rib, 

~r(j) is an increasing function of j with xTr(j ) =b. 

A permutation has a descent at i if 7r ( i )>~r( i+l ) .  Note that  7rx has at most 
a -  1 descents. 

Proposition 2.1. The  map  x ,  ~ ( rx ,  x T) from A n to Sn • A n is one to one. The  
range is the  set  

{(~r,y) e Sn • A n :  y is non-decreasing and Des@r) C__ A s c ( y ) }  

where 

Des@r)  = {i:  ~r(i) > ~r(i + 1)} 

is the  descent set o f  7r and 

Asc(y)  = {i : y( i )  < y( i  + 1)} 

is the  ascent set o f  y. 

Proof, With x T the non-decreasing rearrangement of x, 

x =b for n 0 + ' " + - b - 1  < j <_ 

Thus x$ = xo~rx, so x=xTorr21 and the map is one to one. For the second statement, 
the definition of lrx yields 

if x~ = x~+ 1 then Try(i) < 7rx(i + 1). 

Equivalently 

if > + 1) then < d + l  

So Desc(~rx) _C Asc(xT). If 7r e S n and y e A n is non-decreasing with Desc(~r) C 
Asc(~r), then x defined by x l r ( j ) = y j  has 7rx=~r and x T =y .  | 

Proposition 2,2. (Bayer-Diaconis) The  range o f  the  m a p  x~ - ~lr~ from An---* Sn is 
the  set  o f  all permuta t ions  in S n wi th  at  mos t  a - 1 descents. I f  ~r has d descents  

then  ~r=Trx for exac t l y  (a+nnd-1), dist inct  sequences x in A n. 

Proof. Thanks to Proposition 2.1 it suffices to count non-decreasing sequences with 
ascents at every place where ~r has descents. A non-decreasing sequence in A n can 
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be coded as a string of n stars and a -  1 bars. All the stars to the left of the 
first bar represent zeros. Stars between the first two bars represent ones and so 
on. Stars to the right of the last bar represent a -  1. For example, with a = n = 

4 ,1** l* l* represen t s l123whi le l l l  ****represents3333. Thereare  ( n a + a l  1 ) _  

such sequences in all. To force ascents at d prespecified positions, set aside d bars 
and place the remaining a - 1 -  d bars and n stars in any arrangement. Then insert 
the original d bars following the d stars at positions where ascents are required. | 

Remark. Proposition 2.2 shows ~hat Pn,a of (1.1) is the distribution of 7rx obtained 
by choosing a sequence x E A n uniformly. Bayer and Diaconis, following Gilbert 
and Shannon [7] and Reeds [15] give a sequential "riffle shuffle" description of Pn,a 
and show Pn,a * Pn,b = Pn,ab" 

The following re-writing of Proposition 2.2 is useful. 

Proposition 2.3. For n - - I , 2 , . . . ,  and k = l , 2 , . . . , n ,  let ~=n,k be the measure on Sn 
defined by restriction of counting measure to the set {~r E Sn : 7r has k -  1 descents}. 
For a= 1,2,.. .  let Mn,a be the distribution on Sn o[ ~rx when x is given counting 
distribution on { 0 , 1 , . . . , a -  1} n. Then 

Mn'a = ~-~ (n  + a - k)  

k=l 
k 

~n,k-~ E(--1)k--a ( ~ - 1 )  Mn,a 
a=l 

Proof. The first formula restates Proposition 2.2. The second follows from the first 
by inversion. | 

Remarks. The a-shuffle probability Pn,a on Sn is a-nMn,a . When evaluated on 
Sn, the identities of Proposition 2.3 reduce to classical results; indeed, r 
An,k, the Eulerian numbers (see, e.g., Stanley [18] or Foata [5]) and Mn,a(Sn)= 
a n. This yields an identity first proved by Worpitsky [20]: 

h / n + l ~  
An, k -~ E ( - 1 )  k-a  a n" \k - 1] a=l 

The implied bijective proof is standard and has been extended in several directions, 
see, e.g., Stanley [17, 18] or Buhler et al. [4]. 

Knowledge of the Mn,a distribution of some function Y on Sn gives a formula 
for the number of permutations 7r with Y( r r )=y  and k - 1  descents. Let D(~r) be 
the number oLdescents in 7r. For 1 < k < n 
(2.1) 

k ( n + 1 
~r  a n d  D ( ~ r ) = k - I } = E ( - 1 ) k  - a - \ n - a ] -  Mn,a ( Y Y). 

For example, in Section 1, Proposition A implies Proposition B. Many further 
examl~les are given in: Section 5 below, 
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3. Bijections 

This section gives a bijection between A n and the collection of multisets of 
aperiodic necklaces with total  length n. Roughly, the bijection begins with x E A n, 
passes to 7rx as in definition 2.1 and then to a set of points in the unit interval 
defined from the cycles of ~. Permutat ions 7r E Sn are writ ten in cycle notat ion in 
the s tandard way, ~r- - (C1)(C2)" .  where C1--(1,~(1) ,~2(1) ,  .. "),62 is the orbit of 
the first card not in C1, etc. 

Definition 3.1. For x E A  n, the cycle sentence of x is the sequence of words 

= ( w x l ) ,  

obtained from the cycle notation for ~rz by replacing each symbol k by x~(k), 1 <_ 
k<n .  

The cycle words of x are the words in the cycle sentence of x. 

Example 3.1. Take a- -2 ,A={O,1} ,n=14 .  Let x = ( x l  ""x14) be the word in the 

second row of the following table. Then x/I and 7rx(i) are given in the 3rd and 4th 
r o w s .  

Xi 

 x(i) 
In cycle notation 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

0 1 1 1 0 0 1 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 1 1 1 1 

1 5 6 8 10 11 12 13 14 2 3 4 7 9 

~x -= (1)(2, 5, 10)(3, 6, 11)(4, 8, 13, 7, 12)(9, 14). 

Replacing each k by x T gives the cycle sentence of x as 

Sx = (0)(001)(001)(00101)(01). 

A word w of length j is a Lyndon word if w is lexographically strictly smaller than 
each of the j - 1 cycle shifts of w. For example, 001 is Lyndon but  not 010. Note 
tha t  each word in sx above is Lyndon. A total  order on the collection of all Lyndon 
words of any length, called here the repeat lexographic order, is defined as follows: 
w < z if w e is lexographically less than z ' ,  where y" is the infinite sequence obtained 
by indefinite repetition of y. If  y* is regarded as a point in [0,1] through base a 
expansion, this is just the usual order in [0,1]. Note that  the Lyndon words in sx 
above are non decreasing. 

The map x ~ sz has an inverse which we now describe. Given a non increasing 
sequence of Lyndon words, say w I _< W 2 ~ "  ', with lengths Jl ,J2,"" with ~ J i - - n ,  
let ul <_ u2 <_ "" <_ un be the non decreasing sequence of points in the unit interval 
formed by taking all cyclic rearrangements of wi and extending each periodically. 
For each ui define xi E A as the last symbol in ui before it repeats. 

Example. Suppose the sentence of non-decreasing Lyndon words is the sentence 
(0) (001)(001)(00101)(01). Then cyclic rearrangements become 

0", 001", 010", I00", 001", 010", i00", 

00101", 01010", 10100", 01001", 10010", 01", 10". 
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Ordering these as points of the unit interval gives 

0", 001", 001", 00101", 010", 010", 01001", 01010", 

01", 100", 100", 100", 10010", 10100", 10". 

Read off the last letters of these words yields x=01110010100000. This is the word 
used in Example 3.1 which shows that  sx is as given above. 

The main result of this section can now be stated. It presents a version of 
Oessel's bijection. Gessel and Reutenauer [6] give the history and many applications 
to permutation enumeration. 

Theorem 3.1. The map x ~ sx of Definition 3.1 defines a bijection between A n 
and the set of n letter sentences s such that  

1) each word in the sentence is a Lyndon word, 
2) the words in the sentence are non-decreasing in the repeat  lezographic order. 

The proof  of this Theorem is given later in this section. We first indicate a 
Corollary - and then  show how it implies Theorem A of Section 1. 

Clearly, a Sentence of non decreasing Lyndon words is uniquely determined by 
the number of times each Lyndon word appears in the sentence. This gives the 
following version of Theorem 3.1 which will be used several times in what follows. 

Corollary 3.1. Let Lj  be the set of Lyndon words of length j for the alphabet A. 
For x ~ A n, let nz(w) be the number of times the Lyndon word w appears in the 
cycle sentence sz. The map x,  , {nz(w),w E U j L j }  de/~nes a bijection between 
A n and arrays of non:negative integers {n(w),w E UjLj :  ~ j J ~ E L j  n (w) = n}. 

Proof  of Theorem A. There is an obvious bijection between Lyndon words and 
aperiodic circular words. Thus # ( L j ) =  fja of (1.3). The bijection of Corollary 3.1 
is such that  the number of cycles of length j in 7rx is ~aELjnx(w) .  For this number 

(]ja+nj-l~ different ways to choose the n(w) with w E L j  and to equal nj~ there are ~ nj / 

SO rlj=ln ~(fJa+nJ-1]nj i ways to choose the entire array. | 

We now develop some preliminaries for the proof of Theorem 3.1. The argu- 
merit falls into two parts. The first part is to show that  the cycle sentence of x is 
composed of a non-decreasing sequence of Lyndon words. The second is to show 
that  every such sequence comes from a unique x. Consider the permutations ~m 
obtained by m iterations of r for a fixed x. So 7rxm(k) is the place of card k in the 
deck after a sequence of m shuffles according to 7rz. 

Definition 3.2 For each k = 1,.. .  ,n, the x-signature of card k is the infinite word uxk 
whose letters indicate the successive packets containing card k as it moves through 
the deck under repetitions of ~rx. Formally, uxk is the infinite word whose ruth 
letter is 

Uxk m = x  ToTrm-l(k~x ~ ~, m = 1 , 2  . . . .  

To illustrate, for the 3 packet riffle ~rz induced by x E {0,1,2} n, 

Uzk = 012001.. .  
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means that  under iterates of 7vx, card k starts in the top packet 0, after the first 
shuffle appears in packet 1 for the second shuffle, then in packet 2 for the third 

m is the identity for some m, the word uzk is obviously shuffle, and so on. Since :r z 
periodic. Thus, for x fixed, the function k - ~ u z k  gives a map 

where .4 is the set of all periodic infinite words with letters in the alphabet  A. I t  
is easy to see that  the map ux can be recovered from the cycle sentence of x. The 
argument eventually shows that  even x can be recovered from ux.  

To visualize uz it is helpful to identify .4 as a subset of [0,1] via the usual 

expansion in base a. Give _4 the lexicographical order, corresponding to the usual 
order on [0,1]. Let 0 denote the shift map on .4: 

O(al, a2 , . . . )  ---- (a2, a3 , . . . ) .  

Note that  0 is invertible on A, so 0 m : .4-+ .4 is defined for every integer m. 
The upshot of the following lemma is that  so far as anything to do with the 

cycle structure of 7rz is concerned, the action of the shift 0 on the card signatures 
uzk  is a faithful representation of the action of wx on the cards k. 

Lemma 3.1. For each x in A n the  map Ux :{1,. . .  , n } - + A  is such that  

( i )  u x l  < < . . .  < 

(ii) I f  uxi  = Uxk for some i < k, then for every  i ~ j < k and every  integer  m ,  

- = y - 

(iii) For all integers m 

O n o u x  = u x  o 

(iv) For each k e {1, . . . ,n}  the period o f  k under the action o f  ~z  (i.e., the 
length  o f  the  7rx-cycle containing k)  is identical  to the period o f  u zk  under the  
action o f  O. 

Remark.  In terms of card shuffling, (ii) means that  when the shuffle ~rx is iterated, 
cards i to k inclusive move like a clump of k - i + l  cards glued together. No mat te r  
how often the shuffle is repeated, cards in this clump never become separated, 
though the whole clump will typically move around between packets in the deck. 

Proof of Lemma 3.1. 
Proof of (i): Let i <  k. Follow cards i and k under iterates of the shuffle ~rz. If 
x T (i) < x $ (k), then obviously uxi  < uzk ,  since Uxjl  = x l ( j ) .  So suppose x I (i) = 

xT(k), meaning i and k start  in the same packet. Then uxi  1 =-Uxk 1. Now the key 
observation is that  because ~z is increasing when restricted to each packet, 

if ~ m - l ( i )  < 7rm--l(k) and Uxi m = -  Uxk m then 7rm(i) < 7rm(k). 

Consequently, if 

Uxi m = Uxk m for m = 1 , . . . ,  M 
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meaning that  cards i and k are in the same packet for each of the first M shuffles 
(through which packet may vary as the shuffles proceed), then also 

hence, 

Consequently, if M + 1 is the first m such that  Uxi m ~ Uxkrn , then Uxi,M+l < 
Uxk,M+l. That  is to say uxi < uxk in lexicographical order. The only other 
possibility is that  no such M + 1 exists. That  is to say, uxi = uxk. 

Proof  of (ii): If i < k and uzi = uxk, then by similar reasoning to that  above, the 
number of cards between cards i and k can never decrease as the shuffles proceed. 

m is the identity for some m, this number of cards must remain constant. Since lr x 
Proof  of (iii): This just says that  if ~r m maps j to k, then 0 m maps uxj to uxk. 

This follows at once from the definitions, first for r e = l ,  then for any integer m. 
Proof  of (iv): Fix k and suppose that  uxk has period d under the action of 

0. Then the Om(uxk),O < m < d are distinct, and Od(uxk) = uxk. Due to (iii), the 
~rm(k), O ~ m < d  are distinct. To see that  k has period d under ~rx it only remains 
to show that  r d ( k ) =  k. To this end let 

B = uXl(uxk), 

the set of all j E {1,...  ,n} with the same x-signature as k. By (iii) for m - -  d ,B  is 
~rd-invariant. Now (ii) shows ~r d must act as the identity on B, hence ~rd(k)=k. | 

P roof  of Theorem 3.1~ Part  I. The cycle sentence of x is a non-decreasing sequence 
of Lyndon words. 

Suppose w is a word of length j in the cycle sentence. Say the first place in the 
corresponding cycle is k. Then k has period j under ~rx. By definition of w,uxk = 
w' ,  that  is, w repeated indefinitely. And by (iii) above the signatures uxi of the 
j -  1 other cards i in the ~rx cycle starting from k are the shifts Om(w ") for m = 
1,. . .  , j -  1. By (iv) above, these signatures are all distinct. Also, by definition of 
the cycle sentence, k is the least element in a ~rx-cycle of length j .  Consequently, 
by (i) Uxk < uxi for every other card i in the cycle of length j containing k. That  
is to say: 

w" < Om(w ") for m = l , . . . , j - 1 .  

Thus w is a Lyndon word. That  these words are non-decreasing follows immediately 
from (i) and the fact that  each cycle is defined to start at the least index not in 
any previous cycles. | 

P roof  of Theorem 3.1~ Part  II. Every n-letter sentence composed of a non- 
decreasing sequence of Lyndon words is the cycle-sentence of x for a unique x. 

The argument produces an explicit inverse which was illustrated at the start 
of this section. 

Proposit ion 3.1. Let Wl ~_ w2 ~_... be a non decreasing sequence of Lyndon words 
with lengths Jl ,J2"",  where ~ j i - ~ n .  Let  Ul ~_u2 ~_... ~_un be the non-decreasing 
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sequence o f n  infinite words obtained by pu t t ing  the n infinite words (Om(wi), O< 
m <_j i -1 ,  i = 1 , 2 , . . . ) i n  non decreasing order. Le t  

x = ( x l , . . .  ,Xn) where x k is the first let ter o f  O- l (uk ) .  

Then,  x is the unique word whose cycle sentence is Wl,W2,.. " .  

The proof of Proposition 3.1 follows from two laminas. To motivate the first 
lamina, consider the sequence u l , . . . , u n  of Proposition 3.1. Associate with this 
sequence its counting distribution, that  is, the measure on A defined by # ( B )  = 
~p{k : 1 < k < n, u k E B } .  Clearly, this # is shift invariant: # ( B )  = #(OB).  

Lemma 3.2. Given a sequence u = (ul , - - - ,  un) o f  infinite words in A with Ul <_ u2 < 
�9 .. <_ Un such that  the counting distribution o f  u is O-invariant, there is a unique 
7c E Sn satisfying 

1) 0 m o u = u o 7r m for all integers m. 

2) for each y E A, the permuta t ion  1r is increasing when restricted to the set 

This ~r is given by 

(3.1) 7r(i) = • { j :  O(uj) < O(ui)} + • { j :  O(uj) = O(ui) and j <_ i}. 

Proof. This is an elementary verification from the definitions. | 

Note. The permutat ion 7r has the following property which is used below 

(3.2) j < k and u o 7r(j) _< u o lr(k) imply 7r(j) < ~r(k). 

Lemma 3.3. For u and x as in Proposit ion 3.1, let ~r be given by (3.1). Then Tr= 
7rX. 

Proof. Let ~:A---~A be the first letter map. The definition of x makes x =~o0-1ou .  
Now 0 - l o u = u o T r  -1 by Lemma 3.2(1), so x = ( o u o ~ r  -1.  Because ~r -1  is a 
permutat ion,  the counting distribution of x is identical to the counting distribution 
of ~ou. But ~ou is a composition of two non-decreasing maps, hence non decreasing. 
Thus, xT = ~ o u, and x = x $ o ~r -1 .  Consequently, if xT (j) = b, say, then xr( j )  = b. 

Further, if j < k are such that  x T (j) = x T (k) -- b, then ~ o uj  = ~ o u k = b. Since 0 is 
increasing on sequences with a given first letter, 

u o ~ r ( j ) = O o u j  <_Oou k = u o ~ r ( k ) ,  

so ~r(j)<Tr(k) by (3.2). This proves ~r=~rz. | 

P roof  of Proposit ion 3.1. We will argue that  x defined in Proposit ion 3.1 makes 
uj  = uxj ,  1 <_ j <_ n and x is unique in A n with this property. Clearly this proper ty  
is equivalent to wi = wxi for every i where wxi is the i th word in the cycle sentence 
of x. 

Let ~ be the first letter map of Lemma 3.3. For m = 1, 2, . . . ,  uxk m = X$OTrm-! (k). 
Now Lemma 3.3 gives x I = ~ou,  so Uxkrn = ~ o U o T r r n - - l ( k )  ~--- ( o 0  m - 1  o u k = Ukrn, 

where the next to last equality follows from Lemma 3.2 (1). 
For uniqueness, suppose x E A n has uj  = Uxj, 1 <_ j <_ n. Then, the (uxk, 1 < k < 

n) determine x I ( k ) = u x k  , for 1 < k < n .  Also, ux and ~rx satisfy the hypothesis of 
Lemma 3.2. So ux determines x T, hence 7rx, and so x=xToTr~ -1. | 
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4. Word lengths in the Lyndon decomposition of a random word and irreducible 

polynomials 

The joint distribution appearing in Theorem A turns out to be identical to the 
joint distribution of word lengths in the Lyndon decomposition of a random word 
of length n from an alphabet of a letters. This would appear to provide the most 
elementary proof that  the formula (1.2) does define a joint probability distribution 
over n-tuples of non-negative integers (nj) with E j j n j  =n. 

To formulate this precisely, fix the alphabet A with a letters. Let Lj be the 
set of Lyndon words of length j .  The set of all Lyndon words is UjLj.  Instead of 
the repeat lexicographic order imposed on UjLj in Section 3, now give UjLj the 
ordinary lexicographic order for words of finite length, in which v < w for any word 
w = vx obtained by concatenating v and another word x (e.g., 01 < 01001 in this 
ordinary order, but 01 > 01001 in the repeat order). 

According to the fundamental result of Lyndon (see, e.g., Lothaire [12], The- 
orem 5.15), when UjLj is given the ordinary lexicographical order, every word x E 
A n can be written uniquely as the concatenation of a non-increasing sequence of 
Lyndon words. Call this the Lyndon decomposition of x. Let Mx(w) denote the 
number of times the Lyndon word w appears in the Lyndon decomposition of x. 
An immediate consequence of the Lyndon decomposition is that  the map 

x ~ (Mx(w), w e UjLj) 

induces a bijection between words x E A n and arrays of non-negative integers 

(4.1) (n(w), w e UjLj : ~ j  ~ n(w) = n). 
j wELj 

This should be compared with the different bijection between the same sets given 
in the proof of Theorem A (Section 3). It follows immediately that  formula (1.2) 
gives the probability that  the Lyndon decomposition of a word picked at random 
from A n contains nj Lyndon words of length j ,  1 < j  < n .  That  is to say, we have 
the following: 

Proposition 4.1. Let Mj = Mxj = ~wcLj  Mx(w) be the number of Lyndon words 
of length j in the Lyndon decomposition of a word x picked uniformly at random 
from A n. Then the joint distribution of the counts (M~, 1 < j < n) is identical to 
the joint distribution of the cycle counts (Nj, 1 <_ j <_ n~ de~ved from an a-shuffle 
of n cards, as described in Theorem A. 

As a consequence of this proposition, every result presented in the following 
sections concerning the distribution of Nj and asymptotic distribution of (Nj, 1 _< 
j _< n) as n--~ oo, applies verbatim to Mj and the asymptotic distribution of (Mj,  1 <_ 
j <_n) as ~ -~oo .  

Remark. The composition of the two different bijections between A n and arrays 
(4.1) defines a permutat ion of A n which acts on each word by rearranging its letters. 
Thus we have another way of inducing a permutat ion in Sn from a word in A n, 
besides the a-shuffle. This may he rather artificial, but perhaps worth studying 
further. 
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There is another parallel set up where the results of Theorem A apply. Let 
F be a finite field with q elements. Here q = pm for p a fixed prime and rn _> 1 
an integer. There are qn distinct monic polynomials of degree n over F. Suppose 
one of these polynomials is chosen and factored into monic irreducible polynomials. 
The number of monic irreducibles of degree j is well known to be fjq of (1.3) 
(see, e.g., Theorem 3.25 in Lidl and Niederreiter [11]). Thus, the chance tha t  a 
randomly chosen polynomial is irreducible of degree j is fjq/qn. Arratia,  Barbour,  
and Tavar5 [1] have derived approximations for a variety of functions of the Kj. 
All of these are applicable to the cycles of a random permutat ion under Pn,a or to 
the decomposition of Lyndon words. 

In the language of permutations,  they give approximations for the joint distri- 
bution of small cycles, for the number of medium length cycles, and for the joint 
distribution of the longest cycles. They also derive limit theorems for the total  
number of cycles. All of their approximations are accompanied by explicit error 
estimates. 

Proposition 4.2. Let Kj (h) be the number of irreducible factors of  degree j in the 
decomposition of h chosen uniformly at random from the set of monic poIynomials 
of degree n over a field with q elements. Then, the joint distribution of the counts 
(Kj, 1 < j < n) is identical to the joint distribution of the cycle counts (Nj, 1 < j <_ 
n) derived from a q-shuffle of n cards as described in Theorem A. 

5. Exact and Asymptotic Distributions 

In this section we derive closed form distributions for the number of i cycles 
after an a-shuffle of n cards. We also derive the limiting joint distribution for the 
number of cycles of various types as n tends to infinity and as n and a tend to 
infinity. For ease of reference, the results are described first. Combined with the 
inversion theorem of Section 2, the results give formulae and asymptotics for the 
number of cycles of permutat ions in Sn with a fixed number of descents. Using 
the results of Section 4 they give formulae for the word lengths in the Lyndon 
decomposition of a word over an arbitrary alphabet.  

Proposition 5.1. Let Pn,a denote the distribution of an a-shu~e and Ni(Tr) the num- 
ber of  cycles of length i in the permutation ~r E Sn. Then, for m = 0,1, 2,- . - ,  [ n / i J 

(5.o) 

where 

Pn,a(Ni = m) = ( fia + m - 1 )  a-im m Pn--in~,a,i 

Ln/ij 

k=O 

Note: PO,a,i -- 1 and Pn,a,i = ( 1 - a - i )  f~a for n > ilia. Here fia = 1 ~dli  #(d) ad/i" 
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Proposition 5.2. Let ( n ) k = n ( n -  1)... ( n - k + 1 ) .  Then 

Ln/iJ 
En,a(Ni)k : (fia)k E ( m - - l )  

m~--k 
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~_1 ~ 1 ~ . . . +  1 Remark. For example, En,a(N1)=l -5"r a-~-r w~---~_ . 
For the next result, recall that  a negative binomial variable X with parameters 

f and p has 

P { X  = m }  = ( f + = -  l l p m ( 1 - p ) f  , m = 0 , 1 , 2 , . . . .  

Proposition 5.3. For fixed a as n tends to infinity, the Pn,a joint distribution of 
the numbers of Ni of i-cycles converges to the distribution of independent negative 
binomial variables with parameters (fia, a-i) �9 

The analysis of riffle shuffles given by Bayer and Diaconis [3] showed that  a>> 
n 3/2 is necessary and sufficient to have Pn,a close to the uniform distribution in 
total variation distance. In the next two propositions, we show that  features of a 
permutation that  depend only on cycle structure have the correct distribution after 
a(n) shuffles, where a(n) tends to infinity arbitrarily slowly with n. 

Proposition 5.4. Let a(n) tend to infinity with n. As n--~oo, the Pn,a(n) joint dis- 
tribution o[ the numbers Ni o[ i-cycles converges to the distribution of independent 
Poisson variables with parameters 1/i. 

For the next result, recall that  the limiting distribution of the large cycles of 
a permutation chosen uniformly in Sn has been determined by Goncharov [8, 9], 
Shepp and Lloyd [16], Vershik and Schmidt [19], and others. For example, the 
mean length of the longest cycle L1 is approximately .63n and L1/n has a known 
limiting distribution. 

Proposition 5.5. Fix k, and let Ll(~r),L2(~r),...,Lk(Tr) be the lengths of the k 
longest cycles in ~r. Then, for a fixed, or growing with n, as n--~cc, 

IPn,a {L1/n <_ t l , ' ' '  , Lk/n  <_ tk} - Pn,c~ {L1/n <_ t l , "  " ' , n k / n  ~ ~ k }  I ) O, 

uniformly in t l , t2 , . . .  ,t k. 

The proofs of the propositions all depend on information from generating 
functions. We thus begin by rewriting Theorem A analytically. For a function 
X(~r) of a permutation ~r, let 

En,aX= 
7rES~ 
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Proposition 5.6. Let 
n 

gna(Xl,' '" ,Xn) : En,a H xN' 
i = 1  

be the generating function for the cycle counts Ni derived from an a-shuffle of n 
cards. Then 

oo oo 
(5.1) z" b.a = II(1-z x ) -s'o 

n--=0 1 : 1  

Proof. Theorem A translates to 

g n a ~ _ a - - n ~ r X ( f i a - ~ n i - - 1  ) h i  xini 
i=1 

where the sum is over all sequences of non-negative integers ( n l , n 2 , ' "  ,nn) with 
~ ini = n. Now 

(l-z) -f= ~ f +~-1 z m. 

m=-O 

Expanding each term in the product of (5.1) and comparing coefficients of (za) ~ 
completes the proof. | 

Remarks. The identity (5.1) is an extension of Witts cyclotomic identity 

( 5 . 2 )  (1 - -  az) -1 = H(I - -  zi) - f ia.  
i = 1  

This can be seen by setting x i ----1 in (5.1). The above argument shows this identity 
amounts to the fact that  the probabilities of Theorem A sum to 1 when summed 
over all sequences ( n l , ' " , n n )  of non negative integers with ~-~fini = n. Metropolis 
and Rota [13, 14] give alternate proofs of (5.2). A probabilistic interpretation of 
(5.1) can be given as follows: 

Proposition 5.7. Fix t with 0 < t < 1. Let N can be chosen at random from 
{0,1,2, . . .} according to the geometric distribution P ( N  = n) = (I - t ) t  ~. Given N,  
let ~r result from a random a-shuffle of N cards. Let Ni be the number of cycles of 
7r of length i. Then, the random variables Ni, 1 < i < 0% are independent and Ni 
has a negative binomial distribution with parameters fia and (t/a) ~. 

Proof. Using (5.2) in (5.1) )s o 
(5.3) ~ (1 - t)t ngna = 1 - - - i ~ i  

n = 0  i----1 

This is valid in the ring of formal power series. If all but  a finite number of xi are 
set to 1, it is valid for 0 _< t < 1 and the remaining xi in [0,1], for all a---- 1, 2,. . . .  This 
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shows that  any finite collection of Ni have the stated distribution since a negative 
binomial variable with parameters f and p has generating function 

Proof  of Proposition 5.1. Consider the case i = 1. Let N---N1 and write 

a--1 

N = E N ( k )  
k=O 

where N(k) is the number of fixed points in the kth packet. A counting argument 
based on Corollary 3.1 shows (as in the uniform ease) 

Pn'a{N = m} = a-m ( a + m -  l ) Pn-m'a{N = 

In the generating function (5.1) set xi = 1, 2 < i < cx~. This gives the sum of the 

generating functions for N as n varies as ( 1 -  az) -1. Setting x = 0 gives 

the generating function y'~(az)nPn,a(N =0)  = (1 - z)a(1 - az) -1.  Thus 

k=0 

The argument above extends to general i in a straightforward way: One shows 
(5.0) by a counting argument, then calculates Pn,a,i from the generating function. | 

Remark. The N(k) introduced in the proof of Proposition 5.1 have some nice 
properties. Corollary 3.1 shows that for mk >_ O, ~ k  mk = m, 

P{N(k)  : mk, O < k < a -  l lN - -  m} = (a + m m - 1 ) - I  

Consequently, the N(k), 0 < k < a -  1 are exchangeable random variables. It follows 
easily from the case k=0 ,  P { g ( k ) > j } = a - J .  
Proof  of Proposition 5.2. Use (5.3) with xj = 1 for j ~ 1. This gives 

E ( 1  - t)tnEn'axN' = \ 1 - (t/a)~x] 
n~O 

Differentiate k times with respect to x and set x :  1 to get 

o~ 

E (1 - t)tnEn,a(Ni)k = (fia)k (t/a)ki( 1 -- (t/a)i) -k. 
n~O 
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The result follows by comparing coefficients of t n on both sides. | 

P roof  of Proposition 5.3. A negative binomial variable with parameters f and p 

has kth falling factorial moment (f)k ~ . Letting n tend to infinity with a 

fixed, shows that  the moments E~,a(Ni k) converge to the moments of a negative 
binomial ( f ia ,a - i ) .  Essentially the same computation works for any finite set of 
joint moments. Further details are omitted. | 

P roof  of Proposition 5.4. For notational simplicity, the argument is given just for 
N1. From Proposition (5.2), the hth falling factorial moment of N1 is 

En,a(N1)k _ (a)k ~ k  (k + J --1)a-J 
ak j=O J " 

The sum is bounded below by 1 and above by ( 1 -  1 -k  ~) . Thus, for any fixed k, 
for a(n) tending to infinity with n 

En,a(n)(N1) k --~ 1 as n ---* c~. 

This is the kth falling factorial moment for a Poisson variate with parameter 1. 
The argument for the joint moments of N 1 , N 2 , " ' , N i  is essentially the same for 
any fixed i. Further details are omitted. | 

Remark. The method of moments proof given above does not give a bound for 
finite n and a(n). In the case of convergence of Ni to Poisson (1/i) under the 
uniform distribution, sharp rates of convergence have been given by Barbour and 
Stein [2]. The closed form expressions of Proposition 5.1 may be used to get explicit 
bounds for individual Ni but more refined probabilistic representations are need to 
get rates for the joint distribution of N1, . . . ,Ni .  This is carried out by Arratia, 
Barbour, and Tava% [1] in the language of polynomials over a field (cf. Proposition 
4.2). 

Proof  of Proposition 5.5. This can be derived from the generating function. We 
will not give further details because they have been elegantly written out in the 
language of the distribution of the large irreducible factors of random polynomials 
with coefficients over a finite field with q elements (q=a )  by Arratia, Barbour, and 
Tava% [1] or by Hansen [10], example 3). 

Remark. The results of Arratia et al. [1] and Hansen [10] can be used to show that  
the large cycles have what are called Poisson-Dirichlet asymptotics. These have 
been very thoroughly studied in statistical and population biology settings. 

6. Derangements with one descent 

The theory developed in Section 3 gives a curious operation with a unique 
decomposition theory on the set of fixed point free permutations with exactly one 
descent. Call such a permutation a derif'fle. For example, 236145 E $6 is a deriffie. 
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Let Dm be the set of deriifles in Sm. It  is easy to see that  ~ { D m } = 2  m-2.  A subset 
A of {1 ,2 , . . . ,n}  is 7r invariant if 7r E Sn maps A to A. If  A has m elements, the 
action of 7r on A defines a permutat ion ~ E Sm via the increasing correspondence 
between {1 ,2 , . . . ,m}  and A. We will say ~r acts like a on A. 

Proposit ion 6.1. For a E Dm, /3 E Dn, there is a unique 7r E Din+n, denoted 7r -- 
a + 13, which admits disjoint, invariant sets of size m and n on which ~r acts like a 
and/3 respectively. I f  d(a) is the unique place d with a(d) > a(d+l) ,  then d(a+/3) -= 

D oo d(a) + d(fl). The operation § on oc = Um=2Dm is commutative and associative. 
I f  A1,A2, . ."  are the ~r invariant sets defined by the cycles of ~rEDn, and 7r acts like 
aj on Aj ,  then ~r = ~jcr j .  This representation gives the unique decomposition of 7r 
into cyclic derifttes up to rearrangement. 

Remark.  Thus the cyclic deriffles are the "primes" of Doo. It  is easy to see that  
there are f2,m cyclic derifftes in Sm. 
Proof. By Proposition 2.1, for each/3 E Dn, there is a unique sequence x E {0,1} n 
such that  fl -- 7rx. Corollary 3.1 identifies x and hence /3 with an array of non- 
negative integers: 

/3 ~ ~ (nfl(w),w E UjLj  : nfl(w) =O f o r w E L 1 ,  and ~ ~ n~(w) = n ) .  
j wELj 

Now a E Dm corresponds to a similar array of coefficients, say na(w).  From the 
definitions, a permutat ion ~r E Sn acts like a and/3 on disjoint 7r-invariant subsets 
if and only if 

n ~ r ( w ) = n a ( w ) + n z ( w  ) for w E U L  j.  

J 
Corollary 3.1 says there is a unique corresponding such 7r E Dn+m. 

This gives a commutative,  associative product. To see d(a +/~) = d (a )+  d(/3), 
simply note that  for a E Din, d(a) is the number of zeros in the sequence x E {0,1} m 
such that  7rz = a. The sequences x and y corresponding to a and/3  are disjoint 
subsequences of the sequence z corresponding to a+/3 .  | 

Example.  The sum 236145 + 312 = 345791268. Indeed, the first permutat ion corre- 
sponds to 100110, the second to 100. These correspond to Lyndon words 000111 
and 001. Taking all cyclic rearrangements and ordering yields 

000111",  001 e , 001110",  010 ~ , 011100",  100011 ~ , 100 e , 11001", 111000 *~. 

The last letters of these are 110001010 which corresponds to the stated sum. 

N o t e  a d d e d  in  p r o o f  

Corollary of Proposit ion 5.3. Fix a. For each Lyndon word w, let N w denote the 
renadom number of times that w appears in the cycle sentence induced by an a -  

shuttle of n cards. As n-+oo, for each w E L i  the asymptotic distribution of N w is 
geometric with parameter a-~; moreover the 'N w are asymptotically independent 
for w E UiL i . 
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Proof. From Corollary 3.1, for fixed n and a, under Pn,a given Ni=ni  for i=1, 2, 
. . . ,  where Eiini =n, The sequence of random variables N w, as w ranges over some 
listing of words in Li, is uniformly distributed over all sequences of non-negative 
integers with sum n; moreover these sequences are independent as i varies. Thus 
for each n and a, the Pn,a conditional distribution of the N w, w E U~=lLi given N1, 
..., Nj is exactly as claimed in the limit. So the claimed convergence in distribution 
follows immediately from that of the N1, . . . ,  Nj. | 

This argument also yields a similar corollary to Proposition 5.7. There the 
counts N w of the various Lyndon words w are independent geometrics~ with pa- 
rameters (t/a) i for w ELi .  So the expression Ni = EweL~ N w decomposes the 
negative binomial variable Ni as the sum of fin i.i.d, geometric variables. 
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