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Abstract. The paper is concerned with the problem of describing those subsemigroups of a 
semigroup with divisor theory which have a divisor theory as well. 

1. Introduction and Statement of Results 

In this paper, a semigroup is a commutative cancellative multi- 
plicative semigroup with identity, usually denoted by 1. For the 
readers convenience we list below some basic facts on semigroups 
with divisor theory. For more details we refer to the recent paper by 
F. HALTER-KOCH [4]. Let S be a semigroup, we use here the standard 
notation used in a divisor theory. In particular, alb (a, beS) means 
that a divides b, and a k IIb is equivalent to aklb and a k § 1Xb. Moreover, 
b = god (B) means that b is the greatest common divisor of B c S. We 
denote by Ir(S) the set of irreducible elements of S and by P(S) the 
set of prime elements of S. 

Let D be a free abelian semigroup. Then P(D)= Ir(D) is the 
uniquely determined basis of D. Every element dsD has a unique 
representation 

d= 1-I p~.~d) 
peP(D) 

with vp(d)s No, vp(d) = 0 for almost all peP(D). 
A divisor theory for a semigroup S is a semigroup homomorphism 

O:S ~ D from S into a free abelian semigroup D with the following 
properties: 

(D1) Ifa, b~S and c~alc?b (in O), then alb (in S). 
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(D2) For every d e D  there exists sx,... ,s, eS  with 
d = gcd (8sl , . . . ,  as,). 

It is easy to see (cf. I-6]) that condition (D2) in the definition is 
equivalent to 

(D2') For every peP(D) there exist Sl . . . .  , s, eS  with 
p = gcd (asl , . . . ,  as,). 

Let 8:S--,D be a divisor theory for a semigroup S. For d l ,d2eD 
we write da "~ed2 when there exist Sl,S2eS with daSsa = d28s2. Of 
course ,-,~ is an equivalence relation. We denote by [d]a the 
equivalence class of d. It can easily be seen that the quotient set D/,,,e 
with the multiplication defined by [dl]  a [d2] a = [dad2] o is an abelian 
group with identity 1 = aS. We call Cl(S)= D/",a the divisor class 
group of S. For XeCI(S)  and d e D  we write 

~x(d) = Z k. 
peP(D) c~ X, pk II d 

The most classical examples of semigroups with divisor theory are 
multiplicative semigroups of Dedekind rings and so-called Hilbert's 
semigroups (cf. [4]). Let us observe that a subsemigroup of a semi- 
group with a divisor theory does not need to have a divisor theory. 
Indeed, let F 2 = {1} w {2n:ne N }. Then F2 is a subsemigroup of the 
multiplicative semigroup N and it is easy to s e e  F 2 has no 
divisor theory [-4, Beispiel 3]. Hence we have the following: 

Problem. Given a semigroup S with a divisor theory, describe the 
set of all subsemigroups S' c S having a divisor theory as well. 

Our principal goal is to give a partial solution of this problem. 
We proceed as follows. Let O:S--,D be a divisor theory and 
d = (mx)x~ct(s) be a family of positive integers. Then the set 

S~ = {s e S: fix(aS) - 0 (mad rex) for all X e CI(S) } 

is a subsemigroup of S. Moreover, let a~ = a ls~:Sd ~ D  be the 
restriction of 8 to S~. We shall explain in which circumstances the 
operation (S,O)F--~(S~, 8d) leads to a subsemigroup with a divisor 
theory. It turns out that for a large class of families d this is really 
the case. Moreover, we explain the basic connections between divisor 
class groups of S and Sd.  

Theorem. Let 8:S-~ D be a divisor theory, P = P(D), 
B = { X e C l ( S ) : X ~ P ( D )  # ~ } ,  C = {XeCI(S): card (X c~P(D)) > 1}. 
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Let d = (mx)x~c,s) be a family of positive integers, 

S~, = {s e S: flx(0S) - 0 (rood mx) for all X e Cl(S) } 

and 

Od = Ofs~ :S~ ~ D be the restriction of O to S~1. 

i) The mapping 0~ is a divisor theory for S~ if and only if the 
followin9 conditions are satisfied: 

(A1) mx = 1 for all X e B \ C .  
(A2) X -1 e[{Ymr: YeB, Y #  X}] for all X e B \ C .  

(where [A] denotes the semigrou p generated by A) 
ii) Let O~:S~ ~ D  be a divisor theory for S e. Then there is a 

group monomorphism 

such that 

r  :Cl(Ss)~  Cl(S) • I]  /7/(mx) 
x~B 

(I)d ([d]a.,) = ([d]a, (fix(d) (mod mx))x~B). 

iii) Suppose that CI(S) is finite, Cl(S) = h, m x = 1 for all X ~ B \ C  
and gcd (m x, h) = 1 for all X ~ C. Then 8d is a divisor theory and ~r  
is an isomorphism. 

Our theorem describes a general method for construction of 
semigroups with a given divisor class group. As an example we give 
a simple proof of the following result. 

Corollary. For every finite abelian group G there exists a subsemi- 
group S of the multiplicative semigroup N having the divisor class group 
isomorphic to G. 

Indeed, let ml, . . . ,mkeN and Si ={nEN: f l (n)-0(modmi)}  for 
ie{1, . . . ,k}.  Then, according to our theorem $1 x ... X Sk is a 
subsemigroup of ~k___ N with the divisor class group isomorphic 
to 1~=1 Z/(mi), corollary therefore follows. For other realization 
theorem see SKULA [6], GEROLDINGER and KACZOROWSKI [2], and 
LETTL [5].  

Acknowledgement. The author wishes to thank the anonymous 
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2. Proof of the Theorem 

i) The mapping  ~d is obviously a semigroup h o m o m o r p h i s m  and 
of course satisfies (D1). 

Suppose first, that  ~d is a divisor theory, and let X e B \ C  be given. 
Then X c ~ P  = {p}, and from (D2') there exists some s e S  such that  
vp(Qs) = 1. Since Vp(C?s)= f2x(c3s ) - 0  (mod mx), we conclude m x = 1. 
Using (D2') again we have that  there exist p l , . . . , p ,  e P  with 
PPl . . . . .  p, ec~S ~ and pd#{p 1 . . . .  ,p,}. Hence 

1 = c3Sd = X" y]l ..... y , .  where ni - 0 (rood my, ) for all 1 ~< i ~< r 

and consequently X -  1 e [{ Y"Y: Y e B ,  Y r X}]  as required in (A2). 
Now we prove that  the condit ions (A1) and (A2) are sufficient. 

Suppose that  m x =  1 and X -  ~ e [ { Y"Y: Y e B, Y r X} ] for all X e B\  C, 
and let p e P  be given. We must  produce  s ~ , . . . , s ,  e S  with p =  
= gcd (c?sl,..., c?s,). 

Case 1" Suppose X =  [p]oeC.  Then there exists some q e P c ~ X  
such p ~ q. Since Cl (S )=  [B], there exist Y~, . . . ,  Y, e B  such that  
X - 1  = y~ ..... Yr. Let qi e Y,. ~ P be arbitrary and a, a 1, . . . ,  a, e D such 
that  pa c c3S and qXa, paie  c~S and q~Xa i for all 1 ~< i ~< r. Then there exist 
some m e N such that  (pq 1 . . . . .  q,)" e c~S ~ , (pa)" e c3S ~/ and (pal)" e c?S ~/ 

1 m. m e for all 1 ~< i ~< r. Then we also have p q " -  q~ ....  qr c3S d and 

p gcd (pq" -  1 ,, ,, = qa . . . . .  qr, (Pa) m, (Pax)m," ' ,  (par)m). 

Case2:  Suppose, X =  [_p]oeB\C. By assumption,  there exist 
Y~, . . . ,  Y r e B \ { X }  such that  

X -  1 = y,l~ . . . . .  y,~. where n i - 0 (mod my~) for all 1 ~< i ~< r. 

Let qie Y~c~P be arbitrary and a~eD such that  pa~ec~S and q~Xa~ for 
all 1 ~ i ~< r. Then pq]' . . . . .  q'~'ec~S~/and there exist some me  N such 
that  (pa~)" e g S d  for all 1 ~< i ~< r. Then we have 

p = g c d  (pq"x ~ . . . . .  q'~', (pal)r", . . . ,  (par)"). 

ii) We define the mapping  q~:D ~ CI(S) x I - I x~  7//(mx), 

�9 (d) = ([d]o, (nx(d)  (mod mx))x~B). 

The mapping  �9 is obviously a semigroup homomorph i sm.  It easy to 
see that  dx ~ ,  d2 implies dl "-~e d2 and g)x(dl) = ~x(d2)  (mod rex) for 
all X e Cl(S). 
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Hence �9 induces the group h o m o m o r p h i s m  ~ : Cl(S4) ~ CI(S) x 
x I~x~BY/(mx), O ~ ( [ d ] o ~ ) =  ~(d). Its kernel is trivial and ~ d  is an 

injection. 
iii) If gcd(mx, h )= 1 for all X eB, then we find lx e N  with 

mx'lx = 1 (modh).  Hence X =  X lx"x and [{Ymr:yEB,  Y C X } ] =  
= [{Y: Y e B ,  Y #  X}]  for all X e B .  Since ~ is a divisor theory, hence 

! ! 

applying i) to d '  = (mx)xr with m x = 1 for all X e B, we have that  
X - l e [ { Y : Y e B ,  Y # X } ]  for all ' X e B \ C .  Hence c3 d is a divisor 
theory. In order to prove that  Od  is surjective, let Y~Cl(S) and a 
family (ex)x~Be N~ be given. Since Cl(S) = [B], also we have 

Y = I-I xex,  where exe No. 
XeB 

By the Chinese remainder theorem, for all X eB  we can find rx6 N 
such that  

r x -- e x (mod rex), r x =- e x (mod h). 

Now we set d=[Ix~BIq~xlpx , i  where Px,~ . . . .  , P x , r x ~ X n P  (not 
necessarily different). Then it is easy to see that  

(I)~ ( [d]a)~ -- ( Y, (ex (mod mx))x~B ). 

This completes the proof. 
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