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The distribution function PL(S) of the local order parameters in finite blocks of linear 
dimension L is studied for Ising lattices of dimensionality d = 2, 3 and 4. Apart from the 
case where the block is a subsystem of an infinite lattice, also the distribution in finite 
systems with free [PL(Z)(S)] and periodic [PL(P)(S)] boundary conditions is treated. Above 
the critical point To, these distributions tend for large L towards the same gaussian 
distribution centered around zero block magnetization, while below T C these distri- 
butions tend towards two gaussians centered at _+ M, where M is the spontaneous 
magnetization appearing in the infinite systems. However, below Tc the wings of the 
distribution at small ]s] are distinctly nongaussian, reflecting two-phase coexistence. 
Hence the distribution functions can be used to obtain the interface tension between 
ordered phases. 
At criticality, the distribution functions tend for large L towards scaled universal forms, 
though dependent on the boundary conditions. These scaling functions are estimated 
from Monte Carlo simulations. For subsystem-blocks, good agreement with previous 
renormalization group work of Bruce is obtained. 
As an application, it is shown that Monte Carlo studies of critical phenomena can be 
improved in several ways using these distribution functions: (i) standard estimates of 
order parameter, susceptibility, interface tension are improved (ii) T~ can be estimated 
independent of critical exponent estimates (iii) A Monte Carlo "renormalization 
group" similar to Nightingale's phenomenological renormalization is proposed, which 
yields fairly accurate exponent estimates with rather moderate effort (iv) Information 
on coarse-grained hamiltonians can be gained, which is particularly interesting if the 
method is extended to more general Hamiltonians. 

I. Introduction 

In the statistical mechanics of many-body systems, it 
is a familiar concept to divide the system in "cells" 
or "blocks" of finite linear dimension L. This con- 
cept has been applied to understand phase coexis- 
tence in the van der Waals fluid [1], to derive scal- 
ing laws between critical exponents [2], and to jus- 
tify the use of a coarse-grained free energy function- 
al useful for both the description of nucleation and 
spinodal decomposition [-3-5], and as a starting 
point for the renormalization group theory of criti- 
cal phenomena [6-9]. For a d-dimensional Ising 
system, the magnetization s i of the i'th cell (cf. Fig. 1) 
can be defined as 

L 
Fig. 1. Division of the system into blocks of linear dimension L, s~ 
representing the degrees of freedom of the i-th block 
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s i=(1//2) ~ S l, S Z=_+l. (1) 
lEi'ihcell 

It is then assumed that the Boltzmann factor 
(l/Z) exp [ - ~ising/kB r ] ,  with 

~ I s i n g  = - -  E J I v S ,  S t ' - H ~ S t ,  (2) 
l:l:l' l 

where Y.. are the exchange constants between spins 
at lattice sites 1,1', and H is the magnetic field, is 
replaced by the probability for the field si, 

PL({Si}) = (l/Z) exp [ - • G L w ( { S i } ) ] .  (3) 

Here factors of 1 / k . T  are for convenience absorbed 
in the coefficients of the Ginzburg-Landau-Wilson 
Hamiltonian ~VfaLw({Sl}), which usually is expanded 
a s  

-~GLW({Si}) = ~,(h L s, + r L s~ + u L s~ + v L s~ +.. . )  
i 

+ ~, CL(Si--Sj)2+..., (4) 
<i,j> 

with hL, rL, UL, VC,..., CL,... appropriate coefficients, 
and <i,j) denotes a summation over nearest-neigh- 
bor cells (Fig. 1). In order that an expansion such as 
(4) is valid, where only low-order terms are kept and 
the coefficients rL,UL, VL,..., Co,. . .  depend on tem- 
perature (and other external parameters) in a non- 
singular way, it is crucial that L <  ~, the correlation 
length of order parameter fluctuations [5-8]. Close 
enough to Tc, where ~ is arbitrarily large, one can 
choose L>> 1 (measuring lengths in units of the lat- 
tice spacing) at the same time, and one can proceed 
further, replacing (4) by a continuum approxima- 
tion. 
Although the step from (2) to (4) is of crucial con- 
ceptual importance, it is hardly ever carried out 
explicitly. Thus, the parameters rL,UL, V L,. . . ,  C c .. . .  
can not be explicitly related to the parameters of the 
microscopic hamiltonian (exchange constants J, ,  in 
the present example). Hence the resulting theories of 
critical behavior (and also of first-order transition 
kinetics [4]) can predict the universal properties of 
the system only, information on non-universal pro- 
perties is lost. In more complicated cases it may 
happen, that the same type of hamiltonian can 
exhibit critical behavior belonging to different uni- 
versality classes, depending on the values of the 
interaction parameters. Then the renormalization 
group analysis of the resulting coarse-grained hamil- 
tonian ~r will exhibit several (nontrivial) fixed 
points [7] - but it may be unclear to which of them 
a particular given hamiltonian belongs. 
While it is hardly possible to perform the above 
coarse-graining exactly, it is possible to obtain at 

least explicit numerical results by Monte Carlo 
methods [9], sampling the distribution function 
PL({Si}). As a first step of such a program, the pres- 
ent paper studies the reduced distribution function 
of one block, 

PL(Si) = S [ I  dSjPL({@)" (5) 
j#- i  

In addition, we consider the related distribution 
functions of finited systems of linear dimension L, 
such as P~Lf)(s) for isolated blocks with free boundary 
conditions and P[P)(s) for isolated blocks with per- 
iodic boundary conditions. Section II describes some 
general results on these functions, including proper- 
ties for L>>~, which is a situation not normally 
considered in the renormalization group approach. 
A scaling assumption, which can be justified by the 
latter [10], is exploited. Section III presents numeri- 
cal results, and the resulting universal scaling func- 
tions are estimated. In addition, it is shown how 
these distribution functions can be used to obtain 
improved estimates of order parameter, susceptibili- 
ty, and interface tension, i.e. quantities often ob- 
tained by standard Monte Carlo analysis in a dif- 
ferent way. Section IV then proposes to use the dis- 
tribution functions to construct a phenomenological 
"Monte Carlo renormalization group (MCRG)' ,  
similar to Nightingale's finite size renormalization 
group [11-13]. As an example, this method is ap- 
plied to Ising lattices for d=2 ,3  and 4 dimensions, 
and we compare our approach to other versions of 
M C R G  [14-23]. Section V contains our conclusions, 
and briefly discusses generalizations to other sys- 
tems. 

II. General Properties of the Block 
Distribution Functions 

We consider the situation where the magnetic field 
H =0. Then Y~sing (2) is symmetric with respect to a 
change of sign of all the spins, and hence we obtain 
a symmetric block distribution function 

PL(s) = P L ( -  s). (6) 

Above T c we then have, from (1) 

<S2>L =L-za  Z <S, Sv)T--L-akBTZL ' (7) 
l, l' M' ih cell 

where XL is an estimate for the susceptibility Z of the 
total system 

k B T Z = I  ~ <sISv)T, N ~ ,  T >  T C. (8) 
l ,l '  
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It is clear that for values of L much larger than the 
correlation length ~ of the order-parameter corre- 
lation function (S~Sr> r the difference between XL 
and X will be small, involving only boundary terms 
of relative magnitude ~ L- ~, 

XL-=Z--Zb L-l ,  L>>~. (9) 

Of course, similar relations are already familiar for 
finite systems with periodic or free boundary con- 
ditions [24]; for subblocks, however, the significance 
of Xb is different. 
Next we consider the higher moments and cu- 
mulants of the distribution, which we denote as UL, 
VL, etc., 

(sk>L=SdsskPL(s), k=2,4,6,  ..., (10) 

/ S  2 \ 2 ~  (11) U L = 1 - <S4)L/(3., /L,, 

V g = 1 - (S4>L/(2 (S2> 2) + <S6>L/(30<S2>3),... (12) 

Since 

(s4>L=L -4d ~ (StSrSr'Sr"> 
l , l ' , l " , l ' "  e i ' iheet l  

Y (<s,s,,s,,,s,,,,> = 3 ( s  >~-I-g -4d 
l l ' l " l ' "  

-<S,S,, . .)  <S,,Sr,))-3<s2>2-L-ad(knT)z(Z ). (13) 

One finds that 

UL=--L-aZtL2)/3Z2 c - 2  L eZ(2)/3Z2' (14) 

.(2) is defined in terms of (13). For where X (2) = lim zL 
L~oo 

large L, thus ULocL -d, and similarly one finds that 
V L vanishes proportional to L -2e for large L, etc. 
Away from the critical point, the correlation length 

is finite, and hence the "susceptibilities" ,, ,,(2) A,L, L L  , 

etc. tend to finite values for L ~ .  As expected, all 
cumulants become negligible for large L, and PL(S) is 
a gaussian 

PL(S ) =/2/2 (2 n k B T)~L)- 1/2 exp [ -- s 2/2/(2 k B TZL)], 
(lSa) 

o r  

pL(s ) ~/2/2 (2 ~z k~ T Z)- 1/2 exp [ - s 2/2/(2 k B T X)]. (15 b) 

Of course, this result could have been justified at 
once referring to the central limit theorem of proba- 
bility theory [25], but here we are interested also in 
the deviations from gaussian behavior, as measured 
by (11)-(14). 
Below T~ a spontaneous magnetization _+M appears 
in the thermodynamic limit, and any state with a 
spontaneous magnetization does no longer have the 

symmetry property (6). Rather we must distinguish 
the probability P(L+)(s) for finding the block magneti- 
zation s in a block/2 for positive spontaneous mag- 
netization from the probability PLi-)(s) for negative 
magnetization, and (6) is replaced by 

e~ + )(s)= ec(-)(- s). (16) 

In the following we are interested in the symmet- 
rized distribution, 

p(Ls)(s) = [PL(s) + PL( -- S)]/2, T< Tc, (17) 

which no longer distinguishes the sign of the magne- 
tization. The reason for this choice is that it can be 
meaningfully compared to the distributions of finite 
systems {P~I)(s) and P~P)(s), as introduced above}, for 
which there is no spontaneous magnetization. Thus 
also for arbitrarily large but finite N (6) still holds, 
and Pc(s) smoothly develops towards P~S)(s) [-rather 
than either PiL+)(S) or P~-)(s)] for N~oo .  The block 
magnetization <ISI>L, 

+~x3 

<lsl>= S dslslP(fl)(s) =g-d ~ <lSzl>r (18) 
-- oo /ei'ila cell 

then tends smoothly towards the spontaneous mag- 
netization M as N--,oe, and similar to (7) one can 
define a susceptibility XL, 

kB TZL =/2((sZ)L -- (ISl >2) ~ kB TZ 

= Y' [<SiSj )r-M2],  T<T~. (19) 
i( * j)  

Thus, although there is never a spontaneous magne- 
tization in a finite system, there is no difficulty in 
estimating both M and X for T< To, as long as L >> 4. 
Of course, this fact has been utilized in Monte Carlo 
calculations for a long time already [-26]. 
From the fact that kBT Z for T<T~ is finite, we 
conclude that the "variance" (Sa)L -- (Isl)2 ~ kB TZ//2 
is very small for L>>~, and hence PL(s) must be 
sharply peaked at s ~  +<ISI>L. To leading order, the 
cumulant U L then becomes 

~ 2  4 UL ~ 5-- 5 (Is[){ 2 L- d kB Z)~L + o(g- 2 d), (20) 

and similarly V L tends towards Voo = 8/15. 
As a first attempt of constructing PL(S) for T<T~ 
explicitly, it is tempting to use two displaced gaus- 
sians, 

f L(s) ~ 1/2/2 (2 rc k B T ZL)- 1/2 

{ exp [ -- (s -- (Isl >L) 2 / 2 / ( 2 k B  rzg)] 

+ exp [ - (s + (ISl)L) 2/2/(2kB TZL)] }- (21) 

It must be realized, however, that (21) represents the 
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b} c l  

Fig. 2. Typical configurations of twodimensional blocks for L >> ~, 
s~0 ,  in the cases where the block is a subsystem of a large 
system (a) or where it is an isolated finite system with periodic (b) 
or free (e) boundary conditions. Shaded areas indicate domains of 
negative magnetization, white areas have positive magnetization 

distribution reasonably even for L>> ~ only near the 
peaks of the distribution, but not in its wings. In the 
regime - (ISI~L ~S ~ + (IsI~L (21) underestimates dis- 
tinctly the actual PL(S). This fact is appreciated by 
noting that in this regime Pc(s) will be dominated by 
configurations corresponding to two-phase coexis- 
tence within the cell/2, Fig. 2. Consider for the mo- 
ment finite blocks with free or periodic boundary 
conditions. Their free energy is given by 

Z L = exp [ -  FL(H)/k R T] =- Tr exp [ - ~ / k  B r ]  
- -  o o  

= ~ ds exp [ - FL(s)/k B T+ HI / s / k  B T], (22) 
- -  o O  

where we have allowed for H 4 = 0, and F(s) is defined 
by the constrained partition function [27] 

exp [ - FL(s)/k B T] 

Trexp[ J ~  
q 

: E �9 LkBT <l,r> J 1 
(23) 

The probability distributions P(LP'I)(s) hence can be 
related to the constrained free energy F(s), 

P(LP" f)(s) = exp [ -- F(L p' f)(s)/k B T ]/Z L (24) 

Also PL(s) can be associated to a free energy FL(s ) of 
a finite block which is the subsystem of a large 
system. The free energies FL(S ), F(zV)(s) and F(LY)(s) 
have their minima at Sma ~ where PL(s) is maximal, 
which is in the vicinity of s =  +_M, while the free 
energy cost of having states with s g 0  is due to 
interface contributions [27,28]. For large enough 
subsystem blocks, the free energy FL(s,,~O ) will be 
dominated by the domain configuration which has 
the minimum interface area, which is a spherical 
domain. We estimate the radius R of this domain 
putting 

/2/2 = VaR ~, (25) 

denoting volume (and surface area) of the d-dimen- 
sional unit sphere by Va (and S a, respectively). Hence 

the surface area of the domain in Fig. 2a is esti- 
mated as 

[ IM-s l  ~(a- 1)/a/2_ 1 (26) 
A = S a  \ 2 M V  a ] 

and thus we estimate the free energy cost of the 
domain in Fig. 2a (for H = 0 )  as 

[IM-sl~(a-1)/a/2 1r 
FL(S"~'O)-FL(S=Smaxl=Afs=Sa \ ~ ]  - J~, 

(27) 

where fs is an appropriate surface tension. Since the 
interface entropy of a finite spherical droplet is ex- 
pected to differ from that of an infinite planar in- 
terface [28], fs is itself expected to be weakly de- 
pendent on L. 
For F~P)(s) the minimum free energy excess is again 
needed for the spherical domain configuration as 
long as Isl > Scrit 

Serit = M[1 - 2 Va(2/Sa) a/(a- 1)] 

~'M(1 - 2/~z) ~ 0.363M (d=23 
=[M(1-4/ (3(2~) l / z ) )~ ,O.468M (d=3) (28) 

while for ]sl <S~rit the minimum free energy excess is 
obtained for a rectangular domain extending 
throughout the block, making use of the periodic 
boundary condition. While (27) then again holds for 
[sl >s. i , ,  for Is] <Scrit it is replaced by [see Fig. 2b] 

FL(S ~ O) -- FL(S -- Smax) = 2/2 - 1  fs(p), (28) 

which is independent of s. The surface tension which 
enters in (28) will again depend weakly on L, since 
contributions of fluctuations with wavelengths ex- 
ceeding L are not contributing to it due to the per- 
iodic boundary condition. Similarly, the minimum 
free energy excess for F(I)(s) is again needed for the 
spherical domain configuration as long as Isl >s ' . , , ,  

S;rit = M[1 - 2 Va(1/Sa) a/(a- 13] 

while for Isl <s ' . i t  the minimum free energy excess is 
obtained by creating just one wall, Fig. 2c, and 
hence 

F L(s ~. O) - FL(S = Smax) = / 2 - -  l f j )  (30) 

In this expression, it is assumed that the free surface 
contributions to F(s ~0) and F(s = Smax), which would 
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be also of order /5-~, are essentially the same and 
thus cancel out. We expect that 

lim f~(L)= lim f~V)(L)= lim f f f )(L)= F~, (31) 
L--+ co L ~ c o  L ~ o o  

with F~ being the usual interface tension between 
two phases of opposite magnetization separated by 
an infinitely large interface. Equations (24), (31) sug- 
gest that the asymptotic decay of PL(S) for --M ~s  
+ M  is given by exp(-cons t /5  -~) rather than exp( 
-const/5) as suggested by the two-gaussian approxi- 
mation (21). In addition (31) suggests that PL(S) can 
be used to estimate the interface tension F~. 
Next we turn to the behavior of PL(s) in the im- 
mediate vicinity of the critical point. We assume 
that for T--+T~ and L---~ooPL(s ) satisfies a finite size 
scaling hypothesis, analogous to usual finite size 
scaling assumptions [293 

PL(S) = I~ ff P(a s 13, ~/L), (32) 

where ff and a are constants setting the scales for 
the variables, /5(z, z') is a universal scaling function, 
and the exponents x, y will be estimated below [30]. 
Equation (32) is equivalent to scaling assumptions 
for multispin-correlation functions, which enter the 
moments of PL(S) as discussed above, and which are 
more familiar from the literature [2,31]. Although 
the scaled universal structure of (32) can also be 
justified from renormalization group arguments 
[10], doubts in (32) can be raised on the grounds of 
a possible violation of hyperscaling relations for the 
three-dimensional Ising model [32,33]. If one ac- 
cepts these arguments indicating what might go 
wrong in applying field theory to the Ising model, 
one would expect that "weak scaling" theories [34] 
apply, which "allow for the possibility that one or 
more additional lengths, such as the width of the 
interfacial boundary between two coexisting phases, 
become important in the critical region" [33]. As 
we have argued above that PL(S) directly reflects 
interracial phenomena, the structure of (32) would be 
more complicated. 
We use here (32) as a working hypothesis and ex- 
ploit its properties. First we note that the normali- 
zation of probability relates the constants ff and a, 
as well as the exponents x and y 

+ c o  + c o  

1=-- ~ dsPL(S)=UP ~ dsP(asU, ~/L) 
- o o  - c o  

x y ~  +oo 

=12 - -- ~ dzP(z, ~/L). (33) 
a _co  

We conclude x = y and note that the (universal) func- 
+ c o  

tion ~ dzP(z,~/L) must acutally be a constant, 
- c o  

+ c o  

which then also is universal, Co= ~ dzP(z, oo). 
- c o  

Thus 

P=a/C  o. (34) 

Next we calculate the moments (Sk)L as 

+ c o  

+ c o  

=L-kr(akCo)-i ~ dzzkP(z, ~/L) 
- c o  

=_ L-kY(ak Co )-1 fk({/L), (35) 

and thus define (universal) functions fk(~/L). Match- 
ing this expression with (7), (9) we conclude that 
f2({/L)=c2({/L)~/~ for {/L--*O, as ZOC{ ~/~ for T--+T~. 
Thus we find, matching the powers of L, 

d v - y  fl 
d =  y --2y, y = - -  . (36) 

v 2v v 

Here the hyperscaling relation dv=y+2f l  is ex- 
plicitly used. Next we consider the cumulant 

CoL(Oo) 
U f = 1 - C f4(~/L)  U *  = 1 (37) 

o 3f~(~/L) w~r~" 3 f 2 ( o 0 )  ' 

which is a universal function of {/L in the critical 
region and tends to a universal finite constant, 
which is nontriviat in contrast to the limiting be- 
havior for L-~ ~ off T~. Similar universal properties 
hold for the higher order cumulants, too. 
Comparing (32), (15b) we find that for { / L ~ I  
P(z, z') takes the form 

_ Co ,-y/2v P ( z , z ' ) - ~ z  exp(-z2z'-~/~),z '~O, (38) 

the scale factor a being related to the critical ampli- 
tudes 2 + and ~'+ of susceptibility and correlation 
length [Z = )~+ (T/Tc - 1) -~, { = ~'+ (T/T~ - 1)-v] as 

a = [-(~+ )~/v (2 k B T~ )~+)- 1] 1/2. (39) 

Below T c a comparison of (32), (21) yields, for z '~0,  

~ , _ C o A l  t_y/Zv P ( z , z ) - ~ z  {exp[-A~z'-a(zz 'O/V-A2):  ] 

+ exp [ - A~ Z'-d(Z Z 'p/~ + A2)2]}, (40) 

which is valid in the regime where either I zz  '~/~- A21 
Z'd/2/A1 or  ]zz '/~/v + A2[ <,.~z/d/Z/A1, respectively. The 

universal constants A1, A 2 can again be expressed in 
terms of critical ampli tudes [X=2-(1-T/Tc)  -~, 

= ~- (1 - T/T•)- ~, M = fi~r(l - T/T~) ~] as 
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A I =  ~-\~-~-] , A2--33(~-)P/" a. (41) 

In the normalization of (21), (40) it is assumed that 
the wings of the distribution - where these equations 
are no longer valid due to the phase coexistence 
phenomena as discussed above - make a negligible 
contribution to the area under PL(s), for z' 
= ~/L~O. 
Finally we compare (32) to the expression 

PL(0) = PL (Smax) 

exp [ - S e (2 V~)- (d - 1)~aLe - 1Fs/k R T], ~/L-->O, (42) 

which follows from (24), (27) and where (21) yields 
PL (Sm,~) = 12/2 (2 ~ k B TZ) - 1/2/2. In this l imit/5 (0, z') be- 
comes 

~ , C o A l  ,-~/2~ P(0, z ) =~-~-~  z exp [ -A3(z ' )  1 -d], z '~O, (43) 

the (universal) constant A 3 being related to the criti- 
cal amplitude of the interface tension {FJkBT ~ 
=/~(1 - T/Ty-1)~}  as 

A 3 =/~ S e [2 VJ( ~-)d] - (d --1)/d (44) 

III. Monte Carlo Results for Block Distribution 
Functions of Ising Systems at Two, Three- 
and Four Dimensions 

By standard Monte Carlo simulation [9] PL(s) was 
obtained for a variety of temperatures in the critical 
region for Ising square, cubic and hypercubic lattices 
of linear dimension N = 60 (d = 2), N = 24 (d = 3) and 
N = 1 2 ( d = 4 ) ,  respectively. Periodic boundary con- 
ditions were used throughout. The possible values of 
L consistent with these choices of N are L = 2, 3, 4, 5, 6, 
10, 12, 15, 20, 30 (d--2); L = 2 ,  4, 6, 8, 12 (d=3);  L 
=2, 3, 4, 6 (d=4). For d=  3, we have also obtained 
~Y)(s) and ~P)(s), for all L from L = 2  to L=12.  
~Y)(s) and ~V)(s) are less convenient for Monte 
Carlo study, since each choice of Lrequires a separate 
run, while the above set of subsystem-block sizes is 
generated in one run simultaneously. We feel that a 
study of subsystem blocks should also be advan- 
tageous for standard Monte Carlo finite size scaling 
analysis [-10, 24, 35], where one tries to fit magneti- 
zation M L (and other observables) of finite blocks to 
scaling forms such as ML(T)=33(1-T/T~)~/ I{L(1  
- T / T ~ ) ~ } ,  by simultaneously adjusting the exponents 

fl, v and T c such that the set of curves ML(T) /  
(1 - T / T y  falls onto a single curve 33: The analysis of 
Sect. II shows that a scaling of this type holds for 

the subsystems of a large system as well, and hence 
one can obtain all the requested information from 
one run for a sufficiently large system. Every single 
spin flip in the system yields an event for all studied 
block sizes simultaneously. Since the system con- 
tains (N/L) d blocks, the number of Monte Carlo 
steps (MCS)/spin contributing to PL(s) is enhanced 
by the factor (N/L) d in comparison to that for the 
total system. Thus a number of about 104 MCS/spin 
for the total system yielded rather satisfactory ac- 
curacy, while for ~S)(s) and ~P)(s) about 105 
-1 0 6  MCS/spin were needed to reach comparable 
accuracy. Still the results presented below are based 
on a total computing effort which is more than an 
order of magnitude less than what is needed for 
other simulation purposes (such as polymer studies 
[-36], etc.) - thus it would be feasible to even im- 
prove the precision of the results significantly. 
Figures 3 and 4 show typical "raw data" of the 
simulation for PL(S) [38] at d = 2  and d--3 (Results 
for d=4 ,  as well as results for ~P)(s) and ~I)(s) are 
qualitatively similar). Below T~ a distinct peak de- 
velops increasing in size with L, as expected. The 
shape of this peak is rather asymmetric, reflecting 
the expected structure due to two-phase coexistence 
for s < M .  This will be analyzed in more detail be- 
low. For d=2 ,  a double-peaked structure results 
even at temperatures slightly above T~, for not too large 
L. For temperatures far above T~, there is a single 
peak at s = 0 ;  but even then the distribution does 
not resemble a gaussian for small L. 
Of course, in an Ising system PL(S) as defined by (1), 
(3) is defined only at a set of discrete points Sk, 

Sk=l - -2k /U,  k = 0 , 1 , . . . , L  d. (45) 

Thus the curves drawn in Figs. 2, 3 through the val- 
ues PL(Sk) are just smooth continuations of the points 
to guide the eye. Remarkably enough, even for small 
L very smooth functions result from this con- 
tinuation, and hence it is clearly reasonable to ap- 
proximate the actual quasi-continuous PL(Sk) by a 
continuous function, as done in Sect. II. In addition, 
for large L the weight of PL(Sk) at sk= _+1 becomes 
negligibly small, and then it is legitimate to replace 

+1 +co 
the limits of integration S ds... by S ds.. . ,  as done 
above. - 1 - co 
The insert of Fig. 4b illustrates the use of the block 
distribution for obtaining a more reliable estimate 
for the spontaneous magnetization appearing in the 
thermodynamic limit: One obtains sequences of es- 

timates (IsI)L, 1/(s-~L . . . . .  as well as (s .... )L, which 
all must extrapolate towards the same value M for 
L-~ oo. The fact that such extrapolations yield results 
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consistent with each other is an important consis- 
tency check on the accuracy of the calculation, and 
gives an idea of finite size effects also for tempera- 
tures farther away from T~, where a standard finite 
size scaling analysis is not warranted. We also note 
that very close to T~ (or above To) spurious nonzero 
estimates for M result from finite lattices, because 

both <lsl), and ] / ~ L  then differ from zero ap- 
preciably due to the broad width of the distribution. 
In this case extrapolation of (Smax) L may yield more 
reliable results. 
Figure 5 shows various ways to estimate the suscep- 
tibility using the knowledge on the block distribu- 
tion function. Above To, one may either use (S2)L 
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(7), (9), PL(S=0) (15) or the half width As of the 
distribution, which we define from 

PL (Sm,x 4- �89 A s) = PL (Smax)/2, (46) 

and use (15) again; below T~, one may analogously 
use (19), (20), PL(Smax) (21) or again As. One notes 
from (5) that often various estimates are more or less 
nicely consistent with each other, though significant- 
ly different from the result for Z (known from high 
temperature series [39]). This fact indicates that the 
gaussian approximations (15a), (21) are reasonable, 
but it is important to take the difference between ZL 
and Z into account (9), and hence find the true Z 
from an extrapolation linear in l/L, both above and 
below T c. Only for the temperature closest to Tc 
shown here (kBT/J=4.57), the different methods for 
estimating Zz disagree more distinctly, indicating 
that the distribution is distinctly nongaussian for the 
values of L considered, and hence here we are in a 
regime L < ~  rather than L>>~ needed for the linear 
extrapolation (9) to be valid. At this temperature, 
one hence cannot reliably extrapolate the data to 
find Z - but this fact is apparent from the behavior 
of the data themselves. 
Figure 6 shows the temperature variation of PL(0). 
Since for large enough L PL(O) must increase with L 
for T>T~ [Eq. (15)] but decrease with L for T<T~ 
(42), a (rough) estimate of T~ is obtained from the 
temperature where these curves intersect. With free 
boundary conditions, the "effective" T~ of small 
blocks is shifted to distinctly lower temperatures, as 
expected [24, 29]. 
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For finite systems with free or periodic boundary 
conditions, PL(f'P)(S) as well as its moments are ana- 
lytic at To, and this fact is also quite obvious from 
the data (Fig. 6c). For subsystem-blocks, however, 
the moment (S2)L must have an energy-like singu- 
larity, since for L fixed it contains short-ranged cor- 
relations (s t s t )  r only, (7), and hence (35) implies 

(SZ)L =L2~/~(a2 Co ) - 1 

[f2 (oo) - g2 (i/L) -(1 -~)/~ + - . . .  ] (47 a) 

(subblocks) 

where g2 is a constant and ~ the specific heat ex- 
ponent, while for free or periodic blocks analyticity 
in temperature implies 

(S2) (LS, v)= L2P/~(a 2 Co ) -1 [f(2 f, P)(c~) 

-gg'V~(~/L)-~/~ + - . . . ]  (47b) 

(isolated blocks) 

This difference, which will turn out to be important 
for later analysis, shows up in the structure of PL(0) 
also, where the rapid variation with temperature in 
Fig. 6a, b reflects the existence of this energy-like 
singularity [which is somewhat smoothed out due to 
the finiteness of N, of course], in contrast to the case 
of isolated blocks studied in Fig. 6c. 
The rapid decay of PL(S=0) for T<T~ with decreas- 
ing temperature and/or increasing L reflects the ex- 
ponential variation (42). This is seen more clearly in 
Fig. 7 where 1OgPL(S=0 ) is plotted vs. L a-1. It ap- 
pears, notably for d = 3  and d=4,  that (42) is ac- 
curate down to very small L (Fig. 7a, b). The same 
behavior was found to be true for periodic blocks, 
while for free blocks the behavior is more com- 
plicated due to the interfering free surface contri- 
butions and effects due to edges and corners, 
Fig. 7 c. 
Fitting straight lines to the points in Fig. 7a, b, one 
may extract an effective interface tension F~ from 
their slope. The temperature variation of this effec- 
tive interface tension is shown in Fig. 8, together 
with the temperature variation of more common 
quantities such as (root mean square-) magnetization 
M or internal energy U of the system. The tempera- 
ture where F, vanishes gives again an estimate of T~, 
which is of comparable accuracy as the more stand- 
ard procedures of locating T~ by estimating where 
M vanishes or where U has an inflection point [10]. 
For d = 2  and d=  3, all these estimates are consistent 
with the accepted results kBTJJ~2.269 (d=2) [37] 
and k~T~/J~4.510 (d=3) [-39], while for d = 4  the 
smallness of N in this case (N = 12) already leads to 
an appreciable shift of T c, our estimate being kBT~/ 

J ~ 6.65 instead of k s T~/J ~- 6.68 [40]. In view of this 
fact, it seems doubtful to us whether previous studies 
of the d = 4 Ising which did not take any shift of T~ 
into account [41] could verify the presence of loga- 
rithmic corrections to the mean-field power law be- 
havior [42]. 
For d = 2  the "effective interface tension" F~ esti- 
mated as described above can be compared with the 
exact result [37] 

F~ = 2J - k B r l n  {(1 + e- 2 J / k ' r ) / ( 1  - -  e- 2J/k,r)}. (48) 

While the agreement between the data and (48) is 
reasonable in the critical region, the effective surface 
tension estimated here is distinctly enhanced in 
comparison with (48) at lower temperatures. A simi- 
lar enhancement of the surface tension of small 
droplets was found in direct simulations of the 
coexistence between small "critical clusters" and 
surrounding supersaturated lattice gas [281. A more 
detailed analysis of this problem, as well as methods 
for obtaining reliably the standard interface tension 
associated with the infinite flat interface between 
bulk phases will be given elsewhere [431. 
We next turn to a check of the finite size scaling 
assumption (32). We first consider the scaling of 
PL(0). Taking fl=0.325, v=0.630 [8] and kBTc=4.51 
[39] and plotting PL(O)L -~/~ Vs. I1-T/TcI-~/L, the 
set of curves in Fig. 6b should "collapse" to a single 
curve P(0, z'). Figure 9a shows that this holds rather 
approximately, however, and systematic deviations 
are apparent. These systematic deviations may be 
entirely due to the use of too small L. We suspect, 
however, and this is corroborated by the analysis of 
Sect. IV, that at least part of the systematic de- 
viation is due to the finiteness of N, which leads to 
slight shifts of To. The data shown in Fig. 9a cor- 
respond to the case ~/L>I, and hence corrections 
~/N cannot be completely disregarded. Anticipating 
the result of Sect. IV that the main result of these 
corrections is a 1 K-shift of the effective T~ from 
kBTJJ~4.51 to kBT~ff/J~-4.55, Fig. 9b shows that 
now the data points scatter around a single curve, as 
expected from the scaling hypothesis. 
It is also interesting to estimate the function P(z, oo), 
since a treatment of Bruce [10] using Wilson' ap- 
proximate recursion relations [61 predicts pro- 
nounced dimensionality effects for P(z, oo). Figure 10 
shows that for d=3  our results for P(z, oo) are not 
much affected by the uncertainty about TS f - tem- 
peratures close to T c do yield all (Fig. 10a, b) 
roughly the same scaled function, and the agreement 
with the prediction of Bruce is excellent! For d=2,  
the agreement is not as good (Fig. 10c): although we 
confirm the main point, that /5(z, oo) has a pro- 
nounced double-peak structure, we do not find as 
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rich a structure for small z, and also both peak 
height and position are somewhat different. This 
discrepancy may be due to one (or more) of the 
following reasons: (i) Due to the finite size of the 
lattice (N = 60) and/or finite computing time our re- 
sults are not yet representative enough for the criti- 
cal-point behavior of an infinite system. (ii) For d 
=2  the methods of Reference 10 are not as reliable 
as for d=3  (iii) The block distribution function at 
the critical point depends on the shape of the block. 
Reference 10 treats spherical blocks in momentum 
space, while we treat quadratic blocks in real 
space. 
The last explanation seems the most likely to us, 
since we find that the block distribution function at 
criticality significantly depends on the boundary con- 
ditions of the block, Fig. 11. Due to the infinite cor- 
relation length at T~, the effects due to the bound- 
aries never become negligible, irrespective of the size 
of the block: thus the limit of the distribution func- 
tion for L-~ oo for subblocks, free and periodic blocks 
are all different, and it is plausible that different 
block shapes would also yield different block distri- 
bution functions. Such a behavior is possible since 
the limits T~T~ and L ~  oo are not interchangeable. 
As a result, the "universality" of the finite size- 
scaling function P(z,z') (32) is true only in a very 
restricted sense ! 

IV. Monte Carlo Renormalization Group (MCRG) 
Based on Block Distribution Functions 

There have been a vast number of suggestions to 
utilize Monte Carlo methods for real-space renor- 

realization group treatments [14-23, 44, 453. The 
usual treatment again divides the system into blocks, 
but rather than allowing the block variable S i to be 
quasi-continuous {as it actually is, see Sect. III, if 
one defines it by (1)}, one introduces a block-vari- 
able S'i which has again Ising-like character, S'~ = _+ 1. 
Thus S~ is not obtained by a coarse-graining as in 
(1) but by some more or less arbitrary projection 
operator P({Sl},{S'i} ) (majority rule, etc. [-4-6]). 
Thus a new Hamiltonian 3(f'({S'i} ) is constructed, 

exp [ - ~f'({S'~})/kBT ] 

-=- Tr  P({S~}, {S'i}) exp [ -~({S~}) /kBT ]. (49) 

Taking the trace in (49) one has to consider both the 
contribution of spins in the same block, as well as 
spins in different blocks producing an interaction 
between the blocks. A first step towards a M C R G  is 
to do the first part (trace over spins within one 
block) by Monte Carlo, and treat the block-block 
interaction by cumulant expansion E45] or mean- 
field like approximations [44]. This approach has 
the merit that it is straightforward to apply to d--3 
or even higher dimensionality as well to arbitrary 
spin dimensionality [44], but clearly a meaningful 
accuracy has not been obtained so far. 
More powerful is to consider the block-block in- 
teraction exactly for a system containing of two 
blocks only, where one can proceed to large blocks 
and perform an extrapolation to infinite block sizes 
[15]. Related extrapolations have also been per- 
formed for rather special renormalization group 
transformations appropriate for percolation [16] 
and random walk problems [21, 22]. 
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The most  ambitious approach clearly is due to Ma  
[14] who tries to fit the fixed-point form of the 
block spin Hamiltonian, and includes also dynamic 
critical properties. However, the most successful ap- 
plications are due to the approach of Swendsen [17- 
20], where one is concerned directly with the eigen- 
vatues of the linearized renormalization group 
transformation near the fixed point Hamil tonian 
rather than with the fixed point Hamil tonian itself. 
Both approaches [-14, 17-20] include all block-spin 
interactions (compatible with the finite size of the 

lattice), only in the analysis yielding the eigenvalues 
there is always some ambiguity concerning which 
block-spin interactions are included. In addition, the 
results are somewhat dependent on both the size of 
the blocks and the projection P({S~}, {S'i}) [17], and 
hence it is hard to estimate reliably the errors of 
this procedure - though the errors seem to be en- 
couragingly small [17-20]. 
Thus there is still some interest in constructing alter- 
native M C R G  procedures, particularly since none of 
the existing real-space renormalization group studies 



K. Binder: Ising Model Block Distribution Functions 

0"3 t 
. _/=X-, PCP){s) 
v~'>~T 

0.2 

0.1 

i'1 I 
I 

k 
Iu-~ I 

9 

I 

a 0 i 
0 1 

0.4 

0.3 

131 

~ymboL I L I kBTIJ 

i 140 4.58 o 6 /*.58 
8 458 0.2 

4.55 

I 0.1 

\ 
I = b 0 

2 s / <S~-~L 3 

& 

\ 

I U *  : 0.13 J 

symbol I L kaT/J 
~3 [ z, 4,/.8 
z~ J 8 /,,48 o 12 /,./,8 

\ 

\ 
1 ~ ~ z x _  
2 s / < s ~  L 3 

Fig. 11. Scaled block distribution function at criticality for three-dimensional blocks with periodic (a) and free (b) boundary conditions. 
The temperatures were chosen such that U L equals the fixed-point value U* expected from the treatment  of Sect. IV 

T=0 
fixpoint 

0.6 
nontriviel 
fixpoint -I" 

0.4 * ~  
k~T/J 
2.60 
2.48 
2./,4 
2 ./,0 

0.2 2.36 
2.32 
2.30 
2.28 

]d :2J  : 2.2/, 
2.20 

T=oo v 2.16 
~ 0  i i i J 

fixpoint 0.1 0.2 0.3 L -1 

T oU~-~~------~ 
fixpoint I ~ ~ . . ~ a , . . , ~  

0.6 

0.4 

0.2 

T = O O ~ O L , ~  
fixpoint 0 0.1 02 0.3 0.4 0.5 

Id=~l 

!21 

kBTIJ symbol 
d 3 L,.10 e 

* z~ L,5 I | 

=0 fixed point ~s? �9 '  '02 2 
L, 65 ~, 4 70 v 

§ / .  o _ _ _ ~ ~  
0.2 

01 

0 01 02 L -~ 03 

symbol kl}T/J 
a 7.00 
v 680 
e 6.75 
�9 6.65 
* 660 
§ 6.55 
* 6.50 
z~ 6,40 
o 6.20 

Fig. 12. Variation of the cumulant  U L with inverse block size 
L -~ for d = 2  (a), d = 3  (b) and d = 4  (e) for various 
temperatures 



132 K. Binder: Ising Model Block Distribution Functions 

allow for the occurrence of truly gaussian fixed 
points (apart from self-avoiding walk studies [21], 
where gaussian behavior trivially occurs for the non- 
self-avoiding walk). In addition, it is not clear that 
the existing schemes [14-23] are also powerful for 
systems with continuous degrees of freedom, such as 
the n-vector model, or even systems belonging to the 
Ising universality class as liquid-gas systems, or sys- 
tems with structural phase transitions, which would 
also be interesting candidates for renormalization 
group studies [47]. 
The most complete approach along the lines devel- 
oped in this paper would be to obtain the set of 
parameters {hL, UL, V L . . . .  , CL... } introduced in (4) 
and study their change upon a change of length 
scale L, and analyze the approach of ~ a w  to a 
nontrivial fixed point. This ambitious program can- 
not be based on a study of PL(S~) alone, however, it 
would require studying the joint distribution func- 
tion of two neighboring blocks i,j 

s j)= ]71 (50) 
k :~i,j 

Of course, also PL(S) could be represented formally 
in a structure analogous to (3), (4), 

PL(s) = (1/Z') exp [ - Jg'(s)3, 

J~f'(s)=h'Ls+r'cs 2 +v~s4 + ..., (51) 

+ o o  

where Z ' =  ~ dsexp [ - ~ ' ( s ) ] .  Thus one can study 
- o o  

the change of the parameters {h'L,r'L,V'L,...} as a 
function of L. Although the nontrivial fixed point 
which is eventually reached when transformations 
from the length scale L to another length scale E 
are performed is not the fixed point of the renormal- 
ization group transformation of ~ G w ,  one nev- 
ertheless can obtain the exponents from the be- 
havior near the fixed point in an analogous fashion. 
Of course, the parameters {h)., r~,u)., v~ . . . .  } are uni- 
quely related to the moments (Sk)g {or cumulants 
U L, VL, etc., see (11), (12)} of the distribution func- 
tion. While the set {h'L,r'L,U'L,V'L... } could be ob- 
tained from PL(S) only via extensive least-square fit- 
ting procedure, quantities such as (s2)r, U/: VL, ... 
are a direct output of the calculation, and thus more 
convenient to use. 
Hence the variation of quantities such as UL, Vc, etc. 
with block size can be interpreted in analogy with a 
renormalization group "flow diagram", Fig. 12. 
Upon change of length scale, U m reaches the trivial 
fixed point values U*=0 for temperatures above T~, 
as expected (14), and U*=2/3 for temperatures 
below Tc (20). At the critical point itself, nontrivial 
values of U* are reached for d - 2  and d--3, as 

expected from (37). From Fig. 12c it seems plausible 
that U* =0  for T =  T c at d=4,  however, as expected 
for a critical behavior described by a gaussian fixed 
point. Of course, the smallness of N allowed us to 
study very small values of L only, and a study of 
larger systems would be very desirable to establish 
this point more convincingly. 
Clearly, estimating the fixed point from the "flow 
diagram", Fig. 12, would not be a very accurate 
procedure. A more systematic method is to study 
the function UL,= UL,(UL) , Figs. 13a, 14: estimates for 
the fixed point U* result from the point where U L, 
= U  L. If our values of L were large enough that 
corrections to the scaling forms (32), (37) are neglig- 
ible, the estimates U* for U* should be independent 
of L. Due to corrections to scaling there is in fact, a 
slight dependence o n L ,  which will be analyzed be- 
low. Here we draw attention to the fact that the 
function UL,(UL) is a very smooth function through- 
out the critical region; in a wide environment of U* 
it is well approximated by a straight line (for a 
global description of UL,(UL) see Fig. 14a, left part, 
where all three fixed points are included). Thus rath- 
er accurate estimates for U* can be obtained, with- 
out any influence of any ambiguity in locating T~, 
estimating critical exponents, etc. In fact, plotting 
then the ratio UL,/U L as a function of temperature, 
an estimate for T~ is obtained from the condition 

(UL'/UL)r= rc = 1; (52) 

the estimate for T~ obtained in this way again is 
independent of any estimates for the critical ex- 
ponents. Again we note that UL,/U L is a rather 
smooth function of temperature, although one ex- 
pects singularities similar to those described by 
(47a). In fact, if we perform the same procedure with 
free or periodic blocks, for which all moments (Sk)L 
are analytic functions of temperature (47b), the vari- 
ation of UL,/U L with T is somewhat smoother 
(Fig. 13 c). 
Rather than studying UL,(UL), one could study other 
moments such as VL.(VL) as well: the scaling hy- 
pothesis implies analogous behavior for all mo- 
ments. Of course, corrections to scaling would lead 
to systematic discrepancies between the estimates 
drawn from various moments, if E, L are finite. Ac- 
tually the values of E , L  chosen here are rather 
small, but Fig. 13c shows that the systematic dis- 
crepancy between the estimate T~ (L) for T~ drawn 
from (UL,/UL)Tc=I and from (VL./VL)To= 1 is rather 
small - it is much smaller than the systematic de- 
pendence of T~ (L) on L itself. Thus the scaling form 
(32) is at least a reasonable approximation for all L 
down to L = 3  in the critical region, as expected 
from its direct analysis (Figs. 10, 11). 
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Estimating critical exponents is readily possible by a 
procedure very much analogous to Nightingale's 
phenomenological "finite size renormalization 
group" [11]. There one considers the scaling re- 

lation for the correlation length ~L(K) of a strip of 
width L in one direction and infinite in all other 
directions [K =J/T] 

~L(K) = b ~c/b(K'). (53) 

These correlation lengths for models with discrete 
degrees of freedom (Ising-, Potts models etc.) can be 
obtained from transfer matrix methods. Equation 
(53) then yields implicitly the relation K'=K'(K), 
and from the behavior at the fixed point K* one 
obtains exponent estimates (such as ctK'/OKIK* 
=b 1Iv [11]). A direct use of this method in con- 

junction with Monte Carlo is impractical, of course: 
neither is it convenient to calculate strips which are 
verly large in one direction, nor is it easy to obtain 
the correlation length with sufficient accuracy. Rath- 
er than using (53) to study K'(K), one can equally 
well use the function UL,(Uc) , however. From (47) we 
obtain readily 
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UL = u*  [1 - C l ( U L )  -(1 ~)/~ + - . . .1 ,  

(subsystem blocks) (54a) 

and 

U r = U(~.,)[1 - c(1 $' p) (~IL)- 11~ + --...1, 
(isolated blocks) (54b) 

where c and c({ 'p) are constants. Hence in the vi- 
cinity of U* we have 

6~V'~ u* '~' U b l - u *  ,.,,~b (1 c0/v (subsystem blocks) 

(?U L = U L -  U* - [ b  ~/~ (isolated blocks) (55) 

Thus the slope of the plot UL.(UI) at Uff directly 
yields either the exponent 1/v, as in the case of 
Nightingale's RG [11], or the exponent ( 1 - e ) / v = d  
-1/v. The latter value is a direct consequence of the 
singular temperature dependence of correlation func- 
tions of finite subsystem blocks near To, (47a). 
From (35) we immediately can find the second criti- 
cal exponent involved, by defining a function Wa: 

We = - i n  [<SZ>bL/<S2>L]/ln b. (56) 

Since at Tc the dependence of (s2} on Lhas a simple 

power-law form, <S2}L=L -2p/J2(~), the value We* 
a C  o 

of We at the fixed point is an estimate for the ex- 
ponent 2~/v. Again the function We is a rather 
smooth function of U L or temperature, Figs. 13, 14, 
and hence fairly accurate estimates for this exponent 
can be read off from the graphs. Note that no simul- 
taneous fit to Tc, fl and v to the data is involved, as 
in the traditional finite size scaling analysis of 
Monte Carlo data [9, 24, 35]. 
From the examples shown in Figs. 13, 14 it is ob- 
vious that these exponent estimates are affected by 
some systematic dependences on L and scale fac- 
tor b=E/L,  as expected since (32) should be true 
only asymptotically for L-+co. For obtaining ac- 
curate results, corrections to scaling in (32), (35), (47) 
etc. must be taken into account. Thus, (35) is re- 
placed by 

<Sk>L = ak C------ ~ --fg 1 + fk,~ + . . .  , (57) 

where w is an exponent describing corrections to 
scaling, and fk,~(~/L) is an associate scaling function. 
As a result, We* becomes more complicated, 

2/~ 1 
We* v ln~  ln{[1 + (bL)-'f<~(oo)]/[1 

+ L-WL,~(oo)]} 

2 B _L~7~L,~( oO) (b - w -  I). (58) 
v lnb 

In order that the exponent 2fl/v is not biased by any 
assumption about the exponent w, it is advisable to 
extrapolate We* as a function of (ln b)-1, treating L 
as a parameter: (58) implies then that We* should be 
linear in (ln b) -1 for large b, and the intercept for 
(lnb) -1 should also be independent of L. Figure 15a 
shows that this method gives consistent results: a 
unique value for (2fl/v) is in fact obtained, within 
our accuracy the extrapolation yields a result inde- 
pendent of L, 

2fl/v~ 1.03_+0.01 (59) 

The systematic dependence on (ln b) and L can be 
described by (58) reasonably well, as the upper part 
of Fig. 15a shows: there a function (2fl/v) .... is de- 
fined by adding a term L-~fk, c(oo)(b-'~-l)/lnb as a 
correction term to W~* and fitting the parameters 
W, fk, c(oO) such that the points "collapse" on a hori- 
zontal straight line. Unfortunately the fitted parame- 
ters do not seem to have much physical significance, 
as we obtain f2.c(oo)~0.35, w~1.8, which is an un- 
expectedly large value for the correction exponent 
(corresponding to small correction effects, a for- 
tunate fact for our analysis). What we think happens 
is that for such small L as used here there are 
several correction terms simultaneously coming into 
play, whose net effect fortunately cancels to some 
extent, and hence is fitted by an unreasonably large 
exponent. We feel, however, that this fact does not 
invalidate our estimate (59) above, as one expects 
We* to behave rather smoothly as function of 
(ln b) -1 for large b. Equation (59) is in very good 
agreement with the estimates of field theoretic renor- 
malization [8], while the conjectured rational value 
2fl /v=l (fl=5/16, v=5/8) seems less likely, and the 
traditional value due to high temperature series ex- 
pansions, 2fl/v~0.98 [39], seems to be clearly ruled 
out. Our findings thus provide further evidence that 
the discrepancy between field-theoretic renormaliza- 
tion [8] and high-temperature series [391 should not 
be taken as an evidence that the discrete Ising mo- 
del and continuum S%field theory belong to dif- 
ferent universality classes, as suggested by Baker 
[32, 33]. We think that the quoted high temperature 
series result is unreliable due to too short series; 
recent series reanalysis are not inconsistent with this 
conjecture, although the accuracy of the series ex- 
pansion estimates is still somewhat controversial 
[48,49]. 
From (58) we note that the correct exponent 2fl/v 
can be obtained either by extrapolation In b ~ m  (as 
done here) or by extrapolation L ~ o o ,  l n b ~ 0 ,  since 
then (b w _ 1)/ln b = (e - w 1.b _ 1)/ln b ~ - w. If we hence 
choose, following Nightingale [111, b=(L+I) /L ,  
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2B 
one finds ~ - ~ -  -W*~-'-+wf~,~(~176 -w, i.e. the correction 

v 
decreases in power-law form, and hence with in- 
creasing L the sequence of estimates Wa* would be 
quickly convergent. We did not attempt to follow 
this method here, since very precise estimates for 
(Sk} L a r e  required to obtain Wp accurately enough. 
From Figs. 15, 16, 17a it is seen that a systematic 
dependence on both scale factor b and linear dimen- 
sion L not only affects the estimates for the ex- 
ponents fi/v and y r = l / v  {or d - Y r = ( 1 - ~ ) / v ,  re- 
spectively}, but the estimates for U* and kBTJJ as 
well, This fact is readily understood, generalizing 
(54) by including a correction term 

UL~ U*[1 -Cl(~/L)-(1-~)/V + L-Wfu,r ...], 
(subsystem blocks), (60a) 

- c (f" P)(~/L~- 1/v -t- L -  wF( f"  p)[  O0 ~ + . ] ,  u ~ q ~ . ~ ) [ 1  1 , ~ , , c  , , .- 

( i s o l a t e d  blocks) (60b) 

where the scaling function fu, c(~/L) involved in the 
correction term is approximated by f,,c(oe) close to 
T~. Now the fixed-point condition U~= U* L is not 
satisfied for 4= o% which would yield the bulk Tr 
but rather the fixed-point condition is satisfied for a 
finite value of the correlation length ~ given by 

~_(l_,)~ f . ,o(~) L_W_(1_~)/~ b - l - 1  

(subsystem blocks), (61a) 

o r  

~- l/v=f(f,p) L-W-1/~b-w-1 
b 1/~ - 1 ' 

(isolated blocks). (61b) 

From (61) one easily obtains the expression for the 
shift AT c between our estimate and the true To, re- 
membering AT= T~ ~/~ 4-1/~. From (61) we recognize 
the following facts: (i) ATc~O for large b; for the 
values of b chosen in Figs. 15a, 16a one may, very 

roughly, approximate b l /~ - i  b y - l l n b ,  and hence 
V 

the extrapolation of A T~ vs. (ln b)-1 is roughly lin- 
ear; (ii) the shift decreases drastically with increas- 
ing L, this fact again being clearly borne out by the 
data. 
By the same argument one can understand why the 
estimates for U* (Figs. 15b, 16a) or V* (Fig. 16b) do 
not converge to their asymptotic value independent 
of L, when being extrapolated vs. (ln b)-1. Equations 
(60), (61) imply instead 

r 
U* = U* [1 +L-Wf~,c(oc) 

--* U*[1 + L-Wf~,c(~)], 

l _b -W- . -~) /~ ]  

1 - b  -(a-~)/~ J b ~  
(subsystem blocks), (62a) 

o r  

1 - b  -w-1/v] 
- - w  ( f , p )  U* = U(},p) 1 + L  f~,~ (oe) T~iT;_l/~ .| 

• - - c ,  d b ~  

U(~,v)[l+L-Wf(f'P)t~176 c , ,J, (isolated blocks). (62b) 

Since a quantitative fit of the above expressions to 
data involving values of L as small as L = 2 , 3  (and 
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temperatures not  always very close to T c, which may  
lead to addit ional correction effects not  considered 
here) seemed premature,  we took  as a final estimate 
for U* the value U*, for larger values of  L where 
the systematic effects seem to disappear in the scat- 
ter of  our  data due to their limited statistical ac- 
curacy. Hence we obtain for subsystem blocks 

U * - 0 . 5 2 _ 0 . 0 1  (d =2),  U* ~0.21 +0.01 (d=  3) (63) 

while for isolated three-dimensional  blocks we get 

U(p) ~ 0.44 + 0.02, U(~) ~ 0.12 _ 0.01. (64) 

Equat ion (63) is in reasonable agreement  with a 
t reatment  of  Bruce [-10] yielding U*_~0.58 (d=2),  
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U*~0.22 (d=3), and are consistent with the direct 
scaling analysis of PL(s), see Sect. III. 
While the estimates for T~ drawn from isolated 
blocks with either free (Fig. 15a) or periodic (Fig. 16a) 
boundary conditions are nicely convergent to the 
correct value for ( lnb)-1~0,  the estimates from sub- 
system blocks converge towards kBTJJ~4.55 (d=3) 
rather than kBTJJ,~4.51 [39] and to kBTjJ~2.29 (d 
=2) rather than to kRTJJ~2.269 [37]. We interpret 
these 1 ~o-discrepancies as finite-size effects due to 
the finiteness of our total lattice linear dimension, N 
=60 (d=2) and N = 2 4  (d=3). One does in fact 
expect a shift of the "effective" T~ of the rounded 
transition in the finite system of the order of N -~/~ 
[29], yielding shifts of the order of 1 ~o in our case. 
Unfortunately, in our case the proportionality con- 
stant in the relation ATJT~ocN -1/~ seems to be rath- 
er close to unity, while much smaller prefactors 
seem to apply when A TJT~ is defined from the spe- 
cific heat maximum [29]. 
In view of these finite-size effects, it may be worth- 
while to study subsystem blocks also for other val- 
ues of N, to make sure whether there is any appreci- 
able effect on the exponent estimates. From this 
point of view, the (less convenient) study of isolated 
blocks is superior - but there for the same vMues of 
L the correction effects due to the finiteness of L 
(such as included in (58)) are somewhat larger, and 
for reaching good enough accuracy blocks distinctly 
larger than L = 10 (the maximum block size included 
in Fig. 16) is indispensable (for blocks with free 
boundary conditions the situation is even worse). 
Such a more extensive study, though feasible in 
principle, is not attempted here. 
The exponent estimates obtained from the subsys- 
tem blocks are summarized as 

2fi/v = 1.03 _+0.01, 

2fi/v = 0.24 _ 0.02, 

1/v = 1.60 +0.05 (d= 3), (65a) 

1/v=0.9_O.1 (d=2). (65b) 

For d = 4  the same analysis (Fig. 17b) would yield 
2fl /v~l .9 rather than the answer 2 f i /v=l  appro- 
priate for a gaussian fixed point. Since for d = 4 loga- 
rithmic correction terms to the leading mean field 
behavior are predicted [42], the simple scaling anal- 
ysis upon which our method for estimating ex- 
ponents is based, must be reconsidered with great 
care; we are not pursuing this topic further since the 
smallness of N and L accessible for d = 4  do not 
warrant such an analysis. The values U/~ > 0 seen for 
small L (Fig. 17b) are nonzero only due to cor- 
rection terms: we except U * = 0 ,  consistent with 
Fig. 12c, and then the exponents must be the mean- 
field exponents. 
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Fig. 18. a Magnetization M and "interface tension" f~ 
=S3(Vj2)I/3FjkBT of the three-dimensional Ising model plotted 
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Points are calculated from fluctuations of energy and magneti- 
zation, respectively, using about 102 statistically independent ob- 
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for a system of 243 spins, kBTJJ=4,51 was taken from high- 
temperature series [39] 

We note that the exponent estimates drawn from 
three-dimensional isolated blocks with periodic 
boundary conditions and L_<_10 would be 
2///v~1.02___0.03, 1/v=1.60_+0.05, consistent with 
(65a), though the value of 2fi/v is less accurate. Of 
course, the direct finite size scaling analysis of such 
small systems in the usual form [,,10,24,35] would 
yield by far more imprecise estimates. Similarly, if 
we analyze the Monte Carlo data of the systems 
used for the subsystem analysis in the standard way 
[-10], i.e. by estimating exponents from log-log plots 
of all quantities in the critical region, we obtain 
rather imprecise estimates either, Figs. 18, 19: Even 
implying knowledge of T~, the scatter of the data 
allows to "fit" straight lines with an uncertainty in 
the slope of several percent, e.g. for d = 3  we find ? 
= 1.25 + 0.05, fi = 0.32 + 0.02, 2 v = 1.25 + 0.05 (Fig. 18). 
More important, correction terms which sometimes 
are important can be masked in the scatter of data 
points completely, and hence from the slope of the 



138 K. Binder: Ising Model Block Distribution Functions 

101:-10 ~ X  

5C -5 
X C '~/stope=lvs 
2c2 \ 

5 05 s4ope~6a 

2 -0.2 ~ "  

1-0il 
i i 

0.01 0.0~ 0'.1 0'.2 05 
T/To-1 

slope =16~. t2~ 2 

o c 2 
M ] 

= 05 

1.2 

3.1 
1 001 0.02 0,05 01 02 0.5 

1-T/To 

S~ (Vfl2)V4Fs/ksT 

0.100 

0.050 

0.020 

0.010 

0.005 

~ slope=1.53 
'~slope=l 52 

M 

0.5 

0.2 

0.1 

0.05 

0.002 

0001 

' o' b 0.001 0.01 1 
1 -TtT~ 

Fig. 19. a Magnetization M, susceptibility )~ and specific heat C of 
the two-dimensional [sing model below T~ plotted vs. (1-T/T~) 
(right part); specific heat C and susceptibility Z above T~ plotted 
vs. TITs-1 (left part). Points are calculated from about 102 stat- 
istically independent observations taken at "time" intervals of 
about 50-100MCS/spin for a system of 602 spins, kBTc/J= 2.269 
was taken from the exact solution [37]; b "Interface tension" and 
magnetization of the four-dimensional Ising model plotted vs. 1 
-T/T~ 

resulting "straight line" an estimate is obtained, 
which is definitely off: this happens for the specific 
heat above Tc, where c~0.45 (d=3) and e,.~0.68 (d 
=2) would result from such a naive analysis; dis- 
regarding logarithmic corrections at d = 4  leads to 
exponent estimates which are also systematically off, 
such as fl=0.40 instead of fi=0.5 (Fig. 19b). In con- 
trast, the above analysis of data obtained from the 
same runs takes effects due to correction terms in a 
systematic way into account, and hence the error 
bars quoted are much more reliable than those of 
the direct estimates from log-log plots. 

V. Conclusions 

In this paper, the probability distribution function 
PL(s) for observing an order parameter value s in a 
finite block of linear dimension L was discussed in 
detail for d-dimensional Ising models. It was shown 

that for large L the properties of PL(S) can be in- 
terpreted in terms of the spontaneous magnetization 
M, susceptibiIity Z and interface tension F~ for tem- 
peratures T less than the critical temperature T~, 
while above T c Pt(s) becomes simply a gaussian 
whose width determines the susceptibility Z. Right at 
To, PL(s) tends against a scaled universal form which 
is distinctly non-gaussian, and which depends 
strongly on the boundary conditions used (and pre- 
sumably also somewhat on the shape of the block). 
For subsystem blocks we support the findings of 
Bruce, that PL(s) has a single peak at s =0  at criti- 
cality for d--3 while it is double-peaked for d=2.  
For d = 4, PL(s) is also gaussian right at T~. 
A study of PL(S) in the context of Monte Carlo 
simulation can serve several purposes: first it was 
shown that reliable estimates of M, Z and F~ can be 
obtained; second, a Monte Carlo renormalization 
group analysis was proposed, from which one ob- 
tains exponent estimates much more accurately than 
from the standard fits to log-log plots; in fact, for d 
=3 we could confirm the value 2fl/v~l.03 from 
field-theoretic renormalization and reject the high- 
temperature series expansion estimate 2fl/v~0.98. 
Since our analysis is based on an extrapolation vs. 
the inverse logarithm of the scale factor for various 
L, the uniqueness of the extrapolated result (being 
independent of L) proves the underlying (hyper-) 
scaling assumptions to be fully consistent with our 
data. This method takes corrections to scaling in a 
systematic way into account, and finite-size effects 
are well understood: particularly for isolated blocks 
with periodic boundary conditions, finite-size effects 
are the ingredients of the finite-size scaling descrip- 
tion of PL(S), on which the "renormalization group" 
analysis is based. This method, which is related in 
spirit to the Nightingale phenomenological renor- 
malization of finite strips, is hence an alternative to 
the Swendsen Monte Carlo renormalization group 
and reaches a comparable accuracy, particularly for 
three-dimensional systems. We emphasize that our 
method neither needs a-priori knowledge of the 
critical point nor extremely precise computations 
right at the critical point (which are hard to perform 
because of "critical slowing down", see [9]). 
It should also be interesting to generalize this analy- 
sis to other quantities, e.g. the distribution PL(U) of 
internal energies u in a block. This quantity will 
tend towards a gaussian (both above and below T~) 
centered at the internal energy U of the bulk system, 
the width being given by the specific heat. At T~, we 
again expect a scaled universal form. From a Monte 
Carlo renormalization group analysis of PL(U) similar 
to the above one should be able to get additional 
estimates for c~/v and l/v, and hence obtain a further 
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check on the consistency of the analysis. PL(u) 
should also be useful for distinguishing second-order 
transitions from first-order transitions, where for 
large enough L a double-peaked structure of PL(u) 
must result which becomes sharper double-peaked 
with increasing L (while for second-order transitions 
near a tri-critical point a double-peak structure for 
smaller L must tend to a single-peak structure for 
large L). 
Another possibility for future work along these lines 
would be the application to systems with continuous 
degrees of freedom. For example, for a liquid-gas 
system one would try to sample the block distribu- 
tion function of density PL(P) in a grand-canonical 
simulation. Apart from the fact that PL(P) is no 
longer symmetric around p = 1/2 as in the lattice gas 
and that the chemical potential at criticality is non- 
trivial, the extension of the above methods should be 
straightforward. One thus could relate the liquid-gas 
critical point to the interatomic potential. More 
complicated but nevertheless promising would be 
the application to systems with n order parameter 
components where PL(Sa,...,S,) needs to be sam- 
pled. This task should at least be easy in fully sym- 
metric cases, where one can instead consider 

s , such as in usual X Y  or Heisenberg too- 
\i= 1 

dels. We hope to report on such and similar appli- 
cation in the future. 

Thanks are due to A. Aharony, A.D. Bruce and M.P. Nightingale 
for stimulating discussions, and to G.A. Baker and R.B. Stinch- 
combe for drawing my attention to Refs. [50, 51J. 
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Note Added in Proof 

For Ising systems with finite susceptibility it has been proven 
rigorously that the fixed-point Hamil tonian for the block spin. 
case is independent Gaussians [50]. This is consistent with the 
gaussian forms of the distribution chosen here off criticality. It 
should also be noted that the concept of obtaining a fixed-point 
probability distribution function in a real-space renormalization 
has also been used in the context of percolation studies [51]. 
Finally we mention that unintentionally it is not the order pa- 
rameter distribution P~(s) as defined in (3), which was studied 
numerically in Sect. II, but a slightly different distribution P~(s). In 
terms of the M states {sl L)} generated for the block variable these 

distributions can be expressed as Pc(s)=(1/M) ~ b(s}L)--s) and 
M i = 1  

P[.(s)=(1/M) 2 b(sl L) s)/W(s}L)), where W(sl t)) is the transition 
i 1 

probability (for a single spin-flip) in state s~ L). Since W(s) is a very 
smooth function of its argument, the distributions PL(s) and P~(s) 
are qualitatively similar, and tend towards the same distribution 
for large L. Since both distributions hence must  have the same 
scaling behavior as L--+ 0% T--, T~, they are equally well suited for 
the analysis presented in the paper. 
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