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A renormalization group for polymer chains with hard-core interaction is considered, 
where a chain of N o links of length 1 o and hard-core diameter h o is mapped onto a chain 
of N 1 = No/s links of length 11 and hard-core diameter h 1. The length 11 is defined in terms 
of suitable interior distances of the original chain, and h t is found from the condition that 
the end-to-end distance is left invariant. This renormalization group procedure is carried 
through by various Monte-Carlo methods (simple sampling is found advantageous for 
short enough chains or high dimensionalities, while dynamic methods involving "kink- 
jumps" or "reptation" are used else). Particular attention is paid to investigate systematic 
errors of the method by checking the dependence of the results on both N o and s. It is 
found that for dimensionalities d =2, 3 only the nontrivial fixed-point is stable, where 
upon iteration the ratio 6k= hjl k tends to nonzero fixed-point value 6*, while for d=4,  5 
the method converges to the gaussian fixed point with 8*= 0. Taking both statistical and 
systematic errors into account, we estimate the exponent v as v =0.74_+0.01 (d=2) and v 
=0.59_+0.01 (d= 3). The results are consistent with the expected crossover exponents q5 
= 1/2 (d = 3) and ~b = 1 (d = 2), respectively. 

I. Introduction 

The properties of long flexible polymer chains in 
dilute solution have attracted much theoretical atten- 
tion (for reviews, see [1-5]). Concepts like scaling 
and universality [3-5] have been successfully taken 
over from the theory of critical phenomena [6] to 
elucidate the asymptotic behavior of very long 
chains. Field-theoretic renormalization group meth- 
ods [7] have already yielded the exponent v, which 
describes the asymptotic behavior of the end-to-end 
distance of (R 2) of chains containing N links, 
(R2,)~N 2v, with very good accuracy (v=0.588 
+0.001 [7]). However, these methods cannot ex- 
plicitly relate the (nonuniversal) prefactor in this re- 
lation to the potential describing interactions be- 
tween the links of a particular polymer chain. In 
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addition, there is also interest in studying the be- 
havior of shorter chains, where this asymptotic law is 
not yet valid. There one still expects a universal 
behavior described by a crossover from the behavior 
of gaussian chains, (R 2) ocN, to the above law [8, 9J. 
Much effort has been devoted in determining this 
function in terms of a suitably scaled second virial 
coefficient of the interlink-interaction [2] see also, 
e.g., [10-15]), but still this problem has not been 
solved with the same accuracy as estimating the 
exponent v. In addition, considering the probability 
distribution of arbitrary interlink distances even in- 
volves other exponents which are not yet known with 
very high precision [16, 17]. Much less accurate infor- 
mation is known when one considers chains with 
partially attractive interactions, where collapse tran- 
sitions [18, 19] and glass transitions [20] can occur, 
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or when one considers not so dilute polymer so- 
lutions, where interactions among different chains, 
entanglements [5] etc. become important. 
Thus there is interest in developing additional 
theoretical methods by which some of these questions 
can be addressed. Although Monte-Carlo simulation 
methods [11, 19-21] have important applications, 
their straightforward application to the study of pow- 
er-laws describing the true asymptotic behavior of 
very long chains is rather cumbersome. For  other 
phase transition problems, the combination of real 
space renormalization with Monte Carlo methods 
seems to become a powerful tool [22-28]. In the 
present paper we hence propose and investigate a 
Monte Carlo renormalization group (MCRG) pro- 
cedure for polymers [29]. Section II contains a brief 
description of the Monte Carlo techniques used here. 
Results both on end-to-end distances and on internal 
distances are shown in detail and discussed in terms 
of scaling hypotheses. These scaling hypotheses are 
the basis for the renormalization group analysis 
which is presented in Sect. III, while Sect. IV contains 
our conclusions. 

I1. Monte-Carlo-Results on End-to-End 
and Internal Distances 

1. Polymer Model and Simulation Methods 

The model for a polymer chain being studied her is a 
chain of N links of rigid length l freely joint together 
in d-dimensional space, for dimensionalities d = 2, 3, 4 
and 5. It is assumed that the (N+  1) molecular units 
(represented by the end-points of the links) interact 
with an excluded-volume potential, i.e., one has a 
chain of ( N + I )  hard spheres, the hard-sphere di- 
ameter being denoted as h 0 in the following. Denoting 
the endpoints of the links by r~, i = I , . . . , N + I ,  the 
quantities of interest here are the mean-square end- 
to-end distance (R~),  

(g~./> ~ ( ( r  1 --rN+ 1)2), (1) 

as well as mean square internal distances ((r,  
- r ,  +re)z), where the brackets denote an average over 
the configurations of the polymer chains which are 
allowed by the hard-core potential. These quantities 
are obtained for several values of N (typically 
4_< N G 60) as well as several values of the interaction 
parameter c5 = h/l. 
It turns out that it is most advantageous to use 
different kinds of Monte Carlo simulation methods in 
different regimes of the three parameters N, ~ and d. 
For  d > 4  the "simple Monte Carlo sampling" is 

preferable for all N and ~ studied. By the "simple 
sampling" method one uses random numbers to gen- 
erate an unrestricted random walk of N links of 
equal length I. When the walk is completed one 
checks for the set of values {3(~)}, for which one wants 
to calculate (R~)  as well as the various ((r, 
- r ,+m)z) ,  whether the excluded volume condition is 
satisfied for all distances r , - r o + , ,  in the chain, It, 
- rn+ml>6(~ / [11] .  For  those 6 (~) for which this con- 
dition is satisfied this configuration of the chain is 
taken into account for the averaging, for the other 
6(V)'s for which it is not satisfied this configuration is 
omitted. After having constructed 106 walks the aver- 
age over the W(6 ('), N, d). 106 walks which have been 
kept is carried out. Obviously, this method has the 
following advantages: 

(i) one can obtain results for a large number of 
values {c~ (v)} at the same time by one simulation run; 
(ii) Since the different configurations are statistically 
independent of each other, the accuracy of the aver- 
ages can be estimated by standard statistical analy- 
sis. 
(iii) From recording the fraction W(b (~), N, d) of suc- 
cessful attempts to construct a configuration one 
immediately obtains the entropy S of the chain [S o 
being the entropy in the absence of excluded-volume 
interactions] [31, 32] 

(S -So)/k B = In W(6 ~, N, d). (2) 

On the other hand, it is easily seen from this equation 
that simple sampling becomes ineffective for very 
long chains: as the entropy is an extensive quantity, 
we have, to leading order [31], (S--So)/kB=-Ns, 
with s>0 ,  and hence the fraction W of successfull 
attempts to construct a configuration decreases ex- 
ponentially fast with increasing number of links N 
(see also Fig. 6 below). Therefore this method could 
be used for d = 3  only for N_<_30 in the regime of 
interest (0.4_<6_<0.6), while for d = 2  only chains up 
to N = 20 could be generated. For  other cases, we use 
"dynamic" methods for Monte Carlo simulation 
[-30]. In the "kink-jump" method [21] a pair of 
neighboring links is rotated about the axis connecting 
the endpoints of the links by a randomly chosen 
angle cp for d = 3 while for d = 2 only the choice ~0 = ~z 
is possible. The resulting state is accepted as a new 
configuration of the chain if it again satisfies the 
excluded volume restriction; otherwise it is rejected 
and the old configuration is counted once more in 
the averaging. The points r~ which are considered for 
one such move are selected at random. If an end- 
point of the chain is chosen {rl,rN+x} the link is 
rotated to a new position by specifying two randomly 
chosen angles (cp, 0) [-for the case d =  3], with cos O 



K. Kremer et al.: Monte Carlo Renormalization of Hard Sphere Polymer Chains 333 

being equally distributed in the interval 
- 1 < cos ~ < 1. For the case d=  2 it is only the angle 
rp which then can randomly be chosen (in the range 
- n  < (p < r0 1-33, 34], A second kind of dynamic simu- 
lation method is the so-called "reptat ion" method 
1,35] : there one first selects one of the two ends of the 
chain at random and then removes the end link of the 
chain and adds it at the other end, specifying there 
the orientation of the link by angles as described 
above 1,34]. This mechanism, which corresponds to a 
movement of the chain along itself, produces an 
approach towards equilibrium which in some cases 
was found somewhat faster than the "kink-jump" 
method. In some cases, e.g., N = 1 6  and d--2, as a 
check all three methods were used, and the results 
were found to be in excellent agreement. It must be 
noted that estimating the error of quantities obtained 
from dynamic simulations is nontrivial, as subsequent 
configurations are highly correlated (the "correlation 
time" is increasing with chain length as -coon ~', with 
z v>2,  when the time is measured in units of Monte 
Carlo steps/link 1,,19]). In addition, one has to per- 
form new Monte Carlo runs for each value of ~, and 
does not obtain any direct information on the en- 
tropy of the chain. 

Table 1-3. Mean square end-to-end distances for various chain 
lengths N, hard sphere parameler 6 and space dimensions (d=2: 
Table i; d=  3: Table 2; d=4,5:  Table 3). The statistical error of 
the estimates is about +0.3 ~ and • ~o for d=2,3  and d=4,5  
dimensions respectively 

Table 1. 

N--~ 6 8 12 15 20 30 

6=0.50 I0.63 1 6 . 1 2  28.94 40.07 
0.55 11.29 1 7 . 2 2  3 1 . 1 9  43.43 68.7 
0.60 11.83 1 8 . 1 5  3 2 . 9 5  45.77 70.5 
0.65 12.29 1 8 . 8 4  34.34 47.68 72.9 
0.70 12.71 19.54 35.76 49.60 76.2 
0.75 13.14 2 0 . 2 5  37.09 51.55 79.2 
0.80 13.58 20.98 38.44 53.50 83.1 
0.85 14.03 21.72 39.82 55.50 

120 • 1 
129 
133 
138 
142 

Table 2 

N 8 12 16 24 40 60 

6=0.35 8.91 1 3 . 8 4  18.84 
0.40 9.24 1 4 . 5 2  1 9 . 2 8  31.45 
0.45 9.67 1 5 . 3 7  21.34 34.05 
0.50 10.18 1 6 . 4 0  22.94 37.00 
0.55 10.76 1 7 . 4 7  24.60 40.00 
0.60 11.29 1 8 . 4 9  2 6 . 2 1  42.85 
0.65 11.83 19.58 27.75 45.60 
0.70 12.39 20.48 29.16 

56.1 90.07 
61.5 99.6 
67.3 109.8 
73.2 119.8 
78.1 129.0 

2. Numerical Results and Their Scaling Analysis 

"Raw Monte Carlo data" on end-to-end distances for 
various N and c5 are shown in Tables 1-3. As far as 
the dynamic simulations are concerned, up to l0 s 
Monte Carlo steps (MCS) per link have been used. 
According to the scaling theory for polymers 1,3- 
5,363 the end-to-end distance of long chains should 
not depend on the two parameters N, 6 separately, 
but rather it should depend on them in the scaled 
form 

] f  {R~,) =lNZ/Z f ( N  (5~/e), N ~ o o  

x = N ~/4> finite, (3) 

where ~b is the appropriate crossover exponent and 
the function f (x )  has the following asymptotic be- 
havior (d < 4) 

f ( x ) = A x  :~-:/2), x---~oo, (4) 

where A is an amplitude factor and v a "critical 
exponent" describing the bahavior of very long 
chains. According to Flory [1] we have 

= 3/(a + 2), (5) 

while the most accurate estimate obtained from field- 
theoretic renormalization group methods 1,37] is 

Table 3. 

N-~ D i m = 4  Dim=5  

8 12 16 10 20 

6=0.0 8.00 12.00 16.00 10.00 20.00 
0.05 8.00 12.00 16.00 10.00 20.00 
0.10 8.003 12.006 16.00 10.005 20.005 
0.15 8.009 1 2 . 0 2 0  16.032 10.005 20.01 
0.20 8.037 1 2 . 0 5 5  16.080 10.005 20.025 
0.25 8.066 12.130 16.22 10.01 20.06 
0.30 8.134 12.25 16.40 10.03 20.12 
0.35 8.225 12.42 16.65 10.07 20.23 
0.40 8.352 12.67 17.07 10.14 20.40 
0.45 8.532 13.03 17,56 10.24 20.67 

v =0.588 • (d= 3), v~0.77 (d=2). (6) 

For d > 4 we have instead of (4) 

f (x)  x ~  ~ A, (7) 

i.e., the chain asymptotically behaves ideal, while for 
d = 4  logarithmic correction factors have been pre- 
dicted 1,38] 

f (x)  x~ co > A(ln x) 1/4. (8) 

The renormalization group analysis which is pre- 
sented in Sect. III is based on the assumption that (3) 
does in fact become for very long chains, and study- 
ing the behavior in the vicinity of the nontrivial 
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Fig. 1o Log-log plot of the "expansion factor" (R~)/1N of the 
polymer chain versus scaled chain length for various values of N 
and excluded volume parameter 5. Data for dimensionalities d=2 
and 3 are shown 

fixed-point will then yield estimates for the quantities 
v, qS, and A. However, our numerical analysis is based 
on data for fairly short chains, for which one has to 
expect correction terms to the leading asymptotic 
behavior of very long chains, (3). Thus it is interesting 
to check the extent to which (3) already holds for the 
short chains studied here, Fig. 1. Here we have as- 
sumed for q5 the values appropriate for crossover 
from gaussian to nontrivial behavior: q5 = 1/2 (d=3), 
~b=l (d=2) [39]. It is seen that the data for d=3 ,  
d = 2  superimpose quite well and are close to a 
straight-line behavior already for x=N6d/4'<~l. For  
d = 3, the slope of the straight line is found to be about 
0.13+0.02. which would imply an "effective ex- 
ponent"  (which need not be the correct asymptotic 
exponent v due to the effect of correction terms) of 
vef r = 0.56_ 0.01. This estimate is in fact fairly close to 
(6). But one must note that the data do not even fall 
in the regime x>>l where a simple power law, (4), 
should be valid: hence the accuracy of such direct 
Monte Carlo-estimates for critical exponents is rather 
doubtful [30]. 
For  comparison, we have also included in the data 
for d = 3  a closed-form approximation for the cross- 
over function (implying v=3/5)  discussed by Domb 
and Barrett [40]. It is seen that this approximation 
predicts systematically somewhat too large values. 
Note also, that for d = 2  the data would not super- 
impose if one would take ~b = 1/2 as for d =  3. In fact, 
the best superposition of data points would be ob- 
tained if one would choose q~ somewhat larger than q~ 
= 1, e.g., 4 ~  1.3; we interpret this finding as an effect 
of correction terms to the leading asymptotic be- 
havior, as our chains for d = 2  are so short. Anyway, 
within their error bars the data are consistent with 

the theoretical value q5 = 1 [39]. After completion of 
our work we learned about similar results for the 
scaling function for d = 3 [41]. 
While for d = 3  the crossover between expanded 
chains and chains at the 0-point [5] should be anal- 
ogous to the crossover described here, as the tricriti- 
cal fixed point is still gaussian for d = 3 [5, 6, 39], this 
is not true for d =2 :  there one expects a crossover 
exponent q5 rather different from unity [42], which is 
not yet well known. It would hence be interesting to 
apply the present techniques to a 2 - d  chain with 
both repulsive and attractive parts of the interaction, 
such that a 0-point occurs [5]. 
For  d = 2  the resulting crossover scaling function is 
again close to a straight line with slope of about 0.48 
+0.02, an effective exponent Vef f=0 .74+0 .01  is im- 
plied. Again this estimate is fairly close to (6) but the 
same reservations as above apply. 
For  d = 4  the data yield more or less a horizontal line, 
and no clear effect of the logarithmic correction term, 
(8), is seen. 
Figure 2 shows an example of internal distances ((r, 
- r ,+ , , )  2) for d=2 ,  for both two choices of N, m and 
cS, while Fig. 3 shows corresponding data for d = 3  
[43]. Since there is an obvious symmetry relation 

< ( r .  - r .  + m)2 ) = ( ( rN  . . . .  + 1 - r N - .  + 1) z ) ,  (9)  

as both ends of the chain are equivalent, only points 
starting from one end of the chain up to its center are 
shown (which are obtained averaging both distances 
on the right and left hand side of (9) together for 
improving the statistics). It is seen that the distances 
between two points are distinctly smaller if one point 
is close to the end of a chain, as expected, since the 
excluded-volume repulsion is somewhat less impor- 
tant there. For  small m and N large enough, the 
mean-square distance between two points m units 
apart is found to depend on m only, but not on n, 
provided both points are sufficiently far in the in- 
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Fig. 2. Mean-square distance between two point along the chain 
which are m units apart plotted versus the label n of one point 
along the chain, for m=2 (left part) and m= 3 (right part) in two 
dimensions. Full circles refer to N=40, open ones to N = 30 
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6 = 0.5 (triangles) and & = 0.6 (circles), respectively 

terior of the chain, as expected: keeping m fixed and 
considering the limit N--*oo, it is clear that the end 
affects only a small fraction of these internal dis- 
tances, the mean-square distance where both points 
are in the interior of the chain will be more charac- 
teristic for the bahavior of the chain. In the re- 
normalization group of Sect. III, a mapping of chains 
containing N O links to those containing Nl=No/s 
links will be constructed, where the new link length l~ 
will be defined as l ~ = ( ( r , - r , + 2 ) 2 ) .  In this pro- 
cedure, the appropriate new link length clearly is an 
internal distance in the interior of a very long chain. 
In order to make finite-size effects as small as possi- 

ble, we perform an extrapolation of the internal dis- 
tances to the limit of infinite chain length, Fig. 4. It is 
seen that for the available values of No the asymp- 
totic behavior of the internal distances is in fact 
reached for m <  8, while for larger m (e.g., m =  16 as 
shown in Fig. 4) some ambiguity arises in the extra- 
polation 1IN o--. O. 
It turns out that the approach of the distance ((r, 
- r ,+m) 2) to its limiting value describing internal 
distances of very long chains can also be interpreted 
in terms of scaling behavior. We start from the scal- 
ing expression for the probability distribution that a 
point n units away from the end of a long chain 
(which is taken as coordinate origin) is at a distance 
x, and a point n + m units away is at a distance x + R 
[16, 17] 

. . . . . .  ~ \ m  ~' m ~' m / "  (10) 

In our case it is convenient to rewrite this probability 
in terms of an equivalent scaling function/5, which is 
obtained by eliminating m in favor of n from the first 
scaling variable 

p(x,R,n,m)=m_e~/5,[x R n] 
\n ~ '  m -w' m/" (11) 

We then obtain 

{ r , - r , + m - R ,  p(R,n,m)=- ~ dx P(x,R,n,m)} 

((r, - rn+m)  2 )  = ~ R 2 dR p(R, n, m) 
0 

=m 2 vSd ~ yd+ i fi,(y, n/m), (12) 
o 

where Sd is the surface area of a d-dimensional sphere 
and y=R/m ~. From (12) we immediately see that ((r, 
--r.+m)Z)/m 2~ should depend on the ratio n/m only. 
Since this quantity approaches a constant for n-+o% 
we subtract this limiting value to analyze in Fig. 5 the 
reduced quantity 

((AR..,)2) ~ ( ( r . -  r. +.,)1) - lim ( ( r . - r .+m)2) .  
N ~  o o g ? ~ o o  

(13) 

It is seen from Fig. 5 that for large n/m this deviation 
approaches zero exponentially. The scaling property 
derived in (12) seems roughly to be fulfilled to within 
our accuracy. 
Finally In W(3, N, d) is analyzed in Fig. 6 for both d 
= 2 and d = 3. It is seen that In W varies linearly with 
N for N large enough. Thus the entropy difference s 
per link, which describes the behavior of the entropy 
of large chains [31], 

(S -  So)/k 8 = Ns(fi) + ( 7 -  1)lnN + c(6), (14) 
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Fig. 5. Semi-log plot of the reduced deviation <(AR,,,)a)/m vs. n/m 
for d=3 ,  N=60 ,  and 6=0.5 

where 7 is another critical exponent (7 ~7/6 for d=  3 
and 7~4/3 for d = 2  [5], independent of S), and c(5) is 
a number of order unity, can be estimated by extra- 
polating (S-So)INk ~ vs. lnN/N (Fig. 6b, c). Since 
for the available values of N the term (? , -1 ) lnN is 
smaller than unity, the term c(5)/N is not negligible 
against the term (7 -  1)lnN/N which is the asymptoti- 
cally leading correction, and hence 7 can not be 
estimated reliably from our data. 

III. Renormalization of Polymers 
Along the Sequence of the Chain 

In this section we develop a renormalization group 
analysis of the Monte Carlo data [29], based on de 
Gennes' suggestion of renormalization along the 
chemical sequence of the chain I-4, 44]. As usual in 
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Fig. 6. a Fraction w of chain configurations satisfying the 
excluded volume restriction plotted vs. N for various 
values of 5 and both d = 2  (left part) and d = 3  (right part). 
b, c Extrapolation of in w/N vs. In N/N to estimate s(5) 
which is plotted in the insert, for d =  2 and 3 dimensions 
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the renormalization group analysis of critical pheno- 
mena [6] one considers an iterative elimination of 
the degrees of freedom. Starting with N o links of 
length l o and sphere diameter h o, the chain is mapped 
onto another chain consisting of N 1 = NO/s so-called 
"block-links" of length l 1 with a hard-sphere di- 
ameter hr. This is analogous to the real-space re- 
normalization group transformation of spin systems, 
where groups of s spins are taken together as a 
"block-spin" of the renormalized hamiltonian [45]. 
The length l~ of the block-link is identified as the 
root mean square internal distance between points s 
units apart, as estimated in the previous section 
(Fig. 4), 

11 = ((r~ - r . +  ;);) I /o (15) 

The renormalized hard-sphere diameter h a is esti- 
mated using the condition that the renormatization 
transformation leaves the end-to-end distance 
R(1 o, h o, No) - ( R~o} invariant 

R(l o, h o, No) = R(ll ,  h~, No~s). (16) 

In analogy to the usual renormalization group ap- 
proach [45] it would seem more natural to request 
that the free energy (or entropy in our case) of the 
chain is left invariant under the transformation; since 
the entropy is accessible by the simple sampling- 
technique only while R can be obtained from the 
dynamical simulations as well, it is more convenient 
to use the end-to-end distance in our case. Any 
quantity could by used, of course, in the case of a 
renormalization group transformation which con- 
stitutes an exact elimination of degrees of freedom. 
For spin systems it is well known that block transfor- 
mations are approximate only [45], and hence it is 
important to establish the accuracy of such an ap- 
proximate renormalization group transformation. In 
our case, there are several sources of inaccuracy: 

( i )  Statistical inaccuracy of the Monte Carlo data 
used for 11 and R in the transformation. This in- 
accuracy prevented us from using N o larger than 
N0 =60. 

( i i)  Finite size effects: while effects of the finite chain 
length on estimating 11 are eliminated with good 
accuracy by the extrapolation described in Fig. 4, 
there is some effect of finite chain length by the use of 
the end-to-end distances in (16), although the direct 
scaling analysis of end-to-end distances (Fig. 1) sug- 
gests these effects to be small. Nevertheless we con- 
sider it important to study how the fixed point of the 
renormalization group transformation (and the as- 
sociated exponents) depend on No, see Fig. 11 be- 
low. 

(i i i)  In an exact block transformation one would 
obtain effective links l~ not of fixed length as used 
here but rather given in terms of a distribution. Also 
the renormalized potential should no longer be a 
hard-sphere potential but somewhat smoothed out. 
Therefore one must expect that both the fixed point 
and the associated exponents depend on the scale 
factor s, and this dependence will be studied below. 
For  Ising spin systems, it turns out that an exact real- 
space transformation which keeps the structure of the 
interaction potential unchanged is obtained in the 
limits s-~ 1 ("differential real space renormalization" 
[46]). Hence we propose here the use of a "differen- 
tial Monte Carlo renormalization group", which is 
based on using rational s > l  and extrapolating to 
s = 1 numerically, in this method, the invariance con- 
dition, (16), is kept, but (15) is replaced by (cf. Fig. 7) 

[1= 2 1/2 ( (G-r ,+ , ,o)  }u0 ~to mo No 
l o / ( r  - r  ~ z \ l / 2 / l  , - - = s ,  N~=--. 

\ ~  n n.+rnj! / N  1 / 1 m l  S 

(17) 

Of course, (17) reduces to (15) for m~ = 1. We specu- 
late that also the present method might become exact 
in the limit s ~ 1. 

No = 9 

N1 =6 

/ 

Fig. 7. Monte-Carlo renormalization for non-integer scale factor s 
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The practical realization of this Monte-Carlo re- 
normalization group is done as follows. For a given 
choice of No and s, we use the data of Tables 1-3 as 
well as the internal distances (Fig. 4) to construct 
6~, I~ for a given choice of 30. It is then convenient to 
plot 61 as well as ln(ll/lo) as functions of ln(fio/60, 
Figs. 8, 9, because from these plots both the fixed 
point and the exponents can be read off immediately 
from the behavior near ln(5o/60=0. This fact is 
easily seen from the following consideration: suppose 
we iterate the renormalization transformation k 
times, with k ~oo.  If 5 k ~,Sk+ ~ ~ . . . ~ 0 ,  the chain be- 
comes asymptotically noninteracting, and we ap- 
proach the gaussian fixed point. This is the behavior 
which occurs for d = 4 and d = 5, where the difference 
5o-6  ~ is positive for all 60 (Fig. 10). Hence our 
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Fig, 8. Renormalized interaction parameter & t (upper part) and 
change of the length scale In (lt/lo) (lower part) plotted vs. In (6o/61) 
for various scale factors s and chain lengths N O at two dimensions 

renormalization group transformation is consistent 
with gaussian behavior (v = 1/2) for d>4.  While for 
d = 5  the difference 6o-61 approaches zero for 6 o --*0 
with finite slope, the slope is zero for d = 4, indicating 
that 4 is in fact the "marginal dimensionality", below 
which a nontrivial fixed point exists: for d < 4  the 
quantity 5 0 - 5  t starts out negative for small 50, i.e., 
the interaction parameter gets enhanced upon 
iteration: the gaussian fixed point is unstable, 
one approaches a nontrivial fixed point 
5k~Sk+ ~ ~ . . . - ~ 5 " > 0 .  This fixed point is attractive, 
the difference 6 1 - 6  o changes sign for 6o=6* (the 
other trivial fixed point, 5=2,  which corresponds to 
stretched chains with (R2o) l /z= loN, is always unsta- 
ble). This behavior, which can be expected on the 
basis of the general renormalization group ideas [-6, 
45], is fully born out by the data for d = 3, 2 included 
in Fig. 10. 
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Fig. 10. Difference between renormalized interaction parameter 5 t 
and original interaction parameter 5 o plotted vs. 3 0 for 2_<d_<5 
and various chain lengths No; s = 2 
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We now proceed by analyzing the approach towards 
the nontrivial fixed point in order to relate it to 
critical exponents and amplitude factors. Suppose we 
start the iteration with 6o=6"  at the fixed point. 
Iterating k times the block-link 1 k is the end-to-end 
distance between points s k units apart. Since for k 
large enough s k is a large number already, the for- 
mulas (3), (4) apply to the distance l k also, 

l k = lo(Sk)l/2f(s k (SdO/4)) 

=AloSVk fdo (v-1/2)/*, for 6o=6". (18) 

Hence we find for the change of length scale 

Ik+ t/Ik = s ~, v = in (Ik + i/lk)/ln S. (19) 

Since with our choice of renormalization transfor- 
mation the nature of the steps l o -~ l  ~ and l k ~ l k +  ~ is 
precisely the same (the nature of this hard-sphere 
model is not changed during the iteration), (19) holds 
even for k = 0  if 6o=6*. Thus we have plotted the 
ratio ln( l t / lo) / lns  in Figs. 8, 9, since from the value of 
this quantity at the fixed point (which occurs for 
ln(6o/6 t )=O ) one can read off the exponent v directly. 
From Fig. 8 we conclude for d = 2  that v,,~0.74+0.01, 
5*=0.64_0.09, while Fig. 9 implies v=0.58 +0.01, 6" 
=0.52__+0.02. It is seen that the exponent v found by 
our method slightly depends on both the choice of 
the scale factors s and the chain length No, and the 
fixed point value itself depends on both quantities 
even more strongly. This fact is somewhat unfor- 
tunate, as the fixed-point interaction parameter 5" is 
related to the critical amplitude A, which hence can- 
not be obtained with very good precision as yet. 
From (19) we conclude, by iteration, that Ik= l o s ~k at 
the fixed point. Comparing this result to (18) we 
immediately find 

A = 6" ~ -  ~/2)/~, (20) 

and hence the asymptotic behavior of very long 
chains is, for arbitrary 3>0,  given by [(3), (4) and 
(20)3 

]/<R~> =/(5/0") d(~- 1/2)/~ (21) 

It remains to estimate the crossover exponent (9 from 
the renormatization. To this end we consider the 
renormalization transformation for 5 very close but 
not precisely at the fixed point 6*. Applying once 
more the argument used to write down (18) we now 
conclude 

lk = lo(6 f f f . )d(v-  1/2)/4,, vk, 

l _ v k+ 1/lk - s  (3ffbk+ l) a(~- 1/2)/r (22) 
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hence the slope of the ln(I f f lo)/ lns vs. ln(do/61)-curve 
at the fixed point yields d(v-1/2)/((9 ln s). In Fig. 9 
this slope (using v=0.59, (9= 1/2) has been included, 
and it is seen to describe our presults precisely. For 
d =2, where (9 = 1 [39], the slope of our data seems to 
depend on N o very distinctly. Thus we can obtain 
only a very rough estimate 

(9~ = 1.3 • 0.3 (23) 

which is also included as a straight line in Fig. 8. 
For three-dimensional chains we have carried out 
this renormalization group analysis (as illustrated in 
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Figs. 8, 9) for scale factors s=3 ,  2, 3/2 and 4/3, and 
extrapolate the results to infinite chain length in Fig. 
11. Since the renormalization using small s requires 
the use of internal distances ((r , -rn+m) 2) with re- 
latively large m, it is more strongly affected by finite 
size effects. Thus the estimates for small N O clearly 
are not yet reliable, while for larger N o the estimates 
of both v and 6" become nearly independent of s and 
yield as final estimate 

v =0.59_+0.01 (d=3). (24) 

A similar analysis in two dimensions (Fig. 12) yields a 
qualitatively similar picture resulting in 

v = 0.74 ,+ 0.01 (d = 2). (25) 

Hence while this Monte-Carlo renormalization yields 
estimates for v, which have an accuracy similar to 
field-theoretic renormalization group [7] if only the 
statistical error is taken into account [29], the sys- 
tematic inaccuracy (dependence on s and No) allows 
to estimate exponents with an accuracy of about 1%; 
this accuracy is somewhat better than that of the 
direct analysis of Monte Carlo data [21], particularly 
if one considers values of ~ far away from the fixed 
point value, where the "naive" Monte Carlo es- 
timates of the exponents are much worse than those 
described in Sect. II. The renormalization group anal- 
ysis presented here incorporates the universality of 
the exponent v, i.e., its independence of 6, in a very 
natural way, while "naive" Monte Carlo analysis is 
hampered by the fact that correction terms to the 
leading asymptotic behavior are much more impor- 
tant if 6 is far away from its fixed-point value (see 
[21] for a discussion of earlier Monte-Carlo work, 
which has been mis-interpreted in terms of an ex- 
ponent v depending on 6). On the other hand, the 
accuracy of the present methods ((24), (25)) is clearly 
not good enough to rule out the Flory prediction, (5). 
The accuracy reached here is similar to the accuracy 
reached in Monte Carlo renormalization of percola- 
tion [27, 28] or of Ising and Potts models [22-26]. 

IV. Conclusions 

mation leads to a non-trivial fixed point 6" > 0, which 
is estimated with an accuracy of a few percent. While 
the value of theis fixed point is related to a critical 
amplitude in the power law for the end-to-end dis- 
tance of the chain, the behavior of the renormali- 
zation group transformation in the vicinity of this 
fixed point yields information on both the exponent v 
and the cross-over exponent r By carefully analyzing 
the dependence of these results on the scale factor s 
and the finite chain length No we show that the 
exponent v can be estimated with an accuracy of 
about one percent (v=0.59+_0.01 por d = 3  and 
v=0.74 +_0.01 for d=2),  while the crossover exponent 
is estimated with considerably less precision (r ~�89 for 
d=3 ,  as expected, while r  1.3,+0.3 for d=2).  Unfor- 
tunately the present accuracy cannot rule out the 
Flory predictions, (5), although our estimates are 
somewhat better consistent with the predictions of 
field-theoretic renormalization, (6). The accuracy of 
our method is somewhat better than the "naive" 
analysis of Monte-Carlo data, where one straightfor- 
wardly fits data on the end-to-end distance to a 
power law. Moreover our renormalization group 
analysis incorporates the universality of exponents (v 
being independent of the interaction parameter 6 as 
long as 6>0 ,  etc.). On the other hand, it is not yet 
clear how to obtain other quantities like the gyration 
radius, structure factor of the chain, etc., from this 
renormalization group method. Also an extension to 
other forms of the interaction potential seems desir- 
able. 
In the present study we have also extended the idea 
of performing a "differential real space renormali- 
zation group" (scale factor s--+ 1) to Monte-Carlo 
renormalization, using rational values of s with 
1 <s  <2, which can be extrapolated to s ~ 1 numeri- 
cally. Although we speculate that our approximate 
renormalization group would become exact in this 
limit, in practice the accuracy of our estimates could 
be improved only slightly due to finite-size effects. 
Due to this experience we suggest that other work on 
Monte-Carlo renormalization for different systems 
should pay proper attention to such finite size effects, 
too. 

In this paper a Monte-Carlo renormalization group 
for polymers with hard-sphere interaction has been 
investigated, and applied for dimensionalities d = 2, 3, 
4 and 5. It is shown that for d > 4  there is only the 
gaussian fixed point (interaction parameter 3*=0)  
stable, and hence the polymer chains behave asym- 
ptotically as non-interacting random walks (v= 1/2). 
For d=2 ,  3 the gaussian fixed point is found to be 
unstable, and the renormalization group transfor- 
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