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The Generalized Ginzburg-Landau equations, introduced by one of us (H.H.), are 
considered in a simplified version to clarify their relation to the center manifold 
theorem. 

I. Introduction 

The concept of order parameters and slaving (or 
adiabatic elimination) in non-equilibrium systems 
[,1-3], has proved to be a powerful tool to analyze 
instabilities far from thermal equilibrium. Further- 
more it has elucidated important analogies between 
systems of quite different disciplines. Our equations 
of motion for the order parameters, which we called 
Generalized Ginzburg-Landau equations [,-1-3], are 
obtained via an elimination scheme which may be 
summarized as follows. 
Usually one starts from a set of equations of the 
general type [-1-3] 

U. = Gu(U ' 17, {a}) + D. V 2 U# Jr- Fu(t ). (1.1) 

U, denotes the #-th component of the state vector 
U which is assumed to describe the system under 
consideration. G u contains all the kinetics and may 
depend on gradients (indicated symbolically by V) as 
well as on a certain set of external parameters {o-}. 
D u is an element of the diffusion matrix. Finally F~(t) 
represents the #-th component of the fluctuating 
forces. For the following purposes we shall confine 
ourselves to a simplified version of (1.1), namely 

r2 = G.(U, {~)), (1.2) 

i.e., we omit the fluctuating forces and the depen- 
dence of spatial variations. We note, however, that it 
is straight forward to incorporate a spatial depen- 
dence of the state vector U into the following calcu- 
lations also (compare [1, 2]). 
The analysis of (1.2) usually starts from a steady 
state U o (more general situations are treated in [-4, 
5]). Here and in the following the steady state is 
considered as time independent. In a second stage 
the stability of the steady state is probed as a func- 
tion of the external parameters {o-}. The ansatz 

U - - U o +  ~ (1.3) 

separates G into linear and nonlinear deviations 
from the stationary state 

(1 = K ({or}) ~ + N(O, {a}). (1.4) 

K is a matrix independent of q, N contains all non- 
linear terms. Now linear stability analysis in (1.4) 
yields a set of eigenvalues 2j({a}) and the corre- 
sponding_ set of right and left hand eigenvectors Oj 
and O j, respectively, which together form a biorthog- 
onal set. Eventually the hypothesis 

~ = Y ~ o j  (1.5) 
J 

allows to transform (1.4) into a set of equations for 
the {. Near an instability point the following obser- 
vation is crucial: Linear stability analysis derides 
the set of the {~} into two parts, the long living 
modes called ~, which finally play the role of order 
parameters and a set of strongly damped modes ~s: 

(1.6) 

They obey equations of the form 

4. = A.~. + q(~., ~s), (1.7) 

4s =A~r162162 (1.8) 

where A, and A s are diagonal matrices or at least of 
the Jordan canonical form; p and q fulfill the con- 
dition 

]lql[, Ilpll =O(II~,Nz). (1.9) 

These considerations together lead to the conclusion 
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that the long living modes will dominate the be- 
haviour of the whole system. Therefore the motion 
of the system on time scales prescribed by the un- 
stable modes may be analyzed in the subspace 
spanned by the unstable modes. To achieve this we 
formally integrate (1.8) to obtain 

d A -1 
~ =  ( ~ - ~ ) p ( r  r (1.10) 

Equation (1.10) is an implicit relation between the 
stable and the unstable modes, where different time 
arguments occur on the rhs. 
In order to solve (1.10), i.e. to express Cs as a func- 
tional of ~,, one of us [2] developed an iteration 
procedure in powers of the unstable modes ~, up to 
arbitrary orders. The resulting expressions are exact, 
but still complicated, because the unstable modes 
must be taken at all previous times and an appropri- 
ate time integration has to be performed. Therefore 
the question arises, whether ~(t) can be expressed 
by ~,(t) at the same time. One possibility for this 
rests on the adiabatic elimination hypothesis [1-5]. 
In this case all contributions to the different powers 
in the unstable modes occur with the same time 
argument. The result may therefore expressed in the 
form 

d - 1  

d - 1  d - 1  
The operators ( ~ - A ~ )  and (~-A~)(o)  have al- 

ready been defined in [1-5] and will be given ex- 
plicitly in the following section. The suffix "ad"  in- 
dicates that the expression has to be evaluated in 
the adiabatic approximation. (1.11) can now be 
solved yielding 

~(t) = ~(r (1.12) 

In the present paper we shall show that the general 
iteration method of [2] can be reduced to an "equal 
time" iteration in the unstable modes if the con- 
ditions mentioned in the beginning are met. The 
final result will be of the general form (1.12) again, 
but no use of the adiabatic approximation need be 
made. Or, in other words, the procedure fully takes 
into account the nonadiabatic contributions inherent 
in (1.10). The price to be paid for the exact "equal 
time" relation is the omission of fluctuations. In a 
forthcoming paper we shall show how our former 
iteration scheme [2] can be simplified in such a 
case. Our results allow us to make contact with the 
center manifold theorem. 

II. Descr ipt ion  and Extens ion  of  the  E l imina t ion  Pro-  
cedure 

As usual [1-3] we shall assume that the nonlinear 
part in the equations of motion for the stable modes 
may be written in the following way 

p(~, ,  ~ )  = Asu u: u: u + 2Asu s: u : s 

+ A~ss: s: s + B~u~: u: u" u +  3 B~us: u: u: s 

+ 3 B  . . . .  : u : s : s + B  . . . .  : s : s : s +  .. . .  (2.1) 

To abbreviate expression (2.1) we used the notation 
of [2] which furthermore allows for generalization 
to situations which contain spatial variations, s is a 
short hand notation for the stable, n for the unstable 
modes. Similarly we shall take into account the mo- 
tion of the stable modes via 

q(~, ,  ~ ) =  a ~ :  u: u + 2 a u ~ :  u: s 

+ auss: s: s + buuuu: u: n: n + 3 banns: u: u: s 

+ 3b . . . .  :s: s: u +  b . . . .  :s: s: s + .... (2.2) 

To begin with the elimination of the stable modes 
we write (1.8) in the form 

Cs = i exp(A~(t- t ' ) )p (r162 (2.3) 
--CO 

or in a more formal way [1-3] 

d -1  

Equations (2.3) and (2.4) together define the operator 

~ - A ~  . It is our aim to solve (2.4) iteratively. 

Up to lowest order in ~u, i.e. o(ll~ull2), we explicitly 
obtain for the stable modes 

~s(t) = i exp (A ~( t - t ' ) )A ,~u~u~ ,d t ' "  (2.5) 
- c o  

In the following we denote by ~i) the i-th com- 
ponent of the vector ~ and by Atd~ 'k) an element of 
A~,.. Confining ourselves to cases where the ma- 
trices A~ and A, can be diagonalized completely, 
relations of the type 

~i,j)_ (2.6) A~i'J)--'yi(~ij , Au --iCOjOij , 

where 

ReT~<0, 

hold. A (~,j) A}{ ,j) are the elements of the matrices A s s 
and A,, respectively. The co] are assumed to be real, 
i.e., we evaluate A, in (2.5) at the critical point. 
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Splitting ~(s) into its fast (ocexp(i~ofl)) and slowly 
varying parts (~(])), i.e. 

(]) = exp (i cos t) ~(,J), (2.7) 

we obtain from (2.5) after a partial integration 

~(,0= [i(co~ + cog)--Yi] -1A~.,,(i' j, g)~(f ~(g) 
t 

- ~ exp [ 'h ( t - t ' )+ i (co j+cog) t ' ] .  [ i (coj+cog)-yi]  -1 
- o o  

(i,j,k) ~U) ~(g) " ' �9 G . .  (C C ) dr, (2.8) 

where summation runs over dummy indices. The 
symbol " means time derivative of the slowly varying 
part of the r only. Therefore the second term in Eq. 
(2.8) is at least of order ]l~,[[ 3 in the unstable modes 
~,. From these considerations we conclude that for 
the lowest order, n=2,  the stable modes ~(2) are 
given by 

d -1 
~fi2)= ( ~ t -  As)  (o) As . . :  u: u. (2.9) 

Here we have introduced the operator ~ - A ~  (o)' 

Its definition follows from a comparison of (2.8) and 
(2.9). The result (2.9) is in fact well known from 
calculations based on the adiabatic elimination 
method [1-5]. In this order of approximation one 
obtains an equation of motion for the order parame- 
ters of the Landau type. 
Our interest, however, consists in calculating cor- 
rections to the higher order terms of the adiabatic 
procedure�9 To this end we shall consider in (2.1) as 
well as in (2.8) the terms of order IIGIt< (2.t) yields 

2Asus: u: s + Bsuuu: u: u: u, (2.10) 

where we have to replace s by the result (2.9). We 
note that these terms are already taken into account 
in the adiabatic domain when one takes into ac- 
count the higher order non-linearities in the equa- 
tions of motion of the stable modes (compare [2]). 
In order to obtain equal time contributions in the 
unstable modes only, we now additionally include 
terms of the same order which stem from the second 
term of the rhs of (2.8). 
The final result can be put into the form 

d )-1 
~ ( 3 )  = d ~ - A ~  [ 2 A ~ . , : u : s  + B  . . . .  : u : u : u ]  

(o) 

d - a  
+ ( ~ t - A s )  (1) As~. : u: u" (2.11) 

d - A ~  which can be explicitly contructed as 
(1) 

follows" We insert the time derivative of the slowly 
varying amplitudes $, into the second term of (2�9 

i exp [?i(t - V) + (coj + cog) t ] .  {i(coj + cog) - 7i} - -  i ' - 1  

--<x3 

Asuu(i, j,  k) ( ~ u  ~(j) ~(k) �9 t �9 ~ ,  ) d r .  (2.12) 

After having performed another partial integration 
we combine all the resulting terms of o(11~113). The 
explicit result for ~,(3) then reads 

(i)( 3) B . . . .  G . . = { [ - ~ i + i ( c o s + c o ~ + c o 3 ]  -1 (i,s,k,z) 

+ 2 [ ( -  ~,,. + i(co~ + cok)) ( -  7i + i ( %  + co t + cog)] - 

. A ~ ,  m)A(&" g)-  2 [ ( -  ~ + i(cog + ot  + %)) 

- ~ + i(co~ + (Ok))] - ~ A~,.(~' k, ~) a . , ,  (~' ~' S) }4" . . . . .  (S) ?(k) ?q) . 
(2.13) 

It is just the last term in the sum of the rhs of (2.11) 
or (2.13) which goes beyond the adiabatic domain. 
We recall that adiabatic elimination means that the 
stable modes follow the motion of the unstable ones 
instantaneously. The term which formally results 

(d ) - '  
from an expansion of the operator ~ - A ~  ad- 

ditionally takes care of the motion of the unstable 
modes. In other words, this term measures the influ- 
ence of the motion of the unstable modes on the 
behaviour of the stable ones which is neglected in 
(1.11). 
To complete the discussion of the order 0([[~,[I 3) we 
shall derive a more formal expression for 

d t -A~  (1) " We introduce the notation 

(fi(m + 1). ~u) .f(u) + (d)(~,)f(u), (2.14) 

where f means a differentiable but otherwise arbi- 
trary function of the unstable modes, fi(m+a) is a 
short hand notation for the term of order m+  1 in 
the equation of motion for the unstable modes. De- 
noting the corresponding term of q (compare (1.7) 
and (2.2)) as q(m+l), we have 

ti(m + ~ ) = q  ( '+  ;) . (2.15) 

Thus the ths of (2.12) defines (didO(re). Using this 
operator we obtain 

d - t  - t  d --1 

(2.16) 

In (2.11) we have introduced the operator as will be shown explicitly in the appendix�9 
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III. Generalization to Arbitrary Orders 

Formally it is now straight forward to generalize our 
iteration scheme to arbitrary orders n. Adopting the 
notation of [2] we introduce C ("~ via 

s = ~ c(m)(u) (3,1) 
m = 2  

which contains all contributions up to order n. Ab- 
breviating the n-th order term of (2.1) (compare [2]) 
by p(~)(u), we obtain by generalizing (2.11) for the 
n-th order contribution to the stable modes 

C(")- -  E - A  s p(n-  m)(U). (3.2) 
m = 0 (m) 

In order to construct d - A ~  we shall first de- 
(m) 

rive a recursion formula for C ("~. To this end we 
note that (2.11) may be equally well written as 

d - 1  
C(3)= (~-  As) (o) {B . . . .  : u: u: u + 2As.s: u: C(Z)(u)} 

-(d-As)(ol{(d)(1C(Z)(u,} (3.3, 

or in a more condensed form 

d - i  

\dr ' ]  (o) [~ \du(1) ) 
(3.4) 

Indeed the first two terms in (3.3) result from the 
non-linearities in the equations of motion for the 
stable modes yielding p(3). At this stage we may 
generalize (3.4) to arbitrary orders n 

d -1 {p(~)_ ~ 
m = l  \~/(m) J" 

(3.5) 

To prove (3.5) we have to demonstrate that this 
expression is also correct to order n+  1 by perform- 
ing the various steps which have been described in 
the foregoing section. Obviously there are three dif- 
ferent contributions if we proceed to the next order. 
The first stems from the next order term in the 
nonlinearities of the stable modes and reads 

d - 1  
( ~ _  As)(o)p(n+ 1) (3.6a) 

The second is obtained by passing to the next order 
term in the equation of motion for the unstable 

modes,  i o ,  (m) (re+l)" Explicitly one ob- 

tains the sum 

- ~ - A s  ~/ C ("-m). (3.6b) 
(0) m= 1 (m+ 1) 

Finally we have to perform the partial integration as 
we did in passing from (2.12) to (2.13). The explicit 
calculation is presented in the appendix, the result 
reads 

d - 1  
(3.6c) 

Adding the different contributions (3.6a-c) we in- 
deed obtain the desired result to order n+  1 which 
proves the hypothesis (3.5). 
Equation (3.5) contains the main result of this sec- 
tion. It is now possible to construct the operator )1 
~ - A  s and by comparing (3.2) and (3.5) we ob- 

(m) 

serve that we only have to rearrange terms in the 
following way: combine all operations on p(,-m) 
which contribute to C ("). Because we shall not need 
the expression in the following we only mention the 
final result 

d - 1  d - 1  

d -1 

" ~all iCi'i~=m){ (-d)(i) (~-As)(o,}" 
prod 

(3.7) 

The product has to be taken in such a way that the 
sum of the orders i is equal to m. Finally the sum 
indicates summation over all different products of 
order m. 
At this stage it might become instructive to treat 
explicitly the equations discussed in [2]. There just 
the terms written explicitly in (2.1) and (2.2) are 
kept. To arbitrary orders n we obtain as solution for 
the stable modes 

d -1 
C(") = ( ~ -  As)(m ({...} - [...] } , (3.8) 

where 

, -2 
{.- .}=2A~,s:u:C(n-1)+(1-6, .a)  ~ Asss:C(m):C ("-m) 

m=2 
+6,, 3B . . . .  : u : u : u + 3 ( 1 - 5 , . a ) B  . . . .  : u :u :C  ("-2) 

4 n--3 

+3 1-[(1-5,,i) ~ B~u~ju:C('~):C t " - l - ' )  " 
i ~ 3  m = 2  

5 

+ 1-[ (1-~n, i) ~ B . . . .  :c(ml)jc(m2)'c(m3) 
i=3  ml,ma, m3>=2 (3.9) rnl-bm2+m3=n 

and 
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[,. . .]=C('- l)': au.u: u: n (1-5 . ,2 )  
n - - 2  3 

+2  ~ C("-m)' :au.~:n:C(m)FI(1-5. , t)  
m - - 2  i = 2  

4 

+ ~ C'('~): a ~ :  c(m~): C (~) I~ ( 1 -  ~,, i) 
m, m l ,  m 2 > 2  i = 2  

( m - - 1 ) + m l  + m 2 = n  

3 

+C ( " -2 ; : b  . . . .  : u :u :u .  1] ( 1 -  c~,,,~) 
i = 2  

n - - 3  4 

+3 ~, C(')':b . . . .  :u:u:C ("-z-~). ~ (1-5..,) 
/ = 2  i = 2  

5 

+3 ~ C(")'" b . . . .  : u: C("~): C(";) [ I  (1 - 5.,,) 
m, m l , m 2 > = 2  i = 2  

( m - - 1 ) + m t + m z = n  

+ ~ C(")': b . . . .  : C (m~): C(m~): C ('~) 
m, m l ,  m2, m3 => 2 

( m -  1 ) + m l  + m 2  + m 3 =  n 
6 

�9 I~ ( 1 -  ~,,, ~). (3.1o) 
i - 2  

The first part (3.9) has the same structure as the 
result of [-2], however the unstable modes are taken 
at equal times. (3.10) contains all nonadiabatic con- 
tributions again taken at the same time. Therefore, 
as one would expect, the result of the adiabatic 
elimination method is contained in (3.5) or (3.2) and 
might formally be written (compare the appendix) 

)1 
('~(n) __ - -  A s  V(ad) ,  ~(ad) - -  n(n) (3.11) 

(0)  

where the suffix (ad.) refers to the adiabatic elim- 
ination. �9 .(~) V(ad) means that one takes into account c(m) "~'(ad) 

to order n (re<n) which originate from the non- 
linearities of the stable modes only. 

IV.  Connec t ion  with  the Center  M a n i f o l d  

In the vicinity of a critical point there exists in 
general a whole class of invariant manifolds [-6, 7]. If 
we concentrate our attention to self-organizing sys- 
tems the so-called center manifold is the relevant 
one. To define this manifold in the special case of 
small ~,, we start from Eqs. (1.7), (1.8) with eigenvalues 
of A, which are purely imaginary and eigenvalues ofA s 
which give rise to damping and dissipation (compare 
(2.6)). We first note that this assumption does not 
restrict our results to the critical point only, but also 
allows us to consider a certain range below and 
above threshold. In order to show this we shall 
resort to a well-known trick (e.g. [-7, 8]). Confining 
ourselves to one external parameter a and denoting 
by a c its value at the critical point we may define e 

or-ac and formally take into account by 

g=0 (4.1) 

which we interpret as an additional equation for an 
unstable mode. Equation (1.7), for example, may 
now be rewritten in the form 

~u = A.  (0) ~, + (A. (e) - Au (0)) ,% + q, (4.2) 

where we explicitly took into account the external 
parameter s and used that now An=An(e). A similar 
equation holds for ~s. The second term on the rhs of 
(4.2) can formally be treated as a nonlinearity and 
the method discussed in the preceding sections can 
be applied to this extended set of equations. Then, 
after having performed the elimination procedure, 
we may reconsider e as an external parameter. 
To explain the idea of a center manifold we start 
from p and q which are C k ( 2 < k < o o )  in a certain 
neighborhood of the origin. The statement is (center 
manifold theorem) that there exists in a certain 
neighborhood I~.ul<~ around the origin a C k-x in- 
variant manifold 

~s=~s(~,) (4.3) 

and II~sll=O(ll~.l12). (For a more precise presen- 
tation of the theorem compare [,6-8]). Evidently 
(4.3) has the same formal structure as (1.12). Where- 
as the center manifold theorem is an existence proof, 
our previous results [2] and in particular the above 
description provide us with a construction pro- 
cedure. 
Another construction procedure was recently given 
by [-7], which, however, rests on the existence theo- 
rem, who start from the formal relation (4.3) and 
differentiate it with respect to time 

�9 0~s �9 ~s(t) = ~ :  ~.(t). (4.4) 

Then by inserting (1.7), (1.8) one may solve (4.4) 
iteratively with respect to succeeding powers of ~,. 
These authors give explicit results up to the fifth 
order. Using the ansatz (3.1) it becomes straight 
forward to group together terms of the same order 
and to identify the different contributions with the 
corresponding ones in (3.5). Thus we may conclude 
that our elimination scheme discussed in Section II 
yields a method to construct this manifold iter- 
atively. Incidentally, it transpires from our results 
that the method [-2] is an exact one and the criti- 
cism of [-7] that [-2] neglects nonadiabatic terms is 
unjustified. On the other hand (compare Sects. II, 
III) the adiabatic method for higher order contri- 
butions than o([1r means partial summation of 
the nonlinear terms caused by the stable modes up 
to arbitrary order n. 
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We finally remark that this procedure can be extend- 
ed to more complex situations as described in 
[4, 5]. 

Appendix 

In order to derive the formal expression (2.16) and 
to complete the proof of Sect. III we start from the 
expression for the stable modes 

s=  i exp(A=(t-t'))p(exp(A~t')fi(t'),s(t'))dt' (1.1) 
- c o  

which directly follows from (2.3) by a slight change 
of notation which has been explained in the text. 
Furthermore the fast and the slow part in the time 
dependence of the unstable modes u has been sepa- 
rated. The hypothesis 

t 

s =  ~ C("3(u) (A.2) 
n = 2  

which yields a power series expansion of the stable 
modes in terms of the unstable ones may be inserted 
to (A.1). The result reads 

t 

s =  ~ exp(A~(t-t')) 
- c o  

-p(exp (AS)fi(t'), ~ c (~) (e A=c fi(t'))dt'. (1.3) 
n 

Comparing (2.1) and (A.2) we observe that the terms 
in (A.3) may be rearranged as a power series in the 
unstable modes 

t 

s=  j exp(A=(t-t'))~P{")(t'):fJ(t'):a(f)..sdt', (A.4) 
- c o  n v 

n 

where the fast part in the time dependence of the 
unstable modes has been absorbed into pc,). We are 
not interested in the explicit form of pc,) which can 
be obtained in a lengthy but straightforward calcu- 
lation. The main point is, however, that (A.4) allows 
for a separation of the terms which one keeps per- 
forming an adiabatic approximation from these 
which are neglected. To achieve this goal we use a 
partial integration in (A.4) to get 

s = ~  i dt' exp(As(t-t'))P~")(t'): fi(t): fl(t)... 
n - c o  

n 

(i(t'): i (t')...)'. (1.5) 

It is the first term on the rhs which is treated in the 
adiabatic elimination method, whereas the second 
one contains all non-adiabatic contributions. 
To derive (2.16) we note that the equation for C (3) is 
given by (3.3). Using the explicit form of C (2) we 
obtain for the non-adiabatic contribution in (3.3) 

d -1 

(A.6) 

which we have to compare with 

-A= (1)As..: u: u. (A.7) 

The result is (2.12). 
To complete the proof of (3.2) we have to consider 
the expression 

exp(As(t- t '  p(")(t')- ~ (( dt'. 
- - o O  r n = l  

(A.S) 

By the same arguments which we used to arrive 
from (A.I) at (A.2) we may rewrite (A.8) in the form 

(A.8)= i dt' exp (As(t-f))Q(")(t'): i(t'): i ( f ) . . .  
- c o  

" (1.9)  

with some coefficient Q(")(t). Partial integration in 
(A.9) yields 

t 

(A.8)= ~ dt' exp(A=(t-t'))Q(")(t'): i(t): i ( t ) . . .  
_ c o  Y 

n 

t 

- ~ exp(As(t- t ' ) )df  [~2) 0--~--I 
_ co \ o a ( t ' ) /  

n 

(We considered terms of order n + 1 only.) Obviously 
the first term in (A.10) is C ("). The second term 
therefore can be written as 

d - 1  

c . +ho IAll) 

which is just (3.6c). 
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