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Summary. Animal models are an important aid in experimental medical sci- 
ence because they enable one to study the pathogenetic mechanisms and the 
therapeutic principles of treating the functional disturbances (symptoms) of 
human diseases. Once the causative mechanism is understood, animal models 
are also helpful in the development of therapeutic approaches exploiting this 
understanding. On the basis of experimental and clinical findings. Parkinson's 
disease (PD) became the first neurological disease to be treated palliatively by 
neurotransmitter replacement therapy. 

The pathological hallmark of PD is a specific degeneration of nigral and 
other pigmented brainstem nuclei, with a characteristic inclusion, the Lewy 
body, in remaining nerve cells. There is now a lot of evidence that degenera- 
tion of the dopaminergic nigral neurones and the resulting striatal dopamine- 
deficiency syndrome are responsible for its classic motor symptoms akinesia 
and bradykinesia. PD is one of many human diseases which do not appear to 
have spontaneously arisen in animals. The characteristic features of the dis- 
ease can however be more or less faithfully imitated in animals through the 
administration of various neurotoxic agents and drugs disturbing the dop- 
aminergic neurotransmission. 

The cause of chronic nigral cell death in PD and the underlying mecha- 
nisms remain elusive. The partial elucidation of the processes underlie the 
selective action of neurotoxic substances such as 6-hydroxydopamine (6- 
OHDA) or 1-methyl-4-phenyl-l,2,3,6-tetrahydropyridine (MPTP), has how- 
ever revealed possible molecular mechanisms that give rise to neuronal death. 
Accordingly, hypotheses concerning the mechanisms of these neurotoxines 
have been related to the pathogenesis of nigral cell death in PD. 

The present contribution starts out by describing some of the clinical, 
pathological and neurochemical phenomena of PD. The currently most 
important animal models (e.g. the reserpine model, neuroleptic-induced 
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catalepsy, tremor models, experimentally-induced degeneration of nigro- 
striatal dopaminergic neurons with 6-OHDA, methamphetamine, MPTP, 
MPP § tetrahydroisoquinolines, [3-carbolines, and iron) critically reviewed 
next, and are compared with the characteristic features of the disease in man. 

Keywords: Parkinson's disease, animal model, MPTP, 6-hydroxydopamine, 
methamphetamine, iron, oxidative stress, calcium, pathogenesis, neuro- 
toxins, neurodegeneration, TaClo, tetrahydroisoquinolines, [3-carbolines, 
catalepsy. 

Introduction 

Animal models are an important aid in experimental medical science because 
they enable one to study the pathogenetic mechanisms and the therapeutic 
principles of treating the functional disturbances (symptoms) of human dis- 
eases. Once the causative mechanism is understood, animal models are also 
helpful in the development of neuroprotective approaches exploiting this 
understanding. Animal models are only valuable as models for human dis- 
eases to the extent that they faithfully reflect the diseased state in man: ideally 
they should exactly simulate the pathological, histological and biochemical 
changes of the disease and their resulting functional disturbances. 

Parkinson's disease (PD) is one of many human diseases which do not 
appear to have spontaneously arisen in animals. The characteristic features of 
the disease can however be more or less faithfully imitated in animals through 
the administration of various neurotoxic agents such as 6-hydroxydopamine 
(6-OHDA), methamphetamine, 1-methyl-4-phenyl-l,2,3,6-tetrahydropyridine 
(MPTP) and iron. The motor symptoms of PD and the underlying patho- 
logical changes are observed not only in laboratory animals such as mice, rats 
and non-human primates, but also in domestic animals like the horse. It was 
recently reported (Wang et al., 1991) that horses which had eaten the yellow 
starthistle centaurea solstitialis L. with their feed, after two or three months 
developed symptoms such as rigid facial muscles, irrational chewing move- 
ments, spasms of the tongue and diminished feed-intake, followed later on 
by hypokinesia, a general loss of reaction to stimuli and ultimately death. 
Neuropathological investigations of the brains of these animals showed bi- 
lateral necrosis of the globus pallidus and the substantia nigra (SN), and on 
the basis of these findings the syndrome was classified as nigro-pallidal 
encephelomalacia. 

The present contribution starts out by describing some of the characteris- 
tic clinic, neuropathological, and neurochemical phenomena of PD. The cur- 
rently most important animal models are described next, and are then 
compared with the characteristic features of the disease in man. 

The phenomenology of the Parkinson syndrome 

1. Clinical features 

In 1817 James Parkinson in his "Essay on the Shaking Palsy" first described 
the disease which came to be known as PD or idiopathic Parkinson syndrome. 



Animal models of Parkinson's disease 989 

On the basis of etiological factors one can distinguish the frequently encoun- 
tered idiopathic form from the various less frequently occurring symptomatic 
forms and from those disease presentations that are accompanied by multi- 
system degeneration. With the exception of the drug-induced syndrome, all 
forms of PD are chronically progressive. 

The fully-developed Parkinson syndrome is a particularly characteristic 
disease state. It is defined by the triad of symptoms comprising akinesia, 
rigidity and tremor, which are not always equally strongly manifested. To 
some degree tremor predominates without motor functions showing the typi- 
cal akinetic confinement. In other cases symptoms of akinesia and rigidity are 
the ruling symptoms. These cardinal symptoms may be accompanied by pos- 
tural anomalies, vegetative symptoms and psycho-organic disturbances such 
as depression, slowness of affect, and occasionally dementia (Birkmayer and 
Riederer, 1985). The vegetative disturbances include increased salivation, 
seborrhoea, constipation, hot flushes and hot sweats as well as circulatory 
disturbances (Birkmayer and Riederer, 1985). 

2. Neuropathology 

The main morphological changes in PD, which has been most frequently 
found in 60-75 % of all autopsies carried out on patients with clinically diag- 
nosed PD, is damage to the SN pars compacta, which is already apparent 
macroscopically by a depigmentation above all of the ventro-lateral portion 
(Jellinger, 1988; Gibb et al., 1990). This is possibly due to degeneration of 
dopaminergic, neuromelanin-containing neurons. Microscopic immunohis- 
tochemical analysis does in fact show that in precisely this region of the brain 
of Parkinsonian patients there is a definite (60-85%) loss of neuromelanin- 
containing tyrosine hydroxylase (TH)-immunoreactive neurones (TH is the 
enzyme which catalyses the rate-limiting step of catecholamine biosynthesis) 
(for a review see Jellinger, 1991). However, other pigmented nuclei of the 
brainstem are also affected, such as the locus ceruleus or the dorsal vagal 
nucleus, with some variability in both degree of severity and precise topical 
location (Jellinger, 1991). Severe lesions occur in the central amygdaloid 
nucleus, in nuclei projecting to the cerebral cortex in a non-specific manner, 
and in nuclei regulating endocrine and autonomic functions (Braak et al., 
1995). Beyond this, one also finds damage in regions of the brain which 
contain neither neuromelanin nor catecholaminergic neurons. For example, 
in patients with PD who have suffered from dementia, autopsies show that the 
nucleus basalis Meynert shows a 60-77% loss of cholinergic neurons in com- 
parison to age-matched individuals without neurologically or psychologically 
apparent symptoms (Jellinger, 1991). 

The second characteristic pathological change is considered to be the 
appearance of Lewy bodies (Gibb, 1989). Lewy bodies, which to some extent 
may also be found in the brains of older people, are characteristic cytoplasmic 
inclusions which exhibit both halo and nucleus. In 85-100% of autopsies 
on patients with clinically diagnosed PD these Lewy bodies can be demon- 
strated in catecholaminergic neurons of the SN; however, in many cases they 



990 M. Gerlach and P. Riederer 

also occur in other brain regions, such as for example the cortex, the 
magnocellular  basal forebrain nuclei, and even the spinal cord (Gibb, 1989; 
Braak et al., 1995). 

3. Pathobiochemistry of  PD 

3.1 Changes in dopaminergic systems 

Because of the degenerat ion of the dopaminergic nigro-striatal neurons,  
one finds a drastic reduction in the dopamine  levels of the striatum (Table 1) 
and other  nuclei of the basal ganglia. This finding, first described by Ehr inger  
and Hornykiewicz (1960) was subsequently confirmed by countless investiga- 
tions (for review see Gerlach and Riederer ,  1993). The deficiency in dop- 
amine, which is most pronounced in the putamen,  is characteristic of all forms 
of PD, and is not apparent  in other neurodegenera t ive  diseases such as for 
example in Huntington 's  chorea (Reynolds and Garrett ,  1986). 

The morphological ly-demonstrated loss of neurons in the pars compacta 
of the SN correlates significantly with the reduction of dopamine in the 

Table 1. Pathobiochemistry of the dopaminergic nigro-striatal system in Parkinson's 
disease 

Brain region % of Reference* 
normal values 

Concentrations of dopamine and of its metabolites 
Dopamine Substantia nigra 17 

Caudate nucleus 10 
Putamen 4 

DOPAC Substantia nigra 2 
Putamen 10 

HVA Substantia nigra 48 
Putamen 29 

Activity of dopamine-metabolising enzymes 
Tyrosine hydroxylase Substantia nigra 46 

Caudate nucleus 60 
Putamen 16 
Caudate nucleus 9 
Putamen 4 
Substantia nigra 82 
Caudate nucleus 70 
Putamen 78 
Substantia nigra 125 

DOPA decarboxylase 

Catechol O-methyl- 
transferase 

Monoamine oxidase-B 

Dopamine uptake sites 
[3H]Mazindol uptake Caudate nucleus 32 

Putamen 16 

Birkmayer and Riederer 
(1975) 

Riederer et al. (1986) 

Riederer et al. (1986) 

Riederer et al. (1978) 
Rausch et al. (1988) 
Riederer et al. (1978) 
Lloyd and Hornykiewicz 

(1970) 
Lloyd et al. (1975) 

Riederer et al. (1989a) 

Mizukawa et al. (1993) 

DOPA 3,4-dihydroxyphenylalanine, DOPAC 3,4-dihydroxyphenylacetic acid, HVA 
homovanillic acid. *For further reading and original data see references indicated in 
Table 1 
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striatum, and the extent of the dopamine deficit correlates with the degree of 
akinesia (Bernheimer et al., 1973). Furthermore, the analysis of clinical and 
biochemical correlations show that the characteristic symptoms of the 
Parkinson syndrome only begin to appear when over 70% of the originally 
present dopamine content has been lost (Bernheimer et al., 1973; Riederer 
and Wuketich, 1976). This dopamine deficit in the striatum forms the 
rationale for the dopamine-substitution therapy using L-DOPA (3,4- 
dihydroxyphenylalanine, also called levodopa), which even today is the basic 
therapy for PD. 

In addition to the drastic reduction of striatal dopamine concentrations, 
one also finds strongly diminished amounts of the dopamine metabolites 
3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), 
reduced activity of the dopamine-synthesising enzymes TH and DOPA 
decarboxylase, and a reduction in the number of dopamine uptake sites 
(Table 1). On the other hand there are no - or only slight - reductions 
in the activities of the dopamine-deactivating enzymes catechol-O- 
methyltransferase (COMT) and monoamine oxidase-B (MAO-B), which 
are predominantly localised extraneuronally or in the glia. These findings 
point to the destruction of the pre-synaptic dopaminergic neurons and to 
an overall decreased dopaminergic neurotransmission in the basal ganglia 
of patients with PD. The losses in the content of dopamine metabolites 
as well as in the activity of the enzyme activities are however less 
pronounced than those in dopamine content (Table 1). The way that this 
is interpreted is that the still intact dopaminergic neurons have to release 
more dopamine in order to maintain adequate functional dopaminergic 
neurotransmission. 

In contrast to this pre-synaptic disturbance, the post-synaptic dopamine 
receptors in the striatum appear to be unaltered and fully functional. The 
evidence for this is comes on the one hand from receptor-binding studies 
which have overwhelmingly demonstrated unaltetred receptor densities in 
patients with PD (for reviews see Gerlach and Riederer, 1993) and on the 
other hand also the clinical experiences with dopamine-receptor agonists in 
the treatment of patients with PD. 

The reduction in dopamine levels does not only occur in the basal ganglia, 
however, but also to a variable degree in the mesocortical projections (gyrus 
cinguli, hippocampus, frontal and entorhinal cortexes) and mesolimbic pro- 
jections (hypothalamus, nucleus accumbens, corpus amygdaloideum, area 
olfactoria) of the ventral tegmental area (VTA) (for reviews see Gerlach and 
Riederer, 1993). Although no morphological-neurochemical correlations are 
available at present, one can nevertheless conclude that these dopamine 
deficiencies are a consequence of the destruction of dopaminergic neurons in 
the VTA: losses amounting to 45-60% of the cells in this region are quoted in 
the literature (Jellinger, 1988). Reduced activites of TH (Riederer et al., 1978) 
and diminished dopamine levels have also been demonstrated in adrenal 
tissue (Carmichael et al., 1988) and in the retina (Harnois and Diapolo, 1990) 
of patients with PD. These findings all point to a general involvement of the 
dopaminergic system in this disease. 
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3.2 Changes in other neurotransmitter and neuromodulator systems 

In the late phases of the disease these changes in the dopaminergic systems 
are however also accompanied by changes in other neurotransmitter and 
neuromodulator systems. The regional differential reduction in noradrenaline 
concentrations is similarly connected with a destruction of noradrenergic 
neurons and has been held responsible for certain non-motor symptoms of the 
disease (dementia, depression, vegetative side-effects; for a review see 
Gerlach et al., 1994). The fall in serotonin concentration that has been dem- 
onstrated in all regions of the brain that have been investigated, although 
there is up to now no evidence for any degenerative process, is referred to a 
variable involvement of the raphe nuclei (Jellinger, 1988). Parkinsonian 
patients suffering from dementia additionally have a degeneration of the 
cholinergic nucleus basalis Meynert cortical projection (Jellinger, 1988). The 
lowering of the activity of glutamate decarboxylase, the enzyme responsible 
for the biosynthesis of GABA (7-aminobutyric acid), is possibly also a conse- 
quence of the primary degeneration of dopaminergic nigro-striatal neurons 
(see Gerlach and Riederer, 1993). A whole range of neuropeptides (leucine- 
and methionine-enkephalins, substance P, cholecystokinin) are to various 
degrees reduced in concentration in various regions of the nigro-striatal sys- 
tem and in the VTA. Somatostatin is however only reduced specifically in the 
frontal cortex and in the hippocampus (see Gerlach and Riederer, 1993). 

3.3 Biochemical changes which indirectly suggest a pathological mechanism 

Table 2 summarizes some of the neurochemical changes providing indirect 
evidence of "oxidative stress" as a cause of neurodegeneration in PD. The 
"oxidative stress" hypothesis infers an imbalance between the formation of 
cellular oxidants and the antioxidative processes. "Oxidative stress", due to 
the excessive formation of hydrogen peroxide and oxygen-derived free 
radicals such as hydroxyl radicals ('OH), superoxide radicals ('02) or nitric 
oxide (NO) can cause cell damage through chain reactions of membrane 
lipid peroxidation and/or alterations in membrane fluidity (Halliwell, 1992). 
Hydrogen peroxide is produced in human tissues by several enzymes, such 
as superoxide dismutase (SOD), L-amino acid oxidase, glycollate oxidase, 
xanthine oxidase, and MAO. In dopaminergic nerve cells it is mainly gener- 
ated by MAO via deamination of dopamine, and non-enzymatically by 
autoxidation of dopamine. Hydrogen peroxide is relatively inert and not toxic 
to cells. However, damage is done when hydrogen peroxide interacts with the 
reduced forms of transitional metal ions [e.g. iron (II) or copper (I)] and 
decomposes to the highly reactive hydroxyl free radical (the Fenton reaction). 
In addition, hydroxyl radicals are produced in the mitochondria of nerve cells 
during oxidative phosphorylation. 

In the brains of patients who have died with PD, specifically the SN has 
been found to contain diminished activities of glutathione peroxidase and 
catalase (hydrogen peroxide metabolizing enzymes), as well as diminished 
concentrations of reduced glutathione (GSH) (Table 2; for a review see 
Olanow, 1993; Gerlach et al., 1996b). These findings suggest an aberrant 
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Table 2. Pathobiochemical findings in Parkinson's disease providing indirect evidence of 
"oxidative stress" 

Brain region % of Reference* 
normal values 

1. Disturbed iron metabolism 
Ferritin concentration Substantia nigra 

Total iron concentration 

Iron(II)/Iron(III) ratio 

2. Inactivation of  hydrogen 
GSH concentration 
Glutathione peroxidase 

activity 
Catalase activity 

129 (s.) 
Putamen 137 (n.s.) 
Substantia nigra 177 (s.) 
Putamen 81 (n.s.) 
Globus pallidus 120 (n.s.) 
Cortex 100 
Substantia nigra 43 (s.) 
Putamen 77 (n.s.) 
Globus pallidus 80 (n.s.) 
Cortex 122 (n.s.) 

peroxide-metabolising enzymes 
Substantia nigra 53 (s.) 
Substantia nigra 80 (s.) 

Substantia nigra 64 (s.) 
Putamen 67 (s.) 

3. Indications of  decreased free radical detoxification 
Superoxid dismutase Substantia nigra 133 (s.) 

activity Cerebellum 95 (n.s.) 

4. Indirect indications of  free radical-induced damage 
Polyunsaturated fat Substantia nigra 85 (s.) 

concentration Putamen 94 (n.s.) 
Caudate nucleus 95 (n.s.) 
Globus pallidus 94 (n.s.) 
Cortex 104 (n.s.) 

Basal concentrations Substantia nigra 135 (s.) 
of thiobarbituric Putamen 105 (n.s.) 
acid-reactive Caudate nucleus 111 (n.s.) 
substances Globus pallidus 111 (n.s.) 

Cortex 94 (n.s.) 
8-Hydroxy-2'deoxy- Substantia nigra 238 (s.) 

guanosine Putamen 250 (s.) 
Caudate nucleus 275 (s.) 
Globus pallidus 168 (n.s.) 
Cortex 260 (n.s.) 
Cerebellum 110 (n.s.) 
Hippocampus 111 (n.s.) 

Riederer et al. (1989b) 

Riederer et al. (1989b) 

Sofic et al. (1988) 

Sofic et al. (1992) 
Kish et al. (1985) 

Ambani et al. (1975) 

Saggu et al. (1989) 

Dexter et al. (1989) 

Dexter et al. (1989) 

Sanchez-Ramos et al. 
(1994) 

GSH reduced glutathione, n.s. no significant difference from normal values, 
s. significant different from normal values. *For further reading and original data see 
references indicated in Table 2 
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metabolism of hydrogen peroxide. There is also a site-specific increase of 
SOD activity in the SN as well as a slightly increased MAO-B activity (Table 
1). Both of these findings point to an increased hydrogen peroxide formation 
in the SN of patients with PD. The increase of iron in the SN with a shift of the 
nigral iron(II)/iron(III) ratio from 2:1 in control brains to 1:2 in the brains of 
patients with PD, indicates an increased rate of synthesis of hydroxyl radicals. 
Necropsy studies have further shown increased basal levels of thiobarbituric 
acid-reactive substances in the SN of patients with PD (a measure of second- 
ary products of lipid peroxidation) coupled with a decrease in the levels of 
polyunsaturated fatty acids (the substrates for lipid peroxidation). In addition, 
there seems to be radical-induced DNA damage in the nigro-striatal system as 
indicated by raised 8-hydroxy-2'deoxyguanosine (Table 2), a product of free- 
radical attack on guanine in DNA. 

Of particular interest in this connection is the observation that patients 
with PD had a lowered NADH-dehydrogenase (complex I) activity (for a 
review see Reichmann et al., 1993; Schapira, 1994). Inhibition of complex I by 
paraquat, the classical inhibitor of this enzyme complex, likewise leads to 
formation of superoxide free radicals (Turrens and Boveris, 1980). A recently 
published investigation showed that chronic L-DOPA therapy results in this 
altered activity of the cerebral respiratory chain enzyme (Przedborski et al., 
1993): not only dopamine but also L-DOPA, its metabolic precursor, lead to 
reversible inhibition of complex I activity, and this inhibition can be lifted by 
GSH, vitamin C, SOD and catalase, but also by MAO-B inhibitors. From 
these results it may be concluded that in patients with PD the observed 
reduction in the activity of complex I is probably caused by an increased 
"oxidative stress" which in turn is provoked by an increased dopamine 
turnover. 

Animal experimental models of the Parkinson syndrome 

1. Pharmacologically-induced functional disturbances of dopamine 
neurotransrnission 

1.1 The reserpine model 

The starting point for the discovery that a depletion of dopamine from the 
striatum is responsible for the motor symptoms of PD, was the observation by 
Carlsson et al. (1957) that an akinetic state could be elicited in rats by systemic 
administration of reserpine, and that this state could be alleviated by L-DOPA. 
In the rat, reserpine induces a reduction in motor activity (akinesia, 
hypokinesia, catalepsy), in addition to a tremor which has, as yet, not been 
explored pharmacologically (Haefely, 1978). The precise pharmacological 
mechanisms underlying reserpine's effects are still not completely understood. 
However, it has been established that, at high doses, intraneuronal storage 
vesicles are affected via magnesium- and ATP-dependent mechanisms, and 
depleted of their stores of dopamine and other neurotransmitters, such as 
adrenaline, noradrenaline, histamine and serotonin. Further, post-synaptic re- 
uptake at least in the short-term no longer occurs (McGeer et al., 1987). 
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In the sixties and seventies, reserpine-induced inhibition of motor activity 
in rodents was widely used for investigating symptomatic anti-Parkinson 
treatments (for a review see Haefely, 1978). In addition to L-DOPA, amphet- 
amine and its derivatives, dopamine-receptor agonists (Haefely, 1978) and 
NMDA (NMDA is N-methyl-D-aspartate. and its receptor is a subtype of the 
glutamate receptor) antagonists such as MK-801, amantadine and memantine 
(Danysz et al., 1994) were found to be effective. However, because reserpine 
induces the release of a variety of neurotransmitters, this approach is now 
rarely used. A modified form is used by Carlsson's group (see for example 
Carlsson and Carlsson, 1989) as a model of akinesia to investigate symptom- 
atic treatment strategies. The laboratory animals used in this model are white 
NMRI mice, who are injected, 18 hours prior to assessment of motor activity, 
with 10mg/kg reserpine intraperitoneally (i.p.), and, to potentiate the effect, 
two hours prior with ot-methyl-p-tyrosine (500mg/kg) which inhibits dop- 
amine synthesis. Motor activity is evaluated with an electronic measuring 
device which measures the mean activity of the animals in a given time-period 
by means of light barriers. 

1.2 Neuroleptic-induced catalepsy 

Classic neuroleptics such as haloperidol, as dopamine-D2-receptor antago- 
nists, give rise to effects which are similar to those which occur after reserpine- 
treatment (for reviews see Colpaert, 1987; Sanberg et al., 1988). In rats, 
catalepsy, defined as the delayed or absent correction of an abnormal posi- 
tioning of the extremeties (Fog, 1972), may be simply assessed. An example of 
the many variants of this kind of catalepsy test is the "crossed extremities" test 
described by Boissier and Simon (1963), in which the experimenter crosses 
the animal's extremities on the same side: the animal is judged to be cataleptic 
if it is unable to correct this unnatural positioning within ten seconds. The 
substances with anticataleptic activity - in decreasing order of effectiveness - 
are anticholinergic drugs, dopamine-releasing drugs, dopamine agonists, and 
L-DOPA (Haefely, 1978). Recent pharmacological investigations have shown 
that the catalepsy produced by haloperidol (0.5mg/kg i.p.) can also be 
antagonised by NMDA-receptor antagonists: Amantadine and MK-801 pro- 
duced dose-dependent inhibition of haloperidol-induced catalepsy, while 
memantine was less efficacious at 10mg/kg but, due to myorelaxant activity, 
did not have an anticataleptic effect at 20mg/kg (Danysz et al., 1994). 

In-depth studies of haloperidol- and morphine-induced cataleptic states 
has led to the conclusion that  catalepsy represents a complex state of 
behaviour inadequately described by classical behavioural tests (De Ryck et 
al., 1980). More recently, "catalepsy" describes a behavioural state which has 
been caused by an experimentally-induced dopamine depletion, and which 
consists of motor-inhibition (akinesia), muscular rigidity (rigor) and tremor of 
the extremities (Copaert, 1987; Sanberg et al., 1988). In this state the neuronal 
systems of the brain which are involved in the voluntary initiation of motor 
programmes are functionally inactive, in contrast, brain systems involved in 
the reflex control of posture and in the maintenance of equilibrium are func- 
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tioning normally (Schallert and Teitelbaum, 1981). Although the execution of 
motor programmes in cataleptic animals is disturbed, strong external stimuli 
such as pinching the tail, cold water or loud noises can activate release mecha- 
nisms and stimulate the cataleptic animal into activity (for a review see 
Schmidt et al., 1992). 

1.3 Haloperidol-induced akinesia and bradykinesia 

The administration of haloperidol to rats at low doses (0.15 or 0.3 mg/kg i.p.) 
may also result in a behavioural state resembling the symptoms of akinesia 
and bradykinesia in PD (for a review see Schmidt et al., 1992). To measure the 
influence of dopamine in the control and initiation of motor activity in rats, 
Hauber (1990) has developed a technique in which a rapid initiation of motor 
activity, in response to a stimulus, results in a food reward. The experimental 
conditions consist of a starting-box, a track and a target box. A trained rat is 
placed in the starting-box facing a closed trap-door that prevents access to the 
track. After variable delay periods, a stimulus signals the opening of the 
starting-gate. The rat responds to the stimulus by starting to move, and to run 
along the track until it reaches the target box to be rewarded with food. The 
latent period between the signal to start and the beginning of locomotor 
activity is measured by a photoelectrical switch in front of the starting-box and 
a stimulus platform which is mounted underneath the starting-box. The fol- 
lowing parameters can be measured: reaction time (the interval between 
presentation of the stimulus and the beginning of locomotion); the movement 
time (the interval between the beginning of movement and exit from the 
starting box); and the initial acceleration (which is the resultant of the 
quantitation of the development of motor force and the signal amplitude of 
motor acceleration). 

The systemic administration of haloperidol at the indicated dosage 
elicits a specific deterioration in motor behaviour, such as delayed initiation 
of motion measured as a increase in reaction time (described as akinesia) and 
a slowed execution of the movement (described as bradykinesia), measured 
as extended movement time and diminished initial acceleration (Hauber, 
1990). 

2. Experimentally-induced degeneration of nigro-striatal doparninergic neurons 

2.1 The 6-hydroxydopamine model 

2.1.1 Neuropathological and neurochemical changes 
The neurotoxic action of 6-OHDA was first observed during investigations 
of the autonomic nervous system: in this system 6-OHDA leads to a nor- 
adrenaline-depletion of several months' duration (Porter et al., 1963) and 
to a selective destruction of noradrenergic nerve-endings (Thoenen and 
Tanzer, 1968). Systemically administered 6-OHDA is unable to cross the 
blood-brain barrier. However, direct application of small doses to the lateral 
ventricle (150~tg free base) or to various brain structures (8~tg free base) 
leads to a selective destruction of catecholaminergic neurons (Ungerstedt, 
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1968; Bloom et al., 1969; Uretsky and Iversen, 1970). This results in a de- 
pletion of dopamine, noradrenaline and adrenaline in the affected brain 
regions; while concentrations of other neurotransmitters (acetylcholine, 
serotonin, GABA) are found to be unchanged (for a review see Zigmond 
and Stricker, 1989). In addition, further biochemical and histological changes 
which such as reduced levels of catecholamine metabolites and tetrahydro- 
biopterin (the co-factor of TH), and a diminished number of catecholamine 
re-uptake sites and TH-immunoreactive neurons, also point to a destruction 
of catecholaminergic neurons. Detailed histological investigations confirm 
the specificity of the neurotoxic effect of 6-OHDA on catecholaminergic 
neurons (for a review see Zigmond and Stricker, 1989). The simultaneous 
application of inhibitors of the high-affinity noradrenaline transport system 
(e.g. desipramine) can even improve the specificity to the extent that the 
damage can be entirely restricted to dopaminergic neurons (Breese and 
Traylor, 1970). 

Although these findings with 6-OHDA-produced lesions have been de- 
scribed in rats, these effects may also be seen in other rodent species (mice) 
and other non-rodent species (cats, dogs and monkeys) (for a review see 
Zigmond and Stricker, 1989). 

2.1.2 Behavioural changes after bilateral lesions 
Bilateral stereotactic injections of 6-OHDA into rat striatum lead to a massive 
mortality of dopaminergic nerve cells in the SN and to a corresponding 
depletion of dopamine in the striatum. Animals become akinetic, aphagic and 
adipsic and mortality is high (Ungerstedt, 1968). Less severe forms of this 
akinetic-aphagic syndrome may be elicited in rats by stereotactic injection of 
6-OHDA into the median forebrain bundle (anteriolateral hypothalamus), 
which produces a marked depletion of noradrenaline from the hypothalamus 
and of dopamine from the striatum (Smith and Young, 1974). This 
hypokinesia may be abolished by L-DOPA and various dopamine-receptor 
agonists but not by anticholinergic substances (Butterwort et al., 1978). How- 
ever recently, because of the intensive nature of animal care required, bilat- 
eral 6-OHDA application is rarely used. 

2.1.3 Behavioural changes after unilateral lesions 
Unilateral stereotactic injection of 6-OHDA into the striatum (And6n et al., 
1966; Ungerstedt and Arbuthnott, 1970) or the SN (During et al., 1992) of the 
rat leads to massive death of the dopaminergic nerve cells on the same side 
and to a corresponding depletion of dopamine in the striatum. The rat with 
this unilateral lesion of the nigrostriatal dopaminergic neurons constitutes an 
interesting experimental model, and one still in use. Animals with such a 
lesion show asymmetric motor behaviour for a short time immediately after 
the intervention, but subsequently behave normally, exhibiting asymmetric 
motor behaviour only following severe psychic stress. Following the systemic 
administration of dopamine-receptor agonists, L-DOPA and dopamine- 
releasing drugs, a distinct asymmetry appears in the longitudinal axis of the 
body and a characteristic circling behaviour is initiated, which can be quanti- 
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tated in a rotation-box (Hefti et al., 1980; During et al., 1992): L-DOPA and 
direct dopamine-receptor agonists such as bromocriptine lead to contralateral 
rotation (towards the undamaged side); while dopamine releasing substances, 
such as amphetamine and amantadine, lead to ipsilateral rotation (in the 
direction of the damaged side). For example, i.p. injection of l mg/kg of 
apomorphine to a rat with a 90% striatal dopamine loss elicits more than 20 
contralateral turns per five minute period (Hefti et al., 1980). 

This characteristic rotational behaviour is explained in the following way: 

1. The degeneration of the nigro-striatal dopaminergic neurons leads to 
supersensitivity of post-synaptic dopamine receptors in the striatum. 
Thus receptors on the lesioned side are more sensitive to dopamine- 
receptor agonists than those on the intact side. 

2. Dopamine-releasing drugs can stimulate the post-synaptic receptors in 
the striatum of the undamaged side, but not those on the damaged side. 

3. Efferent nerve fibres from the striatum inhibit the ipsilateral motor 
activity. This inhibitory influence of the striatum is diminished by acti- 
vation of the dopamine receptors in the striatum; thus stimulation of 
the dopamine receptors increases motor activity. If one applies a direct 
dopamine receptor agonist, then the reaction of the supersensitive 
dopamine receptors leads to a stronger motor activation on the 
lesioned compared to the intact side, with the result that the stimulation 
on the lesioned side is dominant resulting in turns towards the undam- 
aged (contralateral) direction. On the other hand, predominantly 
dopamine-releasing drugs overwhelmingly stimulate the dopamine re- 
ceptors on the undamaged side resulting in turns towards the lesioned 
(ipsilateral) side. 

This rotational model clearly distinguishes drugs with predominantly 
dopamine receptor agonist activity from those with predominantly dopamine- 
releasing activity: However, substances in which both these activities are 
combined cannot be distinguished. More recent investigations have demon- 
strated that the contralateral rotation with apomorphine can be potentiated 
by systemic application of glutamate receptor agonists such as 6-nitro- 
sulphamoyl-benzo-quinoxalinedione (NBQX, an antagonist of the AMPA- 
receptor) or 3-carboxy-piperazine-propylphosphonic acid (CPP, a 
competitive inhibitor of the NMDA-receptor); but this requires only minimal 
doses of L-DOPA (Wachtel et al., 1992). Systemic application of the non- 
competitive NMDA-antagonist MK-801 on the other hand induces ipsilateral 
rotation (Goto et al., 1993). This result cannot be plausibly explained on the 
basis of the explanations indicated above: possibly some pharmacodynamic 
processes are responsible. Dopamine which is released by the glutamate- 
receptor antagonist appears insufficient on its own to stimulate the supersen- 
sitive dopamine receptors in the lesioned striatum. 

2.1.4 The mechanism of the neurotoxic action 
Because of its structural similarity to other catecholamines, 6-OHDA is ap- 
parently selectively taken up into the appropriate neurons by the high-affinity 
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catecholamine transport system. This assumption would explain the specific- 
ity of its neurotoxic action towards catecholaminergic neurons. In fact, 
marked, long-lasting (10 month) decrease in the number of TH-immunoreac- 
tive neurons in the ipsilateral SN following unilateral injection of 6-OHDA 
into the striatum of rats was demonstrated (Ichitani et al., 1994). 

6 -OHDA is thought to induce nigro-striatal dopaminergic lesions via gen- 
eration of hydrogen peroxide and the hydroxyl radicals derived from it 
(Heikkila and Cohen, 1972; Sachs and Jonsson, 1975), presumably initiated by 
a transition metal such as iron. In fact, it has been shown by magnetic reso- 
nance (MR) imaging (Hall et al., 1992), and by neurochemical and his- 
tochemical studies (e.g. Oestreicher et al., 1994) that iron is increased in the 
striatum of 6-OHDA-lesioned rats. Furthermore, 6-OHDA releases iron 
from ferritin in vitro (Monteiro and Winterbourn, 1989). The decisive part 
played by iron in the formation of hydroxyl free radicals from hydrogen 
peroxide is also evident in the fact that intranigral injection of iron(III) 
produces similar neurotoxic effects to those produced by 6-OHDA (Ben- 
Shachar and Youdim, 1991; Sengstock et al., 1992). 

Indirect evidence that hydroxyl radicals are involved in the neurotoxic 
effects of 6-OHDA have been provided by investigations which demonstrated 
the influence of this neurotoxin on radical-detoxifying systems (Perumal et al., 
1992). Thus 6-OHDA does not only lead to a reduction of GSH in the affected 
brain regions (22% in the striatum, for example), but also to a loss of SOD- 
activity (22% in the striatum). Furthermore, malondialdehyde level and the 
level of conjugated dienes were increased by 43% and 40%, respectively, in 
the striatum following 6-OHDA treatment (Kumar et al., 1995). The decrease 
in SOD-activity is explained on the basis of oxygen free radicals (Hodgson 
and Fridovich, 1975). Interestingly, it was recently shown (Glinka and 
Youdim, 1995) that 6 -OHDA is even more toxic to complex I than the 1- 
methyl-4-pyridinium ion (MPP +, the probable neurotoxic form of MPTP). 
The inhibition of complex I by MPP § leads to the mitochondrial production of 
superoxide free radicals (Hasegawa et al., 1990; Cleeter et al., 1992), hydrogen 
peroxide and hydroxyl radicals (Adams et al., 1993). Inhibition of complex I 
by paraquat also leads to the formation of superoxide radicals (Turrens and 
Boveris, 1980). The partial, or even complete, prevention of the neurotoxic 
effects of 6-OHDA and iron by prior administration of iron chelating agents 
(Ben-Shachar et al., 1991), vitamin E (Cadet et al., 1989; Perumal et al., 1992) 
and the MAO-B inhibitor selegiline (Knoll, 1986) may also be regarded as 
indirect evidence for the formation of free radicals. 

2.2 The methamphetamine model 

The amphetamines are psychostimulatory drugs with addictive potential. 
Their activity is primarily associated by their dopamine-releasing mechanism 
(Seiden et al., 1975; McMillen, 1983). In very high doses these indirectly acting 
psychostimulants do however also have a neurotoxic activity in rodents (rats, 
mice and guineapigs) and non-human primates (Seiden et al., 1975; Wagner 
et al., 1979, 1980). 
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2.2.1 Neuropathological, neurobiochemical and behavioural changes 
A single dose or multiple applications of methamphetamine to rats or mice 
leads to a reduction of the dopamine, DOPAC and H V A  concentrations 
in the striatum (Table 3). This reduction seems to be restricted to the nigro- 
striatal dopaminergic system as dopamine concentrations are unchanged 
in the extra-striatal brain regions, such as the frontal cortex, nucleus 
accumbens, nucleus amygdalae, hippocampus and hypothalamus (Morgan 
and Gibb, 1980; Ricaurte et al., 1980; Ohmori et al., 1993). The reasons 
underlying regional specificity are not known. Beside a decrease in 
dopamine concentration, decreased serotonin concentrations are also found 
in the rat (Table 4): This effect, however, is not restricted to the striatum 
(Ohmori et al., 1993). Interestingly, the neurotoxic effect of methamphet- 
amine in the mouse appears to be specific for the nigrostriatal dopaminergic 
system (Table 3). 

Beside the lowered concentrations of dopamine and its metabolites, 
diminished TH activity is also found (Table 3). These biochemical changes 
are accompanied by the degeneration of dopaminergic nerve endings 
(Ricaurte et al., 1982) and a transient diminished number of dopamine re- 
uptake sites (Ikawa et al., 1994). Additionally, a smaller number of TH- 
immunoreactive neurones could be demonstrated in the SN (Kogan et al., 
1976). Using the technique of microdialysis it has been demonstrated that 
multiple injections of methamphetamine [4 • 4mg/kg s.c. (subcutaneously) 
at 2 hourly intervals] lead to an initial massive liberation of dopamine in the 
striatum. This effect is negatively correlated with the histologically demon- 
strated loss of TH-immunoreactive neurons (O'Dell et al., 1991). Further, a 
gradual increase in extracellular glutamate has also been found (Abekawa 
et al., 1994). 

The influence of the methamphetamine-induced neurochemical and 
histopathological changes described on the motor behaviour of the animals 
has not yet been systematically studied. The relevant literature does not 
mention any changes in spontaneous motor behaviour. 

The neurotoxic effects of methamphetamine may be partially, and in some 
cases completely, prevented by inhibition of TH (Gibb and Kogan, 1979) and 
by dopamine receptor antagonists (Kogan et al., 1976; Gibb and Kogan, 1979; 
Nash and Yamamoto, 1992). The noncompetitive NMDA-receptor antago- 
nist MK-801 and other, competitive, NMDA-receptor antagonists also appear 
capable of this inhibition (Sonsalla et al., 1989, 1991; Ohmori et al., 1993; 
Marshall et al., 1993). However, riluzole and lamotrigine, compounds that do 
not bind to any known glutamate receptor subtype, but inhibit the release of 
glutamate do not (Boireau et al., 1995). The neuroprotective effect of 
glutamate-receptor antagonists on the methamphetamine-model is probably 
related to the inhibition of glutamate-receptor regulated dopamine liberation. 
Using microdialysis, it was recently shown that dopamine-receptor antago- 
nists such as SCH 23390 or eticlopride, and also the glutamate-receptor an- 
tagonist MK-801, could prevent the massive initial flood of dopamine in the 
striatum. However, MK-801 alone has no effect on dopamine liberation, while 
the dopamine-receptor antagonists lead to a release of dopamine by 
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antagonising pre-synaptic dopamine D2-receptors and D2-autoreceptors 
(Marshall et al., 1993). 

2.2.2 The mechanism of neurotoxic action 
The mechanism of the action of methamphetamine, which ultimately leads to 
the degeneration of the dopaminergic neurons, has not been finally estab- 
lished. Originally it was assumed that the dopamine which was released in 
a non-physiological fashion by large doses of methamphetamine was non- 
enzymatically converted to 6-OHDA (Seiden and Vosmer, 1984): A single 
large dose of methamphetamine (100mg/kg i.p.) apparently gave rise to a 
brief formation of 6-OHDA as indirectly demonstrated by HPLC determina- 
tion (between 30 minutes and 2 hours following the injection of the metham- 
phetamine), but this could not be confirmed using a direct mass-spectrometric 
method of detection (Karoum et al., 1993). Although 6-OHDA has not been 
measured in brain tissue this does not exclude the possibility that it could 
actually be synthetised in vivo. In fact, in vitro experiments have indeed 
demonstrated that dopamine efficiently converts to 6-OHDA in the presence 
of iron(II) and hydrogen peroxide via a Fenton-type reaction (Jellinger et al., 
1995). Because of the rapid oxidation of 6-OHDA by iron(III), which is also 
produced by the Fenton reaction (Jellinger et al., 1995), it is difficult to detect 
6-OHDA after administration of methamphetamine alone. Pretreatment with 
the MAO inhibitor pargyline (100mg/kg i.p.) and the COMT inhibitor pyro- 
gallol (25mg/kg, i.p.) resulted in the HPLC detection of a 6-OHDA-like 
substance 30min after methamphetamine administration (Kita et al., 1995). 
Moreover, pargyline alone or in combination with pyrogallol exacerbated the 
long-lasting dopamine depletion induced by methamphetamine (50mg/kg, 
s.c.). These results indicate that simultaneous inhibition of MAO and COMT 
provides a cellular environment that encourages the autoxidation of dop- 
amine to the 6-OHDA-like substance. 

Since amphetamines on the one hand liberate dopamine in large amounts 
in a nonphysiological fashion, and on the other hand also inhibit its enzymatic 
breakdown by inhibition of MAO (Miller et al., 1980), "oxidative stress" - 
such as that which occurs following 6-OHDA - may be considered a possible 
causative factor in the neurotoxic action of methamphetamine. In fact, both of 
these pharmacological effects lead to increased autoxidation with increased 
hydrogen peroxide production, which can be converted to hydroxyl free radi- 
cals through catalysis by iron. This assumption is supported by various lines of 
indirect evidences. Prophylactic anti-oxidative treatment with vitamin C, vita- 
min E, alcohol and mannitol protects, in some cases completely, against the 
neurotoxic effects of methamphetamine (De Vito and Wagner, 1989). Treat- 
ment with inhibitors of MAO (Jarvis and Wagner, 1985) and SOD (De Vito 
and Wagner, 1989) as well as the additional administration of L-DOPA 
(Schmidt et al., 1985) accentuate its neurotoxic effects. It is also interesting 
that transgenic mice which carry the human Cu/Zn-SOD gene are protected 
against the neurotoxic effect of methamphetamine (Cadet et al., 1994). 

The "excitotoxin-hypothesis" posits a possible alternative explanation to 
the excessive formation of hydroxyl free radicals (Sonsalla et al., 1989). This 
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hypothesis postulates that excessive liberation of excitatory amino acids 
(EAA) such as aspartic and glutamic acid leads to the death of nerve cells, and 
depends primarily on the observation that the neurotoxicity of methamphet- 
amine can be prevented by glutamate-receptor antagonists. One hypothesis 
need not however necessarily exclude the other, as the latest findings indicate. 
The most direct evidence that excitotoxicity and "oxidative stress" may be 
sequential and interactive mechanisms leading to neuronal degeneration is 
the finding that NMDA exposure leads to superoxide radical generation in 
cultures of cerebellar neurons (Lafon-Cazal et al., 1993). In a more recent 
investigation it was shown that free radical spin traps, such as ct-phenyl-N-tert- 
butylnitrone (PBN) and N-tert-butyl-ot-(2-sulfophenyl)-nitrone (S-PBN), can 
attenuate excitotoxic lesions in vivo (Schulz et al., 1995a). These compounds 
react with unstable free radicals to produce more stable nitroxides. Pretreat- 
ment with S-PBN significantly attenuated striatal excitotoxic lesions in rat 
produced by NMDA, kainic acid, and AMPA. In a similar manner, striatal 
lesions produced by MPP § malonate, and 3-acetylpyridine were significantly 
attenuated by either S-PBN or PBN treatment. These results provide in vivo 
evidence for the involvement of free radicals in excitotoxicity. 

Because hydroxyl radicals can alter the pre-synaptic potential of 
glutamate receptors it is likely that glutamate is liberated in a non-physiologi- 
cal fashion (Gilman et al., 1993), thus contributing to a vicious circle which 
leads to further cell damage. It is also interesting to note the recently de- 
scribed finding of the methamphetamine induced loss of ATP in the mouse 
striatum (Chan et al., 1994). Energy impairment could secondarily leads to 
slow excitotoxic neuronal death by increasing the sensitivity of EAA receptor 
activation (for review see Beal, 1992). It is possible, therefore, that perturba- 
tions of energy metabolism and excitotoxic effects might link the processes 
leading to the final dopaminergic toxicity. 

2.3 The MPTP model 

Another experimental model of PD is the so-called MPTP model. MPTP is 
now the most widely used and the best investigated model of PD (for reviews 
see Gerlach et al., 1991; Heikkila and Sonsalla, 1991; Tipton and Singer, 1993). 
During the period 1979 to 1982 observations were made on a number of young 
drug-dependent Californians who had injected a new "synthetic heroin" and 
had developed a serious and irreversible Parkinson syndrome (Davis et al., 
1979). These patients exhibited all the symptoms typical of PD and responded 
well to treatment with L-DOPA and dopamine-receptor agonists. Analysis of 
the "synthetic heroin" showed it contained not only about 25% of the actual 
active agent 1-methyl-4-phenyl-4-propionoxypiperidine, but also up to 2.9% 
MPTP (Langston et al., 1983). The potential of this substance to produce the 
Parkinson syndrome was subsequently confirmed in various animal families 
(for reviews see Zigmond and Stricker, 1989; Gerlach et al., 1991; Heikkila 
and Sonsalla, 1991). Biochemical and histological investigations demon- 
strated that the MPTP-induced Parkinson syndrome in man exactly coincided 
with PD in all salient features (for a review see Gerlach et al., 1991). The 
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animal experimental  MPTP syndrome is now considered to be the model  
which most accurately reproduces all aspects of PD in man. 

2.3.1 Factors influencing the neurotoxic action of MPTP 

2.3.1.1 The kinds and families of  laboratory animals used. Neurological  effects 
following systemic application of MPTP have been found in a variety of 
animal families, including monkeys,  mice, dogs, cats, sheep and even goldfish 
(for a review see Zigmond and Stricker, 1989; Gerlach et al., 1991; Heikki la  
and Sonsalla, 1991; Tipton and Singer, 1993). Notable are the marked  differ- 
ences with regard to sensitivity to the neurotoxic action of MPTP. Table 4 
gives an overview of MPTP dosages and their effects on striatal dopamine 
concentrations for the most  commonly  used laboratory animals. Even  large 
doses of MPTP elicit only slight neurotoxic effects in rats and guineapigs. In 
order  to produce dopamine  losses similar to those seen in monkeys in even the 
most sensitive strain of mice, the C57/Black mouse,  a 50-fold dose of MPTP is 
required. 

The reasons for the differential sensitivities be tween animal families and 
subspecies are still not completely understood,  however  the differential phar- 
macokinetics of MPTP, and the differential distribution and excretion rate of 
its main metaboli te  MPP +, may be chiefly responsible. Other  factors influenc- 
ing these species-differences such as neuromelanin ,  differences in the distribu- 

Table 4. Relative toxicity of MPTP in various different families, species and strains 
of animals 

Animal family Cumulative Dopamine Reference 
dose (mg/kg) concentration 

(% of normal values) 

Rodents 
- Rat 

Sprague-Dawley 151 77 (Caudate nucleus) 
- Guineapigs 105 50 (Striatum) 
- Mouse 

C57/Black 90 24 (Caudate nucleus) 
CF/1 80 60 (Striatum) 

Swiss-Webster 410 35 (Striatum) 

Non-human primates 
Common marmoset 6.9-9.2 
Rhesus monkey 1.5 

2.1-6.5 

Squirrel monkey 2 

15 (Caudate nucleus) 
3 (Striatum) 
0.4 (Caudate nucleus) 
0.5 (Putamen) 

30 (Caudate nucleus) 
15 (Putamen) 

Przuntek et al. (1985) 
Chiueh et al. (1984) 

Gerlach et al. (1993) 
Riachi and 

Harik (1988) 
Weihmuller et al. 

(1989) 

Rose et al. (1990) 
Chiueh et al. (1984) 
Pifl et al. (1988) 

Irwin et al. (1990) 

The doses of MPTP are calculated as the free base 
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tion and localisation of MAO-subtypes in the brain, differences in dopamine 
metabolism and the anti-oxidant content of the nigro-striatal system, also 
appear to play a role (for reviews see Gerlach et al., 1991; Tipton and Singer, 
1993). 

2.3.1.2 Intraindividual variability. In addition to differential sensitivity be- 
tween animal families and subspecies to the neurotoxic action of MPTP, there 
also appear considerable individual differences. These are particularly 
marked and striking in monkeys. Because of these individual differences in 
sensitivity, many laboratories do not have a standard scheme of dosage for 
producing a Parkinson-syndrome. Instead each animal is given a dose of 
MPTP adequate to initiate an assortment of Parkinsonian symptoms persist- 
ing over several weeks. 

The causes of individual differences in sensitivity to MPTP among animals 
of the same species are not known, and have also received little systematic 
investigation. It is possible that individual variability in the sensitivity of the 
different dopaminergic neuronal systems and the biological variability in the 
function of compensatory mechanisms play a deciding role. Investigations in 
monkeys have indeed shown that in animals which show no symptoms the 
dopamine loss in the striatum (75 %) is less than that in animals which do show 
symptoms (>95%) (Elsworth et al., 1989). Furthermore, in symptomatic ani- 
mals extra-striatal dopamine losses suggest that the mesolimbic dopaminergic 
system is also lesioned (Elsworth et al., 1989; Pifl et al., 1990). 

2.3.1.3 The age of  the animals. Since PD is an illness occurring late in life, and 
because either exogenous or endogenous MPTP-like neurotoxins might pos- 
sibly play a part in its pathogenesis, the interesting question arises whether 
older animals are more sensitive to the neurotoxic action of MPTP than 
younger ones. In fact, in mice such an age-dependency could indeed be 
observed (for a review see Heikkila and Sonsalla, 1989). Older animals are 
more severely damaged than younger ones, and additionally, showed less 
ability to achieve a functional recovery. Earlier results have been substantially 
confirmed in a systematic investigation of C57/Black mice with an age range 
from 2 to 24 months (Irwin et al., 1992). Between the second and 10th month 
of life (corresponding in man to youth and early adulthood) the increase in 
sensitivity to MPTP is greatest. Between the 10th and 16th months of life 
(corresponding in man to young adulthood to middle age) a further slight 
increase in sensitivity can be demonstrated, which however increases no 
further but rather decreases slightly till the 24th month of life. During the 22 
month observation period there was no age-dependent decrease in dopamine 
concentrations such as that which occurs in man (Riederer and Wuketich, 
1976). However, it is interesting that MAO-B activity shows a similar time- 
course as the age-dependent sensitivity to MPTP, but the sensitivity to MPP +, 
in whose formation MAO-B is involved, is independent of the age of animals. 
A possible conclusion is the MPP + may not be the ultimate toxin (see 2.3.3). 
This conclusion is corroborated by an investigation in which the concen- 
trations of MPTP and MPP + in various brain regions from NMRI and C57 



1006 M. Gerlach and P. Riederer 

Black mice and Sprague-Dawley rats were measured after systemic adminis- 
tration of MPTP (Nwanze et al., 1995): The tissue concentration of MPP + 
appeared not to be the determing factor for vulnerability of dopamine and 
noradrenaline neurons to MPTP, because equal concentrations of MPP + were 
found in regions showing marked as well as no neurotoxic effects of MPTP. 

These age-dependent effects have been confirmed in primates. Young 
marmosets (common marmosets, callithrix jacchus; 6-8 months old) are more 
resistant than early adult (2-4 year-old) or late adult (8-10 year-old) animals 
(Rose et al., 1993): In order to obtain the same degree of severity of symp- 
toms, young animals require higher doses of MPTP over a longer period. The 
effect of this in the young animals is a massive loss of dopamine from the 
striatum. In comparison to these young animals, the young adult and late 
adult animals cope better with functional disturbances. 

2.3.1.4 The influence of experimental design. Beside the genus-dependent 
variations in sensitivity to MPTP, individual susceptibility and age, a number 
of other factors have a significant influence. Thus different methods of 
administration (the mode of injection - whether s.c. or i.p; number and 
frequency) of the same dose of MPTP may produce different results. This is 
demonstrated in Table 5 which displays examples of various experimental 
protocols. 

The neurotoxic action of MPTP is potentiated by lesioning of the locus 
ceruleus. In the mouse this can be provoked by the additional systemic admin- 
istration of the noradrenergic neurotoxin DSP-4 (Marien et al., 1993). In the 
squirrel monkey (saimiri sciureus) the same effect was shown after bilateral 
injections of 6-OHDA (Mavridis et al., 1991). Other pharmacological 
potentiating interventions include additional administration of diethyldi- 
thiocarbamate (DDC) (Corsini et al., 1985), alcohol, and acetaldehyde 
(Corsini et al., 1987). However, these approaches have been restricted to 
mice. All these substances affect neurotoxin-metabolising enzymes, and this is 
the mechanism by which they accentuate the neurotoxic effect of MPTP. 
Thus, DDC is a substance which chelates copper, and by so doing inactivates 
a range of copper-containing enzymes such as SOD and aldehyde dehydroge- 
nase; high doses of acetaldehyde inhibit aldehyde dehydrogenase. 

2.3.2 Neurotoxic action 
One of the central problems concerning the MPTP model is the question of 
the longevity of MPTP effects. Although initially no long-term investigations 
were available, it was concluded on the basis of the human Parkinsonian 
syndrome that the neurotoxin also led to a permanent damage of the nigro- 
striatal system and a corresponding functional disturbance in animals. Long- 
term studies involve an enormous experimental investment, and in addition, 
the MPTP-damaged monkeys, because of their massively compromised motor 
behaviour, require intensive care. Thus a few systematic long-term studies 
have been undertaken. What is striking about their results is the discrepancy 
between the neurochemical and behavioural effects on rodents and on 
monkeys. 



T
ab

le
 5

. 
E

x
p

er
im

en
ta

l 
fa

ct
or

s 
in

fl
ue

nc
in

g 
th

e 
ne

ur
ot

ox
ic

 e
ff

ec
t 

of
 M

P
T

P
 o

n 
th

e 
C

57
/B

la
ck

 m
o

u
se

 

C
um

ul
at

iv
e 

do
se

 
E

x
p

er
im

en
ta

l 
pr

ot
oc

ol
 

D
o

p
am

in
e 

lo
ss

 
R

ef
er

en
ce

s 
(m

g/
kg

 a
s 

fr
ee

 b
as

e)
 

(%
 o

f 
no

rm
al

 v
al

ue
s)

 

M
od

e 
an

d 
fr

eq
ue

nc
y 

of
 th

e 
in

je
ct

io
ns

 
30

0 
30

m
g/

kg
 i

.p
. 

on
ce

 a
 d

ay
 f

or
 1

0 
da

ys
. 

80
 

A
ni

m
al

s 
ki

ll
ed

 1
2 

da
ys

 a
ft

er
 t

he
 l

as
t 

tr
ea

tm
en

t.
 

80
 

20
 m

g/
kg

 i
.p

. 
4 

ti
m

es
 a

t 
2-

ho
ur

 i
nt

er
va

ls
. 

80
 

A
ni

m
al

s 
ki

ll
ed

 1
2 

da
ys

 a
ft

er
 t

he
 l

as
t 

tr
ea

tm
en

t.
 

40
 

10
m

g/
kg

 i
.p

. 
4 

ti
m

es
 a

t 
2-

ho
ur

 i
nt

er
va

ls
. 

40
 

A
ni

m
al

s 
ki

ll
ed

 o
n

e 
w

ee
k 

af
te

r 
th

e 
la

st
 t

re
at

m
en

t.
 

40
 

S
in

gl
e 

su
bc

ut
an

eo
us

 i
nj

ec
ti

on
. 

80
 

A
ni

m
al

s 
ki

ll
ed

 1
2 

da
ys

 a
ft

er
 t

he
 l

as
t 

tr
ea

tm
en

t.
 

80
 

40
m

/k
g 

su
bc

ut
an

eo
us

ly
 1

6 
ho

ur
s 

ap
ar

t.
 

79
 

A
ni

m
al

s 
ki

ll
ed

 4
 w

ee
ks

 a
ft

er
 t

he
 l

as
t 

tr
ea

tm
en

t.
 

Ti
m

e 
af

te
r 

w
hi

ch
 t

he
 e

ff
ec

t 
is

 m
ea

su
re

d 
30

0 
30

m
g/

i.
p.

 d
ai

ly
 f

or
 1

0 
da

ys
. 

1 
w

ee
k 

af
te

r 
th

e 
la

st
 t

re
at

m
en

t 
66

 
3 

w
ee

ks
 a

ft
er

 t
he

 l
as

t 
tr

ea
tm

en
t 

70
 

2 
m

on
th

s 
af

te
r 

th
e 

la
st

 t
re

at
m

en
t 

35
 

4 
m

on
th

s 
af

te
r 

th
e 

la
st

 t
re

at
m

en
t 

14
 

H
ei

kk
il

a 
et

 a
l. 

(1
98

9)
 

H
ei

kk
il

a 
et

 a
l. 

(1
98

9)
 

M
ar

ie
n 

et
 a

l. 
(1

99
3)

 

H
ei

kk
il

a 
et

 a
l. 

(1
98

9)
 

S
un

ds
tr

6m
 e

t 
al

. 
(1

99
0)

 

R
ic

au
rt

e 
et

 a
l. 

(1
98

6)
 

�9
 

t~
 

A
ll

 e
xp

er
im

en
ta

l 
an

im
al

s 
w

ei
gh

ed
 a

t 
le

as
t 

25
 g

, 
an

d 
w

er
e 

ag
ed

 b
et

w
ee

n
 6

 a
nd

 1
0 

w
ee

ks
; 

i.p
. 

in
tr

ap
er

it
on

ea
l 



1008 M. Gerlach and P. Riederer 

Mice, in spite of the massive damage to the dopaminergic system caused 
by the application of MPTP together with acetaldehyde, already show normal 
spontaneous behaviour 24 hours later, and at seven days post-treatment the 
animals are no longer hypokinetic despite a 93% loss of dopamine (Zuddas et 
al., 1992). This dopamine deficiency is maintained four months following 
MPTP treatment. Similar results were described with marmosets - a species of 
monkey at a lower evolutionary level of development - (Ueki et al., 1989). 
Although dopamine was still markedly depleted in the striatum 12-18 months 
after the application of MPTP (95% in the caudate nucleus; 93% in the 
putamen), the motor performance of the animals had recovered, and the 
animals exhibited normal motor behaviour. Two possible mechanisms re- 
sponsible for this were discussed: first, that there might be processes for 
regeneration of damaged nerve-endings or collatered formation of intact 
neurons (see for example Gaspar et al., 1993); or second, the occurrence of 
compensatory mechanisms (plasticity of the brain). 

In higher primates such as the baboon (papio papio) or rhesus monkeys 
(macaca mulatta) a permanent Parkinsonian syndrome is observed. Baboons 
injected weekly with 0.4-0.5mg/kg MPTP intravenously up to the age of 
20 months, exhibit a stable Parkinsonian syndrome, which is observed even 
16 months after the last dose of MPTP (Hantraye et al., 1993). Old 
rhesus monkeys (over 23 years of age) which had been injected with MPTP 
(0.4mg/kg) bilaterally into the cerebral artery similarly developed a stable 
Parkinsonian syndrome which persisted up to a maximum of 45 days after the 
lesion. A 95% loss of total motor activity could still be demonstrated 12 
months after the lesion (Smith et al., 1993). In neither experiments no neuro- 
chemical analyse were performed, thus it is not possible to comment on the 
neurochemical correlation of this functional disturbance. 

The MPTP-induced Parkinsonism can be treated both in man and in 
non-human primates with L-DOPA and dopamine-Da-receptor agonists (e.g. 
Davis et al., 1979; Burns et al., 1983; Bddard and Boucher, 1989; Close et al., 
1990). The non-competitive NMDA-receptor antagonist MK-801 applied 
systemically had no effect on improving the symptoms in monkeys (Crossman 
et al., 1989; Close et al., 1990). On the other hand, the competitive NMDA- 
receptor antagonists CPP (L6schmann et al., 1991) and CGP 40.116 (Wallner 
et al., 1992) potentiated the action of L-DOPA. The effects of the AMPA- 
receptor antagonist NBQX is controversial and has not been definitely es- 
tablished (Klockgether et al., 1991; Luquin et al., 1993). Controversy also 
surrounds the potentiation of dopamine D1 and D2 agonist effects by the 
systemic application of glutamate antagonists (see for a review Starr, 1995). 

Prophylactic treatment with MAO-B inhibitors (for example selegiline) 
and dopamine-uptake inhibitors (for example nomifensine) protects monkeys 
from the neurotoxic action of MPTP by preventing it from being metabolised 
to MPP + or from being taken up into the dopaminergic neurons (for a review 
see Gerlach et al., 1991). The neuroprotective action of the antioxidants 
vitamin C and vitamin E has also not been established (for a review see 
Gerlach et al., 1991). In marmosets which were treated with high doses of 
vitamin C (100mg daily) and vitamin E (2,350mg daily) no protective effect 
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against the MPTP-induced depletion of dopamine in the striatum could be 
demonstrated (Mihatsch et al., 1991). The neurotoxic effects of MPTP could, 
however, be partially prevented by prior administration of SH-containing 
antioxidants such as cysteamine or dimercaprol (Oishi et al., 1991). A combi- 
nation of coenzyme Q(10) and nicotineamide protected against both mild and 
moderate depletion of dopamine (Schulz et al., 1995a). In the MPTP regimen 
which produced mild dopamine depletion nicotineamide or the free radical 
spin trap S-PBN were also effective. These treatment, however, afforded no 
protection against a MPTP regimen which produced severe dopamine deple- 
tion. These results might explain the reported differences in regard to the 
neuroprotective effects of antioxidants. Partial protection has also been dem- 
onstrated by ergot alkaloids (Bernocchi et al., 1993), lipid membrane compo- 
nents such as GMl-gangliosides (Fazzini et al., 1990), inhibitors of neuronal 
nitric oxide synthase (Schulz et al., 1995b), intracerebral chronic administra- 
tion of neurotophins such as BDNF (brain-derived neurotrophic factor) and 
FGF (fibroblast growth factor) (Otto and Unsicker, 1990; Tsukahara et al., 
1995), and calcium channel blockers such as nimodipine (Gerlach et al., 1993; 
Kupsch et al., 1995). The neuroprotective action of NMDA antagonists, which 
also interfere with intracellular calcium influxes, is not yet established: While 
MK-801 showed no neuroprotective action in mice (Kupsch et al., 1992; 
Sonsalla et al., 1992), the NMDA antagonist CPP protects SN neurons from 
MPTP-induced degeneration in primates (Lange et al., 1993). 

2.3.2.1 Behavioural changes. Monkeys treated with MPTP develop motor 
disturbances comparable to those in man (for reviews see Stern, 1990; Gerlach 
et al., 1991). The most prominent of these are akinesia and rigidity; resting 
tremor on the other hand is only seen in isolated instances. The precise 
appearance of symptoms varies, depending on the species, age and dosage. 
MPTP-syndromes have been described, among others, in rhesus monkeys 
(Burns et al., 1983; Smith et al., 1993), in squirrel monkeys (Irwin et al., 1990), 
in macaques (Crossman et al., 1989), in baboons (Hantraye et al., 1993) and 
above all in marmosets (Ueki et al., 1989; Russ et al., 1991). The quantitation 
of the symptoms in monkeys is achieved using modified PD scales. Various 
types of apparatus have also been applied to measure spontaneous locomotor 
activity, for example cages with a light-barrier, with which one can gain a 
measure of the mean total activity per unit time. 

MPTP-damaged mice, after the initial acute toxity effects such as 
mydriasis, piloerection, hypersalivation and clonic seizures have worn off (15- 
30 minutes) recover normal spontaneous behaviour relatively rapidly (e.g. 
Sundstr6m et al., 1990; Zuddas et al., 1992). Hypokinesia is scarcely no- 
ticeable (Weihmuller et al., 1989; Zuddas et al., 1992), although decreased 
locomotor activity ( - 6 6 % )  has been described (Sundstr6m et al., 1990). Re- 
markable, however, is the motor behaviour of MPTP-damaged mice which 
are injected with small doses of haloperidol (0.2mg/kg i.p.) (Weihmuller et al., 
1989). At this dosage, haloperidol elicits no changes in motor behaviour in the 
undamaged animal, but in the MPTP-lesioned animal one can clearly measure 
a distinct deterioration of somatosensory orientation. This normalises itself - 
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in parallel with the striatal dopamine content - over a period of three to five 
months. Additionally, the MPTP-damaged animal exhibits akinesia and 
catalepsy; and these motor disturbances are indeed still present after five 
months (Weihmuller et al., 1989). These changes in motor behaviour are 
attributed to the supersensitivity of dopaminergic neurons produced by 
MPTP. 

2.3.2.2 Histopathological changes. The literature contains only one report of 
a post mortem study on a heroin-addict who suffered from an MPTP-induced 
Parkinsonian syndrome. The histological investigation showed a selective 
destruction of dopaminergic neurones of the SN pars compacta (Davis et al., 
1979). In the majority of cases while there a selective destruction of SN 
neurons has been described in MPTP-treated non-human primates as well 
(e.g. Burns et al., 1983; Ueki et al., 1989; Mavridis et al., 1991; Bernocchi et al., 
1993; Hantraye et al., 1993); more detailed examination show that other 
regions of the brain are also affected (Mitchell et al., 1985; German et al., 
1988; Gibb et al., 1989; Forno et al., 1993). Especially in older animals, a loss 
of neurons is also found in the locus ceruleus (Mitchell et al., 1985; Forno et 
al., 1993). Immunocytochemical methods also demonstrated that even in 
younger animals losses of TH-immunoreactive neurons has occurred in the 
VTA and the hypothalamus (German et al., 1988): quantitative evaluation 
showed that a cumulative dose of 1.75-4.59mg/kg MPTP in macaques led to 
a cell loss between 46% and 93% in the SN pars compacta, though only 28% 
to 57% in the VTA. This procedure leads to a stable Parkinsonian syndrome 
with a more than 99% loss of dopamine in the striatum. 

The presence of Lewy bodies - an equally characteristic pathological 
marker of PD in man - has not been definitely established in MPTP-damaged 
non-human primates. In old monkeys eosinophil inclusion-bodies have been 
diagnosed to occur in those brain structures in which Lewy-bodies are found 
in humans (Forno et al., 1993), but the significance of this finding is difficult to 
judge because of the differences in their morphological and immunocy- 
tochemical characteristics. 

Systematic investigations, including all brain regions, are not available for 
the mouse. Immunocytochemical analyses using antibodies against TH show 
an average loss of 40% in the SN of MPTP treated C57/Black mice (cumula- 
tive dose 80mg/kg) (e.g. Date et al., 1990; Kupsch et al., 1992), and there was 
additionally a 17% loss in the VTA (Date et al., 1990). This degree of damage 
leads to a substantial depletion ( -85%)  of dopamine in the striatum of the 
affected animals (Date et al., 1990). Semi-quantitative investigations, in which 
as well as the immunocytochemical methods Nissl-staining was used, con- 
firmed these results (Seniuk et al., 1990). Further, it was shown that neurons 
in the locus ceruleus and the hypothalamus were also damaged (Seniuk et al., 
1990). 

2.3.2.3 Neurochemical changes. MPTP produces a series of neurochemical 
changes in primates and rodents. Table 6 summarises the salient features of 
the results obtained in monkeys. Decreased concentrations of dopamine and 
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its metabolites, diminished TH activities and fewer dopamine-uptake sites in 
the striatum and the globus pallidus show what damage has been done to the 
nigro-striatal dopaminergic system. By analogy with the histological findings, 
these changes are not restricted to that system (Table 6). Reduced noradrena- 
line concentrations are found in cortical and limbic areas (for example -79% 
in the motor cortex, -78% in the supplementary cortex, -63-75% in the 
frontal cortex, -59  % in the entorhinal cortex, -69% in the horn of Ammon) 
(Pifl et al., 1991). In contrast to the neurotransmitters dopamine, noradrena- 
line and serotonin, neuropeptides seem to be less affected by MPTP. The 
concentrations of methionine- and leucine-enkephalins as well as cholecysto- 
kinin, substance P and neurotensin are unchanged at least in the basal ganglia 
of MPTP-treated marmosets (Taylor et al., 1991). 

The question of whether MPTP provokes an interregional dopamine 
depletion in the striatum as one sees it in the brains of patients with PD has 
given contradictory answers. In the marmoset (Russ et al., 1991) and 
the squirrel monkey (Moratalla et al., 1992) the putamen is more severely 
affected than the caudate nucleus, but in the macaque (Alexander et al., 
1991) the results were the other way round. These differences do not appear 
to be species-dependent, however, because in the marmoset different experi- 
mental protocols have led to divergent results (Russ et al., 1991; Taylor et al., 
1991). 

By analogy with some of the results in PD, with the MPTP model in 
macaques one finds a diminished [3H]spiperone-binding density of the D2- 
dopamine receptor ( -40% in the putamen, -25% in the caudate nucleus), 
but not a diminished [3H]SCH-23390-binding density of the Dl-receptor 
(Alexander et al., 1991). This is limited to the lateral portions and can be 
explained on the basis of the supersensitivity of the post-synaptic dopamine 
D2-receptor. Treatment with the dopamine D2-receptor agonist (+)-PHNO 
results in a 40-70% decrease in the [3H]spiperone-binding sites, which above 
all is based on the down-regulation of the dopamine D2-receptor by the 
agonist. 

The essential features of the neurochemical effects observed in primates 
under MPTP-treatment, such as the depletion of dopamine in the nigro- 
striatal and mesolimbic systems or of noradrenaline in cortical regions can 
also be demonstrated in various strains of mice (e.g. Heikkila et al., 1989; 
Weihmuller et al., 1989; Date et al., 1990; Seniuk et al., 1990; SundstrOm et al., 
1990; Gerlach et al., 1993). 

2.3.3 The mechanism of the neurotoxic action 
The precise pathological mechanism of the neurodegeneration caused by 
MPTP has not been definitely established. Cells, including neurons, die by 
necrosis or programmed cell death (e.g. Vaux, 1993), which can be differen- 
tiated by distinct morphological and biochemical features (e.g. Buja et al., 
1993). Programmed cell death having the morphology of apoptosis plays a 
critical role in development and morphogenesis. In vitro data showing that 
MPP + can cause apoptotic cell death in cerebellar granule cells (Dipasquale et 
al., 1991), in PC12 cell lines (Hartley et al., 1994), and in fetal mesencephalic 
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Fig. 1. Pathobiochemical mechanisms of MPTP-induced neurotoxic action on dopamin- 
ergic neurons (adapted from Gerlach et al., 1996a). Further details are discussed in the 
text. CoQ ubiquinone, C o Q H  2 ubiquinol, M A  O monoamine oxidase, M P D P  + 1-methyl- 
4-phenyl-2,3-dihydropyridinium ion, M P P  + 1-methyl-4-phenylpyridinium ion, M P T P  

1-methyl-4-phenyl-l,2,3,6-tetrahydropyridine 

neurons (Mochizuki et al., 1994) have been reported. However, recent inves- 
tigations in mice provide no evidence that MPTP kills neurons by apoptosis in 
vivo at one and 2 days after MPTP administration (Jackson-Lewis et al., 
1995). 

What is certain is that the mechanism of MPTP neurotoxicity involves 
several steps (see Gerlach et al., 1991; Tipton and Singer, 1993 for recent 
reviews; Fig. 1), two of them being potentially important to explain the pref- 
erential vulnerability of the nigral dopaminergic neurons projecting to striatal 
regions (caudate nucleus, putamen). In a first step MPTP, which readily 
penetrates the brain, is converted, possibly in the glia by MAO-B to MPP +, 
the probably ultimate toxic agent. The second step is a fairly selective uptake 
of MPP + by dopaminergic terminals in the striatum via the monoamine trans- 
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porter and a subsequent intraterminal vesicular storage. What has not yet 
been established, however, are the processes by which MPP + or other toxic 
metabolites damage the nerve cells so that they become non-functional and 
eventually die. The following theories have crystallised from the immense 
amount of experimental data (for a review see Gerlach et al., 1993; Tipton and 
Singer, 1993): 

- M P P  + damages dopaminergic neurons through inhibition o f  mitochon- 
drial respiratory chain enzymes and subsequent A TP-exhaustion: the selective 
inhibition of complex-I activity by high concentrations of MPP + (1-2raM), 
which has been shown in vitro in heart and liver mitochondria, might on its 
own be considered sufficient cause of the nerve degeneration. However, the 
recent in vivo findings that acute MPTP treatment has no effect on any of 
the enzymes of the respiratory chain (Gerlach et al., 1996a) suggest that 
factors other than mitochondrial impairment may be involved in MPTP 
neurotoxicity. 

- Dopaminergic neurons are more severely exposed to "oxidative stress". 
Obata and Chiueh (1992) have used the technique of microdialysis 
to demonstrate in vivo that MPDP + (1-methyl-4-phenyl-2,3- 
dihydropyridinium ion, a further MPTP metabolite) as well as MPP + on intra- 
striatal application are briefly able to potentiate dopamine liberation from 
dopaminergic neurons in the rat, and indirectly that there was a brief produc- 
tion of hydroxyl free radicals, as evidenced by the reaction products formed 
with salicylic acid. In in vitro investigations using ESR (electron spin reso- 
nance) spectroscopy it could be shown that superoxide free radicals are 
formed during the metabolism of MPTP (e.g. Rossetti et al., 1988; Zang and 
Misra, 1992). Additionally, Adams et al. (1993) demonstrated that hydrogen 
peroxide and hydroxyl radicals are also products of the interaction of MPP + 
with complex I. We may assess the finding that MPTP leads to a liberation of 
iron(II) and iron(III) in the SN of monkeys (Temlett et al., 1994) as further 
evidence for the involvement of hydroxyl free radicals in the MPTP-induced 
neurodegeneration. Increased free iron concentrations were demonstrated 
not only in the damaged dopaminergic neurons but also in the surrounding 
matrix and glial cells. The animal experimental MPTP model provided further 
indirect evidence for the presence of "oxidative stress" in rodents, such as 
increased lipid peroxidation (Rios and Tapia, 1987) and diminished concen- 
trations of the anti-oxidants vitamin C, GSH and uric acid (Riederer et al., 
1988; Oishi et al., 1991; Desole et al., 1993). However, these findings cannot be 
clearly shown in non-human primates. For example, the most recent investiga- 
tions in the common marmoset did not show any significant alterations of the 
endogenous antioxidants GSH and ubiquinol (the reduced form of coenzyme 
Q) one week after cessation of MPTP administration (Gerlach et al., 1996a). 
Although transient effects can not be ruled out, we believe that at least a 
primary oxidative damage to complex I by MPP + is excluded, because this 
would lead to an irreversible damage to complex I, but no inhibition of 
complex-I activity was found in our experiments ex vivo one week after the 
last toxine exposure (Gerlach et al., 1996a). In addition, our data cannot 
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provide support for the proposed hypothesis that cellular damage to nigro- 
striatal neurons is caused primarily by inhibition of ATP synthesis due to 
specific binding of MPP + to the rotenone-sensitive site of mitochondrial com- 
plex I (Bates et al., 1994). Following this assumption, a considerable decrease 
in the levels of GSH would be expected, as ATP is required for the synthesis 
of GSH (e.g. Mith6fer et al., 1992). In conclusion, these results suggest that 
other factors than mitochondrial impairment and/or "oxidative stress" may be 
involved in MPTP neurotoxicity in primates. Alternatively, the results imply 
that the MPP § is not the ultimate neurotoxin leading to dopaminergic cell 
death following systemic MPTP treatment. 

- The neurotoxic effect o f  M P T P  is caused by a disturbance o f  calcium 
homeostasis. The calcium hypothesis postulates that whenever pathologically 
increased intracellular calcium concentration occur, there will be an uncon- 
trolled stimulation of calcium-dependent enzyme reactions, and that these 
will lead to altered cell function and the destruction of cellular structures 
(Siesj6, 1990). For example, the activation of calpains I & II lead to changes 
in the cyto-skeleton; activation of protein kinase C and nitric oxide synthase 
leads to the formation of toxic free radicals; activation of phospholipase A2 
leads to the degradation of phospholipid membranes. The fatty acids liberated 
in this process, for example arachidonic acid, move into the extracellular 
space where further breakdown processes convert them into free radicals. A 
vicious circle is thus created whereby the cell-damaging mechanisms are cre- 
ated and even potentiated. A collapse of calcium homeostasis within the 
mitochondria of dopaminergic nerve cells can be provoked not only by dam- 
age of the mitochondrial membrane by a free-radical mechanism but also by 
the inhibition of the mitochondrial respiratory chain enzymes. It was origi- 
nally assumed that excessive calcium influx into neurons was caused by "volt- 
age-dependent" ion channels, but a calcium influx coupled to the NMDA 
receptor and/or free radical-induced membrane damage could equally lead to 
a breakdown of calcium homeostasis. Thus it can be argued that the break- 
down of intraneuronal calcium homeostasis represents an ultimate 
pathobiochemical mechanism which may also occur as the result of these 
previously described mechanisms. In the light of this hypothesis it appears 
probable that the effects of various neurotoxins which exert their actions via 
a variety of different pathological mechanisms could all be prevented by 
calcium-channel blockers. In fact, in animal experiments using the MPTP 
model in the mouse and in the monkey, a neuroprotective effect was indeed 
demonstrated with the calcium-channel blocker nimodipine (Kupsch et al., 
1995, 1996). Similarly, glutamate antagonists such as NMDA receptor 
blockers partially prevent MPTP-induced neurotoxicity in non-human pri- 
mates (Zuddas et al., 1992; Lange et al., 1993). 

2.4 Intracerebral administration of MPP § 

Because rats are fairly resistant to the neurotoxic effects of MPTP, and the 
toxic metabolite MPP + cannot cross the blood-brain-barrier, the action of 
intracerebrally injected MPP + has also been investigated. 
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2.4.1 Neurotoxic effects 
Injection into the SN (Heikkila et al., 1985) and the median forebrain bundle 
(Altar et al., 1986) as well as intrastriatal perfusion (Obata and Chiueh, 1992) 
all lead to a massive loss of dopamine in the striatum. Unilateral injections 
of MPP + (10, 17.5 or 25 ~g) into the medial forebrain bundle however also 
induce an 83-98% loss of dopamine from the nucleus accumbens on the same 
side which is not distinguishable from that demonstrated in the striatum 
(Altar et al., 1986). MPP + at the highest dose additionally induces a 60% loss 
of GABA from the SN on the same side (Altar et al., 1986). Apparently, MPP + 
destroys not only the nigro-striatal and mesolimbic dopaminergic neurons 
but also GABA-ergic striatal neurons. This is also expressed in the atypical 
circling behaviour of the lesioned animals (Altar et al., 1986): neither 
apomorphine (0.25mg/kg i.p.) nor c-DOPA (10mg/kg i.p.) elicit circling 
behaviour, but D-amphetamine (1.5 mg/kg i.p.) induces robust ipsilateral rota- 
tional motion. 

The non-specific toxicity of MPP + is also confirmed by histological studies. 
MPP § (estimated amount 0.5-10.8nMol) applied to the SN by iontophoresis 
leads to a general destruction of neurons and glial cells with necrotic defects 
and vacuoles in various different neurons, membrane damage and gliosis (Ter 
Horst et al., 1992). These effects are however difficult to reconcile with the 
findings of a selective uptake of MPP + into dopaminergic neurons by the 
dopamine-carrier system which thus explains the selective action of MPTP on 
dopaminergic neurons. 

2.4.2 The mechanism of the neurotoxic actions 
As previously discussed, MPP + could damage neurons through inhibition of 
mitochondrial respiratory chain enzymes and subsequent ATP-exhaustion. 
Further, the generation of hydroxyl free radicals could lead to the non-specific 
destruction of neuron- and glial membranes, thus explaining the observed 
histological findings. 

Acute administration of 10mM MPP +, either through a microdialysis 
probe (Obata and Chiueh, 1992) or by direct intrastriatal injection (e.g. 
Ballarin et al., 1989), causes a dramatic release of dopamine (30-fold com- 
pared to the baseline level) and a decrease of its metabolites DOPAC and 
HVA, lasting for more than two hours (Obata and Chiueh, 1992). A similar 
effect could be elicited by rotenone (Santiago et al., 1995), a typically inhibitor 
of complex I, and MPDP + (Obata and Chiueh, 1992), suggesting that the 
dopamine uptake system may have low selectivity. The MPP+-induced 
dopamine release is voltage-sensitive and calcium-dependent (see Obata and 
Chiueh, 1992). Moreover, this dopamine releasing action of MPP + and 
MPDP + is dose-dependent (1 to 10raM); in contrast, MPTP failed to increase 
dopamine levels in the dialysate of the striatum (Obata and Chiueh, 1992). 
Two days after the lesion with MPP +, however, a 40% decrease in extracellu- 
lar dopamine levels were measured, which lasts for at least 60 days (Espino et 
al., 1995). A similar effect could be induced with 6-OHDA (Espino et al., 
1995). However, the mechanisms underlying the neurotoxic actions of MPP + 
and 6-OHDA must be different, as has been suggested by the study of the 
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time-course, the recovery from the lesions and the affectation of the SN 
neurons (Espino et al., 1995). 

In addition to the liberation of dopamine, MPP + at 10mM maximally 
stimulated glutamate and aspartate release to 230- and 68-fold of baseline, 
respectively (Carboni et al., 1990). This release could not be observed with 
l mM MPP +. Pretreatment with the NMDA receptor antagonists MK-801 
(5 mg/kg i.p.) prevented the MPP+-induced release of the EAA aspartate and 
glutamate. In contrast, MK-801 had no effect on dopamine release either 
induced by 1 or 10raM MPP + (Carboni et al., 1990). These results suggest that 
MPP+-induced dopamine and EAA release are independently regulated pro- 
cesses. Because NMDA receptors are able to prevent MPP + toxicity in the SN 
(Turski et al., 1991), it has also been hypothesized that MPP + produced 
neuronal impairment of energy metabolism, which may result in membrane 
metabolism and excitotoxic neuronal degeneration (Storey et al., 1992). 

2.5 Administration of MPTP-like synthetic compounds 

The ability of MPTP to cause a parkinsonian condition has led to suggestions 
that there may be a naturally occuring or environmental toxin that causes PD. 
The extent to which such a compound might resemble MPTP in its actions is 
generally not specificed, although it is often tacitly assumed that activation by 
MAO-B and inhibition of mitochondrial function by the activated metabolite 
would be an important feature. Several compounds have been suggested as 
potential candidates for endogenous neurotoxins including 4-phenylpyridine 
(Snyder and D'Amato, 1985), paraquat (Lambert and Bondy, 1989), 1,2,3,4- 
tetrahydroisoquinoline and its derivatives (Niwa et al., 1987), and [3- 
carbolines (Collins and Neafsey, 1985). However, although 4-phenylpyridine, 
which is present in several commonly used spices and also occurs in some 
industrial emission, is a substrate for MAO-B (Sullivan and Tipton, 1992), it 
has not been found to be acutely neurotoxic (e.g. Irwin et al., 1987). Further, 
the toxic actions of paraquat are restricted to the periphery because, unlike 
MPTP, it does not readily penetrate the brain (Lambert and Bondy, 1989). 

2.5.1 Tetrahydroisoquinolines 
It has been suggested that 1,2,3,4-tetrahydroisoquinoline alkaloids (Fig. 2) 
may be endogenous toxins, leading to PD by a mechanism similar to that 
of MPTP. Several of these compounds have been found in mammalian 
brain and also in several foods and beverages (for a review see Dostert et al., 
1988). Representative derivatives are 1-methyl-6,7-dihydroxy-l,2,3,4- 
tetrahydroisoquinoline (salsolinol) formed from dopamine and actealdehyde 
and tetrahydropapaveroline formed from dopamine and its metabolite 
DOPAC aldehyde (Fig. 2). Salsolinol possesses an asymmetric center at C-1 
and exists as R and S enantiomers. R-Salsolinol is enantio-specially synthe- 
sized in the human brain by condensation of dopamine with pyruvic acid to 1- 
carboxylsalsolinol, followed by decarboxylation and reduction (Dostert et al., 
1988). Using the microdialysis technique it was shown that the MPTP-like N- 
methyl-(R)-salsolinol is formed in the rat brain by N-methylation of the R- 
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enantiomer of salsolinol (Maruyama et al., 1992). Both of these enantiomers 
were also found predominantly in the human brain (Deng et al., 1995). 

2.5.1.1 Neurotoxic effects of  N-methyl-salsolinol. Unilateral stereotactic injec- 
tion of N-methyl-(R)-salsolinol into the rat striatum leads to a behaviourat, 
neurochemical and pathological condition similar to PD. The animals exhibit 
hypokinesia, a stiff tail, a limb twitching at rest and postural disturbances 
associated with a decrease in the concentration of dopamine and the activity 
of its synthesizing enzyme TH in the nigro-striatal system and a reduction in 
TH-immunoreactive neurons in the SN (Naoi et al., 1996). 

2.5.1.2 The mechanism of the neurotoxic action. Analogous to the mechanisms 
underlying the neurotoxic effects of MPTP, the crucial step in the activation of 
N-methyl-(R)-salsolinol should be the oxidation by MAO. Although it has 
been recently reported both a non-enzymatic (Maruyama et al., 1995b) and an 
enzymatic oxidation of this compound, the enzymatic reaction could not be 
blocked by MAO inhibitors but was sensitive to semicarbazide (Naoi et al., 
1995b). These results indicate that the semicarbazide-sensitive aminie oxidase 
is involved in the bioactivation of N-methyl-(R)-salsolinol. The resulting 
product 1,2-dimethyl-6,7-dihydroisoquinolinium ion, which is structurally re- 
lated to MPP +, has been shown to accumulate in the SN and striatum of rats 
injected with N-methyl-(R)-salsolinol (Naoi et al., 1996). Using human 
dopaminergic neuroblastoma SH-SY5Y cells it was demonstrated that this 
metabolite is selectively transported via the dopamine uptake system 
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(Takahashi et al., 1994). In rats, the intrastriatal perfusion leads to the libera- 
tion of dopamine as well as a reduction in its catabolism (Maruyama et al., 
1995a). In vivo and in vitro investigations point to an involvement of hydroxyl 
radicals in the N-methyl-(R)-salsolinol-induced neurotoxicity (Maruyama et 
al., 1995a). Studies on isolated PC12 cells have shown that the bioactivated 
1,2-dimethyl-6,7-dihydroisoquinolinium ion is a potent toxin, depleting ATP 
and being more potent than its precursor N-methyl-(R)-salsolinol (Naoi et al., 
1995a). 

2.5.2 [3-Carbolines 
Due to its structural similarity to MPTP the [3-carbolines (synonyme 
norharmanes) have also been suggested as possible endogenous toxins lead- 
ing to parkinsonism (Collins and Neafsey, 1985). They may be formed in vivo 
from condensation between tryptophan derivatives and aldehydes. Specifi- 
cally, the 1,2,3,4-tetrahydro-[3-carboline (THBC) has been detected by mass 
spectroscopy in the rat brain and adrenal tissue (Barker et al., 1981). It has 
been recently shown in vivo that also the aldehyde chloral (which is therapeu- 
tically given as an hypnotic) as well as a metabolite of trichloroethylene ("tri", 
a solvent widely used in industry) rapidly react with endogenous tryptamine 
to form the new 1-trichloromethyl-l,2,3,4-tetrahydro-[3-carboline (TaClo, 
tryptamine and chloral) (Bringmann et al., 1995; Fig. 3). Due to its high 
lipophilicity TaClo readily penetrates the brain (Bringmann et al., 1995), as 
has been shown in rats after systemic administration (4mg/kg i.p. for six days). 
However, because of its rapid metabolism only low concentrations of TaClo 
have been detected in the rat brain. 

2.5.2.1 Neurotoxic effects. Owl monkeys (Aotus trivirgatus) chronically 
treated with high daily doses of 1-methyl-THBC (5-50mg, either i.v. or i.p.) 
develop an acute motor behaviour comparable to that of MPTP-treated ani- 
mals, but did not cause persistent motor disturbance nor a loss of nigral cells 
and striatal dopamine (Collins and Neafsey, 1985). However, 1-methyl-THBC 
exposure resembled MPTP in reducing DOPAC levels. 

Intranigral injections of the N-methylated [3-carboline 2-methyl- 
norharman (closely structurally resemble MPP +) into the SN or median fore- 
brain bundle of rats results in a depletion of striatal dopamine and its 
metabolites. Three weeks after intranigral injection of the [~-carboline (137 ~tg 
2-methyl-norharman iodide) striatal dopamine, DOPAC and HVA concen- 
trations ipsilateral to the injection site are reduced 41-64% compared to 
vehicle-injected controls (Neafsey et al., 1989). However, the lesion produced 
by 2-methyl-norharman appeared to be non-specific, affecting dopaminergic 
and non-dopaminergic cells and fibers. Histologically, large lesions and gliosis 
were apparent under light microscopic examination (Neafsey et al., 1989). 

In contrast to 1-methyl-THBC TaClo showed neurotoxic effects in motor 
behaviour of rats (Sontag et al., 1995): The subchronic i.p. injection of a daily 
dose of 0.2 mg/kg over a seven week period leads to an enhanced spontaneous 
locomotor activity and a reduction in the apomorphine-induced increase in 
locomotion four to nine days after cessation of treatment. However, nine 
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weeks following treatment animals walked more slowly during 12 hours of 
nocturnal activity, and apomorphine-induced locomotion was decreased 12 
weeks later. These results suggest that exposure to TaClo may exert a progres- 
sive neurotoxic effect on the dopaminergic nigro-striatal system. The damage 
to the dopaminergic system can also be demonstrated in vivo by a pulsed 
voltammetric procedure (Grote et al., 1995). Using this procedure, pre-synap- 
tically liberated dopamine is indirectly measured via the DOPAC-signal. 
DOPAC is formed intracellularly from dopamine by an MAO-catalysed oxi- 
dation and therefore acts as a marker for the presynaptically liberated dop- 
amine (Zetterstr6m et al., 1988). The unilateral nigral injection of either 
TaClo (10~tg) or the N-methylated derivative (10~g) evokes a diminished 
DOPAC-signal in the ipsilateral striatum: During the first week following the 
lesion there is a 55 and 90% reduction, respectively, on the side of the 
injection compared to the contralateral, intact side, while three weeks later 
the signals are diminished by 74 or 93 (Grote et al., 1995). Again, these results 
confirmed the progressive course provoked by exposure to TaClo. In addition 
they show that the N-methylated TaClo is more toxic than TaClo. 

2.5.2.2 The mechanism of  the neurotoxic action. Because analogues of MPTP 
and MPP + lacking a N-methyl group are essentially devoid of toxicity (see 
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Testa et al., 1985), a critical step in the activation of [3-carbolines should be a 
reaction of N-methylation. Numerous endogenous compounds undergo me- 
thylation of an endocyclic or exocyclic nitrogen atom by such enzymes as 
phenylethanolamine N-methyltransferase, histamine N-methyltransferase, 
or indolethylamine N-methyltransferase. Xenobiotics undergoing N-methyla- 
tion in brain and/or other tissues by these or other enzymes include theophyl- 
line, normorphine and pyridine, among a number of other heterocyclic 
compounds (see Testa et al., 1985). Indeed, Fields et al. (1992) have also 
reported that selected [3-carbolines are N-methylated by preparations of 
mammalian brain. Using rat striatal synaptosomal preparations possible [3- 
carboline substrates of the synaptic dopamine transporter have been screened 
(Drucker et al., 1990). The partially competitive nature of inhibition by one of 
the more effective N-methylated compound, 2-methyl-harmine, was consis- 
tent with uptake of those by the synaptosomal dopamine uptake system. Their 
oxidation products, the [3-carbolinium, have been shown to inhibit NAD +- 
linked 02 consumption in rat liver mitochondria: Two derivatives of 2- 
methylharmine, the O-demethylated 2-methylharmol (ICs0 209 ~M) and the 
2-methylharmine (ICs0 186~tM), were approximately equipotent with MPP + 
(ICs0 171~tM), a potent inhibitor of complex I (Albores et al., 1990). More- 
over, using rat brain homogenates and submitochondrial particles it has been 
recently demonstrated that TaClo specifically inhibits the electron transfer 
from complex I towards ubiquinone in a concentration (800~tM) 10-times 
lower than that of MPP + (Janetzky et al., 1995). By extending the 
preincubation time from five to 30min complex I is already inhibited by 
4009M TaClo. The N-methylated TaClo derivative demonstrate an even 
greater inhibitory effect on complex I (total inhibition at a concentration of 
250 ~M). In addition to inhibition of complex I complex II was totally blocked 
at the same concentration (Janetzky et al., 1995). Thus, respiratory inhibition 
may underlie the neurotoxicity of [3-carbolines observed in primary cell cul- 
tures of C57/Black mouse mesencephalon containing dopaminergic neurons 
(Rausch et al., 1995) and in vivo (Neafsey et al., 1989; Grote et al., 1995; 
Sontag et al., 1995). However, Krueger et al. (1993) could only detect partial 
inhibition of complex I and II activities at very high concentrations of the 
[3-carbolinium compounds, 2,9 dimethylharmaninium and 2,9-dimethyl- 
norharmaninium. 

2.6 Intranigral injections of iron 0II) 

2.6.1 Neurotoxic effects 

2.6.1.1 Behavioural changes. The unilateral injection of 50 ~tg of iron(III) into 
the SN of the rat produces strongly altered motor behaviour in the animals, 
which even three weeks after application is expressed by a reduction in 
spontaneous locomotor activity in a strange environment, by a lower fre- 
quency of getting up onto the hind-legs, by a transient appearance of "freez- 
ing" phenomena and by spontaneous ipsilateral rotations (Ben-Shachar and 
Youdim, 1991); these ipsilateral rotations are accentuated by amphetamine. 
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2.6.1.2 Histopathological and neurochemical changes. The unilateral nigral 
injection of 50 ~tg iron(III) evokes an average 95% reduction of the dopamine 
concentration in the ipsilateral striatum, as well as smaller reductions in the 
dopamine metabolites DOPAC and HVA (85% or 45% respectively) (Ben- 
Shachar and Youdim, 1991). Similar changes are also observed at lower 
iron(III) concentrations (70-350ng) (Sengstock et al., 1992, 1993). Other 
neurochemical striatal markers, such as noradrenaline, serotonin and 5- 
hydroxyindoleacetic acid are on the other hand unchanged (Ben-Shachar and 
Youdim, 1991; Arendash et al., 1993). 

Histopathological investigations predominantly show damage of the SN 
pars compacta (Sengstock et al., 1992; Arendash et al., 1993). As early as 24 
hours after intranigral application of 70ng of iron(III) iron-stained astrocytes 
and microglia can be demonstrated. Immediately adjacent to these iron- 
stained cells there is a severe loss of neurons and a reactive gliosis, still 
demonstrable after at least six months, as well as a decreased number of TH- 
immunoreactive neurons. 

This damage to the dopaminergic system produced by intranigral iron 
injection can also be demonstrated in vivo by a pulsed voltammetric proce- 
dure (Wesemann et al., 1993, 1994). In the striatum of rats that have been 
lesioned with iron(III) (50 9g) the DOPAC-signal is found to be diminished. 
The time course of this signal is interesting (Wesemann et al., 1994): during 
the first week following the lesion there is a 79% reduction on the side of the 
injection compared to the opposite side, while three to six weeks later the 
signals are diminished by 86 or 97%. This is the first time that a toxic insult has 
been shown to result in a chronic and progressive course in an animal model. 
This chronic and progressive course provoked by the nigral iron(III) injection 
is confirmed by other parameters (Sengstock et al., 1994): first, there is like- 
wise a progressive course in the effect on dopamine and HVA in the striatum, 
as determined at post mortem; second, a progressive atropy of the SN has 
been found; and third, there is progressive alteration in the apomorphine- 
elicited rotational behaviour. 

2.6.2 The mechanism of the neurotoxic action 
The mechanism of the neurotoxic effect of intra-nigrally injected iron(III) 
has not been extensively investigated and is only partly understood. It is 
assumed that iron(III) is taken up into the neurons and glia by transferrin- 
receptors (Arendash et al., 1993). It is probably reduced to iron(II) in the 
cytosol of these cells. Iron(II) shows a cytotoxic action in primary cultures 
of neurons derived from the mesencephalon of rat embryos (Michel et al., 
1992). In a reaction similar to the Fenton reaction, excess iron(II) could 
catalyse the formation of hydroxyl free radicals from hydrogen peroxide 
which is an endogenous product of enzymatic dopamine metabolism. This 
proposed mechanism for the neurotoxic effect is indirectly confirmed by the 
demonstration of increased amounts of thiobarbituric acid-reactive com- 
pounds (a measure of lipid peroxidation) (Arendash et al., 1993; Wesemann 
et al., 1993). 
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3. Pharmacological- and neurotoxin-induced models of  tremor 

Resting tremor is an essential diagnostic criterion of PD (Birkmayer and 
Riederer, 1985). Although the symptoms of this tremor can be treated using 
a variety of different strategies, such as anticholinergic drugs, L-DOPA or 
dopamine-receptor agonists, as well as by stereotactic disconnection of the 
ventrolateral thalamic nucleus, there is still only a limited understanding of 
the pathophysiological, neurochemical and neuropathological origins of the 
tremor. A study published recently showed that patients with PD of an 
akinetic-rigid type of progression exhibited a greater loss of neurons in the 
locus ceruleus of the lateral SN than those in whom the progression was of a 
tremor-dominant type (Paulus and Jellinger, 1991). Furthermore, more se- 
vere structural alterations could be observed, such as gliosis, extraneuronal 
melanin-deposits and neuroaxonal dystrophy in the SN. 

3.10xotremorine tremor 

Experimental animal models of tremor have predominantly been applied to 
the investigation and development of strategies for treating the symptoms. In 
1956 Everett discovered the tremorigenic effect of tremorine, of which the 
active metabolite is oxotremorine. The effects of oxotremorine, particularly in 
the mouse, are to produce tremor; but hypothermia, rigidity and a range of 
parasympathomimetic symptoms such as for example hypersalivation, are 
also elicited. Oxotremorine is a selective agonist of the muscarinic acetylcho- 
line receptor, and systemic application of oxotremorine stimulates acetylcho- 
line receptors both in the periphery and also in the CNS. The 
experimentally-induced tremor in the animals results from the stimulation of 
muscarinic acetylcholine receptors in the basal ganglia, because intrastriatal 
injection of oxotremorine provokes tremor in most species of animals 
(Haefely, 1978). 

According to investigations by Jurna et al. (1970, 1973) the oxotremorine- 
tremor depends on rhythmic discharges of deinhibited y-motoneurons 
super-imposed on a baseline of ct-motoneuron activity. Quaternary anti- 
cholinergic drugs which do not pass the blood-brain-barrier inhibit the per- 
ipheral parasympathetic action of oxotremorine, but not the centrally- 
mediated symptoms of tremor and hypothermia. The oxotremorine model is 
thus neither a genuine model of PD nor one suitable for the discovery of new 
anti-tremorigenic substances, but only picks up centrally acting antagonists of 
the muscarinic acetylcholine-receptor (Haefely, 1978). Anti-Parkinson drugs 
that act by affecting dopaminergic mechanisms, only partially influence the 
oxotremorine tremor: an anti-tremorigenic effect, one that may possibly be 
elicited via peripheral mechanisms, is only observed at high dose levels (Horst 
et al., 1973). 

3.2 The "sinistrotorsional" model 

The injection of cholinesterase inhibitors able to penetrate into the brain, into 
the right carotid aorta of guineapigs leads to circling movements of short 
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duration and a flexing of the longitudinal axis of the body to the left 
("sinistrotorsion") (for a review see Haefely, 1978). This phenomenon de- 
pends on a brief cholinergic stimulation of the right-hand brainstem. The 
extent to which the vestibular nuclei, the SN and other structures may be 
primarily involved is not clear. The "sinistrotorsion" may possibly be depen- 
dent on activation of dopaminergic nigro-striatal neurons (Haefely, 1978). 
Anticholinergic anti-Parkinson drugs, but also other centrally active drugs 
with antimuscarinic components to their activity, such as tricyclic antidepres- 
sants for example, are able to prevent the "sinistrotorsion" phenomenon. 
However, L-DOPA, even at the highest possible doses is ineffective (Haefely, 
1978). 

3.3 Tremor in the monkey MPTP model 

As already described in a previous chapter, tremor is not seen in the MPTP 
model in the mouse. In the MPTP model in monkeys, resting tremor is only 
encountered infrequently (for a review see Stern, 1990; Gerlach et al., 1991). 
In 50 MPTP-treated macaques only a single case was observed to show a 
resting tremor (Gomez-Mancilla et al., 1991). This was investigated and char- 
acterized using electromyography (EMG), and showed not only a rhythmic 
frequency (7-8Hz) but also successive contractions of antagonistically acting 
muscles of a differential frequency. The literature also contains references 
that tremor occurs in MPTP-treated monkeys if one activates the animals by 
means of external stimuli (Burns et al., 1983), but their appearance is more 
like a postural or action tremor. 

The relevance of the experimental models to PD 

The reserpine model was the first model that became available for testing 
symptomatic anti-Parkinson treatments. The partial removal of the reserpine- 
syndrome in the rat (akinesia, bradykinesia, hypokinesia, catalepsy, tremor) 
by L-DOPA led to the development of the L-DOPA therapy, which has 
remained the cornerstone of anti-Parkinson treatment up to the present. 
Although the detailed mechanism of action of the reserpine model is not 
completely known, in essence it is explained on the basis that what is mainly 
involved is a reversible functional reduction of dopaminergic neurotransmis- 
sion, following a diminished capacity of the storage vesicles for storing 
dopamine. A substantial drawback of this model is that reserpine has a non- 
specific effect on all the monoaminergic neurotransmitters. Pharmacologi- 
cally-induced functional disturbances of dopaminergic neurotransmission can 
also be provoked by neuroleptics, such as haloperidol for example (Table 7). 
Furthermore, dopamine-D2-receptor-deficient mice exhibit a Parkinsonian- 
like locomotor impairment that broadly resemble neuroleptic treatment 
(Balk et al., 1995), indicating that the observed effect by dopamine antagonist 
treatment is due to the specific blocking of D2 receptors. In all these models 
akinetic symptoms may be produced to a greater or lesser extent, but the 
significance of these species-specific functional disturbances for the patho- 
physiology of the fully-developed Parkinsonian symptomatology (akinesia, 
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rigidity, tremor) is difficult to assess, because of the differences in the anatomy 
and function of the CNS between primates and rodents. All those models 
which produce a pharmacologically-induced functional impairment of 
dopaminergic neurotransmission are nowadays only rarely used, and if at all, 
then mainly as screening methods for testing methods of symptomatic treat- 
ment. They are hardly suitable for dissecting out causal mechanisms. 

The 6-OHDA model in the rat, in which there is a unilateral degeneration 
of dopaminergic nigro-striatal neurons with a depletion of dopamine in the 
striatum, is nowadays still a widely used approach to the development of 
strategies for the symptomatic treatment of PD, but also to some degree for 
the elucidation of the disease mechanism, bearing in mind the participation of 
"oxidative stress" in its pathogenesis (Table 7). This model suffers above all 
from two drawbacks. First, the neurotoxin has to be applied stereotactically to 
the appropriate brain regions, and its action seems to be most effective when 
it is given into the striatum. Second, although one can classify 
dopamimetically acting drugs into direct and indirect agonists on the basis of 
their rotatory effects, it is not so easy to distinguish drugs acting on other 
neurotransmitter receptors. What makes it worse is that his characteristic 
rotational behaviour, which is quantified and used as a measure of the effec- 
tive potency of the substance being tested, is not relevant to the pathophysi- 
ology of the symptoms of PD. 

Although the methamphetamine model in the mouse has not yet been 
thoroughly and systematically investigated, systemically applied methamphet- 
amine does appear specifically to induce the essential histopathological and 
pathobiochemical changes characteristic of PD (Table 7). The neurotoxic 
effect does not however appear to affect the animals' spontaneous motor 
behaviour. 

Nowadays the most widely used and best investigated model is the MPTP 
model. The partial explanation of the neurotoxic mode of action has contrib- 
uted to the development of views on the decisive processes relating to the 
death of nerve cells, and has therefore made important contributions to our 
understanding of the pathogenesis of PD. The MPTP model is even nowadays 
still a valuable model for testing neuroprotective strategies. Both in mice and 
in non-human primates it is capable of simulating the most significant features 
of the histopathological and pathobiochemical changes in PD (Table 7). Al- 
though tremor is the one symptom which is not observed very often, a fully 
developed model of PD can be provoked with MPTP in some individual 
monkeys. From a histopathological viewpoint, one can observe the same loss 
of dopaminergic neurons in the VTA and of noradrenergic neurons in the 
locus ceruleus so characteristic of the human PD, particularly in older mon- 
keys. These injuries lead to the characteristic changes of the neurotransmit- 
ters dopamine and noradrenaline in the brains of the animals, but 
neuropeptides remain unaltered. 

The ability of MPTP to give rise a parkinsonian condition has led to 
suggestions that there may be a naturally occurring or environmental toxin 
that causes PD. Potential candidates that have been shown to be neurotoxic in 
animals are some endogenously formed tetrahydroisoquinolines (e.g. N- 
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methyl-salsolinol) and [3-carbolines (e.g. 2-methyl-norharman, TaClo). How- 
ever, the implications for the etiopathogenesis of PD is unknown. Several 
lines of evidence suggest the possible involvement of an environmental factor 
in the development of PD, but the data are confusing and often apparently 
contradictory (e.g. Tanner, 1989). If the idiopathic disease were to result from 
a longer term exposure to an environmental or endogenous formed toxin, a 
compound as toxic as MPTP would be an unlikely candidate for a causative 
factor unless it was present at extremely low concentrations. Although, 
tetrahydroisoquinoline and its 1-methyl-derivative have been found in low 
concentrations in human caudate nucleus and frontal lobe (0.01-1.68 and 
0.01-2.00ng/g brain, respectively), there were no significant differences be- 
tween its concentrations in normal and parkinsonian brains (Ohta et al., 
1987). Slightly lower but significant concentrations of salsolinol and of N- 
methyl-salsolinol were found in the CSF of parkinsonian de novo patients, 
untreated with L-DOPA, compared to those of controls (Dordain et al., 1984). 
However, higher levels of these compounds have been detected in several 
brain regions, including the caudate nucleus, the putamen, the hippocampus, 
and the cortex, of intoxicated alcoholics (Sj6quist et al., 1982). 

All these models, where an experimentally-induced destruction of nigro- 
striatal neurons is produced, have this in common that the neurotoxic process 
shows no progression; in other words when the neurotoxin is no longer ap- 
plied there is no further chronic continuation of the neurotoxic process 
independent of the presence of the neurotoxin. A chronic progressive course 
is solely observed in the "iron" and "TaClo model". Since PD develops 
gradually over a long period until the typical symptoms come to their full 
expression (5-15 years), a question mark hangs over the relevance of these 
mostly acute models to the pathogenesis of the human disease. The neuro- 
toxic effects of the repeated application of small doses of 6-OHDA, metham- 
phetamine, iron(III) and MPTP in rodents over a long period have not been 
investigated. In non-human primates long-term (up to 10 month) application 
of smaller doses of MPTP (0.25-2.5 mg/kg i.p. twice a week) do elicit perma- 
nent damage to the nigro-striatal dopaminergic system, nevertheless MPTP- 
treated marmosets recover as far as their motor behaviour is concerned, 
possibly as a result of compensatory and/or regenerative processes (Ricaurte 
et al., 1986; P6rez-Otafio et al., 1991; Russ et al., 1991; Colosimo et al., 1992). 
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