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I. Introduction 

In the theory of optimal intertemporal allocation, the assumption 
of a convex feasible set has played a dominant role. In recent 
years, several contributions have focused on the implications for 
this theory, when the feasible set does not have the convexity prop- 
erty. (See, in particular, Sk iba  (1978), M a j u m d a r  and M i t r a  
(1982, 1983), D e c h e r t  and N i s h i m u r a  (1983), M a j u m d a r  and 
N e r m u t h  (1982), and the much earlier insightful paper by C l a r k  
(1971)). These contributions have not only clarified the qualitative 
differences in the theory in convex and non-convex models, but they 
have also led to the development of new analytical techniques which 
have made some issues in the earlier theory in convex  models sim- 
pler to address (see, for example, M i t r a  (1983)). 

However, most of the contributions mentioned above have fo- 
cused on particular types of non-convex feasible sets; that is, those 
generated by an S-shaped production function, exhibiting an initial 
phase of increasing returns, with diminishing returns setting in 
eventually. M a j u m d a r  and N e r m u t h  (1982) work with a more 
general production function than this, but even there, for the devel- 
opment of the asymptotic stability theory of optimal programs, 
they have to impose some structure on the type of "non-concavities" 
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that the production function can exhibit (see, in particular, assump- 
tion (A.3') in their paper, (p. 347), and the statement of their turn- 
pike theorem (p. 348)). 

Furthermore, in developing many parts of the theory, the above 
contributions use differentiability of both the production and the 
utility functions in an essential way. To a certain extent, this is true 
about many of the earlier contributions which focused only on the 
theory for convex feasible sets. (See, for example, Cass (1965), 
K o o p m a n s  (1965), and M i t r a  (1979)). 

The purpose of this paper is to develop some general results on 
two related aspects of the theory of optimal intertemporal alloca- 
tion in an aggregative model, without the convexity assumption on 
the feasible set. In contrast to the contributions on non-convexity 
mentioned above, which have tended to emphasize the differences 
between the theory for convex and non-convex models, this paper 
tries to focus on the similarities between the two, and to provide 
a unifying theory in which the role of the convexity assumption on 
the feasible set is minimal. Of course, some  stronger results can be 
obtained when the feasible set is convex (besides satisfying some 
other properties). We have tried to point out precisely what these 
stronger results are. Throughout, we refrain from making any dig 
ferentiability assumptions on the production or utility functions. 
Also, we do not impose any structure at all on the types of non- 
concavities exhibited by the production functions. 

The two issues we address are: (a) the monotonicity and insen- 
sitivity properties of optimal programs in finite-horizon models; 
(b) the existence of a non-trivial stationary optimal stock, and the 
asymptotic stability of optimal programs from arbitrary initial stocks 
in infinite-horizon models. 

With respect to (a), the well-known results of B r o c k  (1971) 
are generalized to frameworks where the production functions are 
not required to be concave, and where the utility functions are only 
assumed to be "weakly" concave. We think that our results are 
the most general possible for this class of models. We show, by 
means of an example, that stronger monotonicity results that have 
been obtained earlier depend crucially on the differentiability as- 
sumption on production functions. 

With respect to (b), we look at the standard "quasi-stationary" 
model, where the production and the utility functions are stationary, 
and there is a positive discount factor, d, less than one, at which 
future utilities are discounted. We show that when the production 
function is "&productive", there exists a non-trivial stationary opti- 
mal stock. An example is provided to show that this assumption is 
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essential. (Even without this assumption, the set of stationary opti- 
mal stocks is non-empty, but then the set might consist of only a 
trivial stationary optimal stock, namely the zero stock). It is of in- 
terest to note that the non-trivial stationary optimal stock, (whose 
existence is proved) can be attained by decentralized profit-maximiz- 
ing behavior of firms, and utility-maximizing behavior of consumers, 
under a competitive price system, even though the production func- 
tion can display any type of non-concavity. We also note that the 
additional mileage one obtains by assuming the concavity of the 
production function allows one to conclude that "0-productivity" is 
also a necessary condition for the existence of a non-trivial sta- 
tionary optimal stock. 

The rest of the paper is devoted to the stability of optimal pro- 
grams and here we proceed without the O-productivity assumption 
on the production function. First, we show that if the utility func- 
tion is strictly concave, then optimal programs will converge, in 
terms of their input levels, to some stationary optimal stock. One 
may call this "system stability", a term coined by A r r o w  and 
H u r w i c z  (1958) to describe a similar phenomenon in the stability 
theory of general equilibrium models. An example is presented of a 
concave production function, and a linear utility function, for which 
this "system stability" does not hold, and an optimal program is 
seen to oscillate between two stationary optimal stocks. (This justi- 
fies the use of strict concavity of the utility function to prove "sys- 
tem stability"). 

The result on "system stability" and the literature on dynamic 
optimization, with a linear utility function, on convex (e. g. M a l i n -  
v a u d  (1965), C l a r k  (1971)) and non-convex (e.g. C l a r k  (1971), 
M a j u m d a r  and M i t r a  (1983)) feasible sets suggest the need for a 
more general theory of asymptotic stability. The example just men- 
tioned above reinforces this, if the oscillation observed there be- 
tween two stationary optimal stock.s is not accidental. Our result, 
(which attempts to provide such a theory) is that the distance be- 
tween the optimal input stock and the set of stationary optimal 
stocks converges to zero asymptotically. (Strict concavity of the 
utility function is, of course, not used for this result). This result is 
in the same spirit as M c K e n z i e ' s  (1968) proposition that optimal 
programs converge to a "facet" of the production set, when future 
utilities are undiscounted, and the feasible set is convex. 

We finally note that if f is concave, and there is a unique non- 
trivial stationary optimal stock, then optimal programs from arbi- 
trary positive initial stocks converge asymptotically to the non-trivial 
stationary optimal stock. 



154 T. Mitra and D. Ray: 

2. The Model  

2a .  F e a s i b l e  Sets  

The technology is given by a sequence of production functions 
< [e > ,  with It : F~ + -o [R +. Throughout ,  we shall assume, for each 
t >0,  

(F.1) [, is increasing and continuous on R+. 

Additional assumptions will be made in a later section. 

A [easible program < xt > from initial stock s _> 0 is a sequence 
satisfying 

XO=S, O~xt+l<_ft(xt), t>O. (2.1) 

Associated with a feasible program < xt > from s >_ 0 is a con- 
sumption sequence < c~ > defined by 

ct+l=[t (x t ) -x t+l ,  t>__O. (2.2) 

A feasible program < xt > from s is stationary if 

xt = s, t _> 0. (2.3) 

In the context of finite horizon planning, we denote the time 
horizon by an integer T_> 1, and the terminal stock by b _>0. Let 

= (T, s, b). A 8-[easibIe program < xt > is a finite sequence < xt >0 P 
satisfying (2.1) for all t = O , . . . ,  T - l ,  and in addition 

x~, = b. (2.1') 

Its associated consumption program is given by (2.2), for 
t = O , . . . ,  T - 1 .  

The pure accumulation program is a feasible program < 2 t >  
with 

�9 ~ t + l = f t  (:~t), t>_0. (2.4) 

We shall assume, to keep matters nontrivial, 

(A.1) 8 satisfies ~ > b. 

2 b. P r e f e r e n c e s  

The planner's preferences are represented by a sequence of util- 
ity functions < u ,  > ,  each mapping R+ to JR. Throughout ,  these 
are taken to satisfy, for each t >_ 1, 

(U.1) ut is increasing and continuous on R+, 

(U.2) ut is concave on R +. 
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In a later section, the sequence <ut> will be taken as ut=3eu, 
t_>l, where ~ e (0, 1) is the discount factor, and u satisfies (U.1), 
(u.2). 

A feasible program <xt*> from s > 0  is optimal if for every 
feasible program < xt > from s, 

T 

lim sup X [ut (ce) - u t  (ct*)] _< 0. (2.5) 
T---~ o~ t = l 

A S-feasible program < xt*> is 8-optimal if for every C-feasible 
program < xt >, 

T T 

X ut (ct) < X ut (ct*). (2.6) 
t=l t=l 

A feasible program < x t >  from s_>0 is a stationary optimal 
program if it is both stationary and optimal. If such a program 
exists from s _> 0, we call s a stationary optimal stoct~. A stationary 
optimal program < xt > from s _> 0 is nontrivial if It (s) > s for t _> 0. 
In this case, we also say that the stationary optimal stock, s, is 
non-trivial. 

3. Monotonicity and Insensitivity Results in Finite Horizon Models 

In this section, the monotonicity and insensitivity results of 
B r o c k  (1971) are generalized to frameworks where the production 
functions are not required to be concave, and where the utility 
functions are only assumed to be weakly concavek These results 
appear to be the most general that are possible for this class of 
models. M a j u m d a r  and N e r m u t h  (1982) establish a stronger 
monotonicity result with strictly concave utilities 2, but this result is 
shown, by example, (Example 3.1 below) to be a consequence of 
their differentiability assumption on production functions. 

3 a. Some  P r e l i m i n a r y  R e s u l t s  

Here, two results are stated, the proofs of which are standard 
and therefore omitted. These hold under the assumptions in Sec- 
tion 2. 

i Brock assumed concavity (and twice differentiability) of both utility 
and production functions, and strict concavity of utility functions. 

Majumdar  and Nermuth  also deal with the case of irreversible 
investment. All the proofs here can be generalized to include this phe- 
nomenon (see Ray (1983a)). 
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Lemma 3.1: There exists an &optimal program. 

Lemma 3.2: (Principle of Optimality): If < x t > o  T is f-optimal,  
then < x , > o  T-~ is fk-optimaI, where ~ g = ( T - - s  xT-e) ,  for 
0_<s  

3 b. M o n o t o n i c i t y  a n d  I n s e n s i t i v i t y  

Theorem 3.1 (monotonic#y):  Let f = (T, s, b), 8 ' =  (T, s, b') with 
b <_b'. Then 

(i) For every f -opt imal  program < x t > ,  there is a f ' -opt imal  
program < xt" > such that x~ <_ x~" for all t = 0 , . . . ,  T. 

(ii) For every 8"-optimal program < x t ' > ,  there is a 8-optimal 
program < x t >  such that xg<_x," [or all t=O . . . . .  , T. 

Proo[: We prove Part (i), the proof  of (ii) being analogous. To  
this end, let < x , >  be f-optimal. Pick any f ' -optimal program < x , " > .  
Suppose there is z with x ,"  < xT. Clearly, z < T, since XT" = b" >_ b = xT. 
Let s be the largest period with xs"<xs .  Then x , " > x ,  for all 
t = s + l , . . . ,  T. 

N o w  define < x , ' >  by 

x~'=xt,  t<s ,  and x t ' = x t " ,  t = s + l  . . . .  , T .  (3.1) 

Also define < x~ > by 

~ t = x t  '', t<s ,  and ~c,=xt, t = s + l , . . . , T .  (3.2) 

We show that < x t ' >  is f '-optimal.  
First note that < x , ' >  is f '-feasible, and < ~ t >  is f4easible.  

This follows from the inequalities 

fs (Xs')--Xs+l'=fiS (Xs)--Xs+Z" >>-IS (Xs H) - - X s + I  ' ' > - 0  ( 3 . 3 )  

and 
fs (~s) - (~s+l) = A  (xr -- xs+l _> fs (xr - xs+~" _> 0. (3.4) 

Suppose that < x t ' >  is not f '-optimal.  Then 

T T T T 

X ut (cd') + X ut (ct) > 2: u~ (c~') + S u~ (&). (3.5) 
t = l  t = l  t = l  t = l  

Note  that . . . .  . .  ct=c,  , t<s ,  c , : c , ,  t = $ + 2 , .  , T ,  ct =ct, t<_s, 
c,' = c,", t =s  + 2 , . . . ,  T. So cancelling common terms, 

t c ,,x /A C ' A us+* ~ s+l I + ,+1 (cs+l) > us+l ( s+* ) + us+l (cs+~). (3.6) 

Define xs+ l"  - xs+l - e >_ O. 
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Then 
C S + I '  = Cs+X - -  ~ (3.7) 

cs+l = c8+1" +e. (3.8) 
Using this in (3.6), 

us+l (cs+l '+e)-us+l  (cs+x') >us+l (Cs+l"+~)-us+l (cs+l") (3.9) 

and, since u~+l is concave, this implies 

c~+1' < c~+l". (3.10) 

But (3.10) stands in contradiction to the chain of reasoning 

c +1" (xs")- x8+1" 
=fs (x~')-x~+l'=cs+l' .  [[ (3.11) 

Remark.: When optimal programs are not unique, note that (i) 
and (ii) are "independent" propositions. 

Theorem 3.1 is the basic monotonicity result. Theorem 3.2 takes 
a step towards the insensitivity result by establishing monotonicity 
of finite horizon optimal programs, with zero terminal stock, when 
the horizon is changed. 

Theorem 3.2: Let ~=(T,  s, 0), ~ ' = ( T + I ,  s, 0). For every ~-opti- 
mal program <xt> ,  there is a ~'-optimal program <xt '>  with 
xt <_ xe', t = O , . . . ,  T. 

Proof: Let < xe" > be any ~'-optimal program. Then xT"  >_ O. 
Let ~=(T ,  s, xr Then there is, by Theorem 3.1, an ~/-optimal 
program < ~t > with ~t -> xt, t - - 0 , . . . ,  T. By Lemma 3.2, <xt"  > 0 T 

T T 

is ~-optimal; hence X u t  (c~") = Xue  (St). So define < x { >  by 
t = l  t = l  

xt '=~e ;  t = 0 ,  . ,T ,  and x ' x " .. ~+l = T+I �9 It should be clear, then, 
that <x~'> is 8'-optimal. Also, x~'>x~, t = 0 , . . . ,  T. ]1 

Observe that the input levels of all feasible programs are bounded 
above by the pure accumulation program. This, coupled with Theo- 
rem 3.2, enables us to construct a sequence, as T varies, of optimal 
programs to 8:v--(T, s, 0), with inputs converging pointwise (as 
T--~oo) to some infinite-horizon limit program < ~t >. Its feasibility 
is easily verified. 

The insensitivity result is now established, as in B r o c k  (1971), 
for programs with "not-too-large" terminal stocks (see statement of 
Theorem 3.3). For given (s, b), define 8T = (T, s, b). 

11 Zeitschr. f. Nat ional6konomie,  Vol. 44, No. 2 
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Theorem 3.3 (Insensitivity): Consider a limit program < ~ > .  
For each b < lim inf ~t, there is a sequence o~ ST-optimal programs 

t-+cO 
T cO {<x t  >}T=I such that lim xtV=Ye /or all t > l .  

T - > c o  

Proof o/ Theorem 3.3: Define ~ , =  (T, s, 0), and let < xt T > be 

a sequence (in T) of ~T-optimal programs, with ~CtT+l>_~Ct T, and 
A T lim x~ = ~ ,  for t_>0. Such a sequence exists, by Theorem 3.2 and 

t-~co 
definition of the limit program. 

Now,  there is c > 0  and integer M such that b_<~ t - c  for all 

t_> M. For T_> M, pick an fiT-optimal program < x~ T >.  Clearly, 
there exists N (depending on T), N _  T, and an ~2v-optimal pro- 

^ ^ N gram <x~ N> with xT >b.  
By Theorem 3.1 (ii), there is a 8~,-optimal program <xt '>  with 

. .  , > ^ T  t = 0 , .  T, define xd < ~iv, t = 0, ., T. If, in addition, xt _ x~ , . . ,  
< xtT > -~ < Xt" > . 

If, however, there is s < T  such that  Xs'<fCs T, and Xt'~---Xt T, 
t =s + 1 , . . . ,  T, then define a ST-feasible program < xt T > by xt T = 
dot T, t<_s, x~T=Xt ", t = s + l , . . . ,  T. Then, by an argument similar 
to the one in the proof of Theorem 3.1, <XtT> is ST-optimal. 

A T  Also, xt 'r _> x~ , t = 0 , . . . ,  T. 
Summarizing, it is possible to find a ST-optimal program < x, 'r > 

with 
~tT<_xtT<P:tN, t = 0 , . . . ,  T. (3.12) 

Repeat this for all T_>M. Note that as T - * m ,  N--~o% and so, 
for all t >_ 0, 

N - (3.13) ~ , =  lim :~t T _<lira inf xt T <l im sup xt ~' _<lim x, =xt .  
T - + c o  T ---* co T ---* co N - + o o  

Hence, l i m x t  T = ~ t f o r a l l  t>_0. [[ 
T - * c O  

Remarks: This theorem establishes a variant of the B r o c k  in- 
sensitivity result. B r o c k  proves that  optimal programs are "insen- 
sitive" to changes in target stocks when the horizon is large. Un- 
like B r o c k  we do not  necessarily have a unique optimal program. 
Our result, therefore, is that  there exist optimal programs which 
are "insensitive" to changes in target stocks, for large enough 
horizons. 

M a j u m d a r  and N e r m u t h  (1982) establish the following ver- 
sion of Theorem 3.1, assuming that  utility functions are strictly 
concave and production functions are differentiable. All optimal 
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programs to a higher terminal stock exceed (in input levels, weakly) 
all optimal programs to a lower terminal stock. Their technique of 
proof is different from ours, and leans heavily on the differentiabil- 
ity of production functions z. It is interesting to inquire, therefore, 
whether this stronger result is driven by the strict concavity assump- 
tion on utility functions, or by the differentiability of production 
functions. 

We provide an example where all their assumptions, except 
differentiability of production functions, are satisfied 4. In this ex- 
ample, an optimal program to a higher terminal stock "crosses" an 
optimal program to a lower terminal stock, i. e., it exhibits lower 
input levels at some date, and higher input levels at another. 

Example 3.1: T = 3 ,  and there are two terminal stocks: b=O, 
and b = 1. Utility functions have the form ut (c) = u (c) = c 1/2, c >_ O. 
The production function ft (x)=[  (x), where 

[ ( x ) = 3 x ,  x e [ 0 , 1 ]  

= T + T  , x e  1, 

= x + l ,  x e  [ @ , 3 ]  

X 5 
= - ~ - + ~ - ,  x e [ 3 ,  oo). 

Finally, the initial stock, s, is given by s = [  -1 (d+ l ) ,  where d 
is uniquely given by 

d 1/2 - (d - 2) 1/2 = 31/2 _ 21/2. 

In the context of this example, it is possible to establish 

Proposition 3.1: 

(i) There are exactly two optimal programs [rom s to b =0,  
given by the input sequences (s, 3, 1, O) and (s, 1, 1, 0). 

(ii) There are exactly two optimal programs [rom s to b =1,  
given by the input sequences (s, 3, 1, 1) and (s, 1, 1, 1). 

(iii) The optimal programs (s, 3, 1, O) and (s, 1, 1, i) cross. 

a The corresponding proof in this paper is considerably shorter. 
a The example does not have irreversible investment. But the case of 

reversible investment is within the framework of Ma jumdar  and Ner- 
muth's  paper, and so, therefore, is the example. 

11" 
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This provides the counterexample.  The proof  of this proposit ion 
is omitted; the reader is referred to R a y  (1983b) for details. 

4. Stationary Optimal  Programs 

In this section, and in the rest of the paper, we will consider a 
stationary model with discounting; that is, a model in which the 
production function, utility function and discount factor are all 
constant over time. Formally, we write ut (.) = ~ u (.), and fi (-) = 
[ (.) for all t, and make the following additional assumptions, which 
will be maintained in the remaining part  of the paper. 

(F.2) f (0)=0,  and there is ~ > 0  such that x>t~ implies [ (x) <x. 

(U.3) 0 < 6 < 1 .  

Without  loss of generality, we normalize u (0) = 0 5 

N o w ,  we introduce the concept of a modified golden rule, which 
embodies a wel l-known duality concept dealing with the attain- 
ment of given programs by decentralized agents making maximizing 
decisions on the basis of prices. A modified golden rule is defined to 
be a pair (x*, p*) such that x* > O, p* > O, and 

(i) / (x*) - x*  > o,  

(ii) p"~ [O[ (x': ')-x*] >p* [0[ ( x ) - x ] ,  x > 0 ,  

(iii) u ([ (x*) - x*) - p* (f (x*) - x "~) >_ u (c) - p* c, c > 0. 

Observe that condition (ii) implies that "profits" are maximized 
at x" if a price of p* is charged for inputs and ~p* for outputs.  
Simultaneously, p* has the property that it "supports" consumption 
([ (x*)-x*) in the sense of (iii). any consumption affording more 
utility must be more expensive. 

In this section, we shall examine some aspects of stationary 
optimal programs, and their relationship to modified golden rules. 
After some preliminary results (section 4 a), we describe some general 
properties of the set of all stationary optimal stocks (section 4b). 

5 The case u (0) = - ov is essentially ruled out by the assumption that 
u maps ~Z+ to R.  Our analysis can, however, be easily extended to in- 
clude this case. Some modifications are necessary. For instance, the exis- 
tence of an optimal program now requires an additional assumption such 

oo 

as: there is a feasible program with I ~ - l u  (ct)>- oo. For a rigorous 
t = l  

treatment of such issues, see Eke land  and Sche inkman  (1983). 
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Next,  we provide conditions under which a nontrivial stationary 
optimal stock exists (section 4 c). Finally, we observe an equiva- 
lence between the concepts of a modified golden rule and a sta- 
t ionary optimal stock. 

4a .  S o m e  P r e l i m i n a r y  R e s u l t s  

In this section, we present some standard results, without  proof, 
which are helpful in subsequent discussions. 

L e m m a  4.1: If < x t >  is a feasible program from s>_O, then 

xt <- ~ and ct+l < ~ for t >_ O, where /~ = max (is, s). 

L e m m a  4.2: There exists an optimal program from every s > O. 

N o w  define a value function V : JR+ --~ • as follows: 

V (s) = sup { X c3 t-x u (ct) : < xt > is a feasible program from s}. 
t = l  

This is well-defined, by Lemma 4.1 and (U.3). By Lemma 4.2, 
o0 

there is a feasible program < xt* > from s such that V (s) = X ~t-1. 
t = l  

u (ct*). Using this, one can state some implications of the Principle 
of Optimality. 

Lemma 4.3: If < xt > is a feasible program from s, then 

V (s) >_ u (cl) + ~ V (xl). 

Lemma 4.4: If < xt > is an optimal program from s, then (i) for 
T>_I, the sequence < x t ' >  defined by xt'=xt+~, for t >O, is an opti- 
mal program from x~,, and (ii) V (s) = u  (Cl) + ~ V  (xl). 

Lemma 4.5: The value function V has the fol lowing properties: 
(i) V is increasing on ~ + ;  (ii) V is continuous on JR+; (iii) V (s) _< 
u (~) / (1-~) ;  (iv) V (0) =0,  V (s) >0  for s > 0 .  

Lemma 4.6: If < xt > is a feasible program from s, and 

V (xt) = u  (Ct+l) -~-~V (Xt+l)  for t>_O 

then < xt > is an optimal program from s. 

Lemma 4.7: If (i) s >_0; (ii) f(s) >_s, and (iii) V(s) =u  [f(s) - s ]  + 
6 V  (s), then s is a stationary optimal stock,, and < x t >  given by 
x t = s  for t >_O is a stationary optimal program from s. 
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Lemma 4.8: If s is a stationary optimal stock., then (i) s>_O; 
(ii) [ (s) > s, and (iii) V (s) = u [f (s) - s ]  + 6 V (s). 

Lemma 4.9: If (x, p) is a modified golden rule, then < xt > given 
by x e = x  [or t >O is a nontrivial stationary optimal program from 
x, and x is a stationary optimal stock". For a proof  of Lemma 4.9, 
see e. g. P e l e g  and R y d e r  (1972, 1974). 

4 b .  T h e  Set  o f  S t a t i o n a r y  O p t i m a l  S t o c k s  

Let G denote the set of all stationary optimal stocks. It is clearly 
nonempty,  since 0 E G. 

Given (F.1) and (F.2), it is easy to show that 

k"* = min {s : f (s) - s >_ f (x) - x for all x _> 0} 

is well defined. This is the smallest capital stock with the property 
that it affords maximal net output  compared to all other capital 
stocks. 

Proposition 4.1: G is a non-empty  compact  subset of [0, k"*]. 

Proof: Clearly G is non-empty since 0 belongs to G. We can 
next show that G is a subset of [0, k"*]. Suppose, on the contrary, 
there is some x > k"* which belongs to G. N o w ,  [f (x) - x] ___ [f (k.*) - k.*]. 
The stationary program < x~ > given by x~ = x for t _> 0 has c~ = f (x) - x 
for t > l .  The sequence < x t ' >  given by xo '=x ,  xt'=k.* for t_>l is 
a feasible program from x, and has c x ' = [ ( x ) - k . * = [ f ( x ) - x ] +  
[x-k.*] > [ / ( x ) - x ] ;  c t '= f  (k.*)-I~*>[ ( x ) - x  for t_>2. Thus < x t >  
is not an optimal program, so x is not  in G. This shows that G 
is a subset of [0, U']. 

We have checked that G is bounded.  To  note that  G is closed, 
consider a sequence x n in G, x n ---~x as n--,oo. Then, for each n, 
by Lemma 4.8, (i) x n > O, (ii) f (x n) > x n, and (iii) V (x ~) = u [f (x n) - 
x ~] +OV (x~). Using x ~ ~ x as n--.oo, we have (i) x > 0 ,  (ii) f (x) >x ,  
and (iii) V ( x ) = u  [f ( x ) - x ]  +OV (x), using (F.1), (U.1) and Lemma 
4.5. So by Lemma 4.7, x is in G. [I 

Remark.s: (i) Note  that U" could be zero (for example, if f (x)=  
x/(1 +x)  for x >0). In this case G degenerates automatically to the 
single point, 0. 

(ii) A more interesting case arises when k"*> 0. In this case, by 
its very definition, f (k"*)>U" [since f (0)=0],  so that  there is a 
stationary program from ~*, with stationary positive consumption 
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[[ (/:*)-/~*]. We then interpret ~* as a "golden-rule stock"; that is, 
a stock for which the corresponding stationary program has the 
maximum stationary positive consumption among all possible sta- 
tionary programs. In fact, ~* is the smallest of all stocks with this 
property. (It is a matter of convention only not to call/~* a "gold- 
en-rule stock" when h* happens to be zero). 

(iii) It is not possible to refine the interval [0,/~*] further in 
Proposition 4.1, in view of the following example. 

1 5 
Example 4.I: Let f ( x ) = 3 x  for 0 < x < l ;  [ ( x ) = - g - x + -  g - fo r  

x > l ;  u (c)=c/(l+c) for c > 0 ;  d=l/2. Here ~:*=1, and this is also 
the only non-trivial stationary optimal stock. 

The example also shows that G is, in general, not convex. Here 
G consists of precisely two points, 0 and 1. 

4c .  E x i s t e n c e  of a N o n - T r i v i a l  S t a t i o n a r y  O p t i m a l  S t o c k  

We noted in Section 4b, that zero always belongs to G, the set 
of stationary optimal stocks. The zero stock, however, can justifi- 
ably be called a "trivial" one. Note that this "trivial" stock might 
be the only one for many production functions (for example, 
[ (x)=x for x>0) .  We, therefore, have to impose an additional 
condition on f to ensure that a non-trivial stationary optimal stock 
exists. 

In looking for this condition on f, it is worth observing that it 
should involve d in an essential way. For instance, imposing the 
condition that there is some positive stock, x, for which f (x)> x 
will only ensure the existence of a stationary program from x with 
positive consumption. But, with ~ appropriately chosen, one might 
still not have a non-trivial stationary optimal stock, as the follow- 
ing example shows. 

Example 4.2: Let f (x) =2x/(1 +x);  8=1/2;  u (c) =c/(1 +c). Clear- 

ly [ (@) = 2/3 > 1/2, while 8f (x)=x/(1 + x ) < x  for all x >0. 

Suppose there is some s>'0, such that there is a non-trivial 
stationary optimal program < xt > from s. Then f (s) > s, so 0 < s < 1. 

Then, 

~t-1 u (ct) = u  [f (s) -s]/(1 -~). 
t = l  

Now, 
[ (s) - s  = [2s/(1 +s)] - s - - s  (1 -s) / (1  +s). 
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S o  

and 
u [f ( s ) -s]=s  ( 1 - s ) / ( l + 2 s - s  2) 

oo 

X ~t-1 u (ct) = 2 s  (1 - s ) / (1  + 2  s - sZ) .  
t = l  

(4.1) 

Consider the sequence <x~'> given by xo'=s, and x d = 0  for t > l .  
Then < x d >  is a feasible program and 

N o w ,  

GO 

2 ~t-1 u (cd) = u  [f (s)]. 
t = l  

[ (s) = 2 s / ( l + s ) ,  so u [f (s)] =2s / (1  +3s) .  

Comparing this with (4.1) contradicts the optimality of the sta- 
t ionary program. 

Call the product ion function &productive 6 if there is/~ > 0 with 

Of (/~)_>~. Under this condition, we establish the existence of a 
modified golden rule, and hence (by Lemma 4.9) the existence of a 
nontrivial stationary optimal stock. 

Theorem 4.1: If [ is &productive, then there exists a modified 
golden rule (~c, ~) with ~c > O, ~ > O. 

Proof: Given (F.1) and (F.2), it is easy to see that 

F - { s : ~ f ( s ) - s > _ O f ( x ) - x  for all x_>0} 

is nonempty.  Moreover,  by the &productivity of f, we can pick 
e F, ~ > 0. Clearly, 

(~[ (~)-~>__(~f ( x ) - x  for all x > 0 .  (4.2) 

Since 0 < ~ < 1 and ~ > 0, f (~) - ~ -= 8 > 0. Since u is concave, it 
has a right-hand derivative at 8; call this/3. Then 

A A A 
u ( c ) - u ( 8 ) < - p c - p c  for all c_>0 (4.3) 

o r  

u (8) - /3 8 > u (c) - /3 c for all c _> 0. (4.4) 

6 This definition is somewhat weaker than that of Peleg and Ryder  
(1974), who require the existence of some x > 0  with c~[ (x)>x. The pro- 
duction function f (x)=2 x, x > 0 is &productive in our sense, if 6= 1/2, 
but not in theirs. 
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Since u is increasing, we have/3 > 0. So, using (4.2) 

I3 far (~)-~]  _>/3 far (x) - x ]  for all x_>0. 

Therefore, (~,/3) is a modified golden rule. [[ 

(4.5) 

Theorem 4.2: If [ is &productive, then there exists a non-trivial 
stationary optimal stocl~. 

Proof: Use Theorem 4.1 and Lemma 4.9. ]{ 

This result can also be proved as in D e c h e r t  and N i s h i m u r a  
(1983). Their proof goes through with our weaker assumptions. 

The results here also provide some insight into the relationships 
between the concepts of &productivity, modified golden rule, and 
non-trivial stationary optimal stock. By Theorem 4.1 and Lemma 
4.9, we have the chain of implications (i) [ &productive implies the 
existence of a modified golden rule, and (ii) if (x, p) is a modified 
golden rule then x is a non-trivial stationary optimal stock. Now, 
the converse of (i) is true, while that of (ii) is not, in general. 

That  the converse of (i) is true follows from the definition of a 
modified golden rule and (U.1). That the converse of (ii) is not, in 
general, true is given by the following example. 

Example 4.3: Let f (x) = 2 x  1/2, x ~ [0, 9] 

= 15 (x-9)z /2+6,  x e [9, oo) 

u (c) = c/(1 + c), c >_ 0 

1 
2 

Note that f is not concave. We show that (i) /~-= 1/4 is a non- 
trivial stationary optimal stock, and (ii) there is no p _> 0 such that 
(~:, p) is a modified golden rule. 

It is easily seen that ~/(/~)-/~_>(~f ( x ) - x  for x e [0,4]. Now 
c* =-[ (k.) -1~=3/4. Define p = u '  (3/4) =16/49. Then u (c*) -pc*  >_ 
u (c ) -  pc for all c > 0. Hence (using the fact that any feasible pro- 
gram <xe> from /~ must satisfy xe<4 for t_>0) by the Pe leg -  
R y d e r  argument (1972, p. 168) /~ is a stationary optimal stock 
(clearly non-trivial). 

However, note that for x=18 ,  [ (x )=51 ,  so 6 f ( x ) - x = 7 1 / 2 .  
Also, 6 f ( /~ ) -~=1 /4 .  So c~f(x)-x>~f(k~)-l~,  hence there is no 
p _> 0 for which (/~, p) is a modified golden rule. 
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Remarl~: When f is concave, it is possible to establish the 
equivalence of the concepts of modified golden rule and stationary 
optimal stock. We omit a detailed discussion here v, but note that 
this yields the added equivalence of the two conditions (i) [ is 
(5-productive, and (ii) there exists a nontrivial stationary optimal 
stock. 

5. Asymptotic Stability of Optimal Programs when the Utility 
F u n c t i o n  is Strictly C o n c a v e  

In this section, we will establish that optimal programs from 
arbitrary initial stocks asymptotically approach some stationary op- 
timal program. (In another context, A r r o w  and H u r w i c z  (1958) 
have called this kind of asymptotic behavior "system stability".) 
This seems to be the general stability property that can be estab- 
lished for the aggregative model, when the utility function is strict- 
ly concave. 

We will, in fact, show that optimal programs are monotone 
over time in input levels (in a weak sense). This allows us to con- 
clude that optimal programs must converge, and by utilizing the 
Principle of Optimality in the limit, the asymptotic stock must be 
a stationary optimal stock 8. 

For our purpose, we will assume that the utility function is 
strictly concave on [R +. The case of a weakly concave utility func- 
tion is somewhat more subtle and explored in the next section. 

The monotonic convergence of optimal programs to a stationary 
optimal stock is an easy consequence of the following lemmas. 

Lemma 5.1: If u is strictly concave, < x t >  is an optimal pro- 
gram [rom s, <x~'> is an optimal program [rorn s', and s>s ' ,  
then x l  >- Xl'. 

Proo[: See M i t r a  and R a y  (1983), or D e c h e r t  and N i sh i -  
m u r a  (1983), noting that the proof in the latter paper goes through 
under our weaker assumptions. 

7 However, since we use this fact in the proof of Lemma 6.3 below, 
the interested reader is referred to Mitra and Ray (1983) for further 
details. 

s Somewhat stronger statements about optimal programs have been 
established by Dechert  and Nishimura (1983) and Majumdar  and 
Nermuth  (1982), but these use explicitly the differentiability of both util- 
ity and production functions. Example 3.1 above has already suggested 
that without differentiability of production functions, these results might 
not be valid. 
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Lemma 5.2: Suppose u is strictly concave. I[ < x t>  is an opti- 
mal program from s, then (i) x l > s  implies xt+l>__xt [or t>_l, 
(ii) x l  < s implies xt+l < xt [or t > 1. 

Proo[: See M i t r a  and R a y  (1983), or, with some modifications, 
D e c h e r t  and N i s h i m u r a  (1983). 

Lemma 5.3: Suppose u is strictly concave. I[ < xt > is an optimal 
program [rom s, then (i) < x t >  is monotonic  (ii) < x t >  converges 
to some number,  z, in [0,/~], with [ (z) > z. 

Proo[: (i) If x t = x t + l  for t > 0 ,  then we are done. If not, let r 
be the first time period for which xr ~ Xr+l. If Xr < Xr+I, then xt < xt+l 
for t > r by Lemma 5.2. If xr > Xr+l, then xt _> Xt+l for t > r by Lem- 
ma 5.2. Hence < xt > is monotonic. 

(ii) Since O < x t < ~  for t > 0 ,  so by using (i), xt converges to 
some number,  z. Since xt >_ 0 for t _ 0, so z > 0. Since [ (xt-1) - xt >__ 0 
for t > 0, so [ (z) - z  >--0, and z-</~, by (F.2). Thus,  z is in [0, k]. [t 

Theorem 5.1: Suppose u is strictly concave. I[ < xt > is an opti- 
mal program [rom s, then xt converges to a stationary optimal stocl~. 

Proo[: By Lemma 5.3, xt converges to some z in [0,/~] with 
[ (z) _> z. Note that  for t > 0 

V (xt) = u  [[ (xt) -Xt+l] -]-(~ V (Xt+l). 

Since xt--*z as t--~oo, and u and V are continuous, so 

v (z) = u [f (z) - z] + ~ v (z). 

By Lemma 4.7, z is a stationary optimal stock. II 

6. A General Stability Result for Optimal Programs 

Although the stability result obtained in Section 5 is fairly general, 
there are two  reasons to remain unsatisfied with it. First, in the 
context of a non-convex technology set (with a special structure) 
and a linear utility function, M a j u m d a r  and M i t r a  (1983) have 
shown that  optimal programs converge asymptotically to some 
stationary optimal program. This result cannot be viewed as a 
special case of Theorem 5.1. Some unification should surely be 
possible for the class of all concave utility functions. Second, "sys- 
tem stability" is in general not  true in models with concave utility 
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functions. As an example, let [ ( x )=3  x, for  0 < x < l ,  [ ( x ) = 2  x + l  
1 1 

for  1 < x < 4, [ (x) = T x + 7 for x > 4, u (c) = c and d = ~-.  Let s = 2. 

Then  it is easy to check that  the program generated by the input 
sequence < x t > ,  given by x t = 2 ,  t odd, and x t = 3 ,  t even, is opti- 
mal. Clearly, no system stability is to be had here. On the other  
hand, the example also indicates that  the oscillating optimal pro- 
gram stays close to the set of stationary optimal stocks (in fact at 
a zero distance f rom this set, since 2 and 3 both belong to G). 
Thus,  it does not  seem outrageous to conjecture that the general 
stability proper ty  of optimal programs should be that  the distance 
f rom the optimal input level at date t to the set of stat ionary 
optimal stocks (G), converges to zero as t goes to infinity. In this 
section, we provide an analysis which confirms this conjecture. 

Lemma 6.1: I[ < xt > is an optimal program [rom s, and < xe" > 
is an optimal program [rom s', and s>s ' ,  and x l < x l ' ,  then 
(s, xl ' ,  x2", . . . )  and (s', xl ,  x2, . . . )  are optimal programs [rom s 
and s" respectively. 

Proo[: The  method is basically the same as that  used in Lem- 
ma 5.1. By Lemma 4.4, we have 

V (s) = u  (cl) + 6 V  (xl) (6.1) 
and 

V (s') = u (cl') + ~ V (xl'). (6.2) 

Consider the sequence < 2t > given by 20 = s, 2~ = xt' for  t > 1. Then  
[ (20) - 21 = f (s) - x l '  > f (s') - x l '  = c1'; and f (2~) - 2~+i = c't +l for t >__ 1. 
So < 2t > is a feasible program from s. 

Similarly, consider the sequence < 2 ( >  given by 2o" =s', 2 ( = x ~  
for  t > 1. Then  f (20') - 21' = [ (s') - x l  > f (s') - x l '  = cl'; and f (2t') - 
2t+l '=c~+l  for  t > l .  So < 2 t ' >  is a feasible program f rom s'. Sup- 
pose, contrary to the Lemma, either < 2t > or < 2 ( >  is not  opti- 
mal. Then,  using Lemma 4.3, we have 

and 
V ($) _> u (l~l) + ~ V  (Xl') 

V (5') ;> u (c1') +(]V (x1) 

(6.3) 

(6.4) 

with strict inequality either in (6.3) or in (6.4). Thus,  combining 
(6.1)--(6.4) we have 

u (cl) + u (c1') > u (e~) + u (el'). (65) 
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Now,  ci + c i ' = [  ( s ) - x l  +f  ( s ' ) - x i ' ;  and ei +8 i '=[  ( s ) - x i '  + 
f (s ')-x~. So Cl+Cl"=el+e~'.  Also, e l = / ( s ) - x i ' > f  ( s ' ) - x l ' = c i ' ,  
while 81 = [ (s) - xi '  < [ (s) - xi = ci. Thus, there is 0 < 0 < 1, such that 
el=Ocz+(1-O) c1". Then, el"=Cl+Cl"-ez=cl+cl'-Ocl-(1-O). 
o ' = O c i ' + ( 1 - O )  ci. So using concavity of u, we have 

u (el) = u  ( 0 c 1 + ( 1 - 0 )  c1")>_Ou (cl)+(1-0) u (c1') [ .  
! U (el ' )=U (081'-}-(1--0) Cl)~>OU (81")+(1--0) U (81) 

(6.6) 

It follows from (6.6) that 

u (el) + u (el') z u (cl) + u (c1') (6.7) 

which contradicts (6.5), and establishes the result. [[ 

Remarl~: Note that the proof of Theorem 3.1 uses a similar 
argument for a change in target stocks. 

Lemma 6.2: I[ <x t>  is an optimal program, then (i) x t=x t+i  
[or some t implies xt is in G. (ii) x t - i  <xt,  x t>x t+i  [or some t im- 
plies xt is in G. (iii) x t - i > x t ,  x t<x t+l  /or some t implies xt is 
in G. 

Proo[: To prove (i), note that by Lemma 4.4, V (xt)= u [[ (xt) - 
xt+l] +(SV (xt+i). So using x t = x t + i = s  (say), we know that s is a 
stationary optimal stock by Lemma 4.7. 

To prove (ii), note that (xt, x t + i , . . . )  is an optimal program 
from xt, and (xt-1, xt, Xt+l, . . . )  is an optimal program from x t - i .  
Since x t > x t - i  and Xt+l<Xt, so by Lemma 5.1, (xt, xt, xt+i, . . . )  is 
an optimal program from xt. Now,  using (i), xt is a stationary 
optimal stock. 

The proof of (iii) is similar to (ii), and is therefore omitted. [[ 

We now introduce the concept of "distance" that is required 
for our next result. For x, x' in •+, define the distance between 
x and x" as d (x, x ' )=-[x -x ' ] .  Now,  for a non-empty set H c  JR+, 
and x in R+, define the distance between x and H as d (x, H ) =  
inf d (x, y). Since d (x, y) >_ O, for all x, y in R +, so d (x, H) is well- 
yell 
defined. Note that if x is in H, then d (x, H ) =  0. 

Theorem 6.1: I/ < xt > is an optimal program /rom s >_ O, then 
d (xt, G) --~ 0 as t 4oo .  

Proof: Suppose, on the contrary, there is e > 0 and a subsequence 
of xt for which d (xt, G) >_ s for all xt in the subsequence. There is 
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then a convergent subsequence (of this subsequence), by Lemma 4.1. 
Call this < x~ >,  i = 1, 2, . . . ,  and call its limit z. Since d (xt~, G) __ e, 

so d (z, G) >_ ~ also. Consequently, there is ~ > 0, such that  z - ~  > 0, 
and the interval I = [ z - ~ , z + ~ ]  contains no element of G. Since 
xt~ ~ z  as i - * ~ ,  so there is i*, such that  i>_i* implies x~ is in L 

Pick any i>i* .  Now,  x t ~ - l ~  xt~; for if x ~ - l = x ~  then by Lemma 

6.2, xt~ e G, a contradiction. So either xt~-i > xt~ or xt~-i < xt~. We 

will suppose that  xt~-l>Xt~ (the rest of the proof for the other 

case follows similar lines). 
Now,  we claim that  for t~<_t<_tr xt  e l .  If not, let T1 be the 

first period (t~ < T1 <ti+l) for which xT 1 is not  in I. Then, xt~ . . . .  

. . . .  XTI-1 are all in I. Since xt~-i > xt~, so xt > xt+l for tl _< t _< T1 - 1 
by Lemma 6.2. [If the inequality was violated for some t, with 

t~<_t<_Tl -1 ,  then xt e G for the first such t, a contradiction to 

xt e I.] Thus, we can conclude that  XT, < Z-- 0~. 

Let T~ be the first period (T1 < T2_<tl+l) for which XT 2 is again 

in I. [Since xti+l ~ I, and xT,  is not  in I, T~ is well-defined.] Then, 

XT2-1 is not in I; that  is, either xT~-i > z + ~ ,  or xT~-~ < z - ~ .  

If XT2-1 > Z + % then since x~,~ < z - 0 q  we know that  T 2 - 1  > T1, 

and there is some period T3 (T1 < T3 < T 2 - 1 )  such that  XT 8 <Z--O~ 

while x ~  +1 > z + ~. Then x~, >_ z - o~ > x ~ ,  while xt~ +1 < x~, < z + ~ < 

x~+l .  Thus, (xt~-l, x~, xT~+l, xea+z , . . . )  is an optimal program from 

xt~-l, by using Lemma 6.1. Since xt~-i > xt~, and xT~+l > z +c~ > xt~, 

so by Lemma 6.2, xt~ ~ G, a contradiction. Thus,  x~,~-i > z + ~  is not  

possible. We conclude therefore that  xT~-i  < z-o~. Since x ~  ~ I, so 

we must have xT~ > x ~ - l .  
Now,  if x ~ + l  < xw~, then x~, e G by Lemma 6.2, a contradiction 

to xT~ e I. So we also must have XT~+I>XTa. 

Finally, we compare xTt-1 and xT~ (i. e., the values of x just 
before "leaving" the interval I, and just after "re-entering" the inter- 

val I). We know that xe~ < z -  e -< xT~-i while xT~ > z -  e > x~,~-l. 

Thus, we have xe~-i > xT~-i while xT~ <xe~. So applying Lemma 

6.1, (xT~-l, x:v~, xT~+l, . . . )  is an optimal program from XTx-1, and 

(xT~-z, xT~-l ,  x f~,  xf~+l, . . . )  is an optimal program from xT~-z. 
If X T ~ - I = X ~ ,  then x f~- i  e G by Lemma 6.2, a contradiction to 

xT~-i e I. If xTx-1 >XTa, then since xT~+l >xT~, so XT~ ~ G by Lem- 
ma 6.2, a contradiction to XT~ ~ I. And, if x~,t-1 <xT~, then since 
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xml-2>xwl-1, so by Lemma 6.2, xTl-1 e G, a contradiction to 

xTI_I e I. Since these are the only possibilities, we have established 

our claim that xt e I for t<_t<_t~+~. (As mentioned before, if we 

supposed xt,-1 <xt,,  we would  establish this claim along similar 
lines.) 

Since x t e I  for t, <_t <_t,+~, and xt , - l>xt , ,  so x t - , > x t  for all 
t,<_t<_t~+,. In particular, xt~+~-~>xt,+~. So the argument can be 

repeated for all successive ti's to get xt-~>xt  for all t>_t,. But, 
then xt converges (being monotonically decreasing, bounded below). 
And since xt~ ~ z as i - -  0o so xt --+ z as t ~ oo. Since V (xt) = u (/(xt) 

- x t + l )  + S V  (xt+l) for t_>0, so V (z) = u  (/(z) - z )  + S V  (z). By Lem- 
ma 4.7, z is a stationary optimal stock. That  is, z e G, which con- 
tradicts the fact that z e I. This establishes the result. [[ 

If the product ion function is concave, and there exists only one 
nontrivial stationary optimal stock, more powerful  stability results 
may be obtained 9. 

Lemma 6.3: Suppose that there is a unique nontrivial stationary 
optimal stock~, x*, and that / is concave, then 8f (x*) >x*.  

Proo/: By the remark fol lowing Theorem 4.2, x* is associated 
with a modified golden rule. So 8 / ( x * ) - x * > _ 8 / ( x ) - x  for x>_0. 
So 8/(x*) _>x*. If 8/(x*) =x*,  then 8/([1/2]  x*) >[1/2] x*, by the 
concavity of /. Since 8 / ( x * ) = x * ,  this implies that [1/2] x* is also 
associated with a modified golden rule, and is therefore a stationary 
optimal stock, a contradiction, t l 

Lemma 6.4: Suppose that there is a unique nontrivial stationary 
optimal stoct~, and f is concave. Then, there exists (5, ~)>> 0 such 
that/or all (x, ~7) <~ (s ~) with x _> 0 and ~ > 0, 

[f (x + 7) - / (x)] 
>1.  

Proo/: Pick ~ > 0 such that 

[f (~) - / (0)] > 1. 

9 Given a concave production function, the uniqueness of a nontrivial 
stationary optimal stock is equivalent to assuming a strict concavity prop- 
erty in the neighborhood of some nontrivial stationary optimal stock. 



172 T. Mitra and D. Ray: 

Such ~ exists, given Lemma 6.3 and / (0) = 0. By the continuity of [, 
there is ~ > 0 such that 

a [ f ( ~ +  ~) - / ( ~ ) ]  >1. 

N o w  pick any (x, ~) < (~, 7) with x _> 0, ~7 > 0. Then, by the con- 
cavity of [, 

a If (x + n) - f (x)] a If (~ + F) - f (~)] 

a If (~ + ~) - f (~)] 
>l .  11 (6.7) 

Lemma 6.5: Suppose that there is (s ~l) such that the result in 
Lemma 6.4 holds. Let < x t >  [rom s > 0  be a monotone optimal 
program. Then inf xt > 0. 

Proo/: Suppose not; then, since < xt > is monotone,  xt decreases 
to 0 as t ~ o o .  If x~=0  for some t, let T be the first period (_>1) 
when this happens. Then, clearly, cT >CT+l. Otherwise, xe >0  for 
all t. In this case, define T such that XT-i < min (#, 7), and CT > CT+I. 
Then XT < #, and / (xm-1) > xT-1 -> XT (using Lemma 6.4 with XT-i =~/, 
and x = 0). N o w  pick ~ > 0, such that # < rain (7, / (XT-1) -- XT), and 
CT+I+/ (XT+~)--/ (XT) <CT. Noting that CT - -~= /  (XT-1)--XT-- 
fl > O, we have 

V (xT-1) >u (CT--fl) +3U (CT+I +f  (XT+fl)--f (XT) ) + 
+~2 V (x~,+l). (6.8) 

Also, 
V (XT-1) =U (CT) +0U (CT+I) +(~9 V (XT+I) (6.9) 

so, combining (6.8) and (6.9), 

u (CT)--U (CT--~)>0 [u (CT+I+/ (XT + ~ ) - i f  (XT))--U (CT+I)] 

o r  

u (cp)-u(c~-~) 

u (c~,+1 + f (x~,+#)- f (x~)) - u  (c~v+l) 
> f (x~ +~) -  f (x~) 

using Lemma 6.4, noting that (XT, fl) <-- (x, 7). 

But noting that CT>CT+I+/ (Xf+f])--/ (XT) >CT+I+~, 
contradicts the concavity of u. Hence, inf xt > 0. ][ 

(6.10) 

(6.1o) 
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Theorem 6.2: Suppose that there is a unique nontrivial sta- 
t ionary opt imal  stocs x*, and that f is concave. Then,  for all s > O, 
opt imal  programs < x t >  f rom s are mono tone  in inputs,  and 
xt ---+ x* as t ~ co. 

Proof: If xt =xt+l  for all t >_0, we are done. Otherwise, consider 
the first period T for which x T # X T + I .  Then either (i) XT+I<XT, 
or (ii) XT+I > XT. 

In case (i), we claim that x t + l < x t  for t > T .  If not, let s be 
the first period for which xs+l > xs. Then xs _< xs-i. If xs = xs-1, 
then x~ is a stationary optimal stock, by Lemma 6.2. If x~ < x~-l, 
then, again by Lemma 6.2, x~ is a stationary optimal stock. Since 
x s+ l>xs ,  xs>0,  so x~=x*.  Now,  clearly Xt+l>Xt for t > s .  If 
not, so that there is a smallest ~:>s for which xr+l<_xr, we 
have xr a nontrivial stationary optimal stock, and xr >x*, contra- 

dicting our assumption of uniqueness. Since xt <_ I~ for all t, xt  --* 
> x*. But then ~ is a nontrivial stationary optimal stock, a con- 

tradiction. 
So, in Case (i), x t + l < x t  for all t>_0. By Lemma 6.5, i n fx t>0 .  

So xt  --* ~ > 0. Clearly, x is a nontrivial stationary optimal stock, so 
)~ ~ X  ~~ 

In Case (ii), we claim that x t + l > x t  for t > T .  Following the 
"mirror argument" of Case (i), we can show that if xs+l<xs for 
some first s___T, then (a) x s = x * ,  and (b) x t + l < x t  for t>_s. The 
program (x~,xs+l, . . . )  is clearly monotone and optimal from 
xs =x*; hence, by Lemma 6.5, inf xt > 0. But x8 > xs+l > xs+z, . . . .  
So lira xt=~Z>0, with )Z<x*. But ~Z must be a nontrivial stationary 
optimal stock, a contradiction. So in Case (ii), x t + l > x t  for all 
t_>0, and as in Case (i), xt  ~ x *  as t ~oo .  II 

Remars  Note that the proof of Theorem 6.2, which establishes 
very strong properties of optimal programs, depends only on the 
fact that a unique nontrivial optimal stationary stock exists, and 
that the production function satisfies the property stated in Lem- 
ma 6.4. Concavity (apart from establishing this property in Lemma 
6.4) is nowhere used. So the result is more general, handling, for 
example, the nonconvex technologies in M a j u m d a r  and M i t r a  
(1982, 1983), for discount factors close to one. 
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