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Abstract

A common practice in spatial analysis 1s to represent the
population of a spatial unit, such as a county or census tract, by
a single point, and to use this point when measuring the distance
between the population and other places such as service centers.
In theoretical spatial systems, distance measurements obtained
under this practice may differ from true distances by as much as
eight percent, and the difference may be greater for real spatial
systems. The presence and magnitude of these measurement
errors have important implications for spatial analysis, and par-
ticularly for evaluating alternative facility location plans.

I. Introduction

This paper investigates a simplifying operational definition made in many
locational analyses. These analyses frequently require the measurement of the
distance between members of a dispersed population and some point, such as a
service center. The analysis may be greatly simplified if the region fo be ana~-
lyzed contains many small spatial units and if the population of each unit is
known. The analyst may then aggregate the individual members of the popula-
tion residing within each unit, and treat these individuals as though they all were
located at a single point. This permits the estimation of D, the true average
distance between the unit's population and the service center, by E, the distance
between the unit's aggregation point and the service center.

The use of Eto estimate Dis common in locational analysis. As the first
section of this paper demonstrates, however, E contains errors from three
sources. Some of these errors, which we call Source A errors, are simply in-
herent in the measurement of the distance to a service center from an aggrega-
tion point instead of from the dispersed population. Other errors arise when a
service center occurs at an aggregation point or, when several centers are
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involved, if the estimate causes distances from part of the population to be
measured fo the wrong service center. We call these Source B and Source C
errors respectively.

Although other researchers have acknowledged the existence of such er-
rors (2, 7), to our knowledge no one has attempted to examine the three sources
separately, or to measure their size. Accordingly, we document the existence
and sign of these errors in the next section of this paper; then we compute their
size in three theoretical spatial systems. In the final section, we discuss the
implications of these errors for locational analysis, with special attention given
to facility location planning.

II. Sources of Error in Estimating Average Distance
Source A

Source A errors are inherent in the use of E, the distance between an ag-
gregation point and a service center, to estimate D, the true average distance
between a population and a service center. To demonstrate the existence of
Source A errors, we refer to Figure 1. Assume that the spatial unit in the fig~
ure contains a uniformly distributed population P, which for purposes of analy-
sis has been aggregated to point q, the mean center of the population (6). Fur-
ther assume that a service center is located at k. For convenience, let k lie at
the origin of an x~y coordinate system, with the x-axis passing through q. In
this case, E is simply x_, the x~coordinate of the aggregation point. Now con-
sider an infinitely thin slice of population dP drawn perpendicular to the x-axis.

POPULATION P

FIGURE 1. EXISTENCE OF SOURCE A ERROR.
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The distance from the service center, at k, to the point where the slice inter-
sects the x~axis is simply x4, the x-coordinate of the slice. The distance rg,
between k and any portion of the slice not on the x-axis, is greater than xg, or

(1) rg>xg .

Integrating both sides of this inequality over P and then dividing by P yields

1 1
@ 3 IrdP>§fde.

The left~hand side of this inequality is the average distance from the population
P to the service center at k, or D. The right-hand side is the mean value of
the x~coordinates of P, or E, since q.is the mean center of P. Thus, if the
mean center is used as the aggregation point, E will underestimate D. If some
other aggregation point is used such as q', E will underestimate D by an even
greater amount if the service center is located to the right (Figure 1). On the
other hand, E measured from ¢' may underestimate, equal, or overestimate

D for service centers located to the left. In general, E will not equal D for
most service center locations; therefore, Source A errors occur if E is used as
an estimate of D. The mean center is an attractive choice for an aggregation
point because then E will never overestimate D and the Source A errors will
always be negative.

Source B

Errors from Source B are much simpler to examine, in part because they
are special cases of Source A errors, We consider Source B errors separately
because they do not occur in all analyses where the more general Source A er-
rors occur. Source B errors occur if a region has been divided into many
small spatial units, and if service centers are assumed to occur at the aggrega-
tion points of some of these units. When a service center occurs at the aggre-
gation point of one of these units, then E, the distance from the aggregation
point to the gervice center, is zero. However, if the population is dispersed
throughout the unit, then D, must be greater than zero for the unit; therefore,
E will always underestimate D, regardless of the location of the aggregation
point.

Source C

Source C errors, like Source B errors, do not occur in all locational anal~
yses. Rather, they occur when E is used to estimate D*, the average distance
between the population in a spatial unit and its nearest, or most preferred, or
other "best' center. When E is used to estimate D*, some individuals will be
allocated to the wrong center causing an error in E. We call such errors
Source C errors and examine them with help of Figure 2. D and E can be
measured from the population in the area to two service centers, located at m
and n. Since the solid vertical line in the figure is equidistant from these two
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mn!

mn

FIGURE 2. EXISTENCE OF SOURCE C ERROR.

centers, D measured fo m is equal to D*. E, the estimate of both D and D*, is
simply the distance from q to m. Movmg the center at n to n', however, “makes
the vertical dashed line equidistant from the two service centers. Individuals
to the right of this line are nearer to n' than to m, and D* will decrease. E,
measured from g to m, will remain constant, however, because it is an esti-
mate of the distance from all individuals in the area to the center at m. This
mis-allocation of individuals between neighboring centers causes what we

call Source C errors. Source C errors are always positive, regardless of the
sign of any Source A errors which also may be present in E.

III. Measurement of Errors in E

From the preceding section, it follows that D = E + (Source A error) +
(Source B error), and that D* = E + (Source A error) + (Source B error) +
(Source C error). Because Source A 5 O, Source B <O, and Source C > O,
the three errors may either cancel or reinforce each other. In this section, we
measure the total error in E as an estimate of D* for service centers in three
theoretical spatial systems composed of hexagonal, square, and friangular
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spatial units. We describe the method of measurement in detail for the hexag-
onal units, generalize it for use with squares and triangles, and then present
and analyze the measurement results.

We assume a population distributed uniformly over a plane, with popula-
tion dengity d. We then lay a grid of regular hexagons over the plane and aggre~
gate the population of each hexagon to its mean center. If the radius R of a
hexagon is defined as the distance from the mean center to a vertex, then each

hexagon contains 3(3)1/ 2de/z individuals. This aggregation procedure con-
verts the uniform population of the plane into equal sized concentrations, lo-
cated on a regular hexagonal lattice of points.

Next, we locate service centers at regularly spaced points on the lattice
in accordance with a LYschian system (5). Any regular spacing of centers on
the lattice will give each center a regular, hexagonal, proximal service area
containing K lattice or aggregation points, where K varies with the spacing be~
tween centers. To compute E, the estimated average distance between the
center and the population of the service area, we use the equation

where s is the distance to the service center from the ith lattice point in the
service area.

To compute D* for the same service area, we divide the area into 2n tri-
angular segments (Figure 3), where n is the number of sides of the service area,
area, or 6 for a hexagon. Because the 2n triangles are identical, D* for the
service area will equal D* for any one of the 2n triangles. Letting A =/n, D*
is computed as the total distance traveled within a triangle, divided by the
population of the triangle, or

A RKl/2 cos (A) sec (a)
d f f r? dr da
a=0 =0

(1/2) R%K cos (A) sin (A) d

) D+ =

Integrating over r gives
arSK3/2 cos3(A) 3
(5) Dx sec”(a) da.
3R%K cos (A) sin (A) =0

Integrating over a and combining terms gives
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n
b r = R K" cos(A) sec(a)

N
R K* cos(A)

2 -
5 RS

A="T/6 A=T/4 A =T/3

FIGURE 3. MEASUREMENT OF Qf
1/2 2
6) D= -SB cos" () Esec (A) tan (A)] +log_ [sec (A) tan (A) ]:| .
- 3 sin (A) €
For hexagons, A =7 /6, and

() D* = .6080RKY2 .

Given equations (3) and (6) and the definition of the radius R of a polygon,
the calculation of E and D* for grids of squares and triangles is straightfor-
ward. These systems havedifferent possible regular spacings of centers and,
hence, different values of K, but equation (3) may still be used to compute E.
For squares, A =1/4 in equation (6) and

8) Dt =.5411RK/Z .
For triangles, A =7 /3 and
©9) D* = .4601RKY/2,

Tables 1, 2, and 3 contain the results of our measurements on the hexag-
onal, square, and triangular systems respectively. Column 1 of each table
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TABLE 1

ERRORS IN E FOR THE HEXAGONAL LATTICE SYSTEM

K E D* Total % % %

(in (in Error Total Source Source

units units (E-D*) Error B A+C

of R) of R) Error Error

Q) @) (3) (4) () (6) U

1 0.000 0.608 ~0.608 -100.00 ~100.00 0.00
3 1.155 1.053 0.102 9.65 ~-19.25 28.90
4 1.299 1.216 0.083 6.83 -12.50 19.33
7 1.485 1.609 -0.124 =7.71 ~5.40 -2.31
9 1,821 1.824 -0.003 -0, 14 =-3.70 3.56
12 2.193 2,106 0.087 4.14 -2.41 6.55
13 2.184 2,192 ~0.008 -0.37 -2.13 1.76
16 2.462 2.432 0.030 1.27 -1.56 2.78
19 2.588 2.650 ~0.062 -2.34 -1.21 ~-1.13
21 2.778 2.786 ~0.008 -0.29 ~-1.04 0.75
25 3.067 3.040 0.027 0.89 -0.80 1.69
27 3.225 3.159 0.065 2.07 -0.71 2.78
28 3.229 3.217 0.012 0.38 ~0.67 1.05
31 3.360 3.385 -0.025 -0.73 -0.58 -0.15
36 3.660 3.648 0.012 0.33 ~0.46 0.79
37 3.658 3.698 -0.040 -1.09 -0.44 ~0.64
39 3.791 3.797 -0.006 -0.16 -0.41 0.25
43 3.985 3.987 -0.002 -0.05 -0.35 0.30
48 4.264 4.212 0.052 1.23 ~0.30 1.53
49 4.262 4.256 0.006 0.13 ~0.29 0.42

Columns 5 -~ 7 are expressed as a percentage of Column 3.

lists the possible values of K for systems through 50. 1 Columns 2 and 3 give
E and D* respectively, for each value of K. The difference between D* and E,

lln the system based on square units, two different configurations of cen-
ters have K values of 25. These two cases appear separately in Table 2. In the
triangular system, two different configurations are possible for K values of 49;
these two cases appear separately in Table 3.

Spatial irregularities in the triangular lattice of aggregation points occa-
sionally permit regular service areas of equal size to contain different numbers
of lattice points. For example, when K =9, each service area equals the area
of nine small triangular units, but each service area contains either 7-1/2 or
9-1/2 lattice points. To compute E for these cases, we have averaged the E
values. These irregularities do not affect D*.
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TABLE 2
ERRORS IN E FOR THE SQUARE LATTICE SYSTEM

K E D* Total % % % % %
(in {in Erxrror Source Source Source Source
units units  (E-D¥  Error B A +C A Error C Error
of R) of R) Error Error (Est.) (Est.)

Q@ (3) (4) () (6) ) ®) ©)

1  0.000 0.541 ~-0.541 -100.00 -100.00 0.00 0.00% 0.00%
2 0.707 0.765 ~0.058 ~7.59 -35.86 27.76 -5.53 33.30
4 1.207 1.082 0.125 11.55 -12.50 24.05 -~4.75 28.80
5 1.131  1.210 -0.079 -6.49 -8.94 2.45  -4.20 6.66
8 1.561 1.530 0.030 1.98 ~4.42 6.40 -3.06 9.47
9 1.517 1.623 -0.106 -6.52 -3.70 -2.81 -2.81%* 0.00%

10 1.682 1.711 -0.029 -1.70 -3.16 1.46 -2.60 4.06

13 1.921 1.951 -0.030 -1.54 ~2.13 0.59 =~2.12 2.71

16 2.248 2.164 0.083 3.85 -1.56 5.41 ~1.79 7.20

17 2.213 2.231 -0.018 -0.81 -1.42 0.62 ~1.70 2.32

18 2.326 2.296 0.030 1.31 -1.31 2.62 -1.62 4.24

19 2.313 2.358 -0.046 -1.94 -1.21 -0.73 -1.55 0.81

25 2.651 2,705 -0.055 -2.02 -0.80 ~-1.22 -1.22% 0.00%*

25A 2.690 2.705 ~0.016 -0.58 -0.80 0.22 -1.22 1.44

26 2.745 2.759 -0.014 ~-0.50 ~-0.75 0.25 ~-1.18 1.43

27  2.821 2.812 0.009 0.32 -0,71 1.04 -1.14 2.18

32 3.087 3.061 0.026 0.86 -0.55 1.41 -0.98 2.39

34 3.146 3.155 -0.009 -0.29 ~0.50 0.21 -0,93 1.14

36  3.307 3.246 0.060 1.85 ~0.46 2.32 -0.88 3.20

37 3.284 3.291 -0.007 -0.21 ~0.44 0.24 ~-0.86 1.10

40  3.420 3.422 -0.002 -0.07 -0.40 0.33 -0.80 1.13

41 3.455 3.465 -0.010 -0.28 -0.38 0.10  -0.78 0,88

45 3.616 3.630 -0.013 -0.37 -0.33 -~0.03 -0.72 0.69

46  3.661 3.670 ~-0.009 -0.25 -0.32 0.07 ~-0.71 0.78

49  3.751 3.788 -0.036 ~0.96 -0.29 -0.67 -0.67* 0.00%

50 3.818 3.826 -0.008 -0.22 -0.28 0.07 -0.65 0.72

Columns 5 - 9 are expressed as a percentage of Column 3.
K =25A, See Footnote 1.
*Actual, not estimated, error.

in column 4, is the total error in E, or the sum of the three sources of error.

This is expressed as a percentage of D* in column 5.
For each grid type, the percent total error in column 5 is large for small
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TABLE 3

ERRORS IN E FOR THE TRIANGULAR LATTICE SYSTEM

K E D Total % % % % %
(in (in Error Total Source  Source Source Source
units  units  (E-D)*  Error B A+C A ErrorC Error
of R) of R) Error Error (Est.) (Est.)

O @ 3) (4) () (6) ) (8) )

1 0.000 0.460 -~0.460 -100.00- ~100.00 0.00 0.00% 0.00%
3 0.789 0.797 -0.008 ~1.05 -19.25 18,22 ~6.45 24,67
4 0.750 0.920 -0.170 ~18.49 ~12.50 ~5.99  =5,99% 0.00%*
7 1.171 1,217 -0.046 ~-3.81 ~5.40 1.59 ~-3.86 5.46
9 1.411  1.380 0.031 2.21 ~3.70 5.91 -3.20 9.11

12 1.625 1.594 0.031 1.94 =2.40 4.34 -2,54 6.88

13 1.642 1.659 =-0.017 ~1.05 ~2.13 1.09 -2.38 3.47

16 1.776 1.840 -0.066 ~3.57 ~-1.56 -2.01 -2,01% 0.00%*

19 1.985 2.005 ~0.020 -1.00 -1.20 0.21 ~-1.73 1.94

21 2.097 2,109 ~0.012 ~0.55 ~1.04 0.49 ~1,58 2,07

25 2.251 2.300 ~0.051 -2.16 -0.80 ~-1.36 -1.36% 0.00%*

27 2.416 2.391 0.025 1.07 -0.71 1.78 -1.27 3.05

28 2.419 2.434 -0.015 ~0.63 -0.68 0.05 -1.23 1.28

31 2.556 2.561 ~0.006 -0.23 ~0.58 0.35 ~-1.12 1.47

36 2.774 2.760 0.014 0.51 ~-0.46 0.97 -0.98 1.95

37 2,788 2,798 -0.010 ~0.39 ~0.44 0.06 ~0.95 1.01

39 2.861 2.873 -0.012 -0.41 ~0.41 0.00 -0.91 0.91

43 38.013 3.017 -0.003 -0.11 -0.35 0.24 -0.83 1.08

48 3.209 3.187 0.021 0.67 ~-0.30 0.97 =0.75 1.72

49 3.187 3.220 -0.033 ~-1.03 ~0.29 -0.73 -0.73% 0.00*

49A 3.215 3.220 -0.006 -0.17 ~0.29 0.12 -0.74 0.86

Columns 5 - 9 are expressed as a percentage of Column 3.
K = 49A, See Footnote 1.
*Actual, not estimated, error.

values of K, and declines in magnitude,as K increases. This decrease in per-
cent total error is independent of the number of individuals in the service area,
because equations (3) and (6) are functions only of K, the number of spatial
units in the service area. Thus, as one would expect, the use of many small
spatial units within a service area tends to reduce the relative size of the
error in E.

It is possible to separate the percent total error into its component parts.
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Source B errors are the easiest to isolate because they are the entire error in
E when K = 1, and are constant for other values of K. As one would expect, the
relative importance of Source B errors decreases as K, the number of spatial
units in the service area, increases (column 6). Source B errors are negative
and they mask some of the effects of Source A and C errors.

Because we have aggregated the population of each small spatial unit to
its mean center, all Source A errors inthe three systems are negative. Thus
where the combined errors from Sources A and C in column 7 are positive, the
Source C errors, which are always positive, must predominate. We expect the
percent combined error in column 7 to be dominated by Source C errors for K
values with a high proportion of aggregation points on the service area boundar-
ies. K values of 3, 4, 12, 27, and 48 in the hexagonal system are good illustra~
tions of this (Figure 4a), as are K values.of 2, 4, 8, and 16 in the square sys-
tem, and 3, 9, and 12 in the triangular system. The combined error for these
cases in column 7 is both large and positive; the Source C errors alone must be
even larger. Where the proportion of aggregation points on or near service
area boundaries is low, as for K values of 7 and 19 in the hexagonal system
(Figure 4b), Source C errors should be small and Source A errors should and
do predominate.

FiGURE 4A. HEXAGONAL CONF|GURATIONS WITH HIGH SOURCE C ERRORS.
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FIGURE 4B. HEXAGONAL CONFIGURATIONS WITH LOW SOURCE C ERRORS.

In the square system, K values of 1, 9, 25 and 49 have no Source C er-
rors at all because the service area boundaries coincide with the boundaries of
the small square units. This enabled us to make a detailed analysis of Source
A errors for the gervice area configurations of these four K values. Our analy-
sis indicated that the Source A error in total distance traveled, ep, is linearly
related to the square root of K according to the equation

(10) ey = (-4144 - .4128 K/2) R34 .

Although we cannot prove that this equation holds for other values of K, the
equation does offer a method of separating the combined Source A and Source C
ervors in column 7 of Table 2. To obtain the Source A error for each value of
K, we divided ep by the service area population and expressed the result as a
percentage of D* (Column 8). Column 9 is the difference between columns 7
and 8, and is the estimated Source C error.

A similar equation fo (10) can be derived for the triangular system, using
K values of 1, 4, 16, 25, and 49 where no Source C errors occur. This equa~-
tion,

an ep = (-2306 - .2488 K1/2)R2 a ,
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was used to estimate Source A errors (column 8) and Source C errors (column
9) for the triangular system.

It is not possible to develop a similar relationship for the hexagonal sys~
tem because service area boundaries coincide with the small hexagons only
when K = 1. The estimates from equations (10) and (11) are consistent with our
earlier conclusions about Source C errors; K values with a high proportion of
aggregation points on service area boundaries have high estimated Source C
errors. In both the square and triangular systems, the estimated Source C
errors tend to be larger than either the Source A or Source B errors.

IV. Implications of Error in E

From the preceding section, it is clear that the total error in E as an esti~
mate of D* is poorly behaved; it may equal + 2% of D* in relatively large
service areas, and + 8% in small service areas, where the size of a service
area is measured by the number of units which it contains. It seems reason~
able to expect errors larger than those in Tables 1, 2 and 3 for the irregular
spatial units found in real spatial systems. Moreover, in the analysis of actual
spatial systems, the location of a spatial unit's mean population center is usual-
ly unknown; this would also increase the size and variation of the errors in E.

Leaving aside the presumed errors in E for real spatial systems, even er-
rors as small as those in the theoretical systems can have considerable effect
on some kinds of locational analyses. Average distance from a population
to its nearest service center, or D*, is a common measure of the quality of
a plan of facility locations (1); there is a substantial location-allocation litera-
ture devoted to generating and comparing location patterns to find those pat-
terns which minimize D* (4). Accurate comparisons of locational patterns are
very important in this literature, but the use of E instead of D* introduces er-
rors into the comparisons. For any given region, many patterns of service
centers may have D* values within a few percent of the minimum value (3).

If we estimate D* by E, we can also find a pattern of centers with a minimum
value of E and many patferns with E values within a few percent of this mini~
mum. Because of the errors in E, if we follow the common practice of the
l_iterature and only measure E, we cannot say with certainty which pattern has
the minimum D*. In this situation, we might do well to assume that all patterns
with low E values are essentially equal, and use some measure other than E

to distinguish among them.

Our discussion has focused on the implications of errors in E for facility
location planning and location-allocation modeling because the accurate estima~
tion of D* is crucial in these fields. In addition, the usé of E to estimate D,
without Source C errors, is important in spatial interaction and analysis of the
influence of spatial structure on processes which operate within it. The results
presented here suggest that when E is measured from the population in the town-
ships of a typical Midwestern county to the county seat (K = 16 or K = 25), E
could underestimate D by three to five percent, even if the mean centers of the
township populations were known. We believe that this error is large enough to
potentially affect the methodological and substantive interpretations of the
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results of research on such spatial systems. The errors in E may also affect
research on other spatial systems. We hope that these errors will receive
greater attention in the near future.
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APPENDIX
Derivation of equations (4) through (9).

cosA sec(a)

1. Total distance for one = j % drda
segment (Figure 6)

2. Segment = (RKl/2 cosA) (RKl/2 cosA'tanA) (1/2) (d)
population

(RKl/z cosA) (RKl/2 sinA) (1/2) (d)

3. Average distance = Total distance
for one segment, Population
D*
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7.

8.

A RK1/2 cosA sec(a)

[ [ r2 dr da
r=Q

D* = a=0 (Equation 4)

®KY2 cosay®KYZ sinA)(1/2)(d)

/2 cosA sec(a)
f f r2 dr da
g
RZK cosA sinA
A
int:fx;aﬁng 2R3 (Kl/z)3 cos3A f sec3 (a) da
Ver I (Equation 5)
D* = a=0
3R% K cos A sin A
Integrating A
over a,
1/2
p* = 2RK

___.~__92.S_é [ 1/2 {sec(a)tan(a) + log _(sec(2) +tan(a)j>]
3 sinA a=0

Evaluating at a=O and a=A; sec(0) = 0, tan(0) = 1

1/2
D* = RK cos A [ secA tanA + log (secA +tanA)-secO tanO—log
3 sinA
{secO + tan0) ]
_ /2 2 .
D¥ = RK' cos A [(secA tanA) + 1°ge (secA +tanA)] (Equation 6)
3 sinA

For hexagons; A =7/6, sinA=1/2, cosA +3%/2/2, tana = 1/(3)1/2,

SecA = 2/(3)1/2
pr=rk2@/4| 2 1 L logf2_ , 1\ =.c07986 RK'/Z
iz Y2 12 " 1/
3(1/2) 3 3 (Equation 7)
_ s _ 1/2
For squares; A = T/4, sinA =1 , cosA=1_, tanA =1, secA =2
21/2 21/2
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D* = R %1/2) [:(21/ %) + loge(zl/ 24 1):' = .541075RKL/2

s/ 1/ 2) (Equation 8)

9. For equalateral triangles; A =1/3, sinA = 1/2(31/2), cosA=1/2, tanA=

1/2

3 s SecA =2

p* = RKM/2(1/4) [ @ Y2 +1og, @ + 31/2)]= .460058RK /2
172

33 /2) (Edquation 9)
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