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Abstract. We consider plane-wave propagation in uniaxial anisotropic, gyrotropic or 
bianisotropic plane-stratified media, characterized by 6 x 6 constitutive tensors K which 
relate the wave fields D and B to E and H. Biorthogonality of the given and adjoint 
eigenmodes is derived for all media. Seven different 6 x6 diagonal matrices P are 
considered, which either transform K into its transpose (PNP = ~), or leave it unchanged, 
each transformation being applicible to at least one of the media discussed. By applying the 
transformation to the corresponding adjoint propagation equations, it is shown that the 
solution of a given propagation problem leads to the formulation and solution of a 
"conjugate" problem, in which either, or both, of the tangential components of the 
propagation vector are reversed in sign. Some of the transformations converting K to ~ lead 
to a reciprocity-type scattering relation, with positive-going waves in the given problem 
being related to negative-going waves in the conjugate problem. Some of the transfor- 
mations leaving K unchanged (pKp=N) lead to an equivalence relationship between 
scattering matrices in the two problem. 
Interesting consequences with regard to the formulation of Lorentz-type reciprocity 
relations between currents and fields are envisaged. 

PACS: 42.10 

In two earlier papers [1, 2] a scattering theorem was 
derived for a plane-stratified gyrotropic medium, 
which was based essentially on a particular transfor- 
mation of the electric permittivity tensor for a gyro- 
tropic medium. A much more general procedure is here 
adopted. We consider the 6 x 6 constitutive tensor K' 
which relates the field vectors D and B to E and H at a 

point : 

~ ~ ~ [ H I '  ( 1 )  

where ~ and g are the 3 x 3 electric permittivity and 
magnetic permeability tensors. In anisotropic and gyro- 
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tropic media, ~ and I! are zero, but differ from zero in 
bianisotropic media. We shall consider seven basic 
transformations of the tensor K' each of which will be 
applicable to at least one of the media discussed and 
then show that the solution of a given propagation 
problem will lead to the formulation and solution of a 
"conjugate" problem, depending on the particular 
transformation of the K' matrix adopted, and con- 
sequently of the field vectors. A comparison between 
the given and the conjugate problem will then yield a 
corresponding scattering relation, in which the re- 
flection and transmission matrices in the two problems 
are connected. 

1. The Given and Adjoint Eigenmodes 

We consider plane-wave propagation in a plane- 
stratified multilayer system. The fields are assumed to 
be time-harmonic, varying as exp(icot). The z-axis is 
taken normal to the stratification, and all fields in a 
given layer will vary spatially as 

E, H ~ exp [ - iko(S 1 x + S2Y A- qz)], (2) 

where k o =co~c, and S 1 and $2, because of the stratifi- 
cation, are constants for all layers. The homogeneous 
Maxwell's equations, with the 6 x 6 constitutive tensor 
given in (1), may be written in the form 

t - ; o  v •  0 

or, in condensed notation, 

(4) 

in which ~ = [1~, ~ ]  and the magnetic field vector, for 
convenience, is taken as ~r the off- 
diagonal (coupling) tensors, ~ and ~, will be taken to be 
equal in the later discussion, in which we shall consider 
the so-called Tellegen (magneto-electric) media [4] 
and moving media [3]. The symmetric matrices U 1, 
U2, and U3 are given by 

U1 = 

0 

0 0 

0 

0 0 0 

0 0 - 1  

0 1 0 

o o- 

0 1 

- 1  0 

0 

l~  3 = 

0 0 

0 0 

- 1  0 

0 

0 - 1  0 

1 0 0 

_0 0 0 

0 0 - 1 -  

0 0 0 

1 0 0 

1 

0 0 

0 1 0- 

- 1  0 0 

0 ' 0  0 

0 

With the spatially harmonic variation of e(r) assumed 
in (2), Eq. (4) reduces to an eigenvalue equation for q 
and e: 

( K -  $1 .U1 - $2U2 - q~Ua)e~ = 0. (5) 

The equation 

de t [K-  S 1 U  1 - -  S2[~,12 - q0:U3] = 0 (6) 

is a quartic in % (since U a has two empty rows), and 
the corresponding eigenvectors e~ (e= _+ 1, +2) de- 
scribe plane waves of which two are positive-going 
(e > 0) and two negative-going (c~ < 0) with respect to 
the z-axis. 
The adjoint eigenmodes ~ are obtained by rewriting 
(5) for the transposed constitutive tensor K: 

[ -slu -s2u2- pu3]  =0. (7) 

Since the 6 x 6 matrix multiplying ga is the transpose of 
that multiplying e~ in (6), (U1, U2, and U3 are sym- 
metric), the eigenvalues are the same 

~=q~.  (8) 

We now premultiply (6) by %, transpose (7) and 
postimultiply by e,, and then substract the two to give 
the biorthogonality relation between the given and 
adjoint eigenmodes 

(9) 

which, with suitable normalization, gives 

e~U3e = sign(e)~p. (10) 

Because the third and sixth rows and columns of U 3 
are vacant, (10) is a relation between the four tangen- 
tial, x and y, components of ~ and e~. If we collect 
these tangential components to form the vectors g 
(or ~), where typically 

~ = [E~, - Er, ~:,, 24f i] (11) 
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then (10) becomes 

~Ug~ = sign(e)6~p, 

0 1 (12) 
U = U - I =  1 0 " 

1 0 0 0 

We now collect the four 4-component eigenvectors g~ 
(or ~)  to form the 4 x 4 modal matrices G and the 2 x 4 
modal matrices G+ : 

G-[f~, f~ ~_, L~] - [~+  
and (12) becomes 

Hence 

G_] ~_] (13) 

~176 1 0 

0 - 1  

0 O -  

(14) 

where [ is the 4 x4 unit matrix, and finally, with 

u = U  -~, 

LG_] ~ 

This biorthogonality relationship, (14) or (15), is the 
same as that derived in [1] for a plane-stratified 
gyrotropic system, and is here seen to apply generally 
to all plane-stratified media, whatever be the symmetry 
of their 6 x 6 constitutive tensors. 

2. Transformation of the Constitutive Tensors 

We shall seek 6 x6 matrices, P = P - ~ ,  which will 
provide adjoint transformations of the constitutive 
tensor K, i.e. will transform K into its transpose 

~ = P g p  (16) 

with the constraint that the symmetric matrices U~, U2, 
and U3 will be unchanged by the transformation, aside 
from a possible change in sign: 

P U g  = -+ G ,  i=  1, 2, 3. 

This will ensure that the transformed eigenmode 
Eq. (5) will lead to transformed eigenvectors that will 
represent physical propagating modes, i.e. that satisfy 
Maxwell's equations for the plane stratified medium. 
These requirements are satisfied by diagonal matrices 

of the type 

P - P .  +.= 

F1 0 i] 

p2= - 1  , P3= 
0 

n=0,1,2,3,  (17) 

[ - 1  0 i ]  0 1 

0 0 

i] 0 1 . 

0 0 -  

(18) 

Transformation matrices of the type P_.,_+. are not 
considered separately. We note that P. ,_v~= - P .  • 
and since 

PgP = ( -  P) ~ ( -  P), PUiP = ( -  P) G ( -  P) 

no essentially new physical result is given by ~P-.,-v., 
except that subsequently the transformed eigenvectors 
of the type e'. = pg~ will be reversed in phase, together 
with their component wave-fields, E'~ and 3r but not 
their Poynting products E'= x H'=. 
Of the eight matrices considered, ~Po,o gives the triv- 
ial identity transformation, and will not be further 
discussed. We consider first the transformations 
p,~, • • of Ui, which are listed in Table 1, 

Table t. Transformations of U~, U2, and U3 

P~ *. P., ~.[U,, G, U3]g., . .  

g0,-0 -U~, -U2, -U3 

g3,_+3 -T ~UI, -TU2, +_~U3 

Next we consider transformations of the constitutive 
tensor K, satisfying (16), for various uniaxial media. 
For a gyrotropic medium, such as a magnetoptasma, 
the single symmetry axis will be directed along the 
external magnetic field. For a moving isotropic me- 
dium, which becomes bianisotropic by virtue of the 
Lorentz field transformations [3], the symmetry axis 
will be in the direction of motion. We discuss also 
uniaxiat anisotropic and magneto-electric bianiso- 
tropic media [3, 4] which have a unique symmetry axis. 
We choose the x-axis, which is tangential to the stratifi- 
cation, to be in such a direction that the symmetry, or 
principal, axis of the constitutive tensor K lies in the 
x - z  plane. Hence, if the direction cosines of the 
symmetry axis are (I, m, n), then in all cases m = 0. We 
consider four types of media. 

2.t. Gyrotropic Media. Suppose that either ~ or it (or 
both) are gyrotropic, such as in a magnetized plasma 
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(gyroelectric) or a ferrite sheet (gyromagnetic). In 
principal axes, with the axis of symmetry in the 
5r ~ in general has the form 

l ~(m, n = 0)= a , (19) 

ib 

where b is proportional to the external magnetic field, 
and changes sign if the direction of the field is reversed. 
If the principal axis (the external magnetic field direc- 
tion) has an arbitrary orientation in the x - z  plane, 
then c becomes 

- a - c ?  - i b n  

g(m = O) = ibn a 

- cln ibl 

- -  c l n  

- -  ibl 

a -  cn: 

(20) 

If e and ~ have the same symmetry axis, or if either ~ or 
are isotropic, then P2, e z are the only two matrices 

which give an adjoint transformation of K, i.e. 

= g2 ,  • 2 ~ P 2 ,  _+ 2 '  (21) 

When the gyrotropic axis is tangential to the stratifi- 
cation [along the x-axis as in (19)], such as in an 
equatorial ionosphere or a magnetized ferrite sheet, 
then -P3. • 3 also gives an adjoint transformation. 

2.2. Uniaxial Anisotropic Media. Tetragonal, hexa- 
gonal and rhombohedral crystals are of this type. g is 
given by (t9) or (20) with b=O. Both -P2,:_~ 2 and ~o,--o' 
give adjoint transforms of K. If the optic axis is tangen- 
tial to the stratification, (in the :~-direction), then K is 
transformed into ~ by all the matrices p, , •  
(n=0,  1,2, 3). 

2.3. Magneto-Electric Uniaxial Bianisotropic Media. 
When placed in an electric or a magnetic field the 
medium becomes both polarized and magnetized. Such. 
a medium was conceived by Tellegen [4] as the basis of 
a new network element, the gyrator, and the con- 
stitutive relation (1), with ~=~,  was proposed by 
Dzyaloshinskii [5] on theoretical grounds for sub- 
stances such as antiferromagnetic chromium oxide, in 
which the 3 x 3 tensors g, p, and %, all have the same 
symmetry axis. The constitutive tensor, with the sym- 
metry axis in the Yr direction, is of the form 

K.(m, n = 0) = 

~<~ 0 0 ~x 0 

0 e 0 0 

0 0 e 0 0 

~ 0  0 p~ 0 

0 ~ 0 0 ~ 

0 0 ~  0 0 

O. 

0 

0 

0 

#. 

(22) 

so that 1( transforms just as the uniaxial anisotropic 
medium, with ~=pg,2Kpa,z  in the general case 
(m=0), and ~=P, , ,  KP,,,  (n= 1,2, 3) when the sym- 
metry axis is parallel to the x-axis, as in (22). The 
transformation matrices P,,_,,  including -P0,-0, are 
here unacceptable since they change the sign of ~. 

2.4. Lorentzian Bianisotropy (Moving Media). 
Suppose that in the rest frame of the moving medium 
the permittivity and permeability tensors are isotropic 

~r.f. = e , ~r.f, = # " (23) 

0 0 

In the laboratory frame, in which the medium appears 
to be moving with velocity v in the f~-direction, the 
constitutive matrix [Ref. 3, pp, 42-43] becomes 

0 0 0 0 0- 

0 ~' 0 0 0 

0 0 e' 0 - 4  0 
K(m, n = 0) = , (24) 

0 0 0 # 0 0 

0 0 - ~  0 #' 0 

o 3  o o o K 

where 

~' =~(1 -/~2)/(1 -n2/~ 2) 

F = # ( 1  - fi2)/(1 -n2fi  2) 

= - (/~/c)(n 2 - 1)/(1 - n2/~ ~) 

=v/c, n=c(e/0112. 

If v has a component along ~ too, then ~ and 
transform as in (20), with b=0 .  The off-diagonal 
matrices become 

~=  n 0 

- ~ l  

and K(m=0) cannot be transformed into its transpose 
by any of the matrices P,, • On the other hand, with v 
parallel to the x-axis then !{, given by (24), is trans- 
formed to ~ by ~P1,+_1. 

3. Transformation of the Adjoint Eigenmode Equation 
and Formulation of the Conjugate Problem 

We substitute (16) into the adjoint eigenmode Eq. (7). 
To be concrete, suppose K transforms to K as in (21). 
With ~P-:~Pz,_+2, and with the aid of Table 1, (7) 



Symmetries and Scattering Relations in Plane-Stratified Media 151 

becomes 

P[K +__ Sl U x ~ SzU z + ?LU3] pe~ = 0. (25) 

Let us choose new propagation constants, S'~ and S~, 
such that the coefficients multiplying U I and U a regain 
their original values. This requires that 

S'~ = -T-S,, S~ = _+S 2 (26) 

leading to 

[K - S' 1U l - S2U 2 --~ ~/aU3] P~e = 0 (27) 

in which we have premultiplied (25) by P ( = P -  1). This 
leads immediately to a conjugate problem in which the 
tangential propagation constants (the x and y com- 
ponents of the vector k/ko) are S' 1 and S~ given by (26) 

[K - S'IU ~ - S~U 2 - q}U3] e; = 0. (28) 

Comparison of (27) and (28) gives a relationship 
between the conjugate and adjoint eigenmodes. With 
-P =-P2,2 [upper sign in (26) and (27)], we have with the 
aid of (8) 

q'==-7:t_~=-q_~, e;=P2,2g_ ~ (c~ = +_1, +_ 2) (29) 

(where the sign of the subscript c~ gives the direction of 
propagation, positive or negative, with respect to the 
z-axis). With P = 1'2,_ 2, [lower sign in (27)], we have 

q; = #~ = q~, e'~ = -['2,- 2e~ �9 (30) 

All matrices P,_+, in (17) and (18), except only ~P3,-3, 
change the signs of U 1  o r  U2 or both (Table 1), and in 
each case this leads to a conjugate problem in which 
the new propagation constants, S'~ and $2, are so 
chosen as to restore the coefficients of U~ and U 2 to 
their initial values. The crucial question then is what 
happens to the sign of U 3 under this transformation. If 
it changes sign, then an upgoing mode in the conjugate 
problem is related to a downgoing adjoint mode, as in 
(29), and hence to a downgoing mode in the original 
(given) problem, via (10), leading to a reciprocity type 
scattering relation. If the sign of U3 does not change, 
then upgoing modes in a given and conjugate problem 
are related as in (30), but the results, mentioned later 
are of no special interest. 
We note finally that, except for the gyrotropic media, 
all the constitutive tensors discussed are symmetric 
(self-adjoint), and are therefore unchanged by the 
adjoint transformation 

g (31) 

In these cases, transformations which leave the sign of 
U 3 unchanged are of special interest, leading to an 
equivalence theorem in which the scattering matrices 
in the given and conjugate problems are identical. 

4. Derivation of the Scattering Theorems 

We shall here set down in brief and follow a method 
elaborated in an earlier paper [I]. Consider a plane 
interface separating media v and v+ 1. Eigenmodes 
incident on the interface will have amplitudes a~ and 
a~ in medium v, and as and aV_+21 in medium v + 1. 
Waves departing from the interface will similarly have 
amplitudes aV-1, aV-2, a1~+ 1, and a~ +1 respectively. We 
adopt the following notation: 

a +  ~ , a ~ , a i n ~  aout ~ la J a_2 [aFXj ' 
(33) 

and define the 4 x 4 scattering matrix S by means of 

aou t = S ain (34) 
or, in full 

[a  ~_ ]=[rt+ t - l [  a~ ] (35) 
aV 1 + r - J t a F ' ] '  

where s and t + are the 2 x2 reflection and trans- 
mission matrices comprising the interface scattering 
matrix S. 
In terms of the 2 x 4 modal matrices G +, introduced in 
(13), we define the 4 x 4 modal matrices 

Gin = [GVk _ G V + l l ,  G ou t F _ G V  v+1 = G+ ] .  (37) 

It has been shown in El] that the scattering matrix S, 
defined in (34) in terms of modal amplitudes, is also 
related to the modal matrices in (37) through 

Gouts = G i n, S = (C~out)-i Gin (38) 

and this result will be essential in the calculations 
following. We consider two basic types of trans- 
formation. 

4.1. Type 1 transformations, in which PKP=K.', 
_ P U 3 P = - U  3. The matrices -Po,-o, -P1,1, -P2,2 and 
-P3,-3 belong to this class (Table 1), and the corre- 
sponding conjugating transformations are given in 
Table 2. 
We apply (15) to each side, v and v + 1 of an interface to 
obtain 

= U - U = 0 .  (39) 

Now for this class of transformation we have, as in 
(29), e'~=Pg ~, and in terms of the 4-component 
eigenvectors g~ this becomes 

g' = L~;_ ~, ~ = L g '  ~ (40) 

in which L (= L-  1) is the 4 x 4 diagonal matrix derived 
from P by deleting the third and sixth rows and 
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Table 2. Type 1 transformations PKP = ~, PU3P = -U3,  and the corresponding conjugate systems 
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P-=P.~ • Conjugating Applicable to following unaxial media (m= 0 in all cases) 
transformation. 

~o.-o S~=-S~, Si= -$2 
~1,1 S~=S~, Si=-S~ 

~P2.2 S'l = - S1, S'. = S2 

~P3, - 3 S'~ = Sl, S~ = $2 

Anisotropic (leading to Lorentz reciprocity) 

Anisotropic and bianisotropic (magneto-electric) with l=  0 or n = 0. Gyrotropic with l = 0 and 
bianisotropic (moving media) with n = 0 

Gyrotropic, anisotropic and bianisotropic (magneto-electric) 

Anisotropic with l=0  or n=0. Gyrotropic with n=0. This problem is selfconjugate and leads 
to: s = g  T + =r 

Table 3. Type 2 transformations PKP = K, PU3P = U3, and the corresponding conjugate systems 

P -= P., +. Conjugating 
transformation 

Applicable to following uniaxial media (m =0 in all cases) 

P~, -- i S] = - S1, S~ = $2 

~P2. - 2 Si = G, S; = - S~ 

~P3.3 S'~ = -S  1, S;= -$2 

Anisotropic w i th /=0  or n=0. Gyrotropic with n=0  

Anisotropic 

All media with l=0. Anisotropic and bianisotropic (magneto-electric) with n=0 

columns. In terms of the 2 x 4 modal matrices G + in 
(t3), this becomes 

G+_ = ~ G + .  (41) 

Substituting (41) in (39) and regrouping we obtain 

{eG.; 
- E - G ' -  _+ 

or, postmultiplying by L -  t = L, 

GinG;ut = G~ ~ (42) 
G~u~Gi n , - 1 , _ ~ =trans[(Go~) Gi~] 

which, with (38), gives the scattering relation for a 
plane interface 

S = ~ '  (43) 

and with the iteration procedure described in [1, 6], 
can be extended and applied to any plane-stratified 
multi-layer medium, in each layer of which the con- 
stitutive tensor K can be transformed by the same p 
matrices. Then (43) becomes 

R~ = ~ , + ,  T+ =~,-v (44) 

where R-+ and R '• T • and T '• are the reflection and 
transmission matrices for a multilayer slab, for 
positive- or negative-going incidence, in a given and in 
a conjugate problem. This result was obtained in [1, 2] 
for a gyrotropic medium, and is here shown to apply, 

under suitable conditions, to all the media considered 
hereto, with the appropriate conjugating transfor- 
mations in each case given in Table 2. 

4.2. Type 2 transformations, in which P_KP=K_ and 
~PU~ 3 ~P = U~ 3 . 
The matrices P1,-1, ~P2,-2, and ~P3.3 belong to this 
class (Table 1), and the corresponding conjugating 
transformations are shown in Table 3. With K = K, i.e. 
if gyrotropic media are excluded, the eigenmode equa- 
tion is self-adjoint, and equations such as (30), appro- 
priate for this class of transformation, become in 
general 

with the 4-component analogs 

g'~=Lg,, LG'_+=G+, LG'I,=G~n, .LG.;ut=Gout. (45) 

Application of (38) gives directly 

S = S '  (46) 

which by iteration [1, 61, may be extended to the 
multilayer system as a whole to give 

R + = R  '• T -+ =T'+  (47) 

a result which equates the scattering matrices in the 
given and conjugate problems, as defined by the 
conjugating transformations in Table 3. 

4.3. Scattering Relations that Apply to an Interface 
Only. Consider first a Type 1 transformation applied 
to a restricted class of media in which the constitutive 
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tensors are symmetric" 

PKP =1~ =K,  .P. U3P = - U 3 .  

The system is self-adjoint, so that ~ n  = G~in, ~ou~ = G-our 
and application of (41) to (37) gives, with L = L -  1, 

G i .  = - ~LG~,ut, Gout = - LQ'~. (48)  

and hence, using (38), we have 

- i  , - 1  
=  out ) 

S S ' = [ ,  (49) 

where [ is the 4 • 4 unit matrix. But this is a Type 1 
transformation for which (43) applies, S-S'-~, giving 
with (49) 

S g = ~ S = I .  (50) 

These two results, (49) and (50), apply however to an 
interface only, and cannot be extended to a multilayer 
system. 
Consider next a Type 2 transformation, PU3P=U3 
and P N p = ~ = N ,  for which equations such as (30) 
apply, so that, in general 

if_+ (51) 

Substitution in (39), with rearrangement, yields 

o r  

sg'  (52) 

Furthermore, we have seen, in (46), that for a Type 2 
transformation S = S', and hence (52) yields 

which is the same interface orthogonality relation 
found in (50) for the Type 1 transformation when 
K = ~ .  The conclusion then, is that for all the sym- 
metric constitutive tensors considered (the gyrotropic 
medium being excluded), the interface scattering ma- 
trix S is orthonormal. For a gyrotropic medium in 
which PU3P = U3, P K P =  ~ ,  K, then (52) still applies, 
but not (50), since S4=Sf. 

5.  D i s c u s s i o n  

In the ionospheric literature scattering relations of the 
type: [ i+-=~ '• T + = T  ' - ,  have often been called 
"reciprocity" relations. Communication workers, on 
the other hand, usually understand "reciprocity" to 
mean Lorentz reciprocity relating currents and fields, 
or specifically, transmitting and receiving antennas. It 
could perhaps be expected that this type of scattering 
relation would lead to a form of Lorentz reciprocity, if 
one applied a scattering theorem to the angular spec- 
trum of eigenmodes, generated by a transmitting anten- 
na and received by a second antenna, in the presence 
of, or within, a plane stratified medium. It can be 
shown [7] that this is indeed so. it is possible to ascribe 
a simple physical model to the conjugating transfor- 
mations derived in this paper. Type 1 transformations 
(in which PU3P=-4"3) ,  lead to an interchange of 
transmitter and receiver. For a specific conjugating 
transformation in which S' 1 = -  $1, S~ = - S  2, "classi- 
cal" Lorentz reciprocity is achieved, with the roles of 
transmitting and receiving antennas interchanged, 
without a change in their locations or orientations. For 
other conjugating transformations of this class the 
roles of receiver and transmitter are also interchanged, 
but the "conjugate problem" then involves a mirroring 
of the two antennas with respect to some plane, or 
rotated with respect to some axis. 
In the case of Type 2 transformations which yield an 
equivalence relation, (R -+ = R' • T ~+ = T' • these again 
lead to a relationship between currents and fields, or 
transmitting and receiving antennas, but these are no 
longer interchanged in the conjugate problem, but 
merely mirrored with respect to a plane, or rotated 
with respect to an axis. 
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