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1. Introduction 

In this paper we give a virtually complete characterization of 
the structure and asymptotic behavior of optimal programs in a 
one good model of intertemporal optimization distinguished from 
the "classical" model by two important features: 

(i) The technology admits nonconvexity (increasing returns to 
scale): in fact, we consider arbitrary increasing production 
functions; 

(ii) we allow for irreversibility of investment. 

Since actual economic systems exhibit both features, it is of interest 
to see how the traditional models of economic growth are affected 
if these factors are taken into account 1. Independently of this, the 
generality of our framework is likely to have applications to inter- 
temporal optimization problems that have no direct bearing on eco- 
nomic growth: one may mention here the question of optimal man- 

* k is a pleasure to acknowledge the helpful conversations we had 
with Professor Tapan Mitra and Mr. Debraj Ray. Financial support 
came from the National Science Foundation. 

1 For the importance of increasing returns cf. e. g. Hicks (1960): "I 
find it hard to believe that increasing returns and growth by capital ac- 
cumulation are not tied very closely together. I could quote authority 
(Adam Smith or Allyn Young) for this belief". The (partial) irreversibility 
of investment has also often been stressed in the literature. For example, 
in a different context, it motivated the well known "putty-clay" models 
in the theory of economic growth. 
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agement of renewable resources in which non-convexitites have been 
recognized (e. g. the literature on optimal fishery-management, cf. 
C la rk ,  1971). 

We give now a brief overview of the paper. In Sec. 2, we con- 
sider finite-horizon problems in which the technology and tastes 
are allowed to vary arbitrarily over time. The main result is that 
optimal investment must go up (or remain the same) in every period 
if the initial stock and/or the final stock is increased (T. 2.1). This 
is true even if the optimal program is not unique. Example 2.1 illus- 
trates some qualitative differences between our model and the "clas- 
sical" one with a convex technology and reversible investment. 

In Sec. 3, we study optimal infinite-horizon programs (in a 
"stationary environment") where the future is discounted. The major 
results are: Every optimal program is necessarily monotonic (i. e. 
there are no "planning cycles", T. 3.1), and converges either to zero 
("extinction") or to a "local golden rule" (T. 3.2). In sharp contrast 
to the classical model, the asymptotic behavior of optimal programs 
depends crucially on the initial stock. Moreover, for very small 
discount factors (i. e. high interest rates) all optimal programs are 
extinction programs, whereas for sufficiently large discount factors 
all optimal programs converge to the "global golden rule" (T. 3.3, 
T. 3.4). 

In Sec. 4 we consider the undiscounted case, where optimal 
programs are defined by the Ramsey-Weizs~icker "overtaking" cri- 
terion. The results are analogous to those of Sec. 3, for very low 
interest rates. I. e. all optimal programs are monotonic (T. 4.1) and 
converge to the "global golden rule" (T. 4.2). 

All proofs are collected in Sec. 5. One may note here that the 
traditional analysis of qualitative properties of optimal programs 
relies heavily on exploiting (a) the duality theory for optimization 
problems with convex structures and (b) the "Euler" equation char- 
acterizing interior optimal programs. New techniques are needed 
in our framework since the absence of convexity in the technology 
precludes a routine application of (a), and (b) is precluded by the 
irreversibility constraint. Further complications arise out of the non- 
uniqueness of optimal programs. This accounts for the length and 
difficulty of our proofs. It should also be poinetd out that while 
we impose no convexity restrictions on the technology, we do re- 
quire the utility functions to be strictly concave. This assumption 
is essential for our results, as the reader may easily convince him- 
self by simple counterexamples. 

Turning to the literature, the results of B r o c k  (1971) on sensi- 
tivity of optimal programs with respect to changes in the target 
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stocks in the traditional convex model without irreversibility have 
been extended to a convex model with irreversible investment in a 
recent note by M i t r a  (1983). Mitra did observe the difficulties 
caused by the fact that optimal programs are not necessarily Euler 
programs when one introduces irreversibility. M i t r a  (1979) also 
obtained sensitivity results with respect to changes in initial stocks 
in the convex model without irreversibility. Our counterexample 
and sensitivity results can thus be viewed as a continuation of these 
and other works cited in these papers. 

M a j u m d a r  and M i t r a  (1982) considered the problem of inter- 
temporal allocation with an S-shaped technology without irrever- 
sibility. In a recent paper, D e c h e r t  and N i s h i m u r a  (1981) re- 
examined the same model and developed some useful arguments 
for qualitative analysis. An extended list of references to the litera- 
ture on non-convexity is given in M a j u m d a r  and M i t r a  (1982). 

The problem of optimal growth with irreversibility of investment 
was trea~ted in a continuous time infinite horizon convex model by 
Cass  (1965), and later by A r r o w  and Kurz  (1970), in another 
convex model. To be sure, these papers did not deal with sensitivity 
or non-convexity at all. 

The systematic account that follows is of some interest as a 
synthesis of earlier results that can now be viewed as special cases. 

2. Finite-Horizon Programs 

In this Section we consider a dynamic optimization model with 
changing technology and tastes and with irreversibility of invest- 
ment, in the sense that the capital stock in any period must be at 
least as large as the capital stock in the previous period, multiplied 
by a "depreciation factor". 

The technology is given by a sequence of production functions, 
g~ from R + into itself, and depreciation factors at. We assume, for 
t=0, 1,2, . . . :  
(A.1) gt is differentiable and strictly increasing, with g~ (0)=0. 

(A.2) 0 < at _-< 1. 

Note that (A.1) allows for arbitrary non-convexities, not just the 
"S-shaped" production functions studied previously. 

Given a non-negative input $ in period t, it is possible to pro- 
duce a "current" output  g~ (~) in period t + 1. The total output (in- 
cluding the depreciated capital stock) is denoted by 

23* 
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The planner's preferences are represented by a sequence of real- 
valued utility functions ut, defined either on [~+ or R++. We as- 
sume, for t = 1, 2 . . . .  : 

(A.3) ut is differentiable, strictly increasing and strictly concave; 
and when ut (0) is undefined, lira ut (y) = - oo. 

~,--~0 

The planning period is given by two integers S, T, with 0 < S < T, 
the initial capital stock a > 0 is a positive real number,  and the final 
or target stock b > 0  is a non-negative real number.  We write 
C = (S, T, a, b) for these parameters,  and define 

bs,  (a): =f -i (f -2 (...fs (a))...) 

as the maximum capital stock attainable at time T starting f rom 
initial stock a at time S (by following the "pure accumulation" plan). 
We make the following consistency assumption on r 

(A.4) b < bs,T (a). (I. e. b is attainable f rom a). 

Now consider the dynamic optimization problem: 

T 

max U (c) = X ut (ct) (2.1.a) 
t = S + l  

s.t. ct+xt=[t-1 (xt-1) t = S + l , . . . ,  T 

xe>~e-xxt-1 t = S + l , . . . ,  T 
ce>O, xt>O t=S+ l , . . . ,  T (2.1.b) 

xs=a, xT> b 

The constraints in (2.1. b) are referred to as the production, irre- 
versibility, non-negativity, and initial and final stock constraints, 
respectively. Note that xt >0  is already implied by irreversibility. 

ct (resp. xt) is consumption (resp. investment) in period t. We 
c T write c = (  t),=s+a, x=(xt)[=s, and say that (x, c) is a [easible pro- 

gram if (2.1. b) is satisfied. A solution (x, c) to the problem (2.1) 
is referred to as an optimal program, x (resp. c) is called feasible 
(optimal) if (x, c) is feasible (optimal) for some c (resp. x). For a 
feasible x, we define the associated consumption program c = (c~)[=s+l 
by ct: =[~-1 (xt-1) - x t ,  S + 1 _-< t _-< T, and the associated total utility by 

T 

U (x) := U (c) = 2: ue (ct). 
t = S + l  

Both feasibility and optimality depend on the parameters r = (S, T, 
a, b). If we want  to make this dependence explicit, we say that a 
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program is feasible for ~ (optimal for 0 or simply C-feasible (C-opti- 
mal). If c* (C) is an optimal consumption program for C, we can de- 
fine the value function at ~ (for the problem (2.1)) by 

V (~): = U (c* (~)). (2.2) 

Under assumptions (A.1)--(A.4) it is easy to prove the following 
results: 

R.2.1: (Existence): For any ~, an optimal program exists. 

R.2.2: V is strictly increasing in a and non-increasing in b, i. e., 
i/ a <a',b <b',then V (S, T,a,b') < V (S, T,a,b) < V(S,T,a',b). 

R.2.3: (Principle of Optimality): Let (x, c) be optimal/or 
8 = (S, T, a, b). Then 

(i) V (S, T, a, b) = V (S, s, a, xs) + V (s, T, xs, b)/or S < s < T. 

(ii) The program (xt)~=~ is optimal [or ~ = (~, fl, x~, xp) [or 
S<~<~<=T. 

In what follows, we assume S = 0  unless otherwise stated, and ab- 
breviate r = (0, T, a, b) to r = (T, a, b). 

We say that two programs x = (xo, x l , . . . ,  xT), y = (y0, yl, �9 �9 yT) 
cross if there are periods r, s, 0 < r, s < T, such that Xr < yr, Xs > ys. 

Two parameters C = (T, a, b), ~' = (T, a', b') are called equivalent 
if there exists a program that is optimal for both. Clearly this is 
possible only if a =  a" (cf. R.2.2) and the lower one of the two 
final stock constraints b, b' is not binding. 

We can now state the main result of this section. 

T.2.1. (Monotonicity o[ investment levels). Under (A.1)--(A.4), let 
x and x" be optimal [or C= (T, a, b) and C ' =  (T, a', b') re- 
spectively, where a < a', b < b'. Then x and x" do not cross, 
and i~ r and ~" are not equivalent, then x~ < x~" [or t = 0 ,1 , . . . ,  T. 

The proof of Theorem 2.1 is based on the following Lemma: 

L.2.1. ("Crossing Lemma"): Under (A.1)--(A.4) let x=(xo, xl,  
. . . , xw) ,  y=(yo, yl, . . . , y r )  be [easible and assume that 
x0<y0, xt=yt  [or l <=t<=T-1, x r > y z .  Then there exist 
[easible programs ~=(y0, ~1 , . . . ,  ~ ' -1 ,  x~,), ~=(x0, y l , . . . ,  
~T-1, yT) such that 

A = A  (x, y, ~, ~): = U  (~)+U ( ~ ) - U  ( x ) - U  (y) >0. 

If C and ~' are not equivalent, then T.2.1 implies that every r 
mal program lies "above" every C-optimal program, even if the 
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optimal programs are not unique. This is illustrated schematically 
in Diagram 2.1. 

OI ~ ...... y 

a I 
I 

o r 

D iagram 2.1 

b I 

An interesting application of Theorem 2.1 concerns changes not 
in the target stock, but in the length of the planning horizon. As- 
sume that  there is no final stock requirement, i .e. b =0. Then, if 
the planning horizon is increased, investment must go up in every 
period. Formally: 

Cor. 2.1 (Change in Planning Horizon): Let x and x" be optimal 
[or ~=(T,  a, O) and ~'=(T ' ,  a, 0) respectively, where T <T' ,  and 
assume that ~ and (T, a, xp') are not equivalent. Then x~ < xd [or 
t=O, 1 , . . . ,  T. 

This Corollary implies the existence of a "limit path" as the plan- 
ning horizon T goes to infinity. Among other things, it seems likely 
that this can be used to extend the work of H a m m o n d ,  1975, and 
H a m m o n d  and K e n n a n ,  1979, on "agreeable" resp. "uniformly 
optimal" plans to the irreversible case; but we do not pursue this 
question here. 

In order to prove a (partial) analog of T.2.1 for consumption 
levels, we make the further assumption, for t=O, 1 , . . .  : 
(A.5) gt is concave. 

R.2.4. (Uniqueness): Under (A.1)--(A.5), the optimal program is 
unique. 

We denote the optimal program for r  a, b) by (x* (r 
c* (r If z, z' are any two scalars or vectors of the same dimen- 
sion, we denote convex combinations by 

zX=2z +(1 -2 )  z', for 0_-<2_-<1. 

R.2.5. Under (A.1)--(A.5) V (T, a, b) is a concave function of  
(a, b), i .e. ,  i[ r = (T, a, b), ( '  = (T, a', b'), Ca = (T, a x, bX), 
then V (r >2V (r + ( 1 - 2 )  V (r [or 0 < 2 < 1 .  
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T.2.2. (Monotonicity of consumption levels). Under (A.1)--(A,5), 
assume that ~=(T,  a, b), U=(T ,  a', b), with a<=a ". Then 
ce "~ (~) < c* * (~') for all t = 1, 2 , . . . ,  T. 

For a convex model without irreversibility of investment, B ro c k 
(1971) showed that optimal consumption is also monotonic with 
respect to changes in the target stock b, viz. if b is raised, then 
consumption goes down in every period. Moreover, he and M i t r a  
(1979) obtained strict monotonicity of optimal inputs and consump- 
tions with respect to changes in initial or final stocks, whereas our 
theorems are in the form of weak monotonicity (the relevant in- 
equalities in T.2.1 and T.2.2 are not strict inequalities). It is also 
known (for a convex model without irreversibility) that the value 
function V is differentiable (see, e. g., B e n v e n i s t e  and S c h e i n k -  
m a n  (1979), M i r m a n  and Z i l c h a  (1976)) and, trivially, that the 
final stock contraint is always binding. 

The following example shows that all these properties need not 
hold in models with irreversible investment (even if the production 
functions are concave). 

Example2.1. Let T = 2 ,  a>0 ,  ue (c,)=log ce, f t - l  (xe-1)=s 
ge=g for t = 1 , 2 ,  and assume that 0<g=<1, s  Define _b:=max 
{g2a, 1/2/~ ga}, /~: = s  s ga / (2k-g) .  It is easy to verify that 0 < b <  
/~<b0,2 (a)=k2a, and (A.1)--(A.5) are satisfied for r a,b) if 
and only if 0 =< b < k2a. For such r the optimal program x = (xl, x2), 
c=(cl,  c2) is given by (the tedious computations, based on the 
Kuhn-Tucker Theorem, are omitted): 

(i) If 0=<b_-<b=~a: 

x=(ga, g2a), c=(a ( k -g ) ,  ga (k -g) ) .  

The irreversibility constraint is binding in both periods ("path 
of pure decumulation"). 

(ii) If O < b< b  1 _ =-~-s  

1 . l k a )  c =  1 x (-g-ka, g __ . ( T k a  ' 1 = , T k a  ( k -  g)). 

Only the irreversibility constraint in the second period is binding. 

(iii) If b ~ b < b :  

- T '  T ( k - g )  �9 

The irreversibility constraint in the second period and the final 
stock constraint are binding. 
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(iv) If b < b < l ~ a :  

1 

Only the final stock constraint is binding. 
Perhaps the most  striking effect of the irreversibility of invest- 

ment is that optimal consumption in certain periods may be an 

increasing function of the final stock requirement b (cf. c~ = b. 

in Case (iii)). Generally, this will be the case whenever the irrever- 
sibility constraint in the last period and the final stock constraint 
are both binding, for then the optimal consumption in the last 
period is given by 

which is an increasing function of b (where c3T-1 #0 ,  of course). 
The point of Example 2.1 is that it shows that such a situation is 
not degenerate. 

The example also shows that T.2.1 and T.2.2 cannot be strength- 
ened to assert strict monotonicity in any direction (in Case (i), the 
optimal plan is independent of b; in Case (iii), optimal levels in 
the second period are independent of a). 

Moreover, it is easy to check that the value function V (T, a, b) 
has a kink both as a function of a and as a function of b at the 
point b =~2a, provided _b =c~2a (consider the transition from Case (i) 
to Case (iii)), i. e., V is not differentiable. 

Finally, Example 2.1 shows also that the final stock constraint 
need not be binding (if b < b), again in contrast to the model with- 
out irreversibility of investment. More generally, one can show: 

P.2.1. Under (A.1)--(A.5), for every (T,a) there exists some 
b = b  (T,a), O_-<b<bo,•(a) such that the constraint x ~ > b  
is binding for ~ = (T, a, b) if and only if b > b. 

3. Infinite-Horizon Programs: The Discounted Case 

We now give the basic comparative dynamic and turnpike re- 
suits for the infinite horizon case (in a "stationary environment"). 
The problem (2.1) is reconsidered with T =  oo. The following as- 
sumptions are made in this Section, for t =0,  1, 2 , . . .  : 

(A.I') ue+l=et.u, 0 < ~ < 1 ,  where u: ~+--~F~+ is twice continu- 
ously differentiable and satisfies u (0)=0, u'>O, u " < 0 ,  
lira u" (y) = oo. 
~,--~0 
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(A.2') ~ = 8 ,  0 < 8 < 1 .  

(A.3') fi=[, where [: ~+--+P,+ is twice continuously differentiable 
and satisfies [ (0)=0, [' ($)>8, and there is a maximum 
sustainable capital stock~ Smax>0 sucb tbat /($max)=$max, 
[' (~)< 1 [or ~ >$max. Moreover, the equation [" (~)=0 has 
only [in#ely many roots. 

(A.4') 0 < a < Smax. 

A capital stock :~ is called a (modified) local golden rule if the 
function Q[ (~)-$ achieves a local maximum at ~=:~ and if the 
associated consumption ~ = [  (k)-:~ is positive. 

A capital stock $ is called a steady state if 0" [" ($)=1. The 
second part of assumption (A.3') means that [ consists of finitely 
many strictly concave (resp. strictly convex) segments. 

Our problem now takes the form (by stationarity, we choose 
the initial time S=0  without loss of generality): 

max U (c) = X ~-1 u (c~) (3.1.a) 
t = l  

s.t. ct+xt=[ (xt-1) for t = l ,  2 , . . .  

xt > 8.xt-~ for t = 1, 2 , . . .  
ct>O, x~>O for t = l ,  2 , . . .  (3.1.b) 

x o = a  

We use the same notation and terminology as before. In particular, 
X co oo a program (x, c), where x = (  t)t=0, c=(ct)t=l, is called feasible if it 

satisfies (3.1.b); and optimal if it is a solution of problem (3.1). If 
we want to emphasize the dependence on the initial stock a (the 
only parameter), we say that (x, c) is [easible [rom a (optimal from a). 
If c*= c* (a) is optimal from a, we define the value of problem (3.1) 
for initial stock a by V (a):= U (c* (a)). 

Under (A.I')--(A.4'), it is easy to prove2: 

R.3.1. For any a, an optimal program exists. 

R. 3.1., for example, is true because the set of feasible consumption 
programs defined by (3.1. b) is compact in the product topology, and the 
target function (3.1. a) is continuous over this set. Formally, R. 3.1. fol- 
lows from Cor. 1 in Nermuth  (1978), p. 293, with minor modifications: 
simply put l= 1, add the irreversibility constraint in (3b) on p. 292, and 
restrict y to the closed interval [0, ~max] in Ass. (A.0. i) on p. 293. Then 
the assumptions (A.1), (A.2'), (A.3'), (A.4) on pp. 297--298 are satisfied, 
and hence also the Main Ass. (A.0) on p. 293. 
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R.3.2: I / a  < a" then V (a) < V (a'). 

R.3.3: Let x=  (xt)t~=o be optimal from a. Then, for s > 1: 

(i) V (a) = V (s, a ,  x~) + O ~. V (x~). 
X oo (ii) The subprogram ( ~+~)t=0 is optimal from xs. 

The basic monotonicity property of finite-horizon programs remains 
true for infinite-horizon programs: 

L.3.1. Under (A.I')--(A.4'), let x and x' be optimal from a and a" 
respectively, where a < a'. Then xt < x~" for all t >= O. 

We say that a program x=(xt)  is monotonic if either xt <xt+l 
for t=0 ,  1 , 2 , . . .  or xt>xt+l for t=0 ,  1,2, . . . .  

T.3.1. (Monotonicity). Under (A.I')--(A.4'), every optimal pro- 
gram is monotonic. 

The theorem implies that there can be no "planning cycles". 
Moreover, the irreversibility constraint can be binding in at most 
finitely many initial periods (except possibly for "extinction pro- 
grams"). This should be compared with A r r o w  and Kurz 's  state- 
ment (in a continuous time framework): " . . .  it is possible to have 
- -  as an optimal policy - -  practically any structure of alternating 
intervals in which the inequality (i. e. irreversibility] constraint is 
effective or ineffective." ( A r r o w  and Kurz,  1970, p. 332). 

We note also that the monotonicity properties L.3.1 and T.3.1 
do not really depend on (A.3'), but are true for any production 
function satisfying [ (0)=0, [' (8)>& The second part of (A.3') is 
needed only for the turnpike results below. As a preliminary step, 
we have 

L.3.2. Every optimal program converges either to zero or to a 
steady state ~ with g = f (~) - ~ > O. 

We now state the main result of this Section. It says, loosely 
speaking, that every optimal program converges monotonically to 
a local golden rule or to zero. 

T.3.2. (Turnpike). Assume (A.I')--(A.4') and that f" (~ =0 implies 
el '  (~ 41  (i. e., inflection points of [ do not occur at steady 
states). Then there exists an index n>O and numbers 
0 = ~ 0 = ~ 0 < ~ 1 < ~ x < ~ 2 < . . .  ~ < ~ + l = ~ m a x ,  where ~c~ is a 
local golden rule for i > 1, such that every optimal program 
from an initial stocl~ a ~ (~, ~+1) converges monotonically 
to ~c~, for i=0 ,  1 , . . . ,  n. 
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The ~:~'s are called critical levels. At initial stocks a=8 ,  the 
asymptotic behavior of optimal programs changes. When 8, is not 
a steady state, then the proof of T.3.2 shows that all optimal pro- 
grams starting from a = ~t converge either to PC,-1 or PCi. When ~, is 
a steady state, we cannot rule out the possibility that the constant 
program (a, a , . . . )  is also optimal from a =8,. 

We conclude this Section with two theorems characterizing the 
asymptotic behavior of optimal programs for very small or very 
large discount factors. 

Denote the maximum marginal product by 

M: = max {f' (8)/0 _-<8 _-< 8max}. 

By (A.3') M is well-defined, positive, and finite. 

1 
T.3.3. If ~ < --~, then all optimal programs converge to zero. 

Note that the condition of T.3.3 is independent of the initial 
stock a and of the utility function u. 

Next we want  to show that if p is sufficiently large, then all 
optimal programs converge to the "best" golden rule, i. e., to the 
steady state which gives the largest consumption among all steady 
states. In order to ensure that this "best" golden rule is unique and 
can be reached from all initial stocks, we assume, in addition to 
(A.I')--(A.4'): 

(A.5') The [unction rl (~)=[(~)-~: is positive in (0,~max) and 
achieves a global maximum ~=[ (Pc)-PC at a unique point 
PC ~ (0, ~m=). Moreover, rl" (0) > O. 

(A.5)" implies, by continuity, that for all 0 sufficiently near to 
one the function rp (~):= q. [ (~) - ~  is positive in (0, ~max) and achieves 
a global maximum ~ (q): =rp [PC (0)] at a unique point PC (q) E (0, ~m,x), 
and that moreover rp' (0) > 0. 

PC (q) (with associated consumption ~ (q)) will be referred to as 
the global golden rule for discount factor q. 

T.3.4. Under (A.I')m(A.5 ') there exists a 5<1  such that for 0>5 
all optimal programs converge to the global golden rule 
Pc (0), independently o[ the initial stock. 

Summing up the turnpike results of this section, if the future is 
discounted very heavily (resp. very little), then all optimal programs 
are extinction programs (resp. converge to the global golden rule), 
independently of the initial stock. In the intermediate case, the 
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asymptotic behavior of optimal programs depends on the initial 
stock; in general, they converge to some local golden rule (1. g. r). 
This distinguishes our model from the "classical" one. Moreover, 
although the irreversibility constraint cannot be binding in the long 
run if the program approaches a 1. g. r., it still plays a role for its 
asymptotic behaviour, because it may affect the decision at the 
initial time between accumulating (and reaching a "higher" I. g. r.) 
and decumulating (and reaching a "lower" 1. g. r.). 

4. Infinite Horizon Programs: The Undiscounted Case 

In this section we consider the infinite-horizon dynamic optimi- 
zation problem when future utilities are not discounted, i. e. the 
discount factor satisfies Q = 1. 

With this modification, we continue to assume (A.I')--(A.5'). 
Using the same notation and terminology as in Sec. 3, (~, ~) is the 
unique global golden rule, ~ : = u  (~) the corresponding one-period 

X ao utility, and a program (x, c), where x = (  t)t=0, c=(ct)t~l is called 
feasible (from initial stock a) if it satisfies (3.1.b). We define the 
total utility associated with (x, c) by 

T 

U (x)=U (c)= lim inf 27 [u (ct)-~].  (4.1) 
T-~oo t=l 

A feasible program x is called good if U (x) > - oo, and optimal 
(from a) if no other feasible program (from a) gives higher total 
utility. The following results are well known: 

R.4.1. For every [easible x, either U ( x ) = -  oo or U (x) is finite. 

R.4.2. From every initial stocl, a e (0, 8m~x) there exists an optimal 
program which is a good program. 

R.4.3. Let x =  (x,)~~ be optimal [rom a. Then, [or s >-_ 1: 
X 00 (i) ( 8+*)t=0 is optimal [rom xs. 

(ii) (xt)~=0 if optimal [or ~ = (0, s; a, xs) in the sense o[ Sec. 2. 

Again we have the monotonicity and turnpike properties: 

L.4.1. I[ x is optimal [rom a, x' is optimal from a', and a <a', 
then xt <xd for t = l ,  0, 2, . . . .  

T.4.1. Every optimal program is monotonic. 

T.4.2. Every optimal program converges monotonically to the glob- 
al golden rule ~, independently o[ the initial stoct~ a. 
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5. Proofs 

Proo[ o[ L.2.1: The Lemma is proved by explicitly constructing the 
"comparison programs" :~, Y. For T = 1 this is very simple, for the 
general case a little complicated. The assumption that the utility 
functions are strictly concave is essential. 

The associated consumption programs for x, y, :~, ~ will be de- 
noted by c, d, ~, d respectively. Assume first that U (x) > - oo. 

T = I :  
Def. :~: = (y0; xl) 

9: = (x0; yl) 

This is obviously feasible; moreover, dl =ix +e, dl = c l + e ,  cl < ~1 
where e : = x l - y l > 0 .  This leads to A = u l ( C l + e ) - u l ( C l ) -  
[m (21+e)=ul  (21)] >0, by strict concavity of m. 

.0 "--/... t g 

Diagram 5.1 

T > 2 :  

Choose e > 0 and define 

:~: =(y0; xl +e, H~ (xl +e),. . . H~,-1 (xl +e), x~,) 

Y:--(x0; x i - e ,  H~ ( x l - ~ ) , . . .  HT-1 (x l -e ) ,  yT) 

where the functions Ht are defined recursively as follows: 

For a real variable a > 0, and for t = 2 , . . . ,  T - 1  define 

~t-I"~ if xt=~t-lxt-1 
b~-i (0r xt if ( ] t - l X ~ - l < ~ < f t - 1  (xt-1) 

h-1 (~) if x t = h - 1  (xt-1). 

Now put 

H1 (a): =~, H~ (a): =fit-1 [Ht-1 (a)], t = 2  . . . .  , T - 1 .  



352 M. Majumdar and M. Nermuth: 

The functions he-1 and hence He are differentiable in , ,  and 
satisfy Ht (xl)=xe for t = l , . . . ,  T - 1 .  Therefore, the differences 
I~t -  xel, I~e- xel can be made arbitrarily small for all t = 1 , . . . ,  T - 1 ,  
by choosing e sufficiently small. From the definition it is clear that 

~ t > x t > ~ t  for t = l , . . . ,  T - 1 .  

We will now argue that ~ is feasible for e > 0 sufficiently small. 
The definition of ~ means the following: in the first period, increase 
investment from x~ to x l + e .  This is feasible after y0 because xl is 
feasible after x0 and x0<y0. In periods t = 2 , . . . ,  T - l ,  if the orig- 
inal program x follows a path of pure decumulation (xt = O H x t - i )  
or pure accumulation ( x t= / t -1  (xt-1)), do the same. Otherwise, 

L . X r 

.o r - . , ,  
Diagram 5.2 

revert to the original program. This is feasible because pure accumu- 
lation or decumulation is always feasible and because ~t-1 xt-1 < xt < 
/t-1 (xt-1) implies ~t-l~t-1 <xt <ft-1 (~t-1), by the continuity re- 
marked above. Finally, in period T, revert to the original program 
(~, =xT). This is feasible because ~T-1 is greater than, but close to 
xT-1, and because both XT and yT<X~' are feasible after x~,-1. 
Therefore, s is feasible for ~ sufficiently small. 

Similarly, ~ is feasible for e sufficiently small (note in particular 
that x t>0  for t = l , . . . ,  T - l ,  because x~,>yT>0).  

Given feasibility of s and ~, we can write, for t =2  . . . . .  T - 1 :  

it = Ge (xl +e) 

[It = G e  ( x l  - e ) ,  

where Gt (-): =/t -1  [He-1 ( - ) ] -He  (-) is a differentiable function, 
with Gt (x l )=ct .  

Define At: =ue (it) + ut (clt) - u t  (ct) - u t  (de) and write 
T 

A = U (~) + U (~t) - U (c) - U (d) = I At. 
t = l  
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We want to show that this expression is positive, for 8 sufficiently 
small. 

For t = 1 we have, by definition: 

di = c1 '~ 8, dl  = Cl + 8, and ci < ci. 

This implies 

A l = U l  ( c 1 + 8 ) - U l  (c1)- [Ul  (cl + ~ ) - u l  (c1)] 
=8. [ul' (c l ) -u~ '  (~)] +o  (8)=8"bx+o (e) 

where bl = ul' (cl) - u l '  (cl) > 0 because ul is strictly concave. 
For 2 < t =< T - 1  we have ct=d~ because xt =yt, xt-1 =yt-1,  hence 

At=ut  [Gt (xl +8)] +ut [Gt ( x l - e ) ] - 2  ut (ct) 

= ut  (cs) + e .  us" (cs)" Gs" (x l )  + us (cs) - 8 .  us" (ct) Gs'  (x l )  + o (8) 

- 2 us (c~) = o (e). 

Finally, for t = T: 

Af  =up  [/a"-i (HT-1 (Xl +e)) -x~v] +u~, [f~'-i (H~v-1 (Xl - e ) )  - y e ]  
- u r  ( c r )  - u~, (d~') = u~" (cT) + ~" uT" ( c~v ) ' / 'T -1  ( x T - 1 ) "  H ' T - 1  (xl) 
+UT (d~v) - e . uT"  (dr)"/ 'r-1 (XT-1)" H'in-1 (Xl) + o  (8) - -UT (C.T) 

- u r  (dr)=8.[u~,' (c~v)-u~v' (d~v)] "/'r (xT-1)'H%'-I (xl) +o (8) 
= 8 . b ~ + o  (e) 

where b~,= [u~." ( c T ) - u r '  (dr)] ./'T-1 (xT-1).H'T-1 (xl )>0 because 
cT < dT, and uT is concave, and because/T-1 and H~,-1 are 
both nondecreasing. 

Collecting these results, we obtain: 

A = 8  (bl +b~) +o (8) >0 

for 8 sufficiently small, because bl + b~, > 0. This proves the Lemma 
for the case U (x) > - oo. 

If U ( x ) = -  o% it suffices to observe that there exist programs 
5, ~, feasible for ~ = (T, y0, xr), C-- (T, x0, yT) respectively, which 
have strictly positive consumption in every period, so that 

u (~) + u (~) > - oo = u (x) + u (y). 

This follows from (A.1) and the fact that x is feasible for (T, x0, x~,), 
and x0 < y0, xT > y~,. Q . E . D .  
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Proo[ of T.2.1. Write yt:=x~' for t = 0 ,  1 , . . . ,  T, and y=(yo;yl ,  
�9 . . ,yT).  Of course xo=a, yo=a ". If yt=xt  for t = l , . . . ,  T, there is 
nothing to prove. Assume henceforth that y ~ x t  for some t, 
l <=t-<T. 

c, d, ~, d will denote associated consumption programs for in- 
vestment programs x, y, ; ,  y. 

The essence of the proof is to show that x and y cannot cross. 
This is done indirectly, by assuming that they do, and then using 
L.2.1 to construct two comparison programs ~,~, feasible for r 
resp. r s. t. the sum of their total utilities is greater than the sum 
of the utilities of the original x and y. This implies that x and y 
cannot both be optimal, contrary to assumption. We proceed in 
four steps. 

Case 1: a<a', b=b':  We want to show that xt<y~ for all t. As- 
sume not; then there exist indices r, s, 0 < r < s such that 

xr<yr, xt=y~ for t = r + l , . . . ,  s - l ,  xs>ys. 

Now write 

~ = (yo; y l , . . . ,  yr, ~r+l , . . . ,  ~s-1, xs, xs+l , . . . ,  x~) 

=(X0;Xl , . . . ,Xr ,  yr+l, . . . .  ys-1, ys, ys+l , . . . ,yT) .  

By L.2.1 resp. R.2.3 ~, ~ can be chosen so that 

U (~2)+U (y) > U  (x )+U (y). (5.1) 

By def., ~ is feasible for 8' and ~ is feasible for r Therefore, (5.1) 
contradicts the optimality of x, y. 

Case 2: a =a': We want to show that x and y cannot cross. Assume 
indirectly that they do, and use a similar argument as in Case 1, 
relying on L.2.1 and R.2.3. 

Case 3: a<a', b<b':  We want to show that xt<=y~ for t = l , . . . ,  T. 
Let z = (y0; zl, z~ , . . . ,  z~') be optimal for r = (T, y0, b). 

By Case 1, zt > x~ for t = 1 , . . . ,  T. 
By Case 2, z and y cannot cross. 

If z_-< y (in obvious notation), we are done. 

If z >_- y, then z is also feasible for r therefore U (z) _-< U (y). On 
the other hand, U (z)=> U (y) by R.2.2, hence U (z)=U (y). There- 
fore y must be optimal for C'. The assertion follows, by Case 1. 
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Case 4: a =a', ~ and ~' not equivalent: in this case, we must have 
x~ <yi~ (otherwise x would be optimal for both ~ and 8'). The 
assertion follows, by Case 2. 

Q . E . D .  

Proo[ of Cor. 2.1: By the Principle of Optimality (R.2.3) the sub- 
/X '~ T , > program ~ ~Jt=0 is optimal for ~"=(T ,  a, x'~). Since x ~=0 ,  the 

Corollary follows by T.2.1. 
Q . E . D .  

Proof of T.2.2. We use induction on T. It is easy to verify that the 
result is true for T = 1 and we make the Induction Hypothesis that 
T.2.2 is true for all ~ = (t, a, b) with t _-< T -  1. 

Now let (x, c) (resp. (y, d)) be optimal T-period programs for 
~=(T ,a ,b )  (resp. ~'= (T, a', b) ), where a<a' (if a=a',  there is 
nothing to prove). We want to show that ct < d~ for all t = 1 , . . . ,  T. 

_ d T By R.2.3, the (T-1)-per iod  subprograms (x~, ct)/=z and (yt, t)~=z 
are optimal for ( T -  1, xl, b) and ( T -  1, yl, b), respectively. By 
Theorem 2.1, x l<yz ,  hence, by Induction Hypothesis, ct<=dt for 
t = 2 , . . . ,  T. It remains to show that ez<dz. 

Assume, to the contrary, that cl > dl. 
First note that this implies xz <yz, for if xl =yz, we should have 

cl --f0 (a) - x l  <f0 (a') - y l  =d l ,  contradicting cl > dl. 
Secondly, this also implies yz>c)oa', for if yz=~oa', we should 

have dz = f0 (a') - c5o a' = go (a') > go (a) >= cz, again contradicting cz > dz. 
Now choose e, O<e<(1/2) .min{c l -dz ,  y z - x l } ,  and define T- 

period programs (~, ~) resp. (~, ~ as follows: The first components 
are given by 

Xl =XI +e, Cl----6i--8 

yi ---- yi -- e, dl = dl + e 

and the remaining T - 1  components ( t = 2 , . . . ,  T) are the optimal 
programs for ( T - l ,  x l+~ ,  b) resp. ( T - l ,  y l - e ,  b). If e is suffi- 
ciently small, (~, ~) resp. (~, d) are feasible for ~ resp. ~', by the two 
observations made above and by feasibility of (x, c) resp. (y, d). 

By R.2.2, R.2.5, the function v (/~): = V  (1, T, ~, b) is concave 
and increasing in/% and hence possesses non-negative left-hand and 
right-hand derivatives v'__(/~), v'+ (/~) in the interior of its domain of 
definition. Moreover (cf. N i k a i d o ,  1968, Th. 3.15), these deriva- 
tives are decreasing functions of /% and there exists a number 
# >___ 0 such that 

v'+ (xl+~) _>-/~ >=v'- (y l -e ) .  (5.2) 

24 Zeitschr. f. National6konomie, 42. Bd., Heft 4 
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Similarly, by strict concavity of ui and because d i + e < c i - e  
by construction, we obtain: 

u ' i -  ( d i + e ) > u ' i +  (c i -e) .  (5.3) 

By R.2.3, we can write 

U (c)=u~ (c~)+v (x~); U (d)=ui (dx)+v (y~); 

U (?) =u~ (cx-e) +v (x~ +e); U (d) =u~ (d~+e) +v (y i -e ) .  

Optimality of (x, c) for ~ implies U (c) > U (~). This leads to 

ul (e l ) -u l  (el-e) >v (xl + e ) - v  (xi). 

By concavity of ui we have ui (Cl)--Ul (el--8) __--<8"U1'+ (61--e), and 
by (5.2) we have v (x~+e)-v  (xi) Re'v+" (xi+e) >e.#. Hence, 
u'i+ (ci-e)  >/~. 

By a similar argument, the optimality of (y, d) for U implies 
u ' l -  (di +e) </~. Hence u ' i -  (dl +e) < u'l+ (c i -e ) ,  contradicting (5.3). 
Therefore we must have cl < di, and the Theorem is proved. 

Q . E . D .  

Proof of L.3.1: The proof is exactly the same as for T.2.1, Case 1. 
We need only ignore the final stock constraint there and delete the 
symbols x~, resp. yT in the definitions of ~ resp. ~ (i. e. "extend ~, 
to infinity"). The assertion follows. 

Q . E . D .  

Proof of T.3.1: The proof is strikingly simple, and follows imme- 
diately from L.3.1, by the optimality principle R.3.3. 

Let x=(xo, xi, x2, . . . )  be optimal, and assume that it is not 
constant. Let r be the first index s. t. xr #Xr+l, for example xr < xr+i. 
By R.3.3, the subprograms (xr, Xr+i , . . . )  and (xr+l, Xr+2,...) are 
optimal from xr resp. xr+i. By L.3.1, Xr+~xr+l+i; for t > l .  

Q . E . D .  

Proof of L.3.2: The idea of the proof is first to deduce convergence 
from T.3.1 (i. e. monotonicity), and then use the Euler equation to 
show that the limit must be a steady state. 

Let (x, c) be optimal from some a >0. By (A.3') the sequence 
x = (xt)t~o is bounded, and by T.3.1 it is monotonic, hence it must 
converge to some number ~ e [0, 8m~]. Either ~ = 0  or ~>0 .  If 
~ > 0  then, for t sufficiently large, the irreversibility constraint 
xt>~.xt- i  cannot be binding, by (A.2'). Moreover, by (A.I'), we 
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must have xt >0, ct >0 for all t. Hence, for t sufficiently large, 
(xt, ct) must satsify the Euler equation (cf. e. g. T a k a y a m a ,  1974, 
Ch. 5): 

u" (c~):0[" (xt).u' (c~+1). 

Taking limits for t--.oo, this implies 

u' (~)=0[" (~) u' (e), where e = [  (~) -~ .  

We claim that a > 0. Assume indirectly that ~=0. 
Choose e > 0 such that 

(5.4) 

1 
u (~) < T (1 -Q) u [g (:~)]. (s.5) 

There exists a T > 1 such that for all t > T: 

1 
u (ct) <u  (e), and u [g (xt)] > T u  [g (~)]. 

Define an alternative path (x', c') by 

(5.6) 

x t ' :=x~  for t<-_T, and x~'=6.xt'-t for t > T + l .  

Then ct '=  c~ for t_-< T, and c~'=g (xT). 
This implies 

U (x ' ) -U (x)= ~ W i [u (c~')-u (c~)] > 
t = T + l  

contradicting the optimality of x. Therefore ~ > 0, and (5.4) implies 
O[" (x)=1, i. e., ~ is a steady state. Q . E . D .  

Proo[ o/T.3.2: Essentially, we have to refine the result of L.3.2 by 
showing that the limit steady state of an optimal program cannot 
be a relative minimum of the function rp. The rest then follows 
easily from (A.Y) and L.3.1. 

Let (x, c) be optimal from some a ~ (0, Smax) and assume that 
(x~) converges to a steady state ~ > 0 with ~ = [ (~) - ~ > 0 (cf. L.3.2). 
By definition, ~ is a solution of the equation rff ($)=0, where 
rp (~) :=p/ (~) -$ .  By the assumptions of the Theorem, rff' (~)~0, 
i.e. the function rp (~) has either a strict relative maximum or a 
strict relative minimum at $ =~. 

24* 
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In the first case, ~ is a local golden rule. 
In the second case, we claim that x must be the constant pro- 

gram x--- (~, ~, ~ , . . . ) .  
Assume the contrary. By R.3.3 resp. Lemma 3.1 one may assume 

w. 1. o. g. that xo=a4~, xl4xo,  and that a lies in a sufficiently 
small neighborhood of ~, such that f (a) - a > 0, ~ ~' (8) ~ 1, f"  (~) > 0 
for all 8 between a and ~. 

Then the sequence rp (xt) is monotonically decreasing by Theo- 
rem 3.1, and 

qf (xo)-xo>9[ (xt)-x~ for t = l , 2 , . . .  

This implies 

1 �9 [Qf ( x o ) - x o ]  > x Q~-~ [~f (x~) - x ~ ]  = 
1 - ~  t = l  

~)~-~- If (x~-l)-x~]-f  (x0) 
t = l  

o r  
00  

1 �9 [f (xo) - xo] > Z ~ - ~  ct. 
1-~  t = l  

By Jensen's inequality, this implies: 

1 
U ( x )  = 1 - ~  

1 
1 - ~  u [f (x0) - x 0 ]  = U (x'), 

where x ' =  (xo, xo, xo, . . . ) ,  contradicting the optimality of x. 
Collecting our results so far, we have shown that an optimal 

program x=(x0 ,  x l , . . . )  either converges to zero, or to a local 
golden rule, or  is of the form x = ( ~ ,  ~, ~ , . . . ) ,  where Y is a steady 
state. 

By (A.Y) there exist only finitely many local golden rules. De- 
note those which are limits of nonconstant  lpotima programs by 
xl, . . . .  xn (n->_O), where  w. 1. o. g. 

0 < Xl < X2 < �9 . .  < X n <  8max, a n d  d e f i n e  ~0:  = 0 .  

By L.3.1 the set It of all initial stocks a f r o m  which there exists 
an optimal program converging to some given ~ (0 < i < n) must be 
an interval, and I~-1 and It must  be adjacent, so that  we can write 
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s u p h - l = i n f h = &  for i = l , . . . , n .  By R.3.3 we have $~ _--K X~ =< $i +l 
for i>0.  Moreover, from a ~ (&, ~el+i) all optimal programs con- 
verge to ~ ,  again by Lemma 3.1, and when & is not a steady 
state, then all optimal programs from a = & converge either to k~-i 
or to k~. When & is a steady state, we cannot rule out the 
possibility that the constant program from a = &  is also optimal. 
This completes the proof. Q . E . D .  

Proof of T.3.3: If r  then the equation p.f '  (8)=1 has no 
solution in [0, 8max], i. e. no steady state exists. The assertion fol- 
lows, by L.3.2. Q . E . D .  

Proof of T.3.4: The idea of the proof is to show that for r suffi- 
ciently large, the utility loss due to staying away from the global 
golden rule will eventually outweigh any temporary gains. Inci- 
dentally, the same idea recurs in T.4.2. 

If an optimal program does not converge to )~ (~), then it con- 
verges to zero or to some other steady state, by L.3.2. 

Step 1: First we show that it cannot converge to zero if e is suffi- 
ciently near to one. 

By (A.5') there exist ~0<1 and e0>0 such that Q[' (~)>1 for 

p 0 < o < l ,  0=<r (5.7) 

We claim that if ~ >Q0, then no optimal program converges to 
zero~ By L.3.1 it sufficies to prove this for optimal programs start- 
ing from initial stocks a ~ (0, e0]. Let (x, c) be such a program, and 
assume first that there is no irreversibility constraint. Then (x, c) 
must satisfy the Euler equation: 

u" (ct) =O'f" (x,).u" (ct+i) for t=l ,  2 , . . . ,  (5.8) 

If (xt) converged to zero we would have, for all t > 1: ~[' (x~) > 1 
by (5.7) resp. T.3.1, and this would imply ct<ct+i by (5.8) and 
(A.I'), which is clearly incompatible with (xt) converging to zero. 
Therefore, by L.3.2, (xt) must converge to some steady state ~ > 0. 

Moreover by T.3.1, (x~) is monotonically increasing, since (5.7) 
implies x0 =<e0 < ~. Therefore the program (x, c) is feasible - -  and 
of course also optimal - -  even with an irreversibility constraint. 
This completes Step 1. 

Step 2: Let p0, e0 be chosen as in Step 1. 
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By (A.3'), (A.5'), (5.7) there exist Ql, e o < q l < l ,  e>0 ,  70>0, 
and an integer L > 1 such that for all ~ with el < 5 <  1 the follow- 
ing is true: 

(i) From every initial stock a e [e0, ~a.]  it is possible to reach the 
global golden rule a~ (5) in at most  L steps (by following a 
path of pure accumulation or decumulation). 

(ii) All steady states for ~ lie in (e0, ~m.). 

(iii) rp (~) <~ (5) -2~/0 for ~ r U, [~ (5)]. 

(iv) No other steady state except ~ (q) lies in U~ [~ (5)], where 
U~ [~ (5)]: = (~ (e) - e ,  ~ (q) +e) is an e-neighborhood of ~ (q). 

Define further 
1 

,7: = T ~ 0 "  u' (~max) > 0 

t~:=U (~) (~ was defined in (A.5')) 

Step 3: We claim that for ~ >~ every optimal pgroram converges to 
(~), independently of the initial stock. 

Let (x, c) be an optimal program for some q >~ and assume, 
indirectly, that (xe) does not converge to ~ (5). Then, by L.3.2 and 
Step 1, (xe) must converge to some steady state ~ (5). By Step 2, 
there exists a T R 1 such that for all t > T: 

xe > e0, ce _-< ~ (5) - r/0. (5.9) 

By R.3.3 we may assume w. 1. o. g. that T =1. Now consider 
an alternative program (~, ~) from the same initial stock defined 
as follows: go to the global golden rule ~ (q) in the first L periods 
and stay there ever after (by Step 2 (i), (5.9) this is possible). 

We have 
~O r  O0 

U (c) ~-- ,~v'Qt-1 u (i;t) <- ,~v'Q t-1 u [c (5)--9"/0] < '~v'et-l" [u (c (5)) - 7 ]  
t = l  t = l  t = l  

O0 

U (~) = X q t-1 u (~e) >_- X 0 e-1 u [e (e)], 
and, thus, t = 1 t=L+l 

L 
~/ - O, U ( ~ ) - U ( c ) > -  XQe-iu  [~(~)]+ > - L . f a +  *I/L~t 

t = l  

contradicting the optimality of (x, c). Q.E.D.  
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Proof of L.4.1 and T.4.1: Analogous to L.3.1 and T.3,1. 

Proof of T.4.2: Let (x, c) be optimal. By Th. 4.1, (x~) must converge 
to some �9 ~ [0, ~max], and hence (ct) converges to ~ = [  (~ ) -~ .  If 
: ~ k ,  then by (A.5"), ~ < ~ - e  for some e>0.  Then there exists a 
to > 1 such that for all t > to 

u (ct) < ~ - ~7 for some ~7 > 0. 

This implies immediately that U ( x ) = -  oo, contradicting the opti- 
mality of x (cf. R.4.2). Therefore ~=~ .  

Q . E . D .  
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