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Summary 

The effect of inhibition of cytoplasmic streaming on intercellular 
passage of carboxyfluorescein (CF) in staminal hairs of S. purpurea 
was examined. Tip cells of staminal hairs were microinjected with 
buffered-CF. Cytoplasmic streaming was then inhibited by addition 
of KCN or NaN 3 to the external bathing solution. In separate 
experiments, cytoplasmic streaming was inhibited by microinjection 
of cytochalasin D along with the buffered-CF. CF passage over a 5 
minutes treatment period was monitored by video fluorescence 
microscopy and video intensity analysis. Cytoplasmic streaming 
ceased within 1 minute of inhibitor agent treatment, however, little 
change in the kinetics of intercellular passage was noted over the 5 
minute experimental period. Thus, cytoplasmic streaming plays no 
major role in the regulation of intercellular passage of the hydrophil- 
ic, negatively charged molecule CF. 

Keywords: Intercellular transport; Cell-to-cell communication; Has- 
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1. Introduction 
In plants ,  in terce l lu lar  passage  involves the t ransfer  o f  

metabol i t es  and  nut r ients  t h rough  the symplas t  

(OLEsEN 1975, EVERT etal.  1977, MOGENSEN 1981, 

ERWEE et al. 1985), and  is though t  to be involved in bo th  

the regu la t ion  o f  deve lopmen ta l  processes  (CARR 1976, 

JUNIPER 1977, PALEVITZ and  HEPLER 1985) and  in the 

symplas t ic  spread  o f  viruses (GIBBS 1976). In te rce l lu la r  

passage  was r epor t ed  to be a process  o f  s imple diffu- 

sion; tha t  is, the d is tance  t ravel led  by d i sod ium flu- 
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orescein in s tamina l  hairs  o f  Tradescantia and  

t r ichomes  ofLycopersicon esculentum was p r o p o r t i o n a l  

to the square  roo t  of  t ime (TVREE and  TAMMES 1975, 

BARCLAY etal. 1982). P l a smodesma ta  const i tu te  a 

di f fus ion bar r i e r  which al lows passage o f  molecules  

with a m a x i m u m  molecu la r  weight  o f  700~800 da l tons  

(GooDWIN 1981, 1983, TUCKER 1982). Cy top lasmic  

s t reaming  is ano the r  fundamen ta l  process  in plants .  

A l t h o u g h  the molecu la r  mechanisms  under ly ing this 

process  have been the subject  o f  much  s tudy (ALLEN 

1980, KAIVlIYA 1981), the funct ion  o f  the process  

remains  elusive. However ,  some p lan t  cell biologis ts  

speculate  that  s t reaming  plays  a role in cy top lasmic  

" s t i r r ing"  (WooDs etal. 1984a) and  in in tercel lu lar  

passage  (TYREE 1970, GUNNING and  OVERALL 1983). 

The  ma jo r  p r o b l e m  in s tudying  intercel lular  passage 

has been the lack o f  quant i t a t ive  methodolog ies .  A 

m e t h o d  whereby even slight changes in passage can be 

measured ,  was used to de te rmine  that  cy top lasmic  

s t reaming  has little influence on  in tercel lu lar  passage  o f  

(CF)  in s tamina l  hairs  o f  S. purpurea. 

2. Methods and Materials 

2.1. Plant Material 

Pots of S. purpurea were maintained in a greenhouse which had an 
average daily temperature of 25.7 ~ and natural lighting. Stamens 
with hairs were removed from small unopened buds, secured to a 
microscope slide and microinjected with buffered-'TF (see 2.3. 
below). Staminal hairs composed of cells. 50:1:7 lameters in diameter 
were used. 
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2.2. Measure o[ Intercellular D'a.,tsport 

The system developed to study kinetics is described by TUCKER and 
SP.aNSW~CK (1985). Briefly, CF was mieroinjected into the nu- 
cleoplasm of the tip staminal hair cell (cell 1). The cell-to-cell 
movement of this fluorescent raolecule was monitored in 5 sequential 
cells and video taped through a SIT television camera situated on a 
Leitz Orthoplan microscope. A model 321 video analyzer processed 
the signals. This information was stored on a diskette and then 
graphed using a Lotus (TM) program. 

2.3. Treatment 

Experiments were designed to note changes in intercellular passage 
over time for each respective treatment. The experimental sequence 
,lsed ,,. as: ( ! ) hair placed on microscope slide and co~ ered with 0.2 ml 
water. (2J cell I impaled with the tip of a micropipette containing 
50 mM CF in 0.1 M citrate pH 7.0 (buffered-CF simply diffused into 
the cell). (3) treatment (0.2ml 10.0raM NAN,, or 1.0mM KCN) 
applied 30 seconds after microinjection, 14) video taping continued 
for 5 minutes. (5) mieropipette removed and experiment terminated. 
At least 20 trials for each treatment were performed. 
Cytoplasmic streaming was also inhibited by cytochalasin D (CD) 
microinjected into the cytoplasm. This drug, dissolved in dimethyl 
sulfoxide (DMSO), was mixed with buffer-CF and microinjected into 
the nucleoplasm of cell 1 The mixture composition was: 0.25 rag CD 
in 5 gl DMSO in 100 lal buffered-CF. 

3. Results 

In untreated cells, CF permeated well past the 5th cell 
during the 5 minute experimental time. The steady 
increase in fluorescence intensity for the first 5 cells, as 
noted in Fig. 1, illustrates that the CF diffused through 
the symplast of  staminal hairs in an unimpeded 
manner. Fluorescence was first observed in cell 2 (the 
first neighbor) about  4 seconds after it was injected into 
cell 1. Intensity rose exponentially in cell 2 and. with a 

lag, in cells 3, 4, and 5. The time required to reach a 
plateau was dependent upon the size of the cells 
(presumably the cytoplasmic volume), and the amount  
& d y e  which continued to diffuse from the micropipette 
into cell 1. 

Cytoplasmic streaming stopped within 1 minute of  the 
N a N  3 and K C N  treatment, This inhibition was fully 
reversible: cytoplasmic streaming resumed within 5 
minutes when water replaced the inhibitor solution. 
With CD treatment, cytoplasmic streaming was in- 

hibited sequentially in cells progressively further away 
from the CD-buffered-CF microinjected cell. After the 
5 minute treatment period, streaming was not detected 
for a distance of 6 or 7 cells distal from the injected cell. 
In these cells, the transvacuolar cytoplasmic strands 
remained intact. 5% DMSO-buffered-CF had no effect 
on streaming. 
The kinetic curves for cells treated with K C N  (Fig. 1 b), 
NaN3 (Fig. 1 c) or microinjected with CD (Fig. l d), 

were similar to those of  untreated ceils. However, the 

curves contained fewer fluctuations of  fluorescence 

intensity, and thus appeared smoother. This may reflect 

stationary cytoplasm or unregulated intercellular 
passage. 

4. Discussion 

Cytoplasmic streaming and its response to azide had 
been examined using high resolution video-enhanced 
light microscopy (TUCKER and ALLEN 1986). It was 
suggested that streaming in S. purpurea staminal hair 
cells (and probably other higher plant cells) is not bulk 

movement of  cytoplasm as commonly presumed, but 
rather discrete movement of particles through a rel- 
atively stationary cytoplasm. Particles and organelles 
became stationary, that is, they stopped moving along 
well defined pathways when cells were treated with 
azide. 
The effect of azide and cyanide on streaming was 
presumably due to depleted levels of ATP (HAYaSH~ 

1960, SH[MMEN and TaZAWA 1983, WOODS etal. 1984b) 
and/or  acidification (TAZAWa and SHtMMEN 1982, 
SH~r~.~MEN and Tazawa  1985) and/or  elevated free 

calcium (W~LUAMSON 1975, HAYAMAetaI. 1979, DOREE 
and P~CARD 1980, WrLUAMSON and ASHLEY 1981, 
KIKUYAMA and TAZAWA 1982, WOODS etal. 1984b). 
Depleted ATP levels may result in elevated Ca -`+ levels, 
since sequestering of calcium is inhibited by cyanide in 
some animal tissue (Rose and LOEX~.ENSZE~N 1975). 
Cytoplasmic pH was expected to decrease in azide 
treated staminal hair cells as it did in azide treated 
Nitella cells (SeANSW~CK and MILLER 1977) and root 
hair cells of Sinapis alba (BERTL and FELLY 1985). 
Cytochalasin D was presumed to inhibit cytoplasmic 

streaming, as did cytochalasin B (NAGA~ and KAMP~A 
1977, WtLt IAMSON 1975, SEAGULL and HEATH 1980). by 
disrupting microfilaments (WESSELLS et al. 1971). 
Intercellular passage of CF was found to be much faster 
in staminal hairs of  S. purpurea (5 cells in 2 minutes) 
than was intercellular passage in staminal hairs of  
Tradescantia (5 cells in 35 minutes) (TYREE and TAMMES 
1975) and trichomes ofLycopersicon esculentum (5 cells 

in 30 minutes) (BARCLAY etal. 1982). The microin- 
jection technique and younger tissue is presumed to 
account for these observations in staminal hairs of  S. 
purpurea. 

The chain of  cells making up the staminal hair may be 
thought of as a chain of chambers interconnected by 
channels, the plasmodesmata.  As can be observed on 
the TV monitor, the time required for CF to permeate 
plasmodesmata is greater than the time required for it 
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Fig. l. Kinetics of  intercellular passage. Buffered-CF was microinjected into the nucleoplasm of  the most distal cell (l) and the intensity (volts) of  
fluorescence due to CF was analyzed in respective cells (1, 2, 3, 4, 5) over 5 minutes. Passage was through 2, 3. 4, and 5 in less than 2.0 minutes. A 
Control; B, C Hairs treated with 1.0 mM K C N  or 10 mM NaN> respectively, 30 seconds after buffered-CF was microinjected into 1: D Cell I 

microinjected with CD-buffered-CF 

to diffuse through the cytoplasm. This agrees with the 
conclusions of TYREE (1970), TYREE and TAM~ES (1975) 
and BARCLAY et al. (1982). However, since the temporal 
appearance of fluorescence was influenced by several 
factors, including the degree of coupling between cells 
(TucKER and SPANSWtCK 1985), a simple correlation 
between distance and square root of time was not 
ahvays obtained. 
The present study focuses on determining if there is any 
correlation between cytoplasmic streaming (particle 

movement) and CF intercellular passage. Since large 
changes in the kinetics of intercellular passage were not 
observed when cytoplasmic streaming was inhibited by 
metabolic inhibitors (cyanide and azide) and a micro- 
filament disrupting agent (cytochalasin D); it was 
concluded that cytoplasmic streaming plays no major 
role in regulating intercellular passage of CF. These 
results agree with the findings that cytoplasmic stream- 
ing is not required for polar transport of auxin in oat 
and maize coleoptile tissue (CANDE etal. 1973) and 
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f luoresce in  t r a n s p o r t  in d e t a c h e d  t o m a t o  t r i c h o m e s  

(B . ' , r cuav  e ta l .  1982). M i c r o i n j e c t i o n  o f  C D  into  the  

n u c l e o p l a s m  o f  S. purpurea s t a m i n a l  hair  cells, r a the r  

t h a n  the  long  ex t r ace l l u l a r  t r e a t m e n t s  r e q u i r e d  to 

inhib i t  s t r e a m i n g  in t o m a t o  t r i chomes ,  a p p e a r e d  to 

d i s rup t  the  c y t o p l a s m  less. T h a t  is, a g g r e g a t i o n  o f  the 

c y t o p l a s m  as n o t e d  by BARCLA'~ et al. (1982) d id  n o t  

occur .  As  n o t e d  a b o v e ,  in te rce l lu la r  passage  o f  C F  in S. 

purpurea s t a m i n a l  hairs  was  m u c h  fas ter  t han  r e p o r t e d  

in t o m a t o  t r ichornes .  

These  results  a p p e a r  to d i f fer  f r o m  the f indings  o f  

DRAKE (1979) tha t  1 m M  N a N  3 and  l m M  K C N  

dec reased  e l e c t r o p h y s i o l o g i c a l  c o u p l i n g  be tween  oa t  

coleopt i te  cells. However ,  fur ther  analysis using math-  

emat i ca !  m o d e l i n g  m a y  i l lus t ra te  s l ight  decreases  in 

in te rce l lu la r  passage  in hairs  t r ea t ed  wi th  these m e t a b -  

ol ic  inh ib i to r s .  

It appea r s  that  " s t i r r i n g " ,  due  to c y t o p l a s m i c  s t r eam-  

it~.g, o f  hyd roph i l i c ,  nega t ive ly  cha rged  mo lecu l e s  ana l -  

ogous  to C F  has  little effect  on  the i r  passage  f r o m  cell 

to cell. Symplas t i c  t r a n s p o r t  mus t  be r egu la t ed  at the 

p l a s m o d e s m a t a  a n d / o r  by c y t o p l a s m i c  p rocesses  o t h e r  

t han  c y t o p l a s m i c  s t r eaming .  C a l c i u m  m a y  be i n v o l v e d  

in this r e g u l a t i o n  (ERwEE a n d  GOODWIN 1983). 
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