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Integration of reduction and expansion processes in layout 
optimization* 

U. K i r s c h  

Department of Civil Engineering, Technion, Israel Institute of Technology, Haifa 32000, Israel 

A b s t r a c t  A two-stage layout optimization procedure, consist- 
ing of reduction and expansion processes, is presented. The object 
in developing this procedure is to use the advantages of both pro- 
cesses. In the reduction process, a reduced structure with a limited 
number of members and joints is established by solving large scale 
idealized problems. An expansion process is then employed, where 
members and joints are added to the initial reduced structure. At 
this stage, relatively small problems are solved, considering general 
variables, all relevant constraints and the real objective function. 

1 I n t r o d u c t i o n  

Most of the work that  has been done on optimum structural 
design is related to optimization of cross-sections. Much less 
effort has been devoted to optimization of the layout (geom- 
etry and topology). It is recognized, however, that  optimiza- 
tion of the structural  layout can greatly improve the design 
(Bendsee and Mota Soares 1992; Kitsch 1989, 1993; Rozvany 
el al. 1995; Topping 1983). Because of the complexity in si- 
multaneous optimization of the geometry, the topology and 
the cross-sections, two classes of problems are often consid- 
ered in this type of optimization (Kirsch 1990). 

(a) Topological optimization, where the spatial sequence of 
members and joints is optimized. 

(b) Geometrical optimization, where joint coordinates and 
cross-sectional sizes are optimized. 

The solution of each problem affects indirectly the other 
one. That  is, the geometry is affected by elimination of mem- 
bers during topological optimization whereas the tolopogy 
might be changed due to zero cross-sections or the coales- 
cence of joints during geometrical optimization. 

In this paper layout optimization is viewed as a two-stage 
procedure, consisting of reduction and expansion processes 
(Table 1). The object in developing this procedure is to use 
the advantages of both processes. Topological optimization 
is usually based on a reduction process, where members and 
joints are eliminated from an initial highly-connected ground 
structure. In a typical reduction process, the solution of a 
large scale idealized problem is achieved by assuming various 
simplifications. In the approach presented in this study, the 
object at this stage is to establish an initial reduced structure 
(IlZS) with a limited number of members and joints, using 
available analytical and numerical methods. An expansion 
process, where members and joints are added to an initial 
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structure, is uncommon due to the lack of effective system- 
atic procedures. In the procedure presented, relatively small 
problems are solved during the expansion process, consid- 
ering general variables, all relevant constraints and the real 
objective function. The object at this stage is to find the 
final optimum by adding successively members and joints to 
the IRS. For each candidate topology the geometry is opti- 
mized and all intermediate solutions are feasible. It is shown 
that a near optimal design can be achieved by a simplified 
expansion procedure. 

Table 1. Reduction and expansion processes 

Process Reduction Expansion 
Problem size Large Small 
Formulation Idealized-simplified Real-practical 
Solution 
stages 

Exact LB 
(~naiytical) 
Approximate LB 
(discretized) 
Establishing 
an IRS 

Selection of geometrical 
variables 
Geometrical optimization 

Adding members 
and joints 

Difficulty Computational effort Selection of variables 
Advantage Automated process Improved feasible 

solutions 

2 T h e  r e d u c t i o n  p r o c e s s  

2.1 General considerations 

A reduction process is characterized by elimination of mem- 
bers and joints from an initial s tructural  topology. The 
number of members in the latter topology might be indef- 
initely large (in exact-analytical formulations), very large (in 
approximate-discretized formulations) or a reduced one. In 
a typical reduction process, a large scale structure with nu- 
merous members is often solved. Although most of the work 
on layout optimization is related to reduction processes, the 
problem solved is usually highly idealized. That  is, various 
simplifications are often assumed in the problem formulation 
due to some basic difficulties involved in the solution process. 

One problem is that,  unlike common optimization prob- 
lems, the structural model is itself allowed to vary during 
the design process. Another difficulty is that  the number of 
possible element-joint connectivities in the initial structure is 
very large. In addition, the problem can have singular global 
optima that  cannot be reached by assuming a continuous set 
of variables. These and other difficulties make the topologi- 
cal optimizaton problem perhaps the most challenging of the 
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structural optimization tasks. The various simplifications as- 
sumed in the problem formulation include consideration of 
simplified sizing variables (e.g. a single cross-sectional vari- 
able per member), only certain constraints (e.g. stress con- 
straints), simplified objective function (e.g. weight or compli- 
ance), simple structural systems (e.g. trusses), approximate 
analysis models (e.g. rigid plastic) and a limited number of 
loading conditions. 

In the approach presented, the object of the reduction 
process is to establish an initial reduced structure (IRS), con- 
sisting of a limited number of members and joints. Selection 
of the IRS is based on available analytical and numerical so- 
lutions of simplified problems. Since an idealized problem 
is solved, the solution can be viewed as a lower bound on 
the optimum. To obtain a practical topology for the IRS, 
the lower bound solution can be modified by eliminating or 
adding members and joints. 

2.2 Exact and approximate lower bounds 

Some analytical and numerical solutions used to establish 
the IRS are briefly described subsequently. Similar to most 
studies on layout optimization, truss structures will be con- 
sidered; however, reduction concepts are applicable also in 
other types of structures. Exact-analytical solutions provide 
a theoretical lower bound on the weight of the structure. The 
general concept of the structural layout can often be estab- 
lished by the classical Michell theory. Michell structures can 
also be used as reference solutions for assessment of the effi- 
ciency of practical configurations. However, they are seldom 
suitable for direct use in practical design for several reasons. 

�9 A fundamental limitation of this approach is that it is not 
general. General variables, constraints, objective function 
and loading conditions are not considered. 

�9 The solutions usually consist of an indefinitely large num- 
ber of infinitesimal members, and the resulting structures 
are potentially unstable if alternative loads are applied. 

�9 Michell layouts have only been determined for a few sim- 
ple loading conditions, and there is no systematic proce- 
dure to construct a structure for an arbitrary set of loads. 

Michell's early work was further developed by others (see 
reviews by Kirsch 1989; Rozvany et al. 1995; Topping 1983). 
Techniques for assessing the efficiency of near optimal trusses 
have been presented, some practical aspects have been stud- 
ied, and solutions for several alternative load conditions have 
been demonstrated. Prager and Rozvany (1977) developed a 
layout theory as a generalization of Michell's effort. It  deals 
with the layout of low density grid-type structures, called 
gridlike continua. Recently, layout theory for high density 
structures has been developed (BendsCe and Kikuehi 1988). 

Approximate-discretized solutions are usually based on 
the ground structure approach. Member areas are allowed to 
reach zero and hence can be deleted automatically from the 
structure. While the displacement method is the prevalent 
structural analysis tool in current computational practice, 
the force method formulation is adopted in many topologi- 
cal optimization problems. The main reason is that  linear 
programming (LP) formulation is obtained under certain as- 
sumptions (Kitsch 1989, 1993; Rozvany et al. 1995; Topping 
1983). The main advantages of the LP formulation is that 
the global optimum is reached in a finite number of steps and 

large structures can efficiently be solved. The LP solution 
satisfies the equilibrium and stress constraints, but it might 
not satisfy the compatibili ty conditions or may represent un- 
stable configuration under a general loading. For structures 
subjected to a single loading condition the optimum repre- 
sents a statically determinate or an unstable structure. In 
cases where the optimal LP solution represents a statically 
indeterminate structure the compatibili ty conditions might 
not be satisfied, but a certain deviation from elastic force 
distribution is often allowed on account of the inelastic be- 
haviour. Another approach to achieve an approximate lower 
bound, based on optimality criteria, has been used success- 
fully in recent years (Rozvany 1989; Zhou and Rozvany 1990). 

2.3 Establishing an IRS 

Optimal layouts obtained by solution of idealized problems 
are often impractical. They might represent an unstable 
structure (a mechanism) or consist of too many members and 
joints. To achieve a feasible practical design for the IRS, the 
lower bound solutions are modified by eliminating or adding 
members and joints. Denoting the exact lower bound on the 
optimum achieved by analytical solutions as ZL, the approx- 
imate lower bound achieved by discretized solutions as ZA, 
and the solution corresponding to the selected IRS modified 
topology as ZIRS, then 

Z L <_ Z A ~ ZIRS. 

It will be shown subsequently that  the difference between 
the above solutions achieved during the reduction process is 
often insignificant. Moreover, the effect of geometrical opti- 
mization on the optimum might be larger than that  of topo- 
logical changes. In the following three typical examples of 
reduction (the results are summarized in Table 2), the objec- 
tive function is the volume of material, the constraints are 
related only to stresses, and the allowable stress is 1.0 (arbi- 
trary units have been assumed). 

(a) Simply-supported structure , shown in Fig. la .  The lower 
bound on the optimum is a Michell structure shown in 
Fig. 2b, an approximate lower bound achieved by LP is 
shown in Fig. lc and a three-bar truss selected as an IRS 
is shown in Fig. ld.  

(b) Fixed-supported structure, shown in Fig. 2a. The lower 
bound on the optimum is a Michell structure shown in 
Fig. 2b, an approximate lower bound achieved by an op- 
timality criteria method is shown in Fig. 2c (Zhou and 
Rozvany 1990), and a five-bar truss selected as an IRS is 
shown in Fig. 2d. It should be noted that  all the topolo- 
gies shown in Fig. 2 are unstable. 

(c) Cantilever structure, shown in Fig. 3a. The lower bound 
is a Michell structure shown in Fig. 3b, an approximate 
lower bound is shown in Fig. 3c and the selected six bar 
IRS is shown in Fig. 3d. 

It can be seen that  the difference in weight between highly 
idealized lower bound solutions (with an indefinitely large 
number of members) and simplified structures consisting of 
5-6 members might be only 3-4%. 
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Table 2. Results, reduction process 

Structure Fig. ZL ZA ZIRS 
Simply-supported 1 iNumber of oo 11 3 

imembers (n) 
IMinimum weight 28.2 1.06ZL 1.35ZL 

Fixed-supported 2 Number of oo 13 5 
members (n) 
Minimum weight 2.57 1.01ZL 1.03ZL 

Cantilever 3 Number of oo 8 6 
members (n) 
Minimum weight 4.50 1.02ZL 1.04ZL 

(a) Structure domain (b) Exact LB 

I P=2.0 

60 V 

(c) Approximate LB (d) IRS 

/ v \ / \  
Fig. 1. Reduction process - simply-supported structure 

(a) Structure domain (b) Exact LB 

l 
I. 20 1 P_-,0 -I 

(c) ~ (d) IRS 

Fig. 2. Redueton process - fixed-supported structure 

3 T h e  e x p a n s i o n  p r o c e s s  

3.1 General considerations 

Following the reduction process, an expansion process is em- 
ployed, characterized by the addition of members and joints 
to an initial structural  topology. The object at this stage is 
to find the final optimum by adding successively members 
and joints to the IRS and optimizing the real problem for 
each candidate topology. The expansion process consists of 
the following main stages. 

a. Selecting geometrical variables for the given topology. 
b. Optimizing the geometry and cross-sections. 
c. Modifying the structural topology by adding members 

and joints. 

To obtain an upper bound on the optimum ZU, the IRS is 
first optimized considering geometrical and sizing variables, 
all relevant constraints and the real objective function. In- 
troducing successively improved feasible designs by adding 

(a) Structure domain (b) Exact LB 

I ! 
(c) AoproximateLB (d) IRS 

0.77 ~ 0 . ~  

. : =  . q _ 0 . 7 5 ! _  _ 0 . 7 5  I 

Fig. 3. Reduction process - cantilever structure 

members and joints and optimizing the geometry of the re- 
sulting topologies, Z U is improved and the final optimal de- 
sign Z o p  T is approached from the interior side of the feasible 
region. The optimum is in between Z U and the theoretical 
lower bound on the optimum ZL,  

Z L <_ ZOPT _< Z U 

The expansion process is characterized by the following fea- 
tures. 

(a) The structures optimized are simple, consisting of a lim- 
ited number of members and joints. Therefore, the effect 
of the number of members on the objective function can 
be considered directly, and the computational effort in- 
volved in the solution process is significantly reduced. 

(b) Since at each iteration the real problem is solved, all in- 
termediate solutions are feasible designs satisfying all the 
constraints. 

(c) Problems of singular optima that  might be encountered 
in the common reduction process are eliminated since we 
start  with reduced structures having a small number of 
members. 

3.2 Selecting the geometrical variables 

In the stage of geometrical optimization the design variables 
are assumed to be continuous. Effective selection of these 
variables is most important  for the following reasons. 

a. Poor selection of the variables might lead to nonoptimal 
or singular solutions. 

b. A large number of variables increases significantly the 
computational effort, whereas a small number of effective 
variables might be adequate to achieve a near optimal 
solution. 

Modification of the topology during geometrical optimiza- 
tion might occur due to deletion of zero size members, ob- 
tained for certain geometries, or deletion of nonzero size 
members due to the coalescence of joints. Elimination of zero 
length or parallel members, in cases where some joints tend 
to coalesce during geometrical optimization, will change the 
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topology and the resulting structures might represent singu- 
lar optima (Kitsch 1995). To illustrate this phenomenon, as- 
sume the eleven-bar truss shown in Fig. 4, the optimal depth 
Y = 4.24 and only single geometrical variable X. Variation 
of Z with X is shown in Fig. 5. It can be seen that the 
global optimum is at point GS (X = 3.0,Z = 17.0) which 
is a singular point in the design space, representing a three- 
bar truss. However, the solution process converges to point 
L(X = 1.O,Z = 31.1), which is a local optimum. That  is, the 
solution reached by optimizing X is heavier than the global 
optimum by 83%. The singular optimum is the result of 
changes in the topology of the structure. Specifically, as X 
approaches 3.0, the joints A-B, C-D, E-F-G, and the mem- 
bers 6-7-8, 9-10-11 tend to coalesce. Just before that, the 
forces in members 6, 8, 9, 11 are identical, while the forces 
in members 7, 10 have the same magnitude but with oppo- 
site direction. At the limit (X = 3.0) the three members 6, 
7, 8 (and 9, 10, 11) become a single member. The result is 
a reduction of 2/3 of the weight of the diagonal members, 
leading to the singular global optimum at GS. 

P=2.0 ,~ X 

6 ~  ~ 1 0 ~ ~ 1 1  g-~ 
A z  3 Y x _ , : 2 ( c  ' 

I 6.0 I 

Fig. 4. Eleven-bar truss 

Z 

_ L X 

1 .0  3.0 

Fig. 5. Z versus X, eleven-bar truss 

To illustrate the effect of alternative selections of vari- 
ables, consider the following cases for the eleven-bar truss 
shown in Fig. 4. 
(a) A uniform depth With a single vertical variable Y. 
(b) A uniform depth with a vertical variable Y and a hori- 

zontal variable X. 
(c) A nonuniform depth with two vertical variables: YF (joint 

F)  and YE (joints E and G). 
The optimal solutions are summarized in Table 3. It can 
be seen that  in case a the global optimum is obtained, but 
better solutions can be achieved if more vertical variables are 
assumed (case c below). In case b a local opimum is obtained, 
since the true singular optimum could not be achieved by 
the optimization process. In case c the global optimum is 
achieved (the topology is changed into the three-bar truss). 
In conclusion, poor selection of geometrical variables might 
lead to nonoptimal or singular solutions. In the example 

presented, selection of two vertical variables (YF and YE) is 
most effective, since the global optimum is reached even in 
cases of changes in the topology during optimization. 

As noted earlier, some important  constraints are often ne- 
glected in the reduction process in order to simplify the solu- 
tion. These constraints can readily be considered in the ex- 
pansion process, since the structures optimized are relatively 
small and simple. To illustrate the effect of Euler buckling 
constraints, assume tubular members with a predetermined 
diameter-to-thickness ratio. The allowable buckling stress 
can be expressed as a E = - c X / L  2, where c is a constant de- 
pending on the modulus of elasticity, L is the member length, 
and X is the cross-sectional area. Assuming c = 4.0, then 
the variation of the optimal objective function value with the 
depth Y for the three-bar simply-supported truss (IRS) of 
Fig. ld  is shown in Fig. 6. It can be seen that  the buckling 
constraints affect significantly both the optimal geometry and 
the objective function value. Specifically, if buckling is not 
considered the optimum is Y = 4.24, Z L = 17.0. If buckling 
is considered for this geometry, then Z U = 34.2. Optimizing 
the geometry with buckling constraints gives the near optimal 
solution Y = 2.O,Z = 26.4. 

4G- 

Buckling 
considered 

30-. 

20 - ~ t  

r.l: considered Y 

.0 2.0 4.24 

Fig. 6. Effect of buckling, three-bar truss 

34.2 

17.0 

3.3 Adding members and joints 

During the expansion process, modified structures are intro- 
duced successively by adding members and joints. Although 
several expansion processes have been proposed in the past, 
it is usually difficult to carry out this stage automatically and 
there is no single best method in terms of efficiency, reliabil- 
ity, and ease-of-implementation. The following approaches 
have been considered in this study. 

(a) Adding a single joint and members connecting it with ex- 
isting joints. The initial position of the joint is arbitrary, 
whereas its final location is determined by optimizing the 
geometry. The advantage is that  this procedure can read- 
ily be automated, but in cases of multiple local optima the 
solution might be affected by the initial joint position. 

(b) Adding multiple joints and members. This possibility is 
more general and also might be suitable for automated 
implementation. However, experience has shown that  it 
is not very effective since some of the new members might 
not be needed and the final solution could be a local op- 
timum. 

(c) Adding a limited number of joints and members. This 
approach usually involves interactive decisions, but the 
combination of automated optimization and interactive 
design might prove useful. 



To illustrate the latter approach, consider the three bar 
truss shown in Fig. 7a as an IRS. Assuming only some regular 
layouts, the solution process involves the following steps (Fig. 
7). 
(a) The geometry of the IRS (Fig. 7a) is optimized assuming 

a single geometrical variable Y1. 
(b) Adding four internal members and defining the new geo- 

metrical variables Y1 and Y2 shown in Fig. 7b, the result- 
ing eleven-bar truss is optimized. 

(c) Adding four internal members and defining the new ge- 
ometrical variables Y1, Y2 and Y3 shown in Fig. 7c, the 
resulting nineteen-bar truss is optimized. 

(a) IRS=three-bar truss (b) Eleven-bar tress 

(c) Nineteen-bar truss 

k 
Fig. 7. A typical expansion process 

From the results shown in Fig. 8 and Table 4 it can be seen 
that  the optimal layout for all cases of upper limit on the 
depth (Yu) is the eleven-bar truss. In addition, the effect of 
the depth is more significant than the effect of the number of 
members. In particular, the difference in weight between the 
eleven-bar and the nineteen-bar topologies is small. 

40 _J Z 

30- 

20 

=r 

38.o__~ 

3o_~1 
3~-~ 

lRS = Three-bar 

-bar 

Eleven-bar 

1.0 

Fig. 8. Results, expansion process 

17.0 

4.24 

Table 3. Eleven-bar truss, various geometrical variables 

Case Variables Optimal geometry Z Type of 
optimum 

a I Y Y = 2.0 24.0 Global 
b Y ,X  Y = 2.0,X = 1.0 24.0 Local 
c YF, YE YF = 4.24, YE = 1.41 10.7 Global 

4 C o n c l u d i n g  r e m a r k s  

The common approach in topological optimization is based 
on a reduction process, where members and joints are elim- 
inated from an initial highly-connected structure. Since the 
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Table 4. Results, expansion process 

Three-bar Eleven-bar 
Yv Z Y1 Z Y1 �89 
1.0 38.0 1.0 30.0 1.0 1.0 
2.0 22.0 2.0 20.7 2.0 1.0 

4.24 17.0 4.24 17.0 4.24 1.2! 

Nineteen-bar 
Z ~ �89 

30.1 1.0 0.8 0.6 
21.6 2.0 1.4 0.8 
17.0 4.24 2.55 0.85 

problem solved is usually large, idealized simplified formula- 
tions are often assumed. An expansion process, where mem- 
bers and joints are added to an initial reduced structure, is 
not common due to the lack of automated systematic pro- 
cedures. The approach presented in this paper is based on 
the integration of the two processes into a general design 
procedure. In the reduction process, several methods are 
used to establish the IRS. It has been shown that  the differ- 
ence in weight between highly idealized lower bounds on the 
optimum (with an indefinitely large number of infinitesimal 
members) and simplified structures consisting of 5-6 mem- 
bers might be only 3-4%. In addition, the effect of geometri- 
cal optimization on the optimum might be larger than that  
of topological changes. 

During the expansion process, problems with general vari- 
ables, constraints and objective function are solved succes- 
sively. The main advantages at this stage are as follows. 

(a) The structures optimized are simple and small, therefore 
the computational effort involved in the solution process 
is considerably reduced. 

(b) At each iteration the optimum is a feasible design satis- 
fying all practical constraints. 

(c) Problems of singular opt ima that  might be encountered 
in the reduction process are eliminated. 

It has been shown that  poor selection of the geometrical vari- 
ables might lead to local or singular opt ima that  cannot be 
reached by numerical optimization. The procedure presented 
in this paper can find such optima at early stages while opti- 
mizing reduced structures with a small number of members. 
Finally, development of a systematic expansion approach for 
adding members and joints is still a challenge. 
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