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Univariate Multiquadric Approximation: 
Quasi-Interpolation to Scattered Data 

R. K.  Bea t son  a n d  M.  J. D.  P o w e l l  

Abstract. The univariate multiquadric function with center xj e R has the form 
(~oj(x) = [(x -- xj) 2 + c2] 1/2, xeR}  where c is a positive constant. We consider 
three approximations, namely, &a c f, ~ f ,  and ~ e f ,  to a function {f(x), 
x0 < x < xN} from the space that is spanned by the multiquadrics {~0j:j = 0, 
1 . . . . .  N} and by linear polynomials, the centers {xi:j = 0, 1 . . . . .  N} being given 
distinct points of the interval [x0, xN]. The coefficients of 5e~cf and &Pgf depend 
just on the function values {f(xj):j = O, 1 .. . . .  N}. while .LP~ef also depends on 
the extreme derivatives f'(xo) and f'(x~r These approximations are defined by 
quasi-interpolation formulas that are shown to give good accuracy even if the 
distribution of the centers in [Xo, xN] is very irregular. When f is smooth and 
c = (9(h), where h is the maximum distance between adjacent centers, we find that 
the error of each quasi-interpolant is (9(h2 I log h[) away from the ends of the range 
x o < x < x N. Near the ends of the range, however, the accuracy of ~ r  and &a~f 
is only (9(h), because the polynomial terms of these approximations are zero and 
a constant, respectively. Thus, some of the known accuracy properties of quasi- 
interpolation when there is an infinite regular grid of centers {x i =jh: j e~} ,  
given by Buhmann (1988), are preserved in the case of a finite range Xo < x < xN, 
and there is no need for the centers {x~:j = 0, 1 . . . . .  N} to be equally spaced. 

1. Introduction 

A m u l t i q u a d r i c  a p p r o x i m a t i n g  func t i on  o f  d var iab les  has  the  f o r m  

N 

(1.1) s(x) = y~ ,~j[llx - xjll 2 + c2] x/2, x r R  d, 
j=o  

w h e r e  {2i: j = 0, 1 . . . . .  N} a n d  { x j : j  = 0, 1 . . . . .  N} a re  real  coeff ic ients  a n d  fixed 

p o i n t s  in R a, respec t ive ly ,  whe re  the  v e c t o r  n o r m  is Euc l idean ,  a n d  where  c is a 

pos i t ive  cons tan t .  T h u s  {s(x), x 6 R a} is inf in i te ly  different iable .  T h e  use of  such  

func t ions  was  p r o p o s e d  by  H a r d y  (1971), a n d  they  p e r f o r m  well  in m a n y  ca lcu la -  

t ions  i n c l u d i n g  the  n u m e r i c a l  e x p e r i m e n t s  t ha t  a re  r e p o r t e d  by F r a n k e  (1982). A n  

i m p o r t a n t  p r o p e r t y  is tha t ,  for  any  cho ice  o f  d i s t inc t  p o i n t s  {x j: j = 0, 1 . . . . .  N}, 
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the (N + 1) x (N + 1) matr ix  that  has the elements 

(1.2) A i j =  [ [ [X i  - -  Xj[[ 2 "[- C2"] 1/2, i , j  = O, 1 . . . . .  N ,  

is nonsingular  (Micchelli, 1986). Thus  the interpolat ion equat ions {s (x i )= fi ,  
i = 0, 1 . . . . .  N} define the coefficients {2j:j  = 0, 1 . . . . .  N} uniquely for any given 
r ight-hand sides {f~: i = 0, 1 . . . .  , N}. Further ,  in terpolat ion on an infinite regular  
square grid in R d reproduces  all polynomials  of  degree d (Buhmann,  1990), so we 
can achieve (9(h a+ 1) accuracy when interpolat ing smoo th  functions, h being the 
grid size. There  is no uniform bound  on the n o r m  of the in terpolat ion operator ,  
however,  when the centers { x j : j  = 0, 1 . . . . .  N} are in general position. 

In the univariate  case (d = 1), the ability to reproduce linear polynomials  does 
not  require the centers {x j} to be equally spaced when there are infinitely m a n y  
of them, {x j : j  ~ ~e} say, that  extend to bo th  ends of the real line (Powell, 1990). 
Further ,  letting the centers be in strictly ascending order  and letting q~j denote  the 
function {q~j(x) = [(x - x j) 2 + c2] 1/2, x ~ R}, that  paper  defines the normal ized 
second divided difference 

(1.3) @j(x) = ~oj+ l(x) -- tPs'(x) _ g~j(x) -- ~ j_  l(x) x ~ R, 
2(xj+ 1 - xj) 2(x i - xj_ 1) ' 

for every integer j, and then proves  tha t  the quasi - in terpolat ion scheme 

(1.4) s(x) = ~ f (x j )qb{x  ), x ~ R, 
j e ~r 

gives the identity {s(x) = f (x) ,  x e R} whenever  f is a linear polynomial .  We are 
going to draw some conclusions f rom this result in the usual, case when the 
approx imat ing  function {s(x), x e R} is derived f rom a finite number  of function 
values, { f (x i ) :  i = 0~ 1 . . . . .  N} say. 

Three quasi- interpolat ion schemes that  define an approx imat ion  s are con- 
sidered, and  for each one we establish bounds  on the error  

(1.5) 1If - sIl~ = max  I f ( x )  - s(x)f. 
XO<_X<_XN 

We believe that  these error  bounds  are the first that  have been published for 
univariate mul t iquadr ic  approx imat ion  in the case when the number  of centers is 
finite, and our  me thod  of analysis imposes no condit ions on the posit ions of the 
centers, except that  we assume the strict ordering 

(1.6) Xo < xl  < x2 < "'" < xN. 

The case when there are equally spaced centers {xj = j h : j e  ~e} th roughou t  the 
real line - m  < x < m has been studied by Buhmann  (1988), and he provides a 
bound  on  the error  ]If - sll~o of the approx ima t ion  (1.4) tha t  is similar to our  
results. We  extend the no ta t ion  (1.6) by letting { x j : j =  - 1 , - 2 , . . . }  and {xj: 
j = N + 1, N + 2, ...} be any prescribed, infinite, strictly mono ton ic  sequences that  
diverge to - oo and + 0% respectively. We retain the definition (1.3) for all j e Lr, 
and we recall f rom Powell (1990) that  these functions can be expressed in the form 

f,,] +' B,(O) 
(1.7) #j(x) = 1C2 C233/2 dO, x ~ R, 

_ ,  E(x - 0)  2 + 
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where {B j{0), 0ER} is the piecewise linear hat function that has the knots 
{xj_ 1, x~, x j+ 1} and the normalization Bj(xj) = 1. 

Section 2 considers the approximation ~ f  = s that is defined by the formula 

(1.8) 

s(x) = ~ f(xo)Oj(x ) + ~ f(x3)O](x) + f(x~)Ol(x ), x o <_ x <_ xN. 
j=--co j=0  j = N + I  

We find that this approximating function is independent of the particular choice 
of the extra centers {xi: j < 0 o r j  > N}, and that it is in the (N + 2)-dimensional 
linear space ~ that is spanned by the multiquadric functions {tp~:j = 0, 1 . . . . .  N} 
and constants. Further, we derive a bound on the error (1.5) that is expressed in 
terms of the modulus of continuity of f.  All our error bounds depend on the 
maximum spacing between adjacent data points, which is denoted by the symbol 

(1.9) h = max (xj - x j_ 1)" 
I < j<N  

Thus we avoid the details of the positions of the interior data points. 
Section 3 addresses the question of confining s to the (N + 1)-dimensional space 

d that is spanned by the multiquadrics {gos = 0, 1 . . . . .  N}. Specifically, we form 
s  by replacing the constant term that occurs in the approximation (1.8) by 
the constant times the function 

(1.10) {[-(x - -  Xo) 2 -[- C2] 1/2 -~- [(X - -  XN) 2 "-}- C2"]I/2}/(XN - -  XO) , X 0 ~_~ X ~ XN ,  

because the value of this function is quite close to one for all x in the interval 
[Xo, xN] provided that c is small. We note the resultant change to the error 
{f(x) - s(x), x o <_ x <_ xn}, the variable x occurring explicitly in order to demon- 
strate that the change is smaller when x is well inside the range [x o, x~r 

When f is differentiable, we let ~ , e f  be the approximation 

- 1  N 
(1.11) s(x) = ~, [f(xo) + (xj -- xo)f'(xo)]Ojix ) + ~" f(xj)O,(x ) 

j = - ~  j=0  

+ ~, [f(xn) + (xj - xn)f'(xn)]Oj(x), x o < x < xn, 
j = N + I  

which is usually more accurate than expression (1.8). Indeed, it follows from the 
polynomial reproduction properties of formula (1.4) that we now have {s(x) = f (x) ,  
x E R} whenever f is a linear polynomial. This scheme is the subject of Section 4. 
Again we find that the actual positions of the centers {x~:j < 0 or j > N} are 
irrelevant, but now s is in the (N + 3)-dimensional linear space rg that includes 
d and all linear polynomials. Assuming that the derivative { f ' ( x ) , x  o < x < xn} 
is Lipschitz continuous, we bound the error (1.5) by an expression that is 
proportional to the Lipschitz constant. 

The given error bounds are explicit. We find, for instance, that I I f -  Le~fll~o 
is at most (1 + c/h)~(f,  h), where {co(f, 6), 6 > 0} is the modulus of continuity of 
f .  Further, examples are presented that show that the bounds are optimal or nearly 
optimal. A referee has pointed out that the uniform convergence of ~s to f as 
h --* 0 can also be deduced from the fact that equations (1.7) and (1.8) allow .s 
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to be expressed as a convolution of a linear interpolating spline with a positive 
kernel. We employed yet another technique initially which makes explicit use of the 
asymptotic properties of the functions {0j}. The theory that is presented in this 
paper, however, includes exact analytic evaluations of several integrals. Thus it 
gives tighter error bounds than the other two techniques. 

The conclusions of Sections 2-4 are compared in Section 5. We note that the 
differences between the approximations {(~~ x o < x < XN}, {(Sr 
Xo < X < X~}, and {(ofcf)(x) ,  Xo < x < XN} are greatest when x is near to an end 
of the interval [Xo, XN]. Further, when f is smooth and c is bounded above by a 
constant multiple of h, we find that typically the errors IIs176 
I I ~ f -  f l ]~,  and lls176 f[l~ are of magnitudes (9(h), (9(h), and (9(h2[log hi), 
respectively, bu t the  differences I(s - (Se~f)(x)[ and [(s - ( ~ f ) ( x ) [  
are only (9(h 2) when x is well inside [Xo, XN]. Such bounds do not hold, however, 
if c is independent of h. Therefore, in order to obtain good accuracy from the 
quasi-interpolation schemes when h is small, it is necessary to ensure that c is not 
much larger than h. We can also reach this conclusion by studying the decay of 
Oj(x) to zero as [x - xj[ becomes large, using expression (1.3) or (1.7). On the other 
hand, some recent work of Buhmann and Dyn (1991) shows that it may be 
advantageous to keep c fixed as h ~ 0 when the approximation s is defined by 
interpolation. 

2. Approximation from the Space 

It is straightforward to deduce from (1.7) that the functions {t//j:j E .~} are positive 
and a partition of unity, which means that the equation 

(2.1) ~ ~bj(x) = 1, x ~ R, 
j e ~  

is obtained. Therefore, the infinite sums of the definition (1.8) are absolutely 
convergent for every x. We write this definition in the form 

N - 1  

(2.2) ( ~ f ) ( x )  = f(xo)flo(X) + ~ f (xj)Oj(x)  + f(XN)flN(X), X ~ R, 
j = l  

where rio and fin are the functions ~ j  < o q/j and ~ j  > N ~kj, respectively, the notation 
ri being employed because of its affinity to the name of the linear space N. Further, 
remembering that the numerator of the integrand of expression (1.7) is a normal- 
ized hat function, we have the identity 

;; (2.3) rio(X) = �89 2 1 �89 z (xt -- O)/(xl - Xo) 
_ E(x - 0)  ~ + c ~ ]  ~/~ dO + - o ~ 7 o)~ + ~]Yi~ do 

[(X - -  X1) 2 -/- C2] 1/2 - -  ['(X - -  Xo) 2 -t- C2"] 1/2 
= � 8 9  , x e R ,  

2(xl - Xo) 

and a similar argument provides the equation 

[ ( x  - XN) 2 + c 2 ]  1/2 - -  [(X - -  XN_O 2 + C2] " 2  
(2.4) riN(X) = �89 - -  

2 ( x N  - -  X N -  1) 
, x e R .  
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It follows that s  is in the space ~ as claimed. Further, the relations (1.3) and 
(2.2)-(2.4) imply that the approximation o f ~ f  is the same as f when f is a constant 
function, which is a restatement of condition (2.1). 

Next we seek bounds on the error function f - ~ f  when {f(x), Xo _< x < xN} 
is continuous. Using the form (1.8) of L,e~f and condition (2.1), we deduce the 
equation 

- 1  N 

(2.5) f ( x )  -- ( ~ f ) ( x )  = y '  [f(x) -- f(xo)]Oj(x ) + ~ [f(x) -- f (xj)]r 
j =  - m  j=O 

+ ~ If(x) -- f(xN)]~kj(X), x o < x < x N. 
j = N + I  

In order to bound the differences in f that occur in the square brackets, we let 
{co(f, 6), 6 > 0} be the modulus of continuity off .  Therefore, if x is in the interval 
[Xk, Xk+l], the definition (1.9) implies the inequalities 

(2.6) If(x) - f(xk)l < co(f, h) and If(x) - f (xk  + 1)1 < co(f, h). 

Further, the conditions 

(2.7) If(x) - f(xj)l < (1 + Ix - xyh)co( f ,  h), j = O, 1 , . . . ,  N, 

are also satisfied. f 

Let {a(0), 0 s R }  be the linear spline with th-e~knots {x j : j~  Lr} that takes the 
values 

f f ( x )  -- f(Xo), j < O, 
(2.8) a(xj) = ~ f ( x )  -- f(x~), 0 <_ j <_ N, 

I 

( f ( x )  -- f(xN), j > N. 

Then (2.5) and (1.7) give the identity 

(2.9) �89 ff [ (X - -  0) 2 "[- C2"] 3/2 dO. 

It follows from conditions (2.6)(2.8) that we have the inequality 

< �89 f~-o~ (1 + tx - OI/h)co(f, t0 (2.10) If(x) ( ~  f)(x)[ - [ ( x -  O) 2 + c2] 3/2 dO 

= (1 + e/h)co(f, h), Xo < x < xN, 

which is the main result of this section. We state it as a theorem. 

Theorem 1. Let ~q~af be defined by the quasi-interpolation formula (2.2), where 
flo, {~ki:J = 1, 2 . . . . .  N -  1), and fin are the functions (2.3), (1.3), and (2.4), re- 
spectively. Then the maximum value of the error function { f ( x ) -  (~-~f)(x), 
Xo <- x <_ xN} satisfies the bound 

(2.11) ]If -- *W~f[[ oo -< (1 + c/h)co(f, h), 

where h is the maximum spacing between adjacent data points. 
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The factor (i + c/h) that multiplies co(f, h) in the statement of the theorem 
cannot be replaced by a smaller number whose only dependence on the data points 
{xj:j = 0, 1 . . . . .  N} is the value of h. We prove this assertion by considering the 
following example. 

Let r/ be any number from the open interval (0, h), and let {f(x), x ~ R} be a 
linear spline whose knots are all the integer multiples of h and the points 
{+_(kh + r/): k = 0, 1, 2 . . . .  }. Further, we let the values of f at its knots be the 
numbers 

f (  +_ kh) = kco, 1 
(2.12) f (+__(kh+rl))=(k+ 1)co,~ k = 0 ,  1, 2 , : . . ,  

where co is a positive constant, this notation being deliberate because we have 
co = co(f, h). We consider the error If(x) - (of~f)(x)l at x = 0 when the data points 
{xj:j = 0, 1, . . . ,  N} are all the elements of the set {+_(kh + t/): k = 0, 1, 2,.. .} that 
are in the interval [ - M h  - rl, Mh + ~/] for some large integer M. In this case, 
we have N = 2M + 1 and f (x)  = 0. Further, expression (2.8) becomes the equation 

( - - ( M  + 1)co, j _< 0, 
(2.13) a(xj) = ~ - [ 1  + (Ix;I - rl)/h]co, 0 <_j <~ N, 

{.--(M + 1)co, j _> N. 

Therefore the identity (2.9) gives the bound 

(2.14) If(0) - (~~ f)(0)l > �89 2 [1 + (101 -- q)/h]co 
- M h  (0 2 + C2)3/2 dO. 

We let ~ and M tend to zero and infinity, respectively, for fixed h. Thus in the 
limit the first line of inequality (2.10) when x = 0 is satisfied as an equation, which 
implies the required optimality of condition (2.11). 

3. Approximation from the Space d 

Equations (2.2)-(2.4) show that the approximation & a f  is a linear combination 
of the multiquadric functions { q ~ / j = 0 ,  1 . . . . .  N} plus the constant term 
�89 + f(xN)], but now we require an approximation that has no constant term. 
Therefore, recalling from Section 1 that the expression (1.10) can be a good 
substitute for one, we define our approximation from d by the quasi-interpolation 
formula 

(3.1) (LPdf)(x) = ( . .~f)(x)  + �89 + f(xN) ] 

• { E ( x -  x~ + c2]'/2 + [ ( x -  xN)2 + c~-]'2 - Xo - 1 

N - I  

= f(xo)%(x) + ~ f (x fOj(x  ) + f(XN)eN(X), X �9 R, 
j = l  
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where ~o and ~N are the functions 

So(X ) _ ~ 1(x__2_- ~~176 ) + ~~ L ~o~(x__) ] 
2 ( x l  - Xo) 2(xN - Xo) ' 

(3,2) _ cPN(x) - ~oN-l(x) + Cpo(X) +_~N(x) I x ~ R. 

~ 2(xN -- xN-1) 2(x~v -- Xo) ' 

Because expression (1.10) is bounded below by one, the strict positivity of~3 o and 
flu is inherited by eo and c~ N, but formula (3.1) does not reproduce nonzero constant 
functions. 

Equation (3.1) implies the difference 

(3.3) (SLP~e f ) ( x )  --  (~LP~ f ) ( x )  - f ( x ~  + f (XN) {[(X -- XO) 2 + C2] 1/2 -- (X -- X0) 
2(xN - Xo) 

+ [ ( x ~  - x )  2 + c 2]  1/2 _ ( x ~  - x ) } ,  

X 0 ~_~ X ~ X N. 

The term in braces has the value 

C 2 122 
(3.4) + 

(X - -  X0) -'~ [(X - -  X0) 2 + r ( X  N - -  20  + [ ( X  N - -  X) 2 "+" s 

which for x in [x o, xN] is bounded below and above by the numbers 

�89 2 2c  2 
(3.5) and 

min(x - Xo, xN - x) + c min(x - Xo, xN - x)  + c '  

respectively. Thus we deduce the relation 

(3.6) 

c21f(Xo) + f(xN) l 
I(~~ - ( ~ f ) ( x ) l  < (xN - Xo)[min(x - Xo, xN - x)  + c ] '  x ~  <- x < x~ ,  

the right-hand side being at most four times the left-hand side. We see that, if c 
is small, then the difference I ( S f ~ f ) ( x ) -  ( ~ f ) ( x ) l  is relatively large when x is 
near the ends of the interval [Xo, xN]. Further, because the maximum value of 
expression (3.6) occurs at x = xo, i t  follows from Theorem 1 and the triangle 
inequality that we have the following result. 

Theorem 2. The  m a x i m u m  error o f  the quasi- interpolant  ~ r  f on the interval  
x o < x < x N satisf ies the bound 

c l f ( x o )  + f(xN)l 
(3.7) I I f  - ~ce~rfll o~ <- + (I + c/h)co(f, h). 

X N - -  X o 

We complete this section by proving that, for an); values of the two numbers 
t f ( x o )  + f(x•)[ and co(f, h), there exists a function {f(x), Xo < x ~ xN} such that 
the left-hand side of inequality (3.7) is at least one-quarter of the right-hand side. 
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Specifically, we let f satisfy the condition 

(3.8) IIf - s | > �89 + c/h)co(f, h), 

which is shown to be possible in the last paragraph of Section 2, and then we add 
a constant to f ,  if necessary, to achieve the given value of I f(Xo) + f(xN) l, which 
preserves inequality (3.8). Further, we construct f by alterin~ f by the constant 

A ^ 

term that reverses the sign off(xo) + f(xN), so the expressions f - ~ f a n d  co(f, h) 
are equal to f - Leaf  and co(f, h), respectively, but the difference Za~f  _ ~ e f  is 
minus the difference L~~ - L~a~f. 

If the condition 

(3.9) (1 + c/h)co(f, h) > cl f (xo)  + f(XN)I/(xN -- Xo) 

holds, we let r be a point of [Xo, XN] that satisfies the equation 

(3.10) If( i )  - (2r162 = Itf - 5e~ftl oo, 

and we consider the elementary bound 

(3.11) Hf - ~ d f l [ ~  > II-f(~) - (La~f)(~)] + [(Sa~f)(r - ( ~ , f ) ( ~ ) ] l .  

The option of replacing f by f allows us to assume that the two terms in square 
brackets do not have opposite signs. Therefore it follows from expressions (3.t 1), 
(3.10), and (3.8) that we have the relation 

(3.12) [If -- ~ed f[I | > �89 + c/h)co(f, h), 

and then condition (3.9) implies that IIf - s is at least one-fourth of the 
right-hand side of inequality (3.7) as required. 

Alternatively, when condition (3.9) fails, we employ the bound 

(3.13) IIf - ~ d f l l  oo > II-f(Xo) - (.LF~f)(xo)] -- [ ( ~ f ) ( x o )  -- (Ze~f)(Xo)]i 

> I(~r f)(xo) -- (s162 f)(xo)l, 

where, as before, the last line is obtained by replacing f by f if necessary. Because 
the term (3.4) is bounded below by c when x = xo, we deduce from expressions 
(3.3) and (3.13) that the inequality 

(3.14) IIf - ~ , f l l  oo -> �89 + f(xN)l/(xN -- Xo) 

holds. Therefore the required result follows from the failure of condition (3.9). 

4. Approximation from the Space 

We assume throughout this section that {f(x), Xo < x < xN} has a Lipschitz 
continuous first derivative, we recall from Section 1 that Z,e~e f is the approximation 
(1.11), and we seek bounds on the error f - ~ e f .  The definition (1.8) of Z~af 
allows us to express ~r in the form 

(4.1) (L~'~ef)(x) = ( ~ f ) ( x )  + f'(xo)Yo(X) + f'(XN)yN(X), X ~ R, 
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where 7o and YN are independent o f f .  Specifically, in view of (1.7), we see that 7o 
is the function 

0 
(4.2) yo(X)  = ~ ( x j  - Xo)~k,{x ) = �89 2 0 - Xo 

j=-~o [(x - 0) 2 + c 2] 3/z dO 

= ~ x  - Xo)  - � 8 9  - Xo)  2 + c 2 ] ' / 2 ,  x ~ r ,  

and a similar argument gives the identity 

(4.3) ~N(X) = �89 - -  X) 2 + C z]  a/z _ ~(XN - -  X), X ~ R 

Hence, as claimed in Section 1, s is in the space ~ and is independent of the 
positions of the additional centers { x ~ : j  < 0 or j > N}. Further, we can deduce 
directly from (1.3), (2.2)-(2.4), and (4.1}-(4.3) that 5e~ef = f when f is any linear 
polynomial. We omit this task, however, because it has been noted already that, 
due to the equivalence of formulas (1.4) and (1.11) when f s H1, this property is 
a consequence of a theorem of Powell (1990). Because it implies the relation 
{ ~ _ . j ~  x j O j ( x )  = x ,  x ~ R} in addition to condition (2.1), we have the equation 

(4.4) f ( x )  = ~ [ / (x)  + ( x j  - x ) f ' ( x ) ] O j ( x ) ,  Xo < x < X s ,  
j~y" 

which is important to the error bounds that are going to be derived. 
Indeed, this equation and the definition (1.11) of & o f  provide the identity 

(4.5) 

-1  

f ( x )  ~ ( s  = ~ I f (x)  + (xj -- x ) f ' ( x )  - -  f ( x o )  - -  ( x j  - -  x o ) f ' ( x o ) ] q / j ( x  ) 
j =  - c o  

+ ~ [ f (x)  + ( x j  - x ) f ' ( x )  - -  f ( x u )  - -  ( x j  - -  x u ) f ' ( x u ) ] O , ( x  ) 
j=N+I  

N 

+ E IT(x) + (x.j - x ) f ' ( x )  - -  f ( x j ) ] O ~ ( x ) ,  x o <_ x <_ XN.  
j=O 

In order to bound the terms in square brackets, we require the derivative {f'(x), 
xo < x < xN} to be Lipschitz continuous, and we use the notation 

(4.6) II = ess sup If"(x)l 
XO<_X<_XN 

for the Lipschitz constant. For  every x in the interval [x o, XN],  this assumption 
yields the inequalities 

(4.7) 

(4.8) 

If(x) + ( x j  - x ) f ' ( x )  - f(x~)l <_ ~ ( x  - x j )Z f~ ,  j = O, 1 . . . . .  N ,  

If(x) + (xj - x ) f ' ( x )  - f ( x o )  - ( x j  - x o ) f ' ( x o ) ]  

< ~ x  - Xo)2f~ + I x~ - No II f ' ( x )  - f '(xo) l 

___ (x - Xo)[~(x - Xo)  + ( x o  - xj)]~, j _< 0, 
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and 

(4.9) If(x) + (xj - x ) f ' (x )  - f (xN) - (xj - xN)f'(xN) [ 

-< (xN -- X)[�89 -- X) + (Xj -- XN)]~, j _ X. 

Instead of expression (2.8), we now let the numbers {a(xj): j e 2~f} be the right-hand 
sides of inequalities (4.7)-(4.9) for the values o f j  that are displayed. Therefore (4.5) 
implies the bound 

(4.10) If(x) -- (~ef)(x)l  < ~ a(x~)Oj(x), x o < x < xN. 
j =  -cx3 

It follows from the identity (1.7) that the right-hand side of this bound has the value 

(4.11) �89 f ~  ? ~a(xi)Bj(O) �89 f~ a(o) 
[(  - -  0) 2 "J- C213/2 dO = [(x - -  0) 2 "~ C213/2 dO, 

where {a(0), 0 e R} is the linear spline with the knots {x j: j s ~e} that interpolates 
the numbers {a(x~): j e ~ }  that have been defined already. We see that the functions 
{a(0), 0 _< Xo} and {o-(0), 0 > xN} are straight lines, but {a(0), x o _< 0 < xN} is a 
piecewise linear interpolant to the quadratic function {~x - 0)2~, xo < 0 <_ XN}. 
Therefore, the usual bound for the error of linear interpolation gives the condition 

(4.12) ~(0) <_ �89 - -  0 ) 2 n  4- ~ h 2 ~ ,  x 0 ~ 0 _< x N- 

Hence expressions (4.10) and (4.11) imply the inequality 

(4.13) if(x)_(~f)(x)l < kc2~ f~ 2 (X- Xo)f~(X § Xo)-O] _ C~3/d dO ~(xZ~7 + 

+ �89 fx 'N ~x - 0) 2 + lh2 

fx ~ ( x N  - x ) [ O  - ~ ( x  + xN)] 
+ �89 [ i i  7 ~ ) 7 7 ~  do. 

N 

Analytic integration shows that the three terms on the right-hand side have the 
values 

[  -xo 1 
(4.14) �89 [(x -- 0) 2 + c=] t/2 + c Y ( ~ - - - O ~ +  c2]'/2J_~ o' 

(4.15) �89 �89 sinh -~ + c2[( x -  ~ +c2]~/21xo , 

and 

(4.16) 
I_[ X -- X N 

~c2O (x - 0) 2 + c2] 1/2 
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respectively. Thus we find the relation 

(4.17) If(x) - (~q~ < �88 - Xo){[(x - Xo) z + c2] 1/2 - (x - Xo) } 

+ �88 - x){[(x~ - x) 2 + c2] '/2 - (xN - x)} 

+ ~ h 2 n _  [(x - x o ~  + c2Y/~ + [(xN -~)~-  + c2y /~J  ' 

X o ~ X ~ X N .  

Now the expressions in the first, second, and fourth lines of the right-hand side 
are at most ~c2~, ~c2f~, and ~h2f~, respectively, while the third line contains a 
concave function of x whose maximum value occurs at x = ~ x  o + xN). Therefore, 
we have the bound 

It is more usual, however, to employ logarithms instead of inverse hyperbolic 
functions, so we invoke the elementary inequality {sinh-~ t _< log(2t + 1), t > 0}. 
Thus expression (4.18) implies the following theorem. 

Theorem 3. I f  f has a Lipschitz continuous first derivative, then the maximum error 
of  the quasi-interpolant ~e~e f on the interval x o < x < x N satisfies the bound 

(4.19) IIf - 5a~efll oo < �88 C2~'~ 1 + 2 log 1 + + ~h2f~, 
s 

where ~ is defined by (4.6). 

In the limiting case when c = 0 this theorem gives the usual bound on the error 
of piecewise linear interpolation, but, when c is not much less than h, the ~-hef~ 
term is unimportant. Therefore, it is worthwhile to test the slackness in inequality 
(4.19) without giving careful attention to the value of h. It is appropriate to let f 
be the quadratic function {f(x) = l~~x2, x 0 ~ x ~ XN} , because in this case the 
inequalities (4.7)-(4.9) are all satisfied as equations even if the modulus signs are 
replaced by the factor - 1  on each of the left-hand sides. Thus condition (4.10) 
also holds as an equation. Deleting the h 2 term from the relation (4.12), however, 
provides the lower bound {o-(0) > �89 - -  0) 2, x 0 ~ 0 ~ XN}. Therefore we set h to 
zero in expressions (4.13) and (4.17) and we reverse these inequalities. Thus, because 
each of the functions of x in the first three lines of the right-hand side of expression 
(4.17) is concave, we find the bound 

(4.20) If(x) - (~ef)(x) l  > �88 - Xo){[(xN - Xo) 2 + c2] 1/2 - (xN - Xo)} 

+ � 8 8 1 7 6  
, X o < X <~ X N. 
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We can delete the first term on the right-hand side because it is nonnegative. It 
follows from the elementary relation {sinh-1 t > log(2t), t > 0} that we have the 
inequality 

(4.21) If(x)--(~(e~ ef)(x)[ _ �88 + l ~ 1 7 6  ' x ~  - 

when f is the function {�89 2, x o _< x < xn}. It follows that Theorem 3 usually 
provides a good indication of the magnitude of H f -  s Further, because 
condition (4.21) is valid for every x in the interval [Xo, xn], we can deduce that 
in many cases the ratio of the maximum to the minimum value of the error function 
{If(x) -- (~r  Xo <- x ~ xn} is at most two, due to the dominance of the 
sinh- 1 terms of expressions (4.i8) and (4.20) when h < c ,~ (xn - Xo). 

5. Discussion 

Theorems 1, 2, and 3 all suggest that the given quasi-interpolation schemes fail to 
provide good accuracy as h ~ 0 unless c --. 0 too. This suggestion is confirmed in 
the last paragraph of Section 4. Therefore in this section we assume that c satisfies 
the bound 

(5.1) c < Dh, 

where D is a positive constant. Thus our theorems provide the inequalities 

(5.2) ]If - Z'e~f]l~ < (1 + D)co(f, h), 

If(x0) + f(xN) lDh 
(5.3) Itf - ~ d f l l  ~ -< + (1 + D)co(f, h), 

X N - -  X 0 

and 

[ x Xo 
(5.4) Hf -- ~V~flJoo -< ~ + 1D2 + �89 D2 log 1 + f~h 2. 

It is usual to replace co(f, h) by htlf'llo~ when f is smooth, and in this case we 
expect ~ f  to be a substantially more accurate approximation to {f(x), x 0 _< x _< 
xn} than ~ d f  or cp~f. Indeed, inequalities (5.2)-(5.4) provide the (9(h), (9(h), 
and (9(hEjlog hi) error bounds that are mentioned in Section 1. 

The example at the end of Section 4 shows that the (9(h2jloghl) term of 
expression (5.4) cannot be removed if our only condition on f is that it has a 
Lipschitz continuous first derivative. Inequality (4.21) also demonstrates that the 
dependence of the relation (5.4) on xn - Xo is unavoidable too, and that the error 
of the approximation ~ r  ~ f becomes unbounded if xn - Xo tends to infinity 
for any fixed value of c. When there is a constant upper bound on Jl f '  J] oo, however, 
in addition to the Lipschitz condition (4.6), then inequality (5.4) can be strength- 
ened to a form that has no xn - Xo term. For  example, Theorem 6 of Buhmann 
(1988) establishes that, if  the function {f(x), x ~R} has finite first and second 
derivatives and if there are an infinite number of equally spaced centers {xj = 
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jh:  j ~  ~},  then the error I ] f -  s[I ~o of the quasi-interpolation scheme (1.4) is 
(~(hZ+ c2lloghl). A method of proof is to bound the square bracket terms of 
equation (4.5) by the least numbers that can be derived from the values of [If'[I 
and f~. 

Inequality (4.21), when f is a quadratic function, suggests that in general 
expression (5.4) provides a useful bound on I f ( x ) -  (LP~f)(x)[ for every x in 
[Xo, xN]. On the other hand, the following remarks show that the bounds (5.2) 
and (5.3) on If(x) - (~L#~f)(x)l and If(x) - ( ~ f ) ( x ) [ ,  respectively, are pessimistic 
when f is smooth and x is well inside the interval [x 0, XN]. Equations (4.1)-(4.3) 
imply the relation 

(5.5) I(La~f)(x) - (La~ef)(x)] < [l~o(X)l + Iv~(x)l]llf'll~o 

< [ �89 
- (x - x0) + [(x - Xo) 2 + c2] 1/2 

�89 1 + (x N --  x)  + [(~-s -- x) 2 + c2] 1/2 Ilf'll~ 

O2llf'[l~oh 2 

-< min(x - Xo, XN -- X) + Dh ' x ~  < x <_ XN, 

where the last line depends on condition (5.1) and the upper bound (3.5) on 
expression (3.4). Therefore, if x satisfies Xo + A < x < x N - A, where A is a positive 
number, then I ( ~ f ) ( x ) -  (=W~ef)(x)l is at most a constant multiple of A- lh  2. 
Further, inequality (3.6) shows that ] ( ~ f ) ( x )  - (LP~f)(x)l also enjoys this prop- 
erty. Thus we deduce the conditions 

(5.6) 

If(x) - (Le~f)(x)l < D 2 l l f ' i l ~ o A - l h  2 + ! I f  - ~<efllo~, 

Ill:'ll= + + I I : -  
L XN Xo I 

when x ~ [ x o  + A ,  X N - - A ] .  Remembering the h2lloghl term that occurs in 
f ( x )  - (S~ef ) (x) ,  it follows usually that the errors f ( x )  - ( ~  f ) ( x ) ,  
f ( x ) -  (LP~f)(x) ,  and f ( x ) -  (Z~'~f)(x) are approximately equal when x is well 
inside the interval Xo < x < x N. 

The authors are continuing to study multiquadric radial basis function approx- 
imations that have a finite number of centers, giving particular attention to 
interpolation on the regular grid {x j  = j h : j  = 0, 1, . . . ,  N} when d = 1 (Beatson 
and Powell, 1991). Interpolation tends to be more accurate than quasi-interpola- 
tion because its error vanishes at the centers {x j} instead of often having a constant 
sign. Further, if x is any fixed interior point of [Xo, XN] and if h tends to zero, 
then in the case of a regular grid one can bound the interpolation error at x by a 
multiple of h 2 (Powell, 1991), which is better than the (.0(h 2 [log hD results that we 
have derived. On the other hand, the effort of calculating the coefficients of 
quasi-interpolants is less than the work of solving the linear systems of equations 
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tha t  occur  in  i n t e r p o l a t i o n  and ,  m o r e  i m p o r t a n t l y ,  the  accuracy  p rope r t i e s  of the 
given q u a s i - i n t e r p o l a t i o n  shcemes  are  val id w h e n  the  spac ings  {x i - x j . _  1 :J = 1, 
2 . . . . .  N} be tween  ad j acen t  d a t a  po in t s  are  h ighly  i r regular .  

References 

R. K. BEATSON, M. J. D. POWELL (1991): Univariate interpolation on a regular finite grid by a 
muttiquadricplus a linear polynomial. Report DAMTP 1991/NA2, University of Cambridge. IMA 
J. Numer. Anal. (To appear.) 

M. D. BUrtMANN (1988): Convergence of  univariate quasi-interpolation using multiquadrics. IMA J. 
Numer. Anal., g:365-383. 

M. D. BUHMANN (1990): Multivariate cardinal interpolation with radial-basis functions. Constr. Approx., 
6:225-255. 

M. O. BUHMANN, N. DYN (1991): Error estimates for multiquadric interpolation. In: Curves and Surfaces, 
(P. J. Laurent, A. Le M6haut6, L. L. Schumaker, eds.). New York: Academic Press, pp. 51-58. 

R. FRANKE (1982): Scattered data interpolation: tests o f  some methods. Math. Comp., 38:181-200. 
R. L. HARDY (1971): Multiquadric equations of  topography and other irregular surfaces. J. Geophysical 

Res., 76:1905-19t 5. 
C~ A. M~CCHELL! (1986): Inte~Tolation of  scattered data: distance matrices and conditionally positive 

definite functions. Constr. Approx., 2:11-22. 
M. J. D. POWELL (1990): Univariate multiquadric approximation: reproduction of linear polynomials. 

In: Multivariate Approximation and Interpolation (W. Haussman, K. Jetter, eds.). Basel: 
Birkh~user Verlag, pp. 227-240. 

M. J. D. POWELL (1991): Error bounds for univariate multiquadric interpolation on finite regular grids. 
(In preparation.) 

R. K. Beatson 
Department of Mathematics 
University of Canterbury 
Christchurch 
New Zealand 

M. J. D. Powel! 
Department of Applied Mathematics 

and Theoretical Physics 
University of Cambridge 
Cambridge CB3 9EW 
England 


